]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
79f5b516b6a5818e1a61674b3797a4c74bb1c8e3
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31 #include "gdbcmd.h"
32
33 #include <errno.h>
34 #include "gdb_string.h"
35
36 /* Default to coercing float to double in function calls only when there is
37 no prototype. Otherwise on targets where the debug information is incorrect
38 for either the prototype or non-prototype case, we can force it by defining
39 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40
41 #ifndef COERCE_FLOAT_TO_DOUBLE
42 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
43 #endif
44
45 /* Flag indicating HP compilers were used; needed to correctly handle some
46 value operations with HP aCC code/runtime. */
47 extern int hp_som_som_object_present;
48
49
50 /* Local functions. */
51
52 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
53
54 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
55 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
56
57
58 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
59
60 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
61 struct type *, int));
62
63 static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
64 struct type *, int, int *, char *,
65 struct type **));
66
67 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
68 value_ptr *,
69 int, int *, struct type *));
70
71 static int check_field_in PARAMS ((struct type *, const char *));
72
73 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
74
75 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
76
77 static struct fn_field *find_method_list PARAMS ((value_ptr *argp, char * method, int offset, int * static_memfuncp, struct type * type, int * num_fns, struct type ** basetype, int * boffset));
78
79 void _initialize_valops PARAMS ((void));
80
81 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
82
83 /* Flag for whether we want to abandon failed expression evals by default. */
84
85 #if 0
86 static int auto_abandon = 0;
87 #endif
88
89 int overload_resolution = 0;
90
91
92 \f
93 /* Find the address of function name NAME in the inferior. */
94
95 value_ptr
96 find_function_in_inferior (name)
97 char *name;
98 {
99 register struct symbol *sym;
100 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
101 if (sym != NULL)
102 {
103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
104 {
105 error ("\"%s\" exists in this program but is not a function.",
106 name);
107 }
108 return value_of_variable (sym, NULL);
109 }
110 else
111 {
112 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
113 if (msymbol != NULL)
114 {
115 struct type *type;
116 LONGEST maddr;
117 type = lookup_pointer_type (builtin_type_char);
118 type = lookup_function_type (type);
119 type = lookup_pointer_type (type);
120 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
121 return value_from_longest (type, maddr);
122 }
123 else
124 {
125 if (!target_has_execution)
126 error ("evaluation of this expression requires the target program to be active");
127 else
128 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
129 }
130 }
131 }
132
133 /* Allocate NBYTES of space in the inferior using the inferior's malloc
134 and return a value that is a pointer to the allocated space. */
135
136 value_ptr
137 value_allocate_space_in_inferior (len)
138 int len;
139 {
140 value_ptr blocklen;
141 register value_ptr val = find_function_in_inferior ("malloc");
142
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
146 {
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
149 else
150 error ("No memory available to program: call to malloc failed");
151 }
152 return val;
153 }
154
155 static CORE_ADDR
156 allocate_space_in_inferior (len)
157 int len;
158 {
159 return value_as_long (value_allocate_space_in_inferior (len));
160 }
161
162 /* Cast value ARG2 to type TYPE and return as a value.
163 More general than a C cast: accepts any two types of the same length,
164 and if ARG2 is an lvalue it can be cast into anything at all. */
165 /* In C++, casts may change pointer or object representations. */
166
167 value_ptr
168 value_cast (type, arg2)
169 struct type *type;
170 register value_ptr arg2;
171 {
172 register enum type_code code1;
173 register enum type_code code2;
174 register int scalar;
175 struct type *type2;
176
177 int convert_to_boolean = 0;
178
179 if (VALUE_TYPE (arg2) == type)
180 return arg2;
181
182 CHECK_TYPEDEF (type);
183 code1 = TYPE_CODE (type);
184 COERCE_REF(arg2);
185 type2 = check_typedef (VALUE_TYPE (arg2));
186
187 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
188 is treated like a cast to (TYPE [N])OBJECT,
189 where N is sizeof(OBJECT)/sizeof(TYPE). */
190 if (code1 == TYPE_CODE_ARRAY)
191 {
192 struct type *element_type = TYPE_TARGET_TYPE (type);
193 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
194 if (element_length > 0
195 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
196 {
197 struct type *range_type = TYPE_INDEX_TYPE (type);
198 int val_length = TYPE_LENGTH (type2);
199 LONGEST low_bound, high_bound, new_length;
200 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
201 low_bound = 0, high_bound = 0;
202 new_length = val_length / element_length;
203 if (val_length % element_length != 0)
204 warning("array element type size does not divide object size in cast");
205 /* FIXME-type-allocation: need a way to free this type when we are
206 done with it. */
207 range_type = create_range_type ((struct type *) NULL,
208 TYPE_TARGET_TYPE (range_type),
209 low_bound,
210 new_length + low_bound - 1);
211 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
212 element_type, range_type);
213 return arg2;
214 }
215 }
216
217 if (current_language->c_style_arrays
218 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
219 arg2 = value_coerce_array (arg2);
220
221 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
222 arg2 = value_coerce_function (arg2);
223
224 type2 = check_typedef (VALUE_TYPE (arg2));
225 COERCE_VARYING_ARRAY (arg2, type2);
226 code2 = TYPE_CODE (type2);
227
228 if (code1 == TYPE_CODE_COMPLEX)
229 return cast_into_complex (type, arg2);
230 if (code1 == TYPE_CODE_BOOL)
231 {
232 code1 = TYPE_CODE_INT;
233 convert_to_boolean = 1;
234 }
235 if (code1 == TYPE_CODE_CHAR)
236 code1 = TYPE_CODE_INT;
237 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
238 code2 = TYPE_CODE_INT;
239
240 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
241 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
242
243 if ( code1 == TYPE_CODE_STRUCT
244 && code2 == TYPE_CODE_STRUCT
245 && TYPE_NAME (type) != 0)
246 {
247 /* Look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the object in addition to changing its type. */
250 value_ptr v = search_struct_field (type_name_no_tag (type),
251 arg2, 0, type2, 1);
252 if (v)
253 {
254 VALUE_TYPE (v) = type;
255 return v;
256 }
257 }
258 if (code1 == TYPE_CODE_FLT && scalar)
259 return value_from_double (type, value_as_double (arg2));
260 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
261 || code1 == TYPE_CODE_RANGE)
262 && (scalar || code2 == TYPE_CODE_PTR))
263 {
264 LONGEST longest;
265
266 if (hp_som_som_object_present && /* if target compiled by HP aCC */
267 (code2 == TYPE_CODE_PTR))
268 {
269 unsigned int * ptr;
270 value_ptr retvalp;
271
272 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
273 {
274 /* With HP aCC, pointers to data members have a bias */
275 case TYPE_CODE_MEMBER:
276 retvalp = value_from_longest (type, value_as_long (arg2));
277 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
278 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 return retvalp;
280
281 /* While pointers to methods don't really point to a function */
282 case TYPE_CODE_METHOD:
283 error ("Pointers to methods not supported with HP aCC");
284
285 default:
286 break; /* fall out and go to normal handling */
287 }
288 }
289 longest = value_as_long (arg2);
290 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
291 }
292 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
293 {
294 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
295 {
296 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
297 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
298 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
299 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
300 && !value_logical_not (arg2))
301 {
302 value_ptr v;
303
304 /* Look in the type of the source to see if it contains the
305 type of the target as a superclass. If so, we'll need to
306 offset the pointer rather than just change its type. */
307 if (TYPE_NAME (t1) != NULL)
308 {
309 v = search_struct_field (type_name_no_tag (t1),
310 value_ind (arg2), 0, t2, 1);
311 if (v)
312 {
313 v = value_addr (v);
314 VALUE_TYPE (v) = type;
315 return v;
316 }
317 }
318
319 /* Look in the type of the target to see if it contains the
320 type of the source as a superclass. If so, we'll need to
321 offset the pointer rather than just change its type.
322 FIXME: This fails silently with virtual inheritance. */
323 if (TYPE_NAME (t2) != NULL)
324 {
325 v = search_struct_field (type_name_no_tag (t2),
326 value_zero (t1, not_lval), 0, t1, 1);
327 if (v)
328 {
329 value_ptr v2 = value_ind (arg2);
330 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
331 + VALUE_OFFSET (v);
332 v2 = value_addr (v2);
333 VALUE_TYPE (v2) = type;
334 return v2;
335 }
336 }
337 }
338 /* No superclass found, just fall through to change ptr type. */
339 }
340 VALUE_TYPE (arg2) = type;
341 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
342 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
343 return arg2;
344 }
345 else if (chill_varying_type (type))
346 {
347 struct type *range1, *range2, *eltype1, *eltype2;
348 value_ptr val;
349 int count1, count2;
350 LONGEST low_bound, high_bound;
351 char *valaddr, *valaddr_data;
352 /* For lint warning about eltype2 possibly uninitialized: */
353 eltype2 = NULL;
354 if (code2 == TYPE_CODE_BITSTRING)
355 error ("not implemented: converting bitstring to varying type");
356 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
357 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
358 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
359 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
360 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
361 error ("Invalid conversion to varying type");
362 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
363 range2 = TYPE_FIELD_TYPE (type2, 0);
364 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
365 count1 = -1;
366 else
367 count1 = high_bound - low_bound + 1;
368 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
369 count1 = -1, count2 = 0; /* To force error before */
370 else
371 count2 = high_bound - low_bound + 1;
372 if (count2 > count1)
373 error ("target varying type is too small");
374 val = allocate_value (type);
375 valaddr = VALUE_CONTENTS_RAW (val);
376 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
377 /* Set val's __var_length field to count2. */
378 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
379 count2);
380 /* Set the __var_data field to count2 elements copied from arg2. */
381 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
382 count2 * TYPE_LENGTH (eltype2));
383 /* Zero the rest of the __var_data field of val. */
384 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
385 (count1 - count2) * TYPE_LENGTH (eltype2));
386 return val;
387 }
388 else if (VALUE_LVAL (arg2) == lval_memory)
389 {
390 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
391 VALUE_BFD_SECTION (arg2));
392 }
393 else if (code1 == TYPE_CODE_VOID)
394 {
395 return value_zero (builtin_type_void, not_lval);
396 }
397 else
398 {
399 error ("Invalid cast.");
400 return 0;
401 }
402 }
403
404 /* Create a value of type TYPE that is zero, and return it. */
405
406 value_ptr
407 value_zero (type, lv)
408 struct type *type;
409 enum lval_type lv;
410 {
411 register value_ptr val = allocate_value (type);
412
413 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
414 VALUE_LVAL (val) = lv;
415
416 return val;
417 }
418
419 /* Return a value with type TYPE located at ADDR.
420
421 Call value_at only if the data needs to be fetched immediately;
422 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
423 value_at_lazy instead. value_at_lazy simply records the address of
424 the data and sets the lazy-evaluation-required flag. The lazy flag
425 is tested in the VALUE_CONTENTS macro, which is used if and when
426 the contents are actually required.
427
428 Note: value_at does *NOT* handle embedded offsets; perform such
429 adjustments before or after calling it. */
430
431 value_ptr
432 value_at (type, addr, sect)
433 struct type *type;
434 CORE_ADDR addr;
435 asection *sect;
436 {
437 register value_ptr val;
438
439 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
440 error ("Attempt to dereference a generic pointer.");
441
442 val = allocate_value (type);
443
444 if (GDB_TARGET_IS_D10V
445 && TYPE_CODE (type) == TYPE_CODE_PTR
446 && TYPE_TARGET_TYPE (type)
447 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
448 {
449 /* pointer to function */
450 unsigned long num;
451 unsigned short snum;
452 snum = read_memory_unsigned_integer (addr, 2);
453 num = D10V_MAKE_IADDR (snum);
454 store_address (VALUE_CONTENTS_RAW (val), 4, num);
455 }
456 else if (GDB_TARGET_IS_D10V
457 && TYPE_CODE(type) == TYPE_CODE_PTR)
458 {
459 /* pointer to data */
460 unsigned long num;
461 unsigned short snum;
462 snum = read_memory_unsigned_integer (addr, 2);
463 num = D10V_MAKE_DADDR (snum);
464 store_address (VALUE_CONTENTS_RAW (val), 4, num);
465 }
466 else
467 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
468
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
471 VALUE_BFD_SECTION (val) = sect;
472
473 return val;
474 }
475
476 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
477
478 value_ptr
479 value_at_lazy (type, addr, sect)
480 struct type *type;
481 CORE_ADDR addr;
482 asection *sect;
483 {
484 register value_ptr val;
485
486 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
487 error ("Attempt to dereference a generic pointer.");
488
489 val = allocate_value (type);
490
491 VALUE_LVAL (val) = lval_memory;
492 VALUE_ADDRESS (val) = addr;
493 VALUE_LAZY (val) = 1;
494 VALUE_BFD_SECTION (val) = sect;
495
496 return val;
497 }
498
499 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
500 if the current data for a variable needs to be loaded into
501 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
502 clears the lazy flag to indicate that the data in the buffer is valid.
503
504 If the value is zero-length, we avoid calling read_memory, which would
505 abort. We mark the value as fetched anyway -- all 0 bytes of it.
506
507 This function returns a value because it is used in the VALUE_CONTENTS
508 macro as part of an expression, where a void would not work. The
509 value is ignored. */
510
511 int
512 value_fetch_lazy (val)
513 register value_ptr val;
514 {
515 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
516 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
517
518 struct type *type = VALUE_TYPE(val);
519 if (GDB_TARGET_IS_D10V
520 && TYPE_CODE (type) == TYPE_CODE_PTR
521 && TYPE_TARGET_TYPE (type)
522 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
523 {
524 /* pointer to function */
525 unsigned long num;
526 unsigned short snum;
527 snum = read_memory_unsigned_integer (addr, 2);
528 num = D10V_MAKE_IADDR(snum);
529 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
530 }
531 else if (GDB_TARGET_IS_D10V
532 && TYPE_CODE(type) == TYPE_CODE_PTR)
533 {
534 /* pointer to data */
535 unsigned long num;
536 unsigned short snum;
537 snum = read_memory_unsigned_integer (addr, 2);
538 num = D10V_MAKE_DADDR(snum);
539 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
540 }
541 else if (length)
542 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
543 VALUE_BFD_SECTION (val));
544 VALUE_LAZY (val) = 0;
545 return 0;
546 }
547
548
549 /* Store the contents of FROMVAL into the location of TOVAL.
550 Return a new value with the location of TOVAL and contents of FROMVAL. */
551
552 value_ptr
553 value_assign (toval, fromval)
554 register value_ptr toval, fromval;
555 {
556 register struct type *type;
557 register value_ptr val;
558 char raw_buffer[MAX_REGISTER_RAW_SIZE];
559 int use_buffer = 0;
560
561 if (!toval->modifiable)
562 error ("Left operand of assignment is not a modifiable lvalue.");
563
564 COERCE_REF (toval);
565
566 type = VALUE_TYPE (toval);
567 if (VALUE_LVAL (toval) != lval_internalvar)
568 fromval = value_cast (type, fromval);
569 else
570 COERCE_ARRAY (fromval);
571 CHECK_TYPEDEF (type);
572
573 /* If TOVAL is a special machine register requiring conversion
574 of program values to a special raw format,
575 convert FROMVAL's contents now, with result in `raw_buffer',
576 and set USE_BUFFER to the number of bytes to write. */
577
578 if (VALUE_REGNO (toval) >= 0
579 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("\
670 Can't handle bitfield which doesn't fit in a single register.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *)NULL, (CORE_ADDR *)NULL,
742 frame, regno, (enum lval_type *)NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *)NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (LONGEST) (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973 value_ptr real_val;
974
975 COERCE_ARRAY (arg1);
976
977 base_type = check_typedef (VALUE_TYPE (arg1));
978
979 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
980 error ("not implemented: member types in value_ind");
981
982 /* Allow * on an integer so we can cast it to whatever we want.
983 This returns an int, which seems like the most C-like thing
984 to do. "long long" variables are rare enough that
985 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
986 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
987 return value_at (builtin_type_int,
988 (CORE_ADDR) value_as_long (arg1),
989 VALUE_BFD_SECTION (arg1));
990 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
991 {
992 struct type *enc_type;
993 /* We may be pointing to something embedded in a larger object */
994 /* Get the real type of the enclosing object */
995 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
996 enc_type = TYPE_TARGET_TYPE (enc_type);
997 /* Retrieve the enclosing object pointed to */
998 arg2 = value_at_lazy (enc_type,
999 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1000 VALUE_BFD_SECTION (arg1));
1001 /* Re-adjust type */
1002 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1003 /* Add embedding info */
1004 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1005 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1006
1007 /* We may be pointing to an object of some derived type */
1008 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1009 return arg2;
1010 }
1011
1012 error ("Attempt to take contents of a non-pointer value.");
1013 return 0; /* For lint -- never reached */
1014 }
1015 \f
1016 /* Pushing small parts of stack frames. */
1017
1018 /* Push one word (the size of object that a register holds). */
1019
1020 CORE_ADDR
1021 push_word (sp, word)
1022 CORE_ADDR sp;
1023 ULONGEST word;
1024 {
1025 register int len = REGISTER_SIZE;
1026 char buffer[MAX_REGISTER_RAW_SIZE];
1027
1028 store_unsigned_integer (buffer, len, word);
1029 if (INNER_THAN (1, 2))
1030 {
1031 /* stack grows downward */
1032 sp -= len;
1033 write_memory (sp, buffer, len);
1034 }
1035 else
1036 {
1037 /* stack grows upward */
1038 write_memory (sp, buffer, len);
1039 sp += len;
1040 }
1041
1042 return sp;
1043 }
1044
1045 /* Push LEN bytes with data at BUFFER. */
1046
1047 CORE_ADDR
1048 push_bytes (sp, buffer, len)
1049 CORE_ADDR sp;
1050 char *buffer;
1051 int len;
1052 {
1053 if (INNER_THAN (1, 2))
1054 {
1055 /* stack grows downward */
1056 sp -= len;
1057 write_memory (sp, buffer, len);
1058 }
1059 else
1060 {
1061 /* stack grows upward */
1062 write_memory (sp, buffer, len);
1063 sp += len;
1064 }
1065
1066 return sp;
1067 }
1068
1069 /* Push onto the stack the specified value VALUE. */
1070
1071 static CORE_ADDR
1072 value_push (sp, arg)
1073 register CORE_ADDR sp;
1074 value_ptr arg;
1075 {
1076 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1077
1078 if (INNER_THAN (1, 2))
1079 {
1080 /* stack grows downward */
1081 sp -= len;
1082 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1083 }
1084 else
1085 {
1086 /* stack grows upward */
1087 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1088 sp += len;
1089 }
1090
1091 return sp;
1092 }
1093
1094 #ifndef PUSH_ARGUMENTS
1095 #define PUSH_ARGUMENTS default_push_arguments
1096 #endif
1097
1098 CORE_ADDR
1099 default_push_arguments (nargs, args, struct_return, sp, struct_addr)
1100 int nargs;
1101 value_ptr *args;
1102 int struct_return;
1103 CORE_ADDR sp;
1104 CORE_ADDR struct_addr;
1105 {
1106 /* ASSERT ( !struct_return); */
1107 int i;
1108 for (i = nargs - 1; i >= 0; i--)
1109 sp = value_push (sp, args[i]);
1110 return sp;
1111 }
1112
1113
1114 /* Perform the standard coercions that are specified
1115 for arguments to be passed to C functions.
1116
1117 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1118 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1119
1120 static value_ptr
1121 value_arg_coerce (arg, param_type, is_prototyped)
1122 value_ptr arg;
1123 struct type *param_type;
1124 int is_prototyped;
1125 {
1126 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1127 register struct type *type
1128 = param_type ? check_typedef (param_type) : arg_type;
1129
1130 switch (TYPE_CODE (type))
1131 {
1132 case TYPE_CODE_REF:
1133 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1134 {
1135 arg = value_addr (arg);
1136 VALUE_TYPE (arg) = param_type;
1137 return arg;
1138 }
1139 break;
1140 case TYPE_CODE_INT:
1141 case TYPE_CODE_CHAR:
1142 case TYPE_CODE_BOOL:
1143 case TYPE_CODE_ENUM:
1144 /* If we don't have a prototype, coerce to integer type if necessary. */
1145 if (!is_prototyped)
1146 {
1147 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1148 type = builtin_type_int;
1149 }
1150 /* Currently all target ABIs require at least the width of an integer
1151 type for an argument. We may have to conditionalize the following
1152 type coercion for future targets. */
1153 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1154 type = builtin_type_int;
1155 break;
1156 case TYPE_CODE_FLT:
1157 /* FIXME: We should always convert floats to doubles in the
1158 non-prototyped case. As many debugging formats include
1159 no information about prototyping, we have to live with
1160 COERCE_FLOAT_TO_DOUBLE for now. */
1161 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1162 {
1163 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1164 type = builtin_type_double;
1165 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1166 type = builtin_type_long_double;
1167 }
1168 break;
1169 case TYPE_CODE_FUNC:
1170 type = lookup_pointer_type (type);
1171 break;
1172 case TYPE_CODE_ARRAY:
1173 if (current_language->c_style_arrays)
1174 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1175 break;
1176 case TYPE_CODE_UNDEF:
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_STRUCT:
1179 case TYPE_CODE_UNION:
1180 case TYPE_CODE_VOID:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_STRING:
1184 case TYPE_CODE_BITSTRING:
1185 case TYPE_CODE_ERROR:
1186 case TYPE_CODE_MEMBER:
1187 case TYPE_CODE_METHOD:
1188 case TYPE_CODE_COMPLEX:
1189 default:
1190 break;
1191 }
1192
1193 return value_cast (type, arg);
1194 }
1195
1196 /* Determine a function's address and its return type from its value.
1197 Calls error() if the function is not valid for calling. */
1198
1199 static CORE_ADDR
1200 find_function_addr (function, retval_type)
1201 value_ptr function;
1202 struct type **retval_type;
1203 {
1204 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1205 register enum type_code code = TYPE_CODE (ftype);
1206 struct type *value_type;
1207 CORE_ADDR funaddr;
1208
1209 /* If it's a member function, just look at the function
1210 part of it. */
1211
1212 /* Determine address to call. */
1213 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1214 {
1215 funaddr = VALUE_ADDRESS (function);
1216 value_type = TYPE_TARGET_TYPE (ftype);
1217 }
1218 else if (code == TYPE_CODE_PTR)
1219 {
1220 funaddr = value_as_pointer (function);
1221 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1222 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1223 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1224 {
1225 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1226 /* FIXME: This is a workaround for the unusual function
1227 pointer representation on the RS/6000, see comment
1228 in config/rs6000/tm-rs6000.h */
1229 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1230 #endif
1231 value_type = TYPE_TARGET_TYPE (ftype);
1232 }
1233 else
1234 value_type = builtin_type_int;
1235 }
1236 else if (code == TYPE_CODE_INT)
1237 {
1238 /* Handle the case of functions lacking debugging info.
1239 Their values are characters since their addresses are char */
1240 if (TYPE_LENGTH (ftype) == 1)
1241 funaddr = value_as_pointer (value_addr (function));
1242 else
1243 /* Handle integer used as address of a function. */
1244 funaddr = (CORE_ADDR) value_as_long (function);
1245
1246 value_type = builtin_type_int;
1247 }
1248 else
1249 error ("Invalid data type for function to be called.");
1250
1251 *retval_type = value_type;
1252 return funaddr;
1253 }
1254
1255 /* All this stuff with a dummy frame may seem unnecessarily complicated
1256 (why not just save registers in GDB?). The purpose of pushing a dummy
1257 frame which looks just like a real frame is so that if you call a
1258 function and then hit a breakpoint (get a signal, etc), "backtrace"
1259 will look right. Whether the backtrace needs to actually show the
1260 stack at the time the inferior function was called is debatable, but
1261 it certainly needs to not display garbage. So if you are contemplating
1262 making dummy frames be different from normal frames, consider that. */
1263
1264 /* Perform a function call in the inferior.
1265 ARGS is a vector of values of arguments (NARGS of them).
1266 FUNCTION is a value, the function to be called.
1267 Returns a value representing what the function returned.
1268 May fail to return, if a breakpoint or signal is hit
1269 during the execution of the function.
1270
1271 ARGS is modified to contain coerced values. */
1272
1273 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr *args));
1274 static value_ptr
1275 hand_function_call (function, nargs, args)
1276 value_ptr function;
1277 int nargs;
1278 value_ptr *args;
1279 {
1280 register CORE_ADDR sp;
1281 register int i;
1282 CORE_ADDR start_sp;
1283 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1284 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1285 and remove any extra bytes which might exist because ULONGEST is
1286 bigger than REGISTER_SIZE.
1287
1288 NOTE: This is pretty wierd, as the call dummy is actually a
1289 sequence of instructions. But CISC machines will have
1290 to pack the instructions into REGISTER_SIZE units (and
1291 so will RISC machines for which INSTRUCTION_SIZE is not
1292 REGISTER_SIZE).
1293
1294 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1295 target byte order. */
1296
1297 static ULONGEST *dummy;
1298 int sizeof_dummy1;
1299 char *dummy1;
1300 CORE_ADDR old_sp;
1301 struct type *value_type;
1302 unsigned char struct_return;
1303 CORE_ADDR struct_addr = 0;
1304 struct inferior_status *inf_status;
1305 struct cleanup *old_chain;
1306 CORE_ADDR funaddr;
1307 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1308 CORE_ADDR real_pc;
1309 struct type *param_type = NULL;
1310 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1311
1312 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1313 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1314 dummy1 = alloca (sizeof_dummy1);
1315 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1316
1317 if (!target_has_execution)
1318 noprocess();
1319
1320 inf_status = save_inferior_status (1);
1321 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1322 inf_status);
1323
1324 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1325 (and POP_FRAME for restoring them). (At least on most machines)
1326 they are saved on the stack in the inferior. */
1327 PUSH_DUMMY_FRAME;
1328
1329 old_sp = sp = read_sp ();
1330
1331 if (INNER_THAN (1, 2))
1332 {
1333 /* Stack grows down */
1334 sp -= sizeof_dummy1;
1335 start_sp = sp;
1336 }
1337 else
1338 {
1339 /* Stack grows up */
1340 start_sp = sp;
1341 sp += sizeof_dummy1;
1342 }
1343
1344 funaddr = find_function_addr (function, &value_type);
1345 CHECK_TYPEDEF (value_type);
1346
1347 {
1348 struct block *b = block_for_pc (funaddr);
1349 /* If compiled without -g, assume GCC 2. */
1350 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1351 }
1352
1353 /* Are we returning a value using a structure return or a normal
1354 value return? */
1355
1356 struct_return = using_struct_return (function, funaddr, value_type,
1357 using_gcc);
1358
1359 /* Create a call sequence customized for this function
1360 and the number of arguments for it. */
1361 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1362 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1363 REGISTER_SIZE,
1364 (ULONGEST)dummy[i]);
1365
1366 #ifdef GDB_TARGET_IS_HPPA
1367 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1368 value_type, using_gcc);
1369 #else
1370 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1371 value_type, using_gcc);
1372 real_pc = start_sp;
1373 #endif
1374
1375 if (CALL_DUMMY_LOCATION == ON_STACK)
1376 {
1377 write_memory (start_sp, (char *)dummy1, sizeof_dummy1);
1378 }
1379
1380 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1381 {
1382 /* Convex Unix prohibits executing in the stack segment. */
1383 /* Hope there is empty room at the top of the text segment. */
1384 extern CORE_ADDR text_end;
1385 static int checked = 0;
1386 if (!checked)
1387 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1388 if (read_memory_integer (start_sp, 1) != 0)
1389 error ("text segment full -- no place to put call");
1390 checked = 1;
1391 sp = old_sp;
1392 real_pc = text_end - sizeof_dummy1;
1393 write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1394 }
1395
1396 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1397 {
1398 extern CORE_ADDR text_end;
1399 int errcode;
1400 sp = old_sp;
1401 real_pc = text_end;
1402 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof_dummy1);
1403 if (errcode != 0)
1404 error ("Cannot write text segment -- call_function failed");
1405 }
1406
1407 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1408 {
1409 real_pc = funaddr;
1410 }
1411
1412 #ifdef lint
1413 sp = old_sp; /* It really is used, for some ifdef's... */
1414 #endif
1415
1416 if (nargs < TYPE_NFIELDS (ftype))
1417 error ("too few arguments in function call");
1418
1419 for (i = nargs - 1; i >= 0; i--)
1420 {
1421 /* If we're off the end of the known arguments, do the standard
1422 promotions. FIXME: if we had a prototype, this should only
1423 be allowed if ... were present. */
1424 if (i >= TYPE_NFIELDS (ftype))
1425 args[i] = value_arg_coerce (args[i], NULL, 0);
1426
1427 else
1428 {
1429 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1430 param_type = TYPE_FIELD_TYPE (ftype, i);
1431
1432 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1433 }
1434
1435 /*elz: this code is to handle the case in which the function to be called
1436 has a pointer to function as parameter and the corresponding actual argument
1437 is the address of a function and not a pointer to function variable.
1438 In aCC compiled code, the calls through pointers to functions (in the body
1439 of the function called by hand) are made via $$dyncall_external which
1440 requires some registers setting, this is taken care of if we call
1441 via a function pointer variable, but not via a function address.
1442 In cc this is not a problem. */
1443
1444 if (using_gcc == 0)
1445 if (param_type)
1446 /* if this parameter is a pointer to function*/
1447 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1448 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1449 /* elz: FIXME here should go the test about the compiler used
1450 to compile the target. We want to issue the error
1451 message only if the compiler used was HP's aCC.
1452 If we used HP's cc, then there is no problem and no need
1453 to return at this point */
1454 if (using_gcc == 0) /* && compiler == aCC*/
1455 /* go see if the actual parameter is a variable of type
1456 pointer to function or just a function */
1457 if (args[i]->lval == not_lval)
1458 {
1459 char *arg_name;
1460 if (find_pc_partial_function((CORE_ADDR)args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1461 error("\
1462 You cannot use function <%s> as argument. \n\
1463 You must use a pointer to function type variable. Command ignored.", arg_name);
1464 }
1465 }
1466
1467 #if defined (REG_STRUCT_HAS_ADDR)
1468 {
1469 /* This is a machine like the sparc, where we may need to pass a pointer
1470 to the structure, not the structure itself. */
1471 for (i = nargs - 1; i >= 0; i--)
1472 {
1473 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1474 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1475 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1476 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1477 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1478 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1479 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1480 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1481 && TYPE_LENGTH (arg_type) > 8)
1482 )
1483 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1484 {
1485 CORE_ADDR addr;
1486 int len; /* = TYPE_LENGTH (arg_type); */
1487 int aligned_len;
1488 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1489 len = TYPE_LENGTH (arg_type);
1490
1491 #ifdef STACK_ALIGN
1492 /* MVS 11/22/96: I think at least some of this stack_align code is
1493 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1494 a target-defined manner. */
1495 aligned_len = STACK_ALIGN (len);
1496 #else
1497 aligned_len = len;
1498 #endif
1499 if (INNER_THAN (1, 2))
1500 {
1501 /* stack grows downward */
1502 sp -= aligned_len;
1503 }
1504 else
1505 {
1506 /* The stack grows up, so the address of the thing we push
1507 is the stack pointer before we push it. */
1508 addr = sp;
1509 }
1510 /* Push the structure. */
1511 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1512 if (INNER_THAN (1, 2))
1513 {
1514 /* The stack grows down, so the address of the thing we push
1515 is the stack pointer after we push it. */
1516 addr = sp;
1517 }
1518 else
1519 {
1520 /* stack grows upward */
1521 sp += aligned_len;
1522 }
1523 /* The value we're going to pass is the address of the thing
1524 we just pushed. */
1525 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1526 (LONGEST) addr);*/
1527 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1528 (LONGEST) addr);
1529 }
1530 }
1531 }
1532 #endif /* REG_STRUCT_HAS_ADDR. */
1533
1534 /* Reserve space for the return structure to be written on the
1535 stack, if necessary */
1536
1537 if (struct_return)
1538 {
1539 int len = TYPE_LENGTH (value_type);
1540 #ifdef STACK_ALIGN
1541 /* MVS 11/22/96: I think at least some of this stack_align code is
1542 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1543 a target-defined manner. */
1544 len = STACK_ALIGN (len);
1545 #endif
1546 if (INNER_THAN (1, 2))
1547 {
1548 /* stack grows downward */
1549 sp -= len;
1550 struct_addr = sp;
1551 }
1552 else
1553 {
1554 /* stack grows upward */
1555 struct_addr = sp;
1556 sp += len;
1557 }
1558 }
1559
1560 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1561 on other architectures. This is because all the alignment is taken care
1562 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1563 hppa_push_arguments*/
1564 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1565
1566 #if defined(STACK_ALIGN)
1567 /* MVS 11/22/96: I think at least some of this stack_align code is
1568 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1569 a target-defined manner. */
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* If stack grows down, we must leave a hole at the top. */
1573 int len = 0;
1574
1575 for (i = nargs - 1; i >= 0; i--)
1576 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1577 if (CALL_DUMMY_STACK_ADJUST_P)
1578 len += CALL_DUMMY_STACK_ADJUST;
1579 sp -= STACK_ALIGN (len) - len;
1580 }
1581 #endif /* STACK_ALIGN */
1582 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1583
1584 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1585
1586 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1587 /* There are a number of targets now which actually don't write any
1588 CALL_DUMMY instructions into the target, but instead just save the
1589 machine state, push the arguments, and jump directly to the callee
1590 function. Since this doesn't actually involve executing a JSR/BSR
1591 instruction, the return address must be set up by hand, either by
1592 pushing onto the stack or copying into a return-address register
1593 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1594 but that's overloading its functionality a bit, so I'm making it
1595 explicit to do it here. */
1596 sp = PUSH_RETURN_ADDRESS(real_pc, sp);
1597 #endif /* PUSH_RETURN_ADDRESS */
1598
1599 #if defined(STACK_ALIGN)
1600 if (! INNER_THAN (1, 2))
1601 {
1602 /* If stack grows up, we must leave a hole at the bottom, note
1603 that sp already has been advanced for the arguments! */
1604 if (CALL_DUMMY_STACK_ADJUST_P)
1605 sp += CALL_DUMMY_STACK_ADJUST;
1606 sp = STACK_ALIGN (sp);
1607 }
1608 #endif /* STACK_ALIGN */
1609
1610 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1611 anything here! */
1612 /* MVS 11/22/96: I think at least some of this stack_align code is
1613 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1614 a target-defined manner. */
1615 if (CALL_DUMMY_STACK_ADJUST_P)
1616 if (INNER_THAN (1, 2))
1617 {
1618 /* stack grows downward */
1619 sp -= CALL_DUMMY_STACK_ADJUST;
1620 }
1621
1622 /* Store the address at which the structure is supposed to be
1623 written. Note that this (and the code which reserved the space
1624 above) assumes that gcc was used to compile this function. Since
1625 it doesn't cost us anything but space and if the function is pcc
1626 it will ignore this value, we will make that assumption.
1627
1628 Also note that on some machines (like the sparc) pcc uses a
1629 convention like gcc's. */
1630
1631 if (struct_return)
1632 STORE_STRUCT_RETURN (struct_addr, sp);
1633
1634 /* Write the stack pointer. This is here because the statements above
1635 might fool with it. On SPARC, this write also stores the register
1636 window into the right place in the new stack frame, which otherwise
1637 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1638 write_sp (sp);
1639
1640 {
1641 char retbuf[REGISTER_BYTES];
1642 char *name;
1643 struct symbol *symbol;
1644
1645 name = NULL;
1646 symbol = find_pc_function (funaddr);
1647 if (symbol)
1648 {
1649 name = SYMBOL_SOURCE_NAME (symbol);
1650 }
1651 else
1652 {
1653 /* Try the minimal symbols. */
1654 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1655
1656 if (msymbol)
1657 {
1658 name = SYMBOL_SOURCE_NAME (msymbol);
1659 }
1660 }
1661 if (name == NULL)
1662 {
1663 char format[80];
1664 sprintf (format, "at %s", local_hex_format ());
1665 name = alloca (80);
1666 /* FIXME-32x64: assumes funaddr fits in a long. */
1667 sprintf (name, format, (unsigned long) funaddr);
1668 }
1669
1670 /* Execute the stack dummy routine, calling FUNCTION.
1671 When it is done, discard the empty frame
1672 after storing the contents of all regs into retbuf. */
1673 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1674 {
1675 /* We stopped somewhere besides the call dummy. */
1676
1677 /* If we did the cleanups, we would print a spurious error
1678 message (Unable to restore previously selected frame),
1679 would write the registers from the inf_status (which is
1680 wrong), and would do other wrong things. */
1681 discard_cleanups (old_chain);
1682 discard_inferior_status (inf_status);
1683
1684 /* The following error message used to say "The expression
1685 which contained the function call has been discarded." It
1686 is a hard concept to explain in a few words. Ideally, GDB
1687 would be able to resume evaluation of the expression when
1688 the function finally is done executing. Perhaps someday
1689 this will be implemented (it would not be easy). */
1690
1691 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1692 a C++ name with arguments and stuff. */
1693 error ("\
1694 The program being debugged stopped while in a function called from GDB.\n\
1695 When the function (%s) is done executing, GDB will silently\n\
1696 stop (instead of continuing to evaluate the expression containing\n\
1697 the function call).", name);
1698 }
1699
1700 do_cleanups (old_chain);
1701
1702 /* Figure out the value returned by the function. */
1703 /* elz: I defined this new macro for the hppa architecture only.
1704 this gives us a way to get the value returned by the function from the stack,
1705 at the same address we told the function to put it.
1706 We cannot assume on the pa that r28 still contains the address of the returned
1707 structure. Usually this will be overwritten by the callee.
1708 I don't know about other architectures, so I defined this macro
1709 */
1710
1711 #ifdef VALUE_RETURNED_FROM_STACK
1712 if (struct_return)
1713 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1714 #endif
1715
1716 return value_being_returned (value_type, retbuf, struct_return);
1717 }
1718 }
1719
1720 value_ptr
1721 call_function_by_hand (function, nargs, args)
1722 value_ptr function;
1723 int nargs;
1724 value_ptr *args;
1725 {
1726 if (CALL_DUMMY_P)
1727 {
1728 return hand_function_call (function, nargs, args);
1729 }
1730 else
1731 {
1732 error ("Cannot invoke functions on this machine.");
1733 }
1734 }
1735
1736
1737 \f
1738 /* Create a value for an array by allocating space in the inferior, copying
1739 the data into that space, and then setting up an array value.
1740
1741 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1742 populated from the values passed in ELEMVEC.
1743
1744 The element type of the array is inherited from the type of the
1745 first element, and all elements must have the same size (though we
1746 don't currently enforce any restriction on their types). */
1747
1748 value_ptr
1749 value_array (lowbound, highbound, elemvec)
1750 int lowbound;
1751 int highbound;
1752 value_ptr *elemvec;
1753 {
1754 int nelem;
1755 int idx;
1756 unsigned int typelength;
1757 value_ptr val;
1758 struct type *rangetype;
1759 struct type *arraytype;
1760 CORE_ADDR addr;
1761
1762 /* Validate that the bounds are reasonable and that each of the elements
1763 have the same size. */
1764
1765 nelem = highbound - lowbound + 1;
1766 if (nelem <= 0)
1767 {
1768 error ("bad array bounds (%d, %d)", lowbound, highbound);
1769 }
1770 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1771 for (idx = 1; idx < nelem; idx++)
1772 {
1773 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1774 {
1775 error ("array elements must all be the same size");
1776 }
1777 }
1778
1779 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1780 lowbound, highbound);
1781 arraytype = create_array_type ((struct type *) NULL,
1782 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1783
1784 if (!current_language->c_style_arrays)
1785 {
1786 val = allocate_value (arraytype);
1787 for (idx = 0; idx < nelem; idx++)
1788 {
1789 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1790 VALUE_CONTENTS_ALL (elemvec[idx]),
1791 typelength);
1792 }
1793 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1794 return val;
1795 }
1796
1797 /* Allocate space to store the array in the inferior, and then initialize
1798 it by copying in each element. FIXME: Is it worth it to create a
1799 local buffer in which to collect each value and then write all the
1800 bytes in one operation? */
1801
1802 addr = allocate_space_in_inferior (nelem * typelength);
1803 for (idx = 0; idx < nelem; idx++)
1804 {
1805 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1806 typelength);
1807 }
1808
1809 /* Create the array type and set up an array value to be evaluated lazily. */
1810
1811 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1812 return (val);
1813 }
1814
1815 /* Create a value for a string constant by allocating space in the inferior,
1816 copying the data into that space, and returning the address with type
1817 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1818 of characters.
1819 Note that string types are like array of char types with a lower bound of
1820 zero and an upper bound of LEN - 1. Also note that the string may contain
1821 embedded null bytes. */
1822
1823 value_ptr
1824 value_string (ptr, len)
1825 char *ptr;
1826 int len;
1827 {
1828 value_ptr val;
1829 int lowbound = current_language->string_lower_bound;
1830 struct type *rangetype = create_range_type ((struct type *) NULL,
1831 builtin_type_int,
1832 lowbound, len + lowbound - 1);
1833 struct type *stringtype
1834 = create_string_type ((struct type *) NULL, rangetype);
1835 CORE_ADDR addr;
1836
1837 if (current_language->c_style_arrays == 0)
1838 {
1839 val = allocate_value (stringtype);
1840 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1841 return val;
1842 }
1843
1844
1845 /* Allocate space to store the string in the inferior, and then
1846 copy LEN bytes from PTR in gdb to that address in the inferior. */
1847
1848 addr = allocate_space_in_inferior (len);
1849 write_memory (addr, ptr, len);
1850
1851 val = value_at_lazy (stringtype, addr, NULL);
1852 return (val);
1853 }
1854
1855 value_ptr
1856 value_bitstring (ptr, len)
1857 char *ptr;
1858 int len;
1859 {
1860 value_ptr val;
1861 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1862 0, len - 1);
1863 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1864 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1865 val = allocate_value (type);
1866 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1867 return val;
1868 }
1869 \f
1870 /* See if we can pass arguments in T2 to a function which takes arguments
1871 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1872 arguments need coercion of some sort, then the coerced values are written
1873 into T2. Return value is 0 if the arguments could be matched, or the
1874 position at which they differ if not.
1875
1876 STATICP is nonzero if the T1 argument list came from a
1877 static member function.
1878
1879 For non-static member functions, we ignore the first argument,
1880 which is the type of the instance variable. This is because we want
1881 to handle calls with objects from derived classes. This is not
1882 entirely correct: we should actually check to make sure that a
1883 requested operation is type secure, shouldn't we? FIXME. */
1884
1885 static int
1886 typecmp (staticp, t1, t2)
1887 int staticp;
1888 struct type *t1[];
1889 value_ptr t2[];
1890 {
1891 int i;
1892
1893 if (t2 == 0)
1894 return 1;
1895 if (staticp && t1 == 0)
1896 return t2[1] != 0;
1897 if (t1 == 0)
1898 return 1;
1899 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1900 if (t1[!staticp] == 0) return 0;
1901 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1902 {
1903 struct type *tt1, *tt2;
1904 if (! t2[i])
1905 return i+1;
1906 tt1 = check_typedef (t1[i]);
1907 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1908 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1909 /* We should be doing hairy argument matching, as below. */
1910 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1911 {
1912 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1913 t2[i] = value_coerce_array (t2[i]);
1914 else
1915 t2[i] = value_addr (t2[i]);
1916 continue;
1917 }
1918
1919 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1920 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1921 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1922 {
1923 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1924 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1925 }
1926 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1927 /* Array to pointer is a `trivial conversion' according to the ARM. */
1928
1929 /* We should be doing much hairier argument matching (see section 13.2
1930 of the ARM), but as a quick kludge, just check for the same type
1931 code. */
1932 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1933 return i+1;
1934 }
1935 if (!t1[i]) return 0;
1936 return t2[i] ? i+1 : 0;
1937 }
1938
1939 /* Helper function used by value_struct_elt to recurse through baseclasses.
1940 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1941 and search in it assuming it has (class) type TYPE.
1942 If found, return value, else return NULL.
1943
1944 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1945 look for a baseclass named NAME. */
1946
1947 static value_ptr
1948 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1949 char *name;
1950 register value_ptr arg1;
1951 int offset;
1952 register struct type *type;
1953 int looking_for_baseclass;
1954 {
1955 int i;
1956 int nbases = TYPE_N_BASECLASSES (type);
1957
1958 CHECK_TYPEDEF (type);
1959
1960 if (! looking_for_baseclass)
1961 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1962 {
1963 char *t_field_name = TYPE_FIELD_NAME (type, i);
1964
1965 if (t_field_name && STREQ (t_field_name, name))
1966 {
1967 value_ptr v;
1968 if (TYPE_FIELD_STATIC (type, i))
1969 v = value_static_field (type, i);
1970 else
1971 v = value_primitive_field (arg1, offset, i, type);
1972 if (v == 0)
1973 error("there is no field named %s", name);
1974 return v;
1975 }
1976
1977 if (t_field_name
1978 && (t_field_name[0] == '\0'
1979 || (TYPE_CODE (type) == TYPE_CODE_UNION
1980 && STREQ (t_field_name, "else"))))
1981 {
1982 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1983 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1984 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1985 {
1986 /* Look for a match through the fields of an anonymous union,
1987 or anonymous struct. C++ provides anonymous unions.
1988
1989 In the GNU Chill implementation of variant record types,
1990 each <alternative field> has an (anonymous) union type,
1991 each member of the union represents a <variant alternative>.
1992 Each <variant alternative> is represented as a struct,
1993 with a member for each <variant field>. */
1994
1995 value_ptr v;
1996 int new_offset = offset;
1997
1998 /* This is pretty gross. In G++, the offset in an anonymous
1999 union is relative to the beginning of the enclosing struct.
2000 In the GNU Chill implementation of variant records,
2001 the bitpos is zero in an anonymous union field, so we
2002 have to add the offset of the union here. */
2003 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2004 || (TYPE_NFIELDS (field_type) > 0
2005 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2006 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2007
2008 v = search_struct_field (name, arg1, new_offset, field_type,
2009 looking_for_baseclass);
2010 if (v)
2011 return v;
2012 }
2013 }
2014 }
2015
2016 for (i = 0; i < nbases; i++)
2017 {
2018 value_ptr v;
2019 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2020 /* If we are looking for baseclasses, this is what we get when we
2021 hit them. But it could happen that the base part's member name
2022 is not yet filled in. */
2023 int found_baseclass = (looking_for_baseclass
2024 && TYPE_BASECLASS_NAME (type, i) != NULL
2025 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2026
2027 if (BASETYPE_VIA_VIRTUAL (type, i))
2028 {
2029 int boffset;
2030 value_ptr v2 = allocate_value (basetype);
2031
2032 boffset = baseclass_offset (type, i,
2033 VALUE_CONTENTS (arg1) + offset,
2034 VALUE_ADDRESS (arg1)
2035 + VALUE_OFFSET (arg1) + offset);
2036 if (boffset == -1)
2037 error ("virtual baseclass botch");
2038
2039 /* The virtual base class pointer might have been clobbered by the
2040 user program. Make sure that it still points to a valid memory
2041 location. */
2042
2043 boffset += offset;
2044 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2045 {
2046 CORE_ADDR base_addr;
2047
2048 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2049 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2050 TYPE_LENGTH (basetype)) != 0)
2051 error ("virtual baseclass botch");
2052 VALUE_LVAL (v2) = lval_memory;
2053 VALUE_ADDRESS (v2) = base_addr;
2054 }
2055 else
2056 {
2057 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2058 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2059 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2060 if (VALUE_LAZY (arg1))
2061 VALUE_LAZY (v2) = 1;
2062 else
2063 memcpy (VALUE_CONTENTS_RAW (v2),
2064 VALUE_CONTENTS_RAW (arg1) + boffset,
2065 TYPE_LENGTH (basetype));
2066 }
2067
2068 if (found_baseclass)
2069 return v2;
2070 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2071 looking_for_baseclass);
2072 }
2073 else if (found_baseclass)
2074 v = value_primitive_field (arg1, offset, i, type);
2075 else
2076 v = search_struct_field (name, arg1,
2077 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2078 basetype, looking_for_baseclass);
2079 if (v) return v;
2080 }
2081 return NULL;
2082 }
2083
2084
2085 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2086 * in an object pointed to by VALADDR (on the host), assumed to be of
2087 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2088 * looking (in case VALADDR is the contents of an enclosing object).
2089 *
2090 * This routine recurses on the primary base of the derived class because
2091 * the virtual base entries of the primary base appear before the other
2092 * virtual base entries.
2093 *
2094 * If the virtual base is not found, a negative integer is returned.
2095 * The magnitude of the negative integer is the number of entries in
2096 * the virtual table to skip over (entries corresponding to various
2097 * ancestral classes in the chain of primary bases).
2098 *
2099 * Important: This assumes the HP / Taligent C++ runtime
2100 * conventions. Use baseclass_offset() instead to deal with g++
2101 * conventions. */
2102
2103 void
2104 find_rt_vbase_offset(type, basetype, valaddr, offset, boffset_p, skip_p)
2105 struct type * type;
2106 struct type * basetype;
2107 char * valaddr;
2108 int offset;
2109 int * boffset_p;
2110 int * skip_p;
2111 {
2112 int boffset; /* offset of virtual base */
2113 int index; /* displacement to use in virtual table */
2114 int skip;
2115
2116 value_ptr vp;
2117 CORE_ADDR vtbl; /* the virtual table pointer */
2118 struct type * pbc; /* the primary base class */
2119
2120 /* Look for the virtual base recursively in the primary base, first.
2121 * This is because the derived class object and its primary base
2122 * subobject share the primary virtual table. */
2123
2124 boffset = 0;
2125 pbc = TYPE_PRIMARY_BASE(type);
2126 if (pbc)
2127 {
2128 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2129 if (skip < 0)
2130 {
2131 *boffset_p = boffset;
2132 *skip_p = -1;
2133 return;
2134 }
2135 }
2136 else
2137 skip = 0;
2138
2139
2140 /* Find the index of the virtual base according to HP/Taligent
2141 runtime spec. (Depth-first, left-to-right.) */
2142 index = virtual_base_index_skip_primaries (basetype, type);
2143
2144 if (index < 0) {
2145 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2146 *boffset_p = 0;
2147 return;
2148 }
2149
2150 /* pai: FIXME -- 32x64 possible problem */
2151 /* First word (4 bytes) in object layout is the vtable pointer */
2152 vtbl = * (CORE_ADDR *) (valaddr + offset);
2153
2154 /* Before the constructor is invoked, things are usually zero'd out. */
2155 if (vtbl == 0)
2156 error ("Couldn't find virtual table -- object may not be constructed yet.");
2157
2158
2159 /* Find virtual base's offset -- jump over entries for primary base
2160 * ancestors, then use the index computed above. But also adjust by
2161 * HP_ACC_VBASE_START for the vtable slots before the start of the
2162 * virtual base entries. Offset is negative -- virtual base entries
2163 * appear _before_ the address point of the virtual table. */
2164
2165 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2166 & use long type */
2167
2168 /* epstein : FIXME -- added param for overlay section. May not be correct */
2169 vp = value_at (builtin_type_int, vtbl + 4 * (- skip - index - HP_ACC_VBASE_START), NULL);
2170 boffset = value_as_long (vp);
2171 *skip_p = -1;
2172 *boffset_p = boffset;
2173 return;
2174 }
2175
2176
2177 /* Helper function used by value_struct_elt to recurse through baseclasses.
2178 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2179 and search in it assuming it has (class) type TYPE.
2180 If found, return value, else if name matched and args not return (value)-1,
2181 else return NULL. */
2182
2183 static value_ptr
2184 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2185 char *name;
2186 register value_ptr *arg1p, *args;
2187 int offset, *static_memfuncp;
2188 register struct type *type;
2189 {
2190 int i;
2191 value_ptr v;
2192 int name_matched = 0;
2193 char dem_opname[64];
2194
2195 CHECK_TYPEDEF (type);
2196 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2197 {
2198 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2199 /* FIXME! May need to check for ARM demangling here */
2200 if (strncmp(t_field_name, "__", 2)==0 ||
2201 strncmp(t_field_name, "op", 2)==0 ||
2202 strncmp(t_field_name, "type", 4)==0 )
2203 {
2204 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2205 t_field_name = dem_opname;
2206 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2207 t_field_name = dem_opname;
2208 }
2209 if (t_field_name && STREQ (t_field_name, name))
2210 {
2211 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2212 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2213 name_matched = 1;
2214
2215 if (j > 0 && args == 0)
2216 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2217 while (j >= 0)
2218 {
2219 if (TYPE_FN_FIELD_STUB (f, j))
2220 check_stub_method (type, i, j);
2221 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2222 TYPE_FN_FIELD_ARGS (f, j), args))
2223 {
2224 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2225 return value_virtual_fn_field (arg1p, f, j, type, offset);
2226 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2227 *static_memfuncp = 1;
2228 v = value_fn_field (arg1p, f, j, type, offset);
2229 if (v != NULL) return v;
2230 }
2231 j--;
2232 }
2233 }
2234 }
2235
2236 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2237 {
2238 int base_offset;
2239
2240 if (BASETYPE_VIA_VIRTUAL (type, i))
2241 {
2242 if (TYPE_HAS_VTABLE (type))
2243 {
2244 /* HP aCC compiled type, search for virtual base offset
2245 according to HP/Taligent runtime spec. */
2246 int skip;
2247 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2248 VALUE_CONTENTS_ALL (*arg1p),
2249 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2250 &base_offset, &skip);
2251 if (skip >= 0)
2252 error ("Virtual base class offset not found in vtable");
2253 }
2254 else
2255 {
2256 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2257 char *base_valaddr;
2258
2259 /* The virtual base class pointer might have been clobbered by the
2260 user program. Make sure that it still points to a valid memory
2261 location. */
2262
2263 if (offset < 0 || offset >= TYPE_LENGTH (type))
2264 {
2265 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2266 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2267 + VALUE_OFFSET (*arg1p) + offset,
2268 base_valaddr,
2269 TYPE_LENGTH (baseclass)) != 0)
2270 error ("virtual baseclass botch");
2271 }
2272 else
2273 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2274
2275 base_offset =
2276 baseclass_offset (type, i, base_valaddr,
2277 VALUE_ADDRESS (*arg1p)
2278 + VALUE_OFFSET (*arg1p) + offset);
2279 if (base_offset == -1)
2280 error ("virtual baseclass botch");
2281 }
2282 }
2283 else
2284 {
2285 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2286 }
2287 v = search_struct_method (name, arg1p, args, base_offset + offset,
2288 static_memfuncp, TYPE_BASECLASS (type, i));
2289 if (v == (value_ptr) -1)
2290 {
2291 name_matched = 1;
2292 }
2293 else if (v)
2294 {
2295 /* FIXME-bothner: Why is this commented out? Why is it here? */
2296 /* *arg1p = arg1_tmp;*/
2297 return v;
2298 }
2299 }
2300 if (name_matched) return (value_ptr) -1;
2301 else return NULL;
2302 }
2303
2304 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2305 extract the component named NAME from the ultimate target structure/union
2306 and return it as a value with its appropriate type.
2307 ERR is used in the error message if *ARGP's type is wrong.
2308
2309 C++: ARGS is a list of argument types to aid in the selection of
2310 an appropriate method. Also, handle derived types.
2311
2312 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2313 where the truthvalue of whether the function that was resolved was
2314 a static member function or not is stored.
2315
2316 ERR is an error message to be printed in case the field is not found. */
2317
2318 value_ptr
2319 value_struct_elt (argp, args, name, static_memfuncp, err)
2320 register value_ptr *argp, *args;
2321 char *name;
2322 int *static_memfuncp;
2323 char *err;
2324 {
2325 register struct type *t;
2326 value_ptr v;
2327
2328 COERCE_ARRAY (*argp);
2329
2330 t = check_typedef (VALUE_TYPE (*argp));
2331
2332 /* Follow pointers until we get to a non-pointer. */
2333
2334 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2335 {
2336 *argp = value_ind (*argp);
2337 /* Don't coerce fn pointer to fn and then back again! */
2338 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2339 COERCE_ARRAY (*argp);
2340 t = check_typedef (VALUE_TYPE (*argp));
2341 }
2342
2343 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2344 error ("not implemented: member type in value_struct_elt");
2345
2346 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2347 && TYPE_CODE (t) != TYPE_CODE_UNION)
2348 error ("Attempt to extract a component of a value that is not a %s.", err);
2349
2350 /* Assume it's not, unless we see that it is. */
2351 if (static_memfuncp)
2352 *static_memfuncp =0;
2353
2354 if (!args)
2355 {
2356 /* if there are no arguments ...do this... */
2357
2358 /* Try as a field first, because if we succeed, there
2359 is less work to be done. */
2360 v = search_struct_field (name, *argp, 0, t, 0);
2361 if (v)
2362 return v;
2363
2364 /* C++: If it was not found as a data field, then try to
2365 return it as a pointer to a method. */
2366
2367 if (destructor_name_p (name, t))
2368 error ("Cannot get value of destructor");
2369
2370 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2371
2372 if (v == (value_ptr) -1)
2373 error ("Cannot take address of a method");
2374 else if (v == 0)
2375 {
2376 if (TYPE_NFN_FIELDS (t))
2377 error ("There is no member or method named %s.", name);
2378 else
2379 error ("There is no member named %s.", name);
2380 }
2381 return v;
2382 }
2383
2384 if (destructor_name_p (name, t))
2385 {
2386 if (!args[1])
2387 {
2388 /* Destructors are a special case. */
2389 int m_index, f_index;
2390
2391 v = NULL;
2392 if (get_destructor_fn_field (t, &m_index, &f_index))
2393 {
2394 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2395 f_index, NULL, 0);
2396 }
2397 if (v == NULL)
2398 error ("could not find destructor function named %s.", name);
2399 else
2400 return v;
2401 }
2402 else
2403 {
2404 error ("destructor should not have any argument");
2405 }
2406 }
2407 else
2408 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2409
2410 if (v == (value_ptr) -1)
2411 {
2412 error("Argument list of %s mismatch with component in the structure.", name);
2413 }
2414 else if (v == 0)
2415 {
2416 /* See if user tried to invoke data as function. If so,
2417 hand it back. If it's not callable (i.e., a pointer to function),
2418 gdb should give an error. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 }
2421
2422 if (!v)
2423 error ("Structure has no component named %s.", name);
2424 return v;
2425 }
2426
2427 /* Search through the methods of an object (and its bases)
2428 * to find a specified method. Return the pointer to the
2429 * fn_field list of overloaded instances.
2430 * Helper function for value_find_oload_list.
2431 * ARGP is a pointer to a pointer to a value (the object)
2432 * METHOD is a string containing the method name
2433 * OFFSET is the offset within the value
2434 * STATIC_MEMFUNCP is set if the method is static
2435 * TYPE is the assumed type of the object
2436 * NUM_FNS is the number of overloaded instances
2437 * BASETYPE is set to the actual type of the subobject where the method is found
2438 * BOFFSET is the offset of the base subobject where the method is found */
2439
2440 static struct fn_field *
2441 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2442 value_ptr *argp;
2443 char * method;
2444 int offset;
2445 int * static_memfuncp;
2446 struct type * type;
2447 int * num_fns;
2448 struct type ** basetype;
2449 int * boffset;
2450 {
2451 int i;
2452 struct fn_field * f;
2453 CHECK_TYPEDEF (type);
2454
2455 *num_fns = 0;
2456
2457 /* First check in object itself */
2458 for (i = TYPE_NFN_FIELDS (type) -1; i >= 0; i--)
2459 {
2460 /* pai: FIXME What about operators and type conversions? */
2461 char * fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2462 if (fn_field_name && STREQ (fn_field_name, method))
2463 {
2464 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2465 *basetype = type;
2466 *boffset = offset;
2467 return TYPE_FN_FIELDLIST1 (type, i);
2468 }
2469 }
2470
2471 /* Not found in object, check in base subobjects */
2472 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2473 {
2474 int base_offset;
2475 if (BASETYPE_VIA_VIRTUAL (type, i))
2476 {
2477 if (TYPE_HAS_VTABLE (type))
2478 {
2479 /* HP aCC compiled type, search for virtual base offset
2480 * according to HP/Taligent runtime spec. */
2481 int skip;
2482 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2483 VALUE_CONTENTS_ALL (*argp),
2484 offset + VALUE_EMBEDDED_OFFSET (*argp),
2485 &base_offset, &skip);
2486 if (skip >= 0)
2487 error ("Virtual base class offset not found in vtable");
2488 }
2489 else
2490 {
2491 /* probably g++ runtime model */
2492 base_offset = VALUE_OFFSET (*argp) + offset;
2493 base_offset =
2494 baseclass_offset (type, i,
2495 VALUE_CONTENTS (*argp) + base_offset,
2496 VALUE_ADDRESS (*argp) + base_offset);
2497 if (base_offset == -1)
2498 error ("virtual baseclass botch");
2499 }
2500 }
2501 else /* non-virtual base, simply use bit position from debug info */
2502 {
2503 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2504 }
2505 f = find_method_list (argp, method, base_offset + offset,
2506 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2507 if (f)
2508 return f;
2509 }
2510 return NULL;
2511 }
2512
2513 /* Return the list of overloaded methods of a specified name.
2514 * ARGP is a pointer to a pointer to a value (the object)
2515 * METHOD is the method name
2516 * OFFSET is the offset within the value contents
2517 * STATIC_MEMFUNCP is set if the method is static
2518 * NUM_FNS is the number of overloaded instances
2519 * BASETYPE is set to the type of the base subobject that defines the method
2520 * BOFFSET is the offset of the base subobject which defines the method */
2521
2522 struct fn_field *
2523 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2524 value_ptr *argp;
2525 char * method;
2526 int offset;
2527 int * static_memfuncp;
2528 int * num_fns;
2529 struct type ** basetype;
2530 int * boffset;
2531 {
2532 struct type * t;
2533 value_ptr v;
2534
2535 t = check_typedef (VALUE_TYPE (*argp));
2536
2537 /* code snarfed from value_struct_elt */
2538 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2539 {
2540 *argp = value_ind (*argp);
2541 /* Don't coerce fn pointer to fn and then back again! */
2542 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2543 COERCE_ARRAY (*argp);
2544 t = check_typedef (VALUE_TYPE (*argp));
2545 }
2546
2547 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2548 error ("Not implemented: member type in value_find_oload_lis");
2549
2550 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2551 && TYPE_CODE (t) != TYPE_CODE_UNION)
2552 error ("Attempt to extract a component of a value that is not a struct or union");
2553
2554 /* Assume it's not static, unless we see that it is. */
2555 if (static_memfuncp)
2556 *static_memfuncp =0;
2557
2558 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2559
2560 }
2561
2562 /* Given an array of argument types (ARGTYPES) (which includes an
2563 entry for "this" in the case of C++ methods), the number of
2564 arguments NARGS, the NAME of a function whether it's a method or
2565 not (METHOD), and the degree of laxness (LAX) in conforming to
2566 overload resolution rules in ANSI C++, find the best function that
2567 matches on the argument types according to the overload resolution
2568 rules.
2569
2570 In the case of class methods, the parameter OBJ is an object value
2571 in which to search for overloaded methods.
2572
2573 In the case of non-method functions, the parameter FSYM is a symbol
2574 corresponding to one of the overloaded functions.
2575
2576 Return value is an integer: 0 -> good match, 10 -> debugger applied
2577 non-standard coercions, 100 -> incompatible.
2578
2579 If a method is being searched for, VALP will hold the value.
2580 If a non-method is being searched for, SYMP will hold the symbol for it.
2581
2582 If a method is being searched for, and it is a static method,
2583 then STATICP will point to a non-zero value.
2584
2585 Note: This function does *not* check the value of
2586 overload_resolution. Caller must check it to see whether overload
2587 resolution is permitted.
2588 */
2589
2590 int
2591 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2592 struct type ** arg_types;
2593 int nargs;
2594 char * name;
2595 int method;
2596 int lax;
2597 value_ptr obj;
2598 struct symbol * fsym;
2599 value_ptr * valp;
2600 struct symbol ** symp;
2601 int * staticp;
2602 {
2603 int nparms;
2604 struct type ** parm_types;
2605 int champ_nparms = 0;
2606
2607 short oload_champ = -1; /* Index of best overloaded function */
2608 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2609 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2610 short oload_ambig_champ = -1; /* 2nd contender for best match */
2611 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2612 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2613
2614 struct badness_vector * bv; /* A measure of how good an overloaded instance is */
2615 struct badness_vector * oload_champ_bv = NULL; /* The measure for the current best match */
2616
2617 value_ptr temp = obj;
2618 struct fn_field * fns_ptr = NULL; /* For methods, the list of overloaded methods */
2619 struct symbol ** oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2620 int num_fns = 0; /* Number of overloaded instances being considered */
2621 struct type * basetype = NULL;
2622 int boffset;
2623 register int jj;
2624 register int ix;
2625
2626 char * obj_type_name = NULL;
2627 char * func_name = NULL;
2628
2629 /* Get the list of overloaded methods or functions */
2630 if (method)
2631 {
2632 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2633 /* Hack: evaluate_subexp_standard often passes in a pointer
2634 value rather than the object itself, so try again */
2635 if ((!obj_type_name || !*obj_type_name) &&
2636 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2637 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2638
2639 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2640 staticp,
2641 &num_fns,
2642 &basetype, &boffset);
2643 if (!fns_ptr || !num_fns)
2644 error ("Couldn't find method %s%s%s",
2645 obj_type_name,
2646 (obj_type_name && *obj_type_name) ? "::" : "",
2647 name);
2648 }
2649 else
2650 {
2651 int i = -1;
2652 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2653
2654 oload_syms = make_symbol_overload_list (fsym);
2655 while (oload_syms[++i])
2656 num_fns++;
2657 if (!num_fns)
2658 error ("Couldn't find function %s", func_name);
2659 }
2660
2661 oload_champ_bv = NULL;
2662
2663 /* Consider each candidate in turn */
2664 for (ix = 0; ix < num_fns; ix++)
2665 {
2666 int jj;
2667
2668 /* Number of parameters for current candidate */
2669 nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
2670 : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2671
2672 /* Prepare array of parameter types */
2673 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2674 for (jj = 0; jj < nparms; jj++)
2675 parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
2676 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
2677
2678 /* Compare parameter types to supplied argument types */
2679 bv = rank_function (parm_types, nparms, arg_types, nargs);
2680
2681 if (!oload_champ_bv)
2682 {
2683 oload_champ_bv = bv;
2684 oload_champ = 0;
2685 champ_nparms = nparms;
2686 }
2687 else
2688 /* See whether current candidate is better or worse than previous best */
2689 switch (compare_badness (bv, oload_champ_bv))
2690 {
2691 case 0:
2692 oload_ambiguous = 1; /* top two contenders are equally good */
2693 oload_ambig_champ = ix;
2694 break;
2695 case 1:
2696 oload_ambiguous = 2; /* incomparable top contenders */
2697 oload_ambig_champ = ix;
2698 break;
2699 case 2:
2700 oload_champ_bv = bv; /* new champion, record details */
2701 oload_ambiguous = 0;
2702 oload_champ = ix;
2703 oload_ambig_champ = -1;
2704 champ_nparms = nparms;
2705 break;
2706 case 3:
2707 default:
2708 break;
2709 }
2710 free (parm_types);
2711 #ifdef DEBUG_OLOAD
2712 if (method)
2713 printf("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2714 else
2715 printf("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME(oload_syms[ix]),nparms);
2716 for (jj = 0; jj <= nargs; jj++)
2717 printf("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2718 printf("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2719 #endif
2720 } /* end loop over all candidates */
2721
2722 if (oload_ambiguous)
2723 {
2724 if (method)
2725 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2726 obj_type_name,
2727 (obj_type_name && *obj_type_name) ? "::" : "",
2728 name);
2729 else
2730 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2731 func_name);
2732 }
2733
2734 /* Check how bad the best match is */
2735 for (ix = 1; ix <= nargs; ix++)
2736 {
2737 switch (oload_champ_bv->rank[ix])
2738 {
2739 case 10:
2740 oload_non_standard = 1; /* non-standard type conversions needed */
2741 break;
2742 case 100:
2743 oload_incompatible = 1; /* truly mismatched types */
2744 break;
2745 }
2746 }
2747 if (oload_incompatible)
2748 {
2749 if (method)
2750 error ("Cannot resolve method %s%s%s to any overloaded instance",
2751 obj_type_name,
2752 (obj_type_name && *obj_type_name) ? "::" : "",
2753 name);
2754 else
2755 error ("Cannot resolve function %s to any overloaded instance",
2756 func_name);
2757 }
2758 else if (oload_non_standard)
2759 {
2760 if (method)
2761 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2762 obj_type_name,
2763 (obj_type_name && *obj_type_name) ? "::" : "",
2764 name);
2765 else
2766 warning ("Using non-standard conversion to match function %s to supplied arguments",
2767 func_name);
2768 }
2769
2770 if (method)
2771 {
2772 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2773 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2774 else
2775 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2776 }
2777 else
2778 {
2779 *symp = oload_syms[oload_champ];
2780 free (func_name);
2781 }
2782
2783 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2784 }
2785
2786 /* C++: return 1 is NAME is a legitimate name for the destructor
2787 of type TYPE. If TYPE does not have a destructor, or
2788 if NAME is inappropriate for TYPE, an error is signaled. */
2789 int
2790 destructor_name_p (name, type)
2791 const char *name;
2792 const struct type *type;
2793 {
2794 /* destructors are a special case. */
2795
2796 if (name[0] == '~')
2797 {
2798 char *dname = type_name_no_tag (type);
2799 char *cp = strchr (dname, '<');
2800 unsigned int len;
2801
2802 /* Do not compare the template part for template classes. */
2803 if (cp == NULL)
2804 len = strlen (dname);
2805 else
2806 len = cp - dname;
2807 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2808 error ("name of destructor must equal name of class");
2809 else
2810 return 1;
2811 }
2812 return 0;
2813 }
2814
2815 /* Helper function for check_field: Given TYPE, a structure/union,
2816 return 1 if the component named NAME from the ultimate
2817 target structure/union is defined, otherwise, return 0. */
2818
2819 static int
2820 check_field_in (type, name)
2821 register struct type *type;
2822 const char *name;
2823 {
2824 register int i;
2825
2826 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2827 {
2828 char *t_field_name = TYPE_FIELD_NAME (type, i);
2829 if (t_field_name && STREQ (t_field_name, name))
2830 return 1;
2831 }
2832
2833 /* C++: If it was not found as a data field, then try to
2834 return it as a pointer to a method. */
2835
2836 /* Destructors are a special case. */
2837 if (destructor_name_p (name, type))
2838 {
2839 int m_index, f_index;
2840
2841 return get_destructor_fn_field (type, &m_index, &f_index);
2842 }
2843
2844 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2845 {
2846 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2847 return 1;
2848 }
2849
2850 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2851 if (check_field_in (TYPE_BASECLASS (type, i), name))
2852 return 1;
2853
2854 return 0;
2855 }
2856
2857
2858 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2859 return 1 if the component named NAME from the ultimate
2860 target structure/union is defined, otherwise, return 0. */
2861
2862 int
2863 check_field (arg1, name)
2864 register value_ptr arg1;
2865 const char *name;
2866 {
2867 register struct type *t;
2868
2869 COERCE_ARRAY (arg1);
2870
2871 t = VALUE_TYPE (arg1);
2872
2873 /* Follow pointers until we get to a non-pointer. */
2874
2875 for (;;)
2876 {
2877 CHECK_TYPEDEF (t);
2878 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2879 break;
2880 t = TYPE_TARGET_TYPE (t);
2881 }
2882
2883 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2884 error ("not implemented: member type in check_field");
2885
2886 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2887 && TYPE_CODE (t) != TYPE_CODE_UNION)
2888 error ("Internal error: `this' is not an aggregate");
2889
2890 return check_field_in (t, name);
2891 }
2892
2893 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2894 return the address of this member as a "pointer to member"
2895 type. If INTYPE is non-null, then it will be the type
2896 of the member we are looking for. This will help us resolve
2897 "pointers to member functions". This function is used
2898 to resolve user expressions of the form "DOMAIN::NAME". */
2899
2900 value_ptr
2901 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2902 struct type *domain, *curtype, *intype;
2903 int offset;
2904 char *name;
2905 {
2906 register struct type *t = curtype;
2907 register int i;
2908 value_ptr v;
2909
2910 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2911 && TYPE_CODE (t) != TYPE_CODE_UNION)
2912 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2913
2914 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2915 {
2916 char *t_field_name = TYPE_FIELD_NAME (t, i);
2917
2918 if (t_field_name && STREQ (t_field_name, name))
2919 {
2920 if (TYPE_FIELD_STATIC (t, i))
2921 {
2922 v = value_static_field (t, i);
2923 if (v == NULL)
2924 error ("Internal error: could not find static variable %s",
2925 name);
2926 return v;
2927 }
2928 if (TYPE_FIELD_PACKED (t, i))
2929 error ("pointers to bitfield members not allowed");
2930
2931 return value_from_longest
2932 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2933 domain)),
2934 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2935 }
2936 }
2937
2938 /* C++: If it was not found as a data field, then try to
2939 return it as a pointer to a method. */
2940
2941 /* Destructors are a special case. */
2942 if (destructor_name_p (name, t))
2943 {
2944 error ("member pointers to destructors not implemented yet");
2945 }
2946
2947 /* Perform all necessary dereferencing. */
2948 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2949 intype = TYPE_TARGET_TYPE (intype);
2950
2951 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2952 {
2953 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2954 char dem_opname[64];
2955
2956 if (strncmp(t_field_name, "__", 2)==0 ||
2957 strncmp(t_field_name, "op", 2)==0 ||
2958 strncmp(t_field_name, "type", 4)==0 )
2959 {
2960 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2961 t_field_name = dem_opname;
2962 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2963 t_field_name = dem_opname;
2964 }
2965 if (t_field_name && STREQ (t_field_name, name))
2966 {
2967 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2968 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2969
2970 if (intype == 0 && j > 1)
2971 error ("non-unique member `%s' requires type instantiation", name);
2972 if (intype)
2973 {
2974 while (j--)
2975 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2976 break;
2977 if (j < 0)
2978 error ("no member function matches that type instantiation");
2979 }
2980 else
2981 j = 0;
2982
2983 if (TYPE_FN_FIELD_STUB (f, j))
2984 check_stub_method (t, i, j);
2985 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2986 {
2987 return value_from_longest
2988 (lookup_reference_type
2989 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2990 domain)),
2991 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2992 }
2993 else
2994 {
2995 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2996 0, VAR_NAMESPACE, 0, NULL);
2997 if (s == NULL)
2998 {
2999 v = 0;
3000 }
3001 else
3002 {
3003 v = read_var_value (s, 0);
3004 #if 0
3005 VALUE_TYPE (v) = lookup_reference_type
3006 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3007 domain));
3008 #endif
3009 }
3010 return v;
3011 }
3012 }
3013 }
3014 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3015 {
3016 value_ptr v;
3017 int base_offset;
3018
3019 if (BASETYPE_VIA_VIRTUAL (t, i))
3020 base_offset = 0;
3021 else
3022 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3023 v = value_struct_elt_for_reference (domain,
3024 offset + base_offset,
3025 TYPE_BASECLASS (t, i),
3026 name,
3027 intype);
3028 if (v)
3029 return v;
3030 }
3031 return 0;
3032 }
3033
3034
3035 /* Find the real run-time type of a value using RTTI.
3036 * V is a pointer to the value.
3037 * A pointer to the struct type entry of the run-time type
3038 * is returneed.
3039 * FULL is a flag that is set only if the value V includes
3040 * the entire contents of an object of the RTTI type.
3041 * TOP is the offset to the top of the enclosing object of
3042 * the real run-time type. This offset may be for the embedded
3043 * object, or for the enclosing object of V.
3044 * USING_ENC is the flag that distinguishes the two cases.
3045 * If it is 1, then the offset is for the enclosing object,
3046 * otherwise for the embedded object.
3047 *
3048 * This currently works only for RTTI information generated
3049 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3050 * does not appear to support RTTI. This function returns a
3051 * NULL value for objects in the g++ runtime model. */
3052
3053 struct type *
3054 value_rtti_type (v, full, top, using_enc)
3055 value_ptr v;
3056 int * full;
3057 int * top;
3058 int * using_enc;
3059 {
3060 struct type * known_type;
3061 struct type * rtti_type;
3062 CORE_ADDR coreptr;
3063 value_ptr vp;
3064 int using_enclosing = 0;
3065 long top_offset = 0;
3066 char rtti_type_name[256];
3067
3068 if (full)
3069 *full = 0;
3070 if (top)
3071 *top = -1;
3072 if (using_enc)
3073 *using_enc = 0;
3074
3075 /* Get declared type */
3076 known_type = VALUE_TYPE (v);
3077 CHECK_TYPEDEF (known_type);
3078 /* RTTI works only or class objects */
3079 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3080 return NULL;
3081
3082 /* If neither the declared type nor the enclosing type of the
3083 * value structure has a HP ANSI C++ style virtual table,
3084 * we can't do anything. */
3085 if (!TYPE_HAS_VTABLE (known_type))
3086 {
3087 known_type = VALUE_ENCLOSING_TYPE (v);
3088 CHECK_TYPEDEF (known_type);
3089 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3090 !TYPE_HAS_VTABLE (known_type))
3091 return NULL; /* No RTTI, or not HP-compiled types */
3092 CHECK_TYPEDEF (known_type);
3093 using_enclosing = 1;
3094 }
3095
3096 if (using_enclosing && using_enc)
3097 *using_enc = 1;
3098
3099 /* First get the virtual table address */
3100 coreptr = * (CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3101 + VALUE_OFFSET (v)
3102 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3103 if (coreptr == 0)
3104 return NULL; /* return silently -- maybe called on gdb-generated value */
3105
3106 /* Fetch the top offset of the object */
3107 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3108 vp = value_at (builtin_type_int,
3109 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3110 VALUE_BFD_SECTION (v));
3111 top_offset = value_as_long (vp);
3112 if (top)
3113 *top = top_offset;
3114
3115 /* Fetch the typeinfo pointer */
3116 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3117 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3118 /* Indirect through the typeinfo pointer and retrieve the pointer
3119 * to the string name */
3120 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3121 if (!coreptr)
3122 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3123 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3124 /* FIXME possible 32x64 problem */
3125
3126 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3127
3128 read_memory_string (coreptr, rtti_type_name, 256);
3129
3130 if (strlen (rtti_type_name) == 0)
3131 error ("Retrieved null type name from typeinfo");
3132
3133 /* search for type */
3134 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3135
3136 if (!rtti_type)
3137 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3138 CHECK_TYPEDEF (rtti_type);
3139
3140 #if 0 /* debugging*/
3141 printf("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3142 #endif
3143
3144 /* Check whether we have the entire object */
3145 if (full /* Non-null pointer passed */
3146
3147 &&
3148 /* Either we checked on the whole object in hand and found the
3149 top offset to be zero */
3150 (((top_offset == 0) &&
3151 using_enclosing &&
3152 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3153 ||
3154 /* Or we checked on the embedded object and top offset was the
3155 same as the embedded offset */
3156 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3157 !using_enclosing &&
3158 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3159
3160 *full = 1;
3161
3162 return rtti_type;
3163 }
3164
3165 /* Given a pointer value V, find the real (RTTI) type
3166 of the object it points to.
3167 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3168 and refer to the values computed for the object pointed to. */
3169
3170 struct type *
3171 value_rtti_target_type (v, full, top, using_enc)
3172 value_ptr v;
3173 int * full;
3174 int * top;
3175 int * using_enc;
3176 {
3177 value_ptr target;
3178
3179 target = value_ind (v);
3180
3181 return value_rtti_type (target, full, top, using_enc);
3182 }
3183
3184 /* Given a value pointed to by ARGP, check its real run-time type, and
3185 if that is different from the enclosing type, create a new value
3186 using the real run-time type as the enclosing type (and of the same
3187 type as ARGP) and return it, with the embedded offset adjusted to
3188 be the correct offset to the enclosed object
3189 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3190 parameters, computed by value_rtti_type(). If these are available,
3191 they can be supplied and a second call to value_rtti_type() is avoided.
3192 (Pass RTYPE == NULL if they're not available */
3193
3194 value_ptr
3195 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3196 value_ptr argp;
3197 struct type * rtype;
3198 int xfull;
3199 int xtop;
3200 int xusing_enc;
3201
3202 {
3203 struct type * real_type;
3204 int full = 0;
3205 int top = -1;
3206 int using_enc = 0;
3207 value_ptr new_val;
3208
3209 if (rtype)
3210 {
3211 real_type = rtype;
3212 full = xfull;
3213 top = xtop;
3214 using_enc = xusing_enc;
3215 }
3216 else
3217 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3218
3219 /* If no RTTI data, or if object is already complete, do nothing */
3220 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3221 return argp;
3222
3223 /* If we have the full object, but for some reason the enclosing
3224 type is wrong, set it */ /* pai: FIXME -- sounds iffy */
3225 if (full)
3226 {
3227 VALUE_ENCLOSING_TYPE (argp) = real_type;
3228 return argp;
3229 }
3230
3231 /* Check if object is in memory */
3232 if (VALUE_LVAL (argp) != lval_memory)
3233 {
3234 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3235
3236 return argp;
3237 }
3238
3239 /* All other cases -- retrieve the complete object */
3240 /* Go back by the computed top_offset from the beginning of the object,
3241 adjusting for the embedded offset of argp if that's what value_rtti_type
3242 used for its computation. */
3243 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3244 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3245 VALUE_BFD_SECTION (argp));
3246 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3247 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3248 return new_val;
3249 }
3250
3251
3252
3253
3254 /* C++: return the value of the class instance variable, if one exists.
3255 Flag COMPLAIN signals an error if the request is made in an
3256 inappropriate context. */
3257
3258 value_ptr
3259 value_of_this (complain)
3260 int complain;
3261 {
3262 struct symbol *func, *sym;
3263 struct block *b;
3264 int i;
3265 static const char funny_this[] = "this";
3266 value_ptr this;
3267
3268 if (selected_frame == 0)
3269 {
3270 if (complain)
3271 error ("no frame selected");
3272 else return 0;
3273 }
3274
3275 func = get_frame_function (selected_frame);
3276 if (!func)
3277 {
3278 if (complain)
3279 error ("no `this' in nameless context");
3280 else return 0;
3281 }
3282
3283 b = SYMBOL_BLOCK_VALUE (func);
3284 i = BLOCK_NSYMS (b);
3285 if (i <= 0)
3286 {
3287 if (complain)
3288 error ("no args, no `this'");
3289 else return 0;
3290 }
3291
3292 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3293 symbol instead of the LOC_ARG one (if both exist). */
3294 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3295 if (sym == NULL)
3296 {
3297 if (complain)
3298 error ("current stack frame not in method");
3299 else
3300 return NULL;
3301 }
3302
3303 this = read_var_value (sym, selected_frame);
3304 if (this == 0 && complain)
3305 error ("`this' argument at unknown address");
3306 return this;
3307 }
3308
3309 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3310 long, starting at LOWBOUND. The result has the same lower bound as
3311 the original ARRAY. */
3312
3313 value_ptr
3314 value_slice (array, lowbound, length)
3315 value_ptr array;
3316 int lowbound, length;
3317 {
3318 struct type *slice_range_type, *slice_type, *range_type;
3319 LONGEST lowerbound, upperbound, offset;
3320 value_ptr slice;
3321 struct type *array_type;
3322 array_type = check_typedef (VALUE_TYPE (array));
3323 COERCE_VARYING_ARRAY (array, array_type);
3324 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3325 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3326 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3327 error ("cannot take slice of non-array");
3328 range_type = TYPE_INDEX_TYPE (array_type);
3329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3330 error ("slice from bad array or bitstring");
3331 if (lowbound < lowerbound || length < 0
3332 || lowbound + length - 1 > upperbound
3333 /* Chill allows zero-length strings but not arrays. */
3334 || (current_language->la_language == language_chill
3335 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3336 error ("slice out of range");
3337 /* FIXME-type-allocation: need a way to free this type when we are
3338 done with it. */
3339 slice_range_type = create_range_type ((struct type*) NULL,
3340 TYPE_TARGET_TYPE (range_type),
3341 lowbound, lowbound + length - 1);
3342 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3343 {
3344 int i;
3345 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
3346 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3347 slice = value_zero (slice_type, not_lval);
3348 for (i = 0; i < length; i++)
3349 {
3350 int element = value_bit_index (array_type,
3351 VALUE_CONTENTS (array),
3352 lowbound + i);
3353 if (element < 0)
3354 error ("internal error accessing bitstring");
3355 else if (element > 0)
3356 {
3357 int j = i % TARGET_CHAR_BIT;
3358 if (BITS_BIG_ENDIAN)
3359 j = TARGET_CHAR_BIT - 1 - j;
3360 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3361 }
3362 }
3363 /* We should set the address, bitssize, and bitspos, so the clice
3364 can be used on the LHS, but that may require extensions to
3365 value_assign. For now, just leave as a non_lval. FIXME. */
3366 }
3367 else
3368 {
3369 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3370 offset
3371 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3372 slice_type = create_array_type ((struct type*) NULL, element_type,
3373 slice_range_type);
3374 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3375 slice = allocate_value (slice_type);
3376 if (VALUE_LAZY (array))
3377 VALUE_LAZY (slice) = 1;
3378 else
3379 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3380 TYPE_LENGTH (slice_type));
3381 if (VALUE_LVAL (array) == lval_internalvar)
3382 VALUE_LVAL (slice) = lval_internalvar_component;
3383 else
3384 VALUE_LVAL (slice) = VALUE_LVAL (array);
3385 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3386 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3387 }
3388 return slice;
3389 }
3390
3391 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3392 value as a fixed-length array. */
3393
3394 value_ptr
3395 varying_to_slice (varray)
3396 value_ptr varray;
3397 {
3398 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3399 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3400 VALUE_CONTENTS (varray)
3401 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3402 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3403 }
3404
3405 /* Create a value for a FORTRAN complex number. Currently most of
3406 the time values are coerced to COMPLEX*16 (i.e. a complex number
3407 composed of 2 doubles. This really should be a smarter routine
3408 that figures out precision inteligently as opposed to assuming
3409 doubles. FIXME: fmb */
3410
3411 value_ptr
3412 value_literal_complex (arg1, arg2, type)
3413 value_ptr arg1;
3414 value_ptr arg2;
3415 struct type *type;
3416 {
3417 register value_ptr val;
3418 struct type *real_type = TYPE_TARGET_TYPE (type);
3419
3420 val = allocate_value (type);
3421 arg1 = value_cast (real_type, arg1);
3422 arg2 = value_cast (real_type, arg2);
3423
3424 memcpy (VALUE_CONTENTS_RAW (val),
3425 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3426 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3427 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3428 return val;
3429 }
3430
3431 /* Cast a value into the appropriate complex data type. */
3432
3433 static value_ptr
3434 cast_into_complex (type, val)
3435 struct type *type;
3436 register value_ptr val;
3437 {
3438 struct type *real_type = TYPE_TARGET_TYPE (type);
3439 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3440 {
3441 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3442 value_ptr re_val = allocate_value (val_real_type);
3443 value_ptr im_val = allocate_value (val_real_type);
3444
3445 memcpy (VALUE_CONTENTS_RAW (re_val),
3446 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3447 memcpy (VALUE_CONTENTS_RAW (im_val),
3448 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3449 TYPE_LENGTH (val_real_type));
3450
3451 return value_literal_complex (re_val, im_val, type);
3452 }
3453 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3454 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3455 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3456 else
3457 error ("cannot cast non-number to complex");
3458 }
3459
3460 void
3461 _initialize_valops ()
3462 {
3463 #if 0
3464 add_show_from_set
3465 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
3466 "Set automatic abandonment of expressions upon failure.",
3467 &setlist),
3468 &showlist);
3469 #endif
3470
3471 add_show_from_set
3472 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *)&overload_resolution,
3473 "Set overload resolution in evaluating C++ functions.",
3474 &setlist),
3475 &showlist);
3476 overload_resolution = 1;
3477
3478 }