]> git.ipfire.org Git - thirdparty/qemu.git/blob - gdbstub.c
kvm: Change kvm_{insert,remove}_breakpoint() argument to CPUState
[thirdparty/qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "cpu.h"
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
44
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
48 {
49 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
50 }
51 #else
52 /* target_memory_rw_debug() defined in cpu.h */
53 #endif
54
55 enum {
56 GDB_SIGNAL_0 = 0,
57 GDB_SIGNAL_INT = 2,
58 GDB_SIGNAL_QUIT = 3,
59 GDB_SIGNAL_TRAP = 5,
60 GDB_SIGNAL_ABRT = 6,
61 GDB_SIGNAL_ALRM = 14,
62 GDB_SIGNAL_IO = 23,
63 GDB_SIGNAL_XCPU = 24,
64 GDB_SIGNAL_UNKNOWN = 143
65 };
66
67 #ifdef CONFIG_USER_ONLY
68
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
72 */
73
74 static int gdb_signal_table[] = {
75 0,
76 TARGET_SIGHUP,
77 TARGET_SIGINT,
78 TARGET_SIGQUIT,
79 TARGET_SIGILL,
80 TARGET_SIGTRAP,
81 TARGET_SIGABRT,
82 -1, /* SIGEMT */
83 TARGET_SIGFPE,
84 TARGET_SIGKILL,
85 TARGET_SIGBUS,
86 TARGET_SIGSEGV,
87 TARGET_SIGSYS,
88 TARGET_SIGPIPE,
89 TARGET_SIGALRM,
90 TARGET_SIGTERM,
91 TARGET_SIGURG,
92 TARGET_SIGSTOP,
93 TARGET_SIGTSTP,
94 TARGET_SIGCONT,
95 TARGET_SIGCHLD,
96 TARGET_SIGTTIN,
97 TARGET_SIGTTOU,
98 TARGET_SIGIO,
99 TARGET_SIGXCPU,
100 TARGET_SIGXFSZ,
101 TARGET_SIGVTALRM,
102 TARGET_SIGPROF,
103 TARGET_SIGWINCH,
104 -1, /* SIGLOST */
105 TARGET_SIGUSR1,
106 TARGET_SIGUSR2,
107 #ifdef TARGET_SIGPWR
108 TARGET_SIGPWR,
109 #else
110 -1,
111 #endif
112 -1, /* SIGPOLL */
113 -1,
114 -1,
115 -1,
116 -1,
117 -1,
118 -1,
119 -1,
120 -1,
121 -1,
122 -1,
123 -1,
124 #ifdef __SIGRTMIN
125 __SIGRTMIN + 1,
126 __SIGRTMIN + 2,
127 __SIGRTMIN + 3,
128 __SIGRTMIN + 4,
129 __SIGRTMIN + 5,
130 __SIGRTMIN + 6,
131 __SIGRTMIN + 7,
132 __SIGRTMIN + 8,
133 __SIGRTMIN + 9,
134 __SIGRTMIN + 10,
135 __SIGRTMIN + 11,
136 __SIGRTMIN + 12,
137 __SIGRTMIN + 13,
138 __SIGRTMIN + 14,
139 __SIGRTMIN + 15,
140 __SIGRTMIN + 16,
141 __SIGRTMIN + 17,
142 __SIGRTMIN + 18,
143 __SIGRTMIN + 19,
144 __SIGRTMIN + 20,
145 __SIGRTMIN + 21,
146 __SIGRTMIN + 22,
147 __SIGRTMIN + 23,
148 __SIGRTMIN + 24,
149 __SIGRTMIN + 25,
150 __SIGRTMIN + 26,
151 __SIGRTMIN + 27,
152 __SIGRTMIN + 28,
153 __SIGRTMIN + 29,
154 __SIGRTMIN + 30,
155 __SIGRTMIN + 31,
156 -1, /* SIGCANCEL */
157 __SIGRTMIN,
158 __SIGRTMIN + 32,
159 __SIGRTMIN + 33,
160 __SIGRTMIN + 34,
161 __SIGRTMIN + 35,
162 __SIGRTMIN + 36,
163 __SIGRTMIN + 37,
164 __SIGRTMIN + 38,
165 __SIGRTMIN + 39,
166 __SIGRTMIN + 40,
167 __SIGRTMIN + 41,
168 __SIGRTMIN + 42,
169 __SIGRTMIN + 43,
170 __SIGRTMIN + 44,
171 __SIGRTMIN + 45,
172 __SIGRTMIN + 46,
173 __SIGRTMIN + 47,
174 __SIGRTMIN + 48,
175 __SIGRTMIN + 49,
176 __SIGRTMIN + 50,
177 __SIGRTMIN + 51,
178 __SIGRTMIN + 52,
179 __SIGRTMIN + 53,
180 __SIGRTMIN + 54,
181 __SIGRTMIN + 55,
182 __SIGRTMIN + 56,
183 __SIGRTMIN + 57,
184 __SIGRTMIN + 58,
185 __SIGRTMIN + 59,
186 __SIGRTMIN + 60,
187 __SIGRTMIN + 61,
188 __SIGRTMIN + 62,
189 __SIGRTMIN + 63,
190 __SIGRTMIN + 64,
191 __SIGRTMIN + 65,
192 __SIGRTMIN + 66,
193 __SIGRTMIN + 67,
194 __SIGRTMIN + 68,
195 __SIGRTMIN + 69,
196 __SIGRTMIN + 70,
197 __SIGRTMIN + 71,
198 __SIGRTMIN + 72,
199 __SIGRTMIN + 73,
200 __SIGRTMIN + 74,
201 __SIGRTMIN + 75,
202 __SIGRTMIN + 76,
203 __SIGRTMIN + 77,
204 __SIGRTMIN + 78,
205 __SIGRTMIN + 79,
206 __SIGRTMIN + 80,
207 __SIGRTMIN + 81,
208 __SIGRTMIN + 82,
209 __SIGRTMIN + 83,
210 __SIGRTMIN + 84,
211 __SIGRTMIN + 85,
212 __SIGRTMIN + 86,
213 __SIGRTMIN + 87,
214 __SIGRTMIN + 88,
215 __SIGRTMIN + 89,
216 __SIGRTMIN + 90,
217 __SIGRTMIN + 91,
218 __SIGRTMIN + 92,
219 __SIGRTMIN + 93,
220 __SIGRTMIN + 94,
221 __SIGRTMIN + 95,
222 -1, /* SIGINFO */
223 -1, /* UNKNOWN */
224 -1, /* DEFAULT */
225 -1,
226 -1,
227 -1,
228 -1,
229 -1,
230 -1
231 #endif
232 };
233 #else
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
236
237 enum {
238 TARGET_SIGINT = 2,
239 TARGET_SIGTRAP = 5
240 };
241
242 static int gdb_signal_table[] = {
243 -1,
244 -1,
245 TARGET_SIGINT,
246 -1,
247 -1,
248 TARGET_SIGTRAP
249 };
250 #endif
251
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
254 {
255 int i;
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
258 return i;
259 return GDB_SIGNAL_UNKNOWN;
260 }
261 #endif
262
263 static int gdb_signal_to_target (int sig)
264 {
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
267 else
268 return -1;
269 }
270
271 //#define DEBUG_GDB
272
273 typedef struct GDBRegisterState {
274 int base_reg;
275 int num_regs;
276 gdb_reg_cb get_reg;
277 gdb_reg_cb set_reg;
278 const char *xml;
279 struct GDBRegisterState *next;
280 } GDBRegisterState;
281
282 enum RSState {
283 RS_INACTIVE,
284 RS_IDLE,
285 RS_GETLINE,
286 RS_CHKSUM1,
287 RS_CHKSUM2,
288 };
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
309 } GDBState;
310
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
313 */
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
315
316 static GDBState *gdbserver_state;
317
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
322
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
326
327 static int get_char(GDBState *s)
328 {
329 uint8_t ch;
330 int ret;
331
332 for(;;) {
333 ret = qemu_recv(s->fd, &ch, 1, 0);
334 if (ret < 0) {
335 if (errno == ECONNRESET)
336 s->fd = -1;
337 if (errno != EINTR && errno != EAGAIN)
338 return -1;
339 } else if (ret == 0) {
340 close(s->fd);
341 s->fd = -1;
342 return -1;
343 } else {
344 break;
345 }
346 }
347 return ch;
348 }
349 #endif
350
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
356
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
360 {
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
364 }
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
366 }
367
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
370 {
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 if (runstate_check(RUN_STATE_GUEST_PANICKED)) {
375 runstate_set(RUN_STATE_DEBUG);
376 }
377 if (!runstate_needs_reset()) {
378 vm_start();
379 }
380 #endif
381 }
382
383 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
384 {
385 #ifdef CONFIG_USER_ONLY
386 int ret;
387
388 while (len > 0) {
389 ret = send(s->fd, buf, len, 0);
390 if (ret < 0) {
391 if (errno != EINTR && errno != EAGAIN)
392 return;
393 } else {
394 buf += ret;
395 len -= ret;
396 }
397 }
398 #else
399 qemu_chr_fe_write(s->chr, buf, len);
400 #endif
401 }
402
403 static inline int fromhex(int v)
404 {
405 if (v >= '0' && v <= '9')
406 return v - '0';
407 else if (v >= 'A' && v <= 'F')
408 return v - 'A' + 10;
409 else if (v >= 'a' && v <= 'f')
410 return v - 'a' + 10;
411 else
412 return 0;
413 }
414
415 static inline int tohex(int v)
416 {
417 if (v < 10)
418 return v + '0';
419 else
420 return v - 10 + 'a';
421 }
422
423 static void memtohex(char *buf, const uint8_t *mem, int len)
424 {
425 int i, c;
426 char *q;
427 q = buf;
428 for(i = 0; i < len; i++) {
429 c = mem[i];
430 *q++ = tohex(c >> 4);
431 *q++ = tohex(c & 0xf);
432 }
433 *q = '\0';
434 }
435
436 static void hextomem(uint8_t *mem, const char *buf, int len)
437 {
438 int i;
439
440 for(i = 0; i < len; i++) {
441 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
442 buf += 2;
443 }
444 }
445
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState *s, const char *buf, int len)
448 {
449 int csum, i;
450 uint8_t *p;
451
452 for(;;) {
453 p = s->last_packet;
454 *(p++) = '$';
455 memcpy(p, buf, len);
456 p += len;
457 csum = 0;
458 for(i = 0; i < len; i++) {
459 csum += buf[i];
460 }
461 *(p++) = '#';
462 *(p++) = tohex((csum >> 4) & 0xf);
463 *(p++) = tohex((csum) & 0xf);
464
465 s->last_packet_len = p - s->last_packet;
466 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
467
468 #ifdef CONFIG_USER_ONLY
469 i = get_char(s);
470 if (i < 0)
471 return -1;
472 if (i == '+')
473 break;
474 #else
475 break;
476 #endif
477 }
478 return 0;
479 }
480
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState *s, const char *buf)
483 {
484 #ifdef DEBUG_GDB
485 printf("reply='%s'\n", buf);
486 #endif
487
488 return put_packet_binary(s, buf, strlen(buf));
489 }
490
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
494 */
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
497 return 1; \
498 } while(0)
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
501 return 2; \
502 } while(0)
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
505 return 4; \
506 } while(0)
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
509 return 8; \
510 } while(0)
511
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
515 #else
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
518 #endif
519
520 #if defined(TARGET_I386)
521
522 #ifdef TARGET_X86_64
523 static const int gpr_map[16] = {
524 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
525 8, 9, 10, 11, 12, 13, 14, 15
526 };
527 #else
528 #define gpr_map gpr_map32
529 #endif
530 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
531
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
533
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
540
541 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
542 {
543 if (n < CPU_NB_REGS) {
544 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
545 GET_REG64(env->regs[gpr_map[n]]);
546 } else if (n < CPU_NB_REGS32) {
547 GET_REG32(env->regs[gpr_map32[n]]);
548 }
549 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
553 #else
554 memset(mem_buf, 0, 10);
555 #endif
556 return 10;
557 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
558 n -= IDX_XMM_REGS;
559 if (n < CPU_NB_REGS32 ||
560 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
561 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
562 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
563 return 16;
564 }
565 } else {
566 switch (n) {
567 case IDX_IP_REG:
568 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
569 GET_REG64(env->eip);
570 } else {
571 GET_REG32(env->eip);
572 }
573 case IDX_FLAGS_REG: GET_REG32(env->eflags);
574
575 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
576 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
577 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
578 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
579 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
580 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
581
582 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
583 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
584 (env->fpstt & 0x7) << 11);
585 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
591
592 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
593 }
594 }
595 return 0;
596 }
597
598 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
599 {
600 uint16_t selector = ldl_p(mem_buf);
601
602 if (selector != env->segs[sreg].selector) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env, sreg, selector);
605 #else
606 unsigned int limit, flags;
607 target_ulong base;
608
609 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
610 base = selector << 4;
611 limit = 0xffff;
612 flags = 0;
613 } else {
614 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
615 return 4;
616 }
617 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
618 #endif
619 }
620 return 4;
621 }
622
623 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
624 {
625 uint32_t tmp;
626
627 if (n < CPU_NB_REGS) {
628 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
629 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
630 return sizeof(target_ulong);
631 } else if (n < CPU_NB_REGS32) {
632 n = gpr_map32[n];
633 env->regs[n] &= ~0xffffffffUL;
634 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
635 return 4;
636 }
637 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
641 #endif
642 return 10;
643 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
644 n -= IDX_XMM_REGS;
645 if (n < CPU_NB_REGS32 ||
646 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
647 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
648 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
649 return 16;
650 }
651 } else {
652 switch (n) {
653 case IDX_IP_REG:
654 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
655 env->eip = ldq_p(mem_buf);
656 return 8;
657 } else {
658 env->eip &= ~0xffffffffUL;
659 env->eip |= (uint32_t)ldl_p(mem_buf);
660 return 4;
661 }
662 case IDX_FLAGS_REG:
663 env->eflags = ldl_p(mem_buf);
664 return 4;
665
666 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
667 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
668 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
669 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
670 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
671 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
672
673 case IDX_FP_REGS + 8:
674 env->fpuc = ldl_p(mem_buf);
675 return 4;
676 case IDX_FP_REGS + 9:
677 tmp = ldl_p(mem_buf);
678 env->fpstt = (tmp >> 11) & 7;
679 env->fpus = tmp & ~0x3800;
680 return 4;
681 case IDX_FP_REGS + 10: /* ftag */ return 4;
682 case IDX_FP_REGS + 11: /* fiseg */ return 4;
683 case IDX_FP_REGS + 12: /* fioff */ return 4;
684 case IDX_FP_REGS + 13: /* foseg */ return 4;
685 case IDX_FP_REGS + 14: /* fooff */ return 4;
686 case IDX_FP_REGS + 15: /* fop */ return 4;
687
688 case IDX_MXCSR_REG:
689 env->mxcsr = ldl_p(mem_buf);
690 return 4;
691 }
692 }
693 /* Unrecognised register. */
694 return 0;
695 }
696
697 #elif defined (TARGET_PPC)
698
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
707 #else
708 #define GDB_CORE_XML "power-core.xml"
709 #endif
710
711 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
712 {
713 if (n < 32) {
714 /* gprs */
715 GET_REGL(env->gpr[n]);
716 } else if (n < 64) {
717 /* fprs */
718 if (gdb_has_xml)
719 return 0;
720 stfq_p(mem_buf, env->fpr[n-32]);
721 return 8;
722 } else {
723 switch (n) {
724 case 64: GET_REGL(env->nip);
725 case 65: GET_REGL(env->msr);
726 case 66:
727 {
728 uint32_t cr = 0;
729 int i;
730 for (i = 0; i < 8; i++)
731 cr |= env->crf[i] << (32 - ((i + 1) * 4));
732 GET_REG32(cr);
733 }
734 case 67: GET_REGL(env->lr);
735 case 68: GET_REGL(env->ctr);
736 case 69: GET_REGL(env->xer);
737 case 70:
738 {
739 if (gdb_has_xml)
740 return 0;
741 GET_REG32(env->fpscr);
742 }
743 }
744 }
745 return 0;
746 }
747
748 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
749 {
750 if (n < 32) {
751 /* gprs */
752 env->gpr[n] = ldtul_p(mem_buf);
753 return sizeof(target_ulong);
754 } else if (n < 64) {
755 /* fprs */
756 if (gdb_has_xml)
757 return 0;
758 env->fpr[n-32] = ldfq_p(mem_buf);
759 return 8;
760 } else {
761 switch (n) {
762 case 64:
763 env->nip = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 65:
766 ppc_store_msr(env, ldtul_p(mem_buf));
767 return sizeof(target_ulong);
768 case 66:
769 {
770 uint32_t cr = ldl_p(mem_buf);
771 int i;
772 for (i = 0; i < 8; i++)
773 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
774 return 4;
775 }
776 case 67:
777 env->lr = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 68:
780 env->ctr = ldtul_p(mem_buf);
781 return sizeof(target_ulong);
782 case 69:
783 env->xer = ldtul_p(mem_buf);
784 return sizeof(target_ulong);
785 case 70:
786 /* fpscr */
787 if (gdb_has_xml)
788 return 0;
789 store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
790 return sizeof(target_ulong);
791 }
792 }
793 return 0;
794 }
795
796 #elif defined (TARGET_SPARC)
797
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
800 #else
801 #define NUM_CORE_REGS 72
802 #endif
803
804 #ifdef TARGET_ABI32
805 #define GET_REGA(val) GET_REG32(val)
806 #else
807 #define GET_REGA(val) GET_REGL(val)
808 #endif
809
810 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
811 {
812 if (n < 8) {
813 /* g0..g7 */
814 GET_REGA(env->gregs[n]);
815 }
816 if (n < 32) {
817 /* register window */
818 GET_REGA(env->regwptr[n - 8]);
819 }
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
821 if (n < 64) {
822 /* fprs */
823 if (n & 1) {
824 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
825 } else {
826 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
827 }
828 }
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
830 switch (n) {
831 case 64: GET_REGA(env->y);
832 case 65: GET_REGA(cpu_get_psr(env));
833 case 66: GET_REGA(env->wim);
834 case 67: GET_REGA(env->tbr);
835 case 68: GET_REGA(env->pc);
836 case 69: GET_REGA(env->npc);
837 case 70: GET_REGA(env->fsr);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
840 }
841 #else
842 if (n < 64) {
843 /* f0-f31 */
844 if (n & 1) {
845 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
846 } else {
847 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
848 }
849 }
850 if (n < 80) {
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env->fpr[(n - 32) / 2].ll);
853 }
854 switch (n) {
855 case 80: GET_REGL(env->pc);
856 case 81: GET_REGL(env->npc);
857 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
858 ((env->asi & 0xff) << 24) |
859 ((env->pstate & 0xfff) << 8) |
860 cpu_get_cwp64(env));
861 case 83: GET_REGL(env->fsr);
862 case 84: GET_REGL(env->fprs);
863 case 85: GET_REGL(env->y);
864 }
865 #endif
866 return 0;
867 }
868
869 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
870 {
871 #if defined(TARGET_ABI32)
872 abi_ulong tmp;
873
874 tmp = ldl_p(mem_buf);
875 #else
876 target_ulong tmp;
877
878 tmp = ldtul_p(mem_buf);
879 #endif
880
881 if (n < 8) {
882 /* g0..g7 */
883 env->gregs[n] = tmp;
884 } else if (n < 32) {
885 /* register window */
886 env->regwptr[n - 8] = tmp;
887 }
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
889 else if (n < 64) {
890 /* fprs */
891 /* f0-f31 */
892 if (n & 1) {
893 env->fpr[(n - 32) / 2].l.lower = tmp;
894 } else {
895 env->fpr[(n - 32) / 2].l.upper = tmp;
896 }
897 } else {
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
899 switch (n) {
900 case 64: env->y = tmp; break;
901 case 65: cpu_put_psr(env, tmp); break;
902 case 66: env->wim = tmp; break;
903 case 67: env->tbr = tmp; break;
904 case 68: env->pc = tmp; break;
905 case 69: env->npc = tmp; break;
906 case 70: env->fsr = tmp; break;
907 default: return 0;
908 }
909 }
910 return 4;
911 #else
912 else if (n < 64) {
913 /* f0-f31 */
914 tmp = ldl_p(mem_buf);
915 if (n & 1) {
916 env->fpr[(n - 32) / 2].l.lower = tmp;
917 } else {
918 env->fpr[(n - 32) / 2].l.upper = tmp;
919 }
920 return 4;
921 } else if (n < 80) {
922 /* f32-f62 (double width, even numbers only) */
923 env->fpr[(n - 32) / 2].ll = tmp;
924 } else {
925 switch (n) {
926 case 80: env->pc = tmp; break;
927 case 81: env->npc = tmp; break;
928 case 82:
929 cpu_put_ccr(env, tmp >> 32);
930 env->asi = (tmp >> 24) & 0xff;
931 env->pstate = (tmp >> 8) & 0xfff;
932 cpu_put_cwp64(env, tmp & 0xff);
933 break;
934 case 83: env->fsr = tmp; break;
935 case 84: env->fprs = tmp; break;
936 case 85: env->y = tmp; break;
937 default: return 0;
938 }
939 }
940 return 8;
941 #endif
942 }
943 #elif defined (TARGET_ARM)
944
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
949 newer gdb. */
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
952
953 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
954 {
955 if (n < 16) {
956 /* Core integer register. */
957 GET_REG32(env->regs[n]);
958 }
959 if (n < 24) {
960 /* FPA registers. */
961 if (gdb_has_xml)
962 return 0;
963 memset(mem_buf, 0, 12);
964 return 12;
965 }
966 switch (n) {
967 case 24:
968 /* FPA status register. */
969 if (gdb_has_xml)
970 return 0;
971 GET_REG32(0);
972 case 25:
973 /* CPSR */
974 GET_REG32(cpsr_read(env));
975 }
976 /* Unknown register. */
977 return 0;
978 }
979
980 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
981 {
982 uint32_t tmp;
983
984 tmp = ldl_p(mem_buf);
985
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
988 if (n == 15)
989 tmp &= ~1;
990
991 if (n < 16) {
992 /* Core integer register. */
993 env->regs[n] = tmp;
994 return 4;
995 }
996 if (n < 24) { /* 16-23 */
997 /* FPA registers (ignored). */
998 if (gdb_has_xml)
999 return 0;
1000 return 12;
1001 }
1002 switch (n) {
1003 case 24:
1004 /* FPA status register (ignored). */
1005 if (gdb_has_xml)
1006 return 0;
1007 return 4;
1008 case 25:
1009 /* CPSR */
1010 cpsr_write (env, tmp, 0xffffffff);
1011 return 4;
1012 }
1013 /* Unknown register. */
1014 return 0;
1015 }
1016
1017 #elif defined (TARGET_M68K)
1018
1019 #define NUM_CORE_REGS 18
1020
1021 #define GDB_CORE_XML "cf-core.xml"
1022
1023 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1024 {
1025 if (n < 8) {
1026 /* D0-D7 */
1027 GET_REG32(env->dregs[n]);
1028 } else if (n < 16) {
1029 /* A0-A7 */
1030 GET_REG32(env->aregs[n - 8]);
1031 } else {
1032 switch (n) {
1033 case 16: GET_REG32(env->sr);
1034 case 17: GET_REG32(env->pc);
1035 }
1036 }
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1039 return 0;
1040 }
1041
1042 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1043 {
1044 uint32_t tmp;
1045
1046 tmp = ldl_p(mem_buf);
1047
1048 if (n < 8) {
1049 /* D0-D7 */
1050 env->dregs[n] = tmp;
1051 } else if (n < 16) {
1052 /* A0-A7 */
1053 env->aregs[n - 8] = tmp;
1054 } else {
1055 switch (n) {
1056 case 16: env->sr = tmp; break;
1057 case 17: env->pc = tmp; break;
1058 default: return 0;
1059 }
1060 }
1061 return 4;
1062 }
1063 #elif defined (TARGET_MIPS)
1064
1065 #define NUM_CORE_REGS 73
1066
1067 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1068 {
1069 if (n < 32) {
1070 GET_REGL(env->active_tc.gpr[n]);
1071 }
1072 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1073 if (n >= 38 && n < 70) {
1074 if (env->CP0_Status & (1 << CP0St_FR))
1075 GET_REGL(env->active_fpu.fpr[n - 38].d);
1076 else
1077 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1078 }
1079 switch (n) {
1080 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1081 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1082 }
1083 }
1084 switch (n) {
1085 case 32: GET_REGL((int32_t)env->CP0_Status);
1086 case 33: GET_REGL(env->active_tc.LO[0]);
1087 case 34: GET_REGL(env->active_tc.HI[0]);
1088 case 35: GET_REGL(env->CP0_BadVAddr);
1089 case 36: GET_REGL((int32_t)env->CP0_Cause);
1090 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env->CP0_PRid);
1093 }
1094 if (n >= 73 && n <= 88) {
1095 /* 16 embedded regs. */
1096 GET_REGL(0);
1097 }
1098
1099 return 0;
1100 }
1101
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm[] =
1104 {
1105 float_round_nearest_even,
1106 float_round_to_zero,
1107 float_round_up,
1108 float_round_down
1109 };
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1112
1113 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1114 {
1115 target_ulong tmp;
1116
1117 tmp = ldtul_p(mem_buf);
1118
1119 if (n < 32) {
1120 env->active_tc.gpr[n] = tmp;
1121 return sizeof(target_ulong);
1122 }
1123 if (env->CP0_Config1 & (1 << CP0C1_FP)
1124 && n >= 38 && n < 73) {
1125 if (n < 70) {
1126 if (env->CP0_Status & (1 << CP0St_FR))
1127 env->active_fpu.fpr[n - 38].d = tmp;
1128 else
1129 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1130 }
1131 switch (n) {
1132 case 70:
1133 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE;
1136 break;
1137 case 71: env->active_fpu.fcr0 = tmp; break;
1138 }
1139 return sizeof(target_ulong);
1140 }
1141 switch (n) {
1142 case 32: env->CP0_Status = tmp; break;
1143 case 33: env->active_tc.LO[0] = tmp; break;
1144 case 34: env->active_tc.HI[0] = tmp; break;
1145 case 35: env->CP0_BadVAddr = tmp; break;
1146 case 36: env->CP0_Cause = tmp; break;
1147 case 37:
1148 env->active_tc.PC = tmp & ~(target_ulong)1;
1149 if (tmp & 1) {
1150 env->hflags |= MIPS_HFLAG_M16;
1151 } else {
1152 env->hflags &= ~(MIPS_HFLAG_M16);
1153 }
1154 break;
1155 case 72: /* fp, ignored */ break;
1156 default:
1157 if (n > 89)
1158 return 0;
1159 /* Other registers are readonly. Ignore writes. */
1160 break;
1161 }
1162
1163 return sizeof(target_ulong);
1164 }
1165 #elif defined(TARGET_OPENRISC)
1166
1167 #define NUM_CORE_REGS (32 + 3)
1168
1169 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1170 {
1171 if (n < 32) {
1172 GET_REG32(env->gpr[n]);
1173 } else {
1174 switch (n) {
1175 case 32: /* PPC */
1176 GET_REG32(env->ppc);
1177 break;
1178
1179 case 33: /* NPC */
1180 GET_REG32(env->npc);
1181 break;
1182
1183 case 34: /* SR */
1184 GET_REG32(env->sr);
1185 break;
1186
1187 default:
1188 break;
1189 }
1190 }
1191 return 0;
1192 }
1193
1194 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1195 uint8_t *mem_buf, int n)
1196 {
1197 uint32_t tmp;
1198
1199 if (n > NUM_CORE_REGS) {
1200 return 0;
1201 }
1202
1203 tmp = ldl_p(mem_buf);
1204
1205 if (n < 32) {
1206 env->gpr[n] = tmp;
1207 } else {
1208 switch (n) {
1209 case 32: /* PPC */
1210 env->ppc = tmp;
1211 break;
1212
1213 case 33: /* NPC */
1214 env->npc = tmp;
1215 break;
1216
1217 case 34: /* SR */
1218 env->sr = tmp;
1219 break;
1220
1221 default:
1222 break;
1223 }
1224 }
1225 return 4;
1226 }
1227 #elif defined (TARGET_SH4)
1228
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1231
1232 #define NUM_CORE_REGS 59
1233
1234 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1235 {
1236 switch (n) {
1237 case 0 ... 7:
1238 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1239 GET_REGL(env->gregs[n + 16]);
1240 } else {
1241 GET_REGL(env->gregs[n]);
1242 }
1243 case 8 ... 15:
1244 GET_REGL(env->gregs[n]);
1245 case 16:
1246 GET_REGL(env->pc);
1247 case 17:
1248 GET_REGL(env->pr);
1249 case 18:
1250 GET_REGL(env->gbr);
1251 case 19:
1252 GET_REGL(env->vbr);
1253 case 20:
1254 GET_REGL(env->mach);
1255 case 21:
1256 GET_REGL(env->macl);
1257 case 22:
1258 GET_REGL(env->sr);
1259 case 23:
1260 GET_REGL(env->fpul);
1261 case 24:
1262 GET_REGL(env->fpscr);
1263 case 25 ... 40:
1264 if (env->fpscr & FPSCR_FR) {
1265 stfl_p(mem_buf, env->fregs[n - 9]);
1266 } else {
1267 stfl_p(mem_buf, env->fregs[n - 25]);
1268 }
1269 return 4;
1270 case 41:
1271 GET_REGL(env->ssr);
1272 case 42:
1273 GET_REGL(env->spc);
1274 case 43 ... 50:
1275 GET_REGL(env->gregs[n - 43]);
1276 case 51 ... 58:
1277 GET_REGL(env->gregs[n - (51 - 16)]);
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1284 {
1285 switch (n) {
1286 case 0 ... 7:
1287 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1288 env->gregs[n + 16] = ldl_p(mem_buf);
1289 } else {
1290 env->gregs[n] = ldl_p(mem_buf);
1291 }
1292 break;
1293 case 8 ... 15:
1294 env->gregs[n] = ldl_p(mem_buf);
1295 break;
1296 case 16:
1297 env->pc = ldl_p(mem_buf);
1298 break;
1299 case 17:
1300 env->pr = ldl_p(mem_buf);
1301 break;
1302 case 18:
1303 env->gbr = ldl_p(mem_buf);
1304 break;
1305 case 19:
1306 env->vbr = ldl_p(mem_buf);
1307 break;
1308 case 20:
1309 env->mach = ldl_p(mem_buf);
1310 break;
1311 case 21:
1312 env->macl = ldl_p(mem_buf);
1313 break;
1314 case 22:
1315 env->sr = ldl_p(mem_buf);
1316 break;
1317 case 23:
1318 env->fpul = ldl_p(mem_buf);
1319 break;
1320 case 24:
1321 env->fpscr = ldl_p(mem_buf);
1322 break;
1323 case 25 ... 40:
1324 if (env->fpscr & FPSCR_FR) {
1325 env->fregs[n - 9] = ldfl_p(mem_buf);
1326 } else {
1327 env->fregs[n - 25] = ldfl_p(mem_buf);
1328 }
1329 break;
1330 case 41:
1331 env->ssr = ldl_p(mem_buf);
1332 break;
1333 case 42:
1334 env->spc = ldl_p(mem_buf);
1335 break;
1336 case 43 ... 50:
1337 env->gregs[n - 43] = ldl_p(mem_buf);
1338 break;
1339 case 51 ... 58:
1340 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1341 break;
1342 default: return 0;
1343 }
1344
1345 return 4;
1346 }
1347 #elif defined (TARGET_MICROBLAZE)
1348
1349 #define NUM_CORE_REGS (32 + 5)
1350
1351 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1352 {
1353 if (n < 32) {
1354 GET_REG32(env->regs[n]);
1355 } else {
1356 GET_REG32(env->sregs[n - 32]);
1357 }
1358 return 0;
1359 }
1360
1361 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1362 {
1363 uint32_t tmp;
1364
1365 if (n > NUM_CORE_REGS)
1366 return 0;
1367
1368 tmp = ldl_p(mem_buf);
1369
1370 if (n < 32) {
1371 env->regs[n] = tmp;
1372 } else {
1373 env->sregs[n - 32] = tmp;
1374 }
1375 return 4;
1376 }
1377 #elif defined (TARGET_CRIS)
1378
1379 #define NUM_CORE_REGS 49
1380
1381 static int
1382 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1383 {
1384 if (n < 15) {
1385 GET_REG32(env->regs[n]);
1386 }
1387
1388 if (n == 15) {
1389 GET_REG32(env->pc);
1390 }
1391
1392 if (n < 32) {
1393 switch (n) {
1394 case 16:
1395 GET_REG8(env->pregs[n - 16]);
1396 break;
1397 case 17:
1398 GET_REG8(env->pregs[n - 16]);
1399 break;
1400 case 20:
1401 case 21:
1402 GET_REG16(env->pregs[n - 16]);
1403 break;
1404 default:
1405 if (n >= 23) {
1406 GET_REG32(env->pregs[n - 16]);
1407 }
1408 break;
1409 }
1410 }
1411 return 0;
1412 }
1413
1414 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1415 {
1416 uint8_t srs;
1417
1418 if (env->pregs[PR_VR] < 32)
1419 return read_register_crisv10(env, mem_buf, n);
1420
1421 srs = env->pregs[PR_SRS];
1422 if (n < 16) {
1423 GET_REG32(env->regs[n]);
1424 }
1425
1426 if (n >= 21 && n < 32) {
1427 GET_REG32(env->pregs[n - 16]);
1428 }
1429 if (n >= 33 && n < 49) {
1430 GET_REG32(env->sregs[srs][n - 33]);
1431 }
1432 switch (n) {
1433 case 16: GET_REG8(env->pregs[0]);
1434 case 17: GET_REG8(env->pregs[1]);
1435 case 18: GET_REG32(env->pregs[2]);
1436 case 19: GET_REG8(srs);
1437 case 20: GET_REG16(env->pregs[4]);
1438 case 32: GET_REG32(env->pc);
1439 }
1440
1441 return 0;
1442 }
1443
1444 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1445 {
1446 uint32_t tmp;
1447
1448 if (n > 49)
1449 return 0;
1450
1451 tmp = ldl_p(mem_buf);
1452
1453 if (n < 16) {
1454 env->regs[n] = tmp;
1455 }
1456
1457 if (n >= 21 && n < 32) {
1458 env->pregs[n - 16] = tmp;
1459 }
1460
1461 /* FIXME: Should support function regs be writable? */
1462 switch (n) {
1463 case 16: return 1;
1464 case 17: return 1;
1465 case 18: env->pregs[PR_PID] = tmp; break;
1466 case 19: return 1;
1467 case 20: return 2;
1468 case 32: env->pc = tmp; break;
1469 }
1470
1471 return 4;
1472 }
1473 #elif defined (TARGET_ALPHA)
1474
1475 #define NUM_CORE_REGS 67
1476
1477 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1478 {
1479 uint64_t val;
1480 CPU_DoubleU d;
1481
1482 switch (n) {
1483 case 0 ... 30:
1484 val = env->ir[n];
1485 break;
1486 case 32 ... 62:
1487 d.d = env->fir[n - 32];
1488 val = d.ll;
1489 break;
1490 case 63:
1491 val = cpu_alpha_load_fpcr(env);
1492 break;
1493 case 64:
1494 val = env->pc;
1495 break;
1496 case 66:
1497 val = env->unique;
1498 break;
1499 case 31:
1500 case 65:
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1503 val = 0;
1504 break;
1505 default:
1506 return 0;
1507 }
1508 GET_REGL(val);
1509 }
1510
1511 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1512 {
1513 target_ulong tmp = ldtul_p(mem_buf);
1514 CPU_DoubleU d;
1515
1516 switch (n) {
1517 case 0 ... 30:
1518 env->ir[n] = tmp;
1519 break;
1520 case 32 ... 62:
1521 d.ll = tmp;
1522 env->fir[n - 32] = d.d;
1523 break;
1524 case 63:
1525 cpu_alpha_store_fpcr(env, tmp);
1526 break;
1527 case 64:
1528 env->pc = tmp;
1529 break;
1530 case 66:
1531 env->unique = tmp;
1532 break;
1533 case 31:
1534 case 65:
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1537 break;
1538 default:
1539 return 0;
1540 }
1541 return 8;
1542 }
1543 #elif defined (TARGET_S390X)
1544
1545 #define NUM_CORE_REGS S390_NUM_REGS
1546
1547 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1548 {
1549 uint64_t val;
1550 int cc_op;
1551
1552 switch (n) {
1553 case S390_PSWM_REGNUM:
1554 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1555 val = deposit64(env->psw.mask, 44, 2, cc_op);
1556 GET_REGL(val);
1557 break;
1558 case S390_PSWA_REGNUM:
1559 GET_REGL(env->psw.addr);
1560 break;
1561 case S390_R0_REGNUM ... S390_R15_REGNUM:
1562 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1563 break;
1564 case S390_A0_REGNUM ... S390_A15_REGNUM:
1565 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1566 break;
1567 case S390_FPC_REGNUM:
1568 GET_REG32(env->fpc);
1569 break;
1570 case S390_F0_REGNUM ... S390_F15_REGNUM:
1571 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1572 break;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1579 {
1580 target_ulong tmpl;
1581 uint32_t tmp32;
1582 int r = 8;
1583 tmpl = ldtul_p(mem_buf);
1584 tmp32 = ldl_p(mem_buf);
1585
1586 switch (n) {
1587 case S390_PSWM_REGNUM:
1588 env->psw.mask = tmpl;
1589 env->cc_op = extract64(tmpl, 44, 2);
1590 break;
1591 case S390_PSWA_REGNUM:
1592 env->psw.addr = tmpl;
1593 break;
1594 case S390_R0_REGNUM ... S390_R15_REGNUM:
1595 env->regs[n-S390_R0_REGNUM] = tmpl;
1596 break;
1597 case S390_A0_REGNUM ... S390_A15_REGNUM:
1598 env->aregs[n-S390_A0_REGNUM] = tmp32;
1599 r = 4;
1600 break;
1601 case S390_FPC_REGNUM:
1602 env->fpc = tmp32;
1603 r = 4;
1604 break;
1605 case S390_F0_REGNUM ... S390_F15_REGNUM:
1606 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1607 break;
1608 default:
1609 return 0;
1610 }
1611 return r;
1612 }
1613 #elif defined (TARGET_LM32)
1614
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1617
1618 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1619 {
1620 if (n < 32) {
1621 GET_REG32(env->regs[n]);
1622 } else {
1623 switch (n) {
1624 case 32:
1625 GET_REG32(env->pc);
1626 break;
1627 /* FIXME: put in right exception ID */
1628 case 33:
1629 GET_REG32(0);
1630 break;
1631 case 34:
1632 GET_REG32(env->eba);
1633 break;
1634 case 35:
1635 GET_REG32(env->deba);
1636 break;
1637 case 36:
1638 GET_REG32(env->ie);
1639 break;
1640 case 37:
1641 GET_REG32(lm32_pic_get_im(env->pic_state));
1642 break;
1643 case 38:
1644 GET_REG32(lm32_pic_get_ip(env->pic_state));
1645 break;
1646 }
1647 }
1648 return 0;
1649 }
1650
1651 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1652 {
1653 uint32_t tmp;
1654
1655 if (n > NUM_CORE_REGS) {
1656 return 0;
1657 }
1658
1659 tmp = ldl_p(mem_buf);
1660
1661 if (n < 32) {
1662 env->regs[n] = tmp;
1663 } else {
1664 switch (n) {
1665 case 32:
1666 env->pc = tmp;
1667 break;
1668 case 34:
1669 env->eba = tmp;
1670 break;
1671 case 35:
1672 env->deba = tmp;
1673 break;
1674 case 36:
1675 env->ie = tmp;
1676 break;
1677 case 37:
1678 lm32_pic_set_im(env->pic_state, tmp);
1679 break;
1680 case 38:
1681 lm32_pic_set_ip(env->pic_state, tmp);
1682 break;
1683 }
1684 }
1685 return 4;
1686 }
1687 #elif defined(TARGET_XTENSA)
1688
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1693 */
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1696
1697 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1698 {
1699 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1700
1701 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1702 return 0;
1703 }
1704
1705 switch (reg->type) {
1706 case 9: /*pc*/
1707 GET_REG32(env->pc);
1708 break;
1709
1710 case 1: /*ar*/
1711 xtensa_sync_phys_from_window(env);
1712 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1713 break;
1714
1715 case 2: /*SR*/
1716 GET_REG32(env->sregs[reg->targno & 0xff]);
1717 break;
1718
1719 case 3: /*UR*/
1720 GET_REG32(env->uregs[reg->targno & 0xff]);
1721 break;
1722
1723 case 4: /*f*/
1724 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1725 break;
1726
1727 case 8: /*a*/
1728 GET_REG32(env->regs[reg->targno & 0x0f]);
1729 break;
1730
1731 default:
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__, n, reg->type);
1734 return 0;
1735 }
1736 }
1737
1738 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1739 {
1740 uint32_t tmp;
1741 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1742
1743 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1744 return 0;
1745 }
1746
1747 tmp = ldl_p(mem_buf);
1748
1749 switch (reg->type) {
1750 case 9: /*pc*/
1751 env->pc = tmp;
1752 break;
1753
1754 case 1: /*ar*/
1755 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1756 xtensa_sync_window_from_phys(env);
1757 break;
1758
1759 case 2: /*SR*/
1760 env->sregs[reg->targno & 0xff] = tmp;
1761 break;
1762
1763 case 3: /*UR*/
1764 env->uregs[reg->targno & 0xff] = tmp;
1765 break;
1766
1767 case 4: /*f*/
1768 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1769 break;
1770
1771 case 8: /*a*/
1772 env->regs[reg->targno & 0x0f] = tmp;
1773 break;
1774
1775 default:
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__, n, reg->type);
1778 return 0;
1779 }
1780
1781 return 4;
1782 }
1783 #else
1784
1785 #define NUM_CORE_REGS 0
1786
1787 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1788 {
1789 return 0;
1790 }
1791
1792 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1793 {
1794 return 0;
1795 }
1796
1797 #endif
1798
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs = NUM_CORE_REGS;
1801 #endif
1802
1803 #ifdef GDB_CORE_XML
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf, const char *mem, int len)
1806 {
1807 char *p = buf;
1808 char c;
1809
1810 while (len--) {
1811 c = *(mem++);
1812 switch (c) {
1813 case '#': case '$': case '*': case '}':
1814 *(p++) = '}';
1815 *(p++) = c ^ 0x20;
1816 break;
1817 default:
1818 *(p++) = c;
1819 break;
1820 }
1821 }
1822 return p - buf;
1823 }
1824
1825 static const char *get_feature_xml(const char *p, const char **newp)
1826 {
1827 size_t len;
1828 int i;
1829 const char *name;
1830 static char target_xml[1024];
1831
1832 len = 0;
1833 while (p[len] && p[len] != ':')
1834 len++;
1835 *newp = p + len;
1836
1837 name = NULL;
1838 if (strncmp(p, "target.xml", len) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml[0]) {
1841 GDBRegisterState *r;
1842 CPUArchState *env = first_cpu->env_ptr;
1843
1844 snprintf(target_xml, sizeof(target_xml),
1845 "<?xml version=\"1.0\"?>"
1846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1847 "<target>"
1848 "<xi:include href=\"%s\"/>",
1849 GDB_CORE_XML);
1850
1851 for (r = env->gdb_regs; r; r = r->next) {
1852 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1853 pstrcat(target_xml, sizeof(target_xml), r->xml);
1854 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1855 }
1856 pstrcat(target_xml, sizeof(target_xml), "</target>");
1857 }
1858 return target_xml;
1859 }
1860 for (i = 0; ; i++) {
1861 name = xml_builtin[i][0];
1862 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1863 break;
1864 }
1865 return name ? xml_builtin[i][1] : NULL;
1866 }
1867 #endif
1868
1869 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1870 {
1871 GDBRegisterState *r;
1872
1873 if (reg < NUM_CORE_REGS)
1874 return cpu_gdb_read_register(env, mem_buf, reg);
1875
1876 for (r = env->gdb_regs; r; r = r->next) {
1877 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1878 return r->get_reg(env, mem_buf, reg - r->base_reg);
1879 }
1880 }
1881 return 0;
1882 }
1883
1884 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1885 {
1886 GDBRegisterState *r;
1887
1888 if (reg < NUM_CORE_REGS)
1889 return cpu_gdb_write_register(env, mem_buf, reg);
1890
1891 for (r = env->gdb_regs; r; r = r->next) {
1892 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1893 return r->set_reg(env, mem_buf, reg - r->base_reg);
1894 }
1895 }
1896 return 0;
1897 }
1898
1899 #if !defined(TARGET_XTENSA)
1900 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1901 specifies the first register number and these registers are included in
1902 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1903 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1904 */
1905
1906 void gdb_register_coprocessor(CPUArchState * env,
1907 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1908 int num_regs, const char *xml, int g_pos)
1909 {
1910 GDBRegisterState *s;
1911 GDBRegisterState **p;
1912 static int last_reg = NUM_CORE_REGS;
1913
1914 p = &env->gdb_regs;
1915 while (*p) {
1916 /* Check for duplicates. */
1917 if (strcmp((*p)->xml, xml) == 0)
1918 return;
1919 p = &(*p)->next;
1920 }
1921
1922 s = g_new0(GDBRegisterState, 1);
1923 s->base_reg = last_reg;
1924 s->num_regs = num_regs;
1925 s->get_reg = get_reg;
1926 s->set_reg = set_reg;
1927 s->xml = xml;
1928
1929 /* Add to end of list. */
1930 last_reg += num_regs;
1931 *p = s;
1932 if (g_pos) {
1933 if (g_pos != s->base_reg) {
1934 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1935 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1936 } else {
1937 num_g_regs = last_reg;
1938 }
1939 }
1940 }
1941 #endif
1942
1943 #ifndef CONFIG_USER_ONLY
1944 static const int xlat_gdb_type[] = {
1945 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1946 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1947 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1948 };
1949 #endif
1950
1951 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1952 {
1953 CPUState *cpu;
1954 CPUArchState *env;
1955 int err = 0;
1956
1957 if (kvm_enabled()) {
1958 return kvm_insert_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
1959 addr, len, type);
1960 }
1961
1962 switch (type) {
1963 case GDB_BREAKPOINT_SW:
1964 case GDB_BREAKPOINT_HW:
1965 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1966 env = cpu->env_ptr;
1967 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1968 if (err)
1969 break;
1970 }
1971 return err;
1972 #ifndef CONFIG_USER_ONLY
1973 case GDB_WATCHPOINT_WRITE:
1974 case GDB_WATCHPOINT_READ:
1975 case GDB_WATCHPOINT_ACCESS:
1976 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1977 env = cpu->env_ptr;
1978 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1979 NULL);
1980 if (err)
1981 break;
1982 }
1983 return err;
1984 #endif
1985 default:
1986 return -ENOSYS;
1987 }
1988 }
1989
1990 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1991 {
1992 CPUState *cpu;
1993 CPUArchState *env;
1994 int err = 0;
1995
1996 if (kvm_enabled()) {
1997 return kvm_remove_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
1998 addr, len, type);
1999 }
2000
2001 switch (type) {
2002 case GDB_BREAKPOINT_SW:
2003 case GDB_BREAKPOINT_HW:
2004 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2005 env = cpu->env_ptr;
2006 err = cpu_breakpoint_remove(env, addr, BP_GDB);
2007 if (err)
2008 break;
2009 }
2010 return err;
2011 #ifndef CONFIG_USER_ONLY
2012 case GDB_WATCHPOINT_WRITE:
2013 case GDB_WATCHPOINT_READ:
2014 case GDB_WATCHPOINT_ACCESS:
2015 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2016 env = cpu->env_ptr;
2017 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2018 if (err)
2019 break;
2020 }
2021 return err;
2022 #endif
2023 default:
2024 return -ENOSYS;
2025 }
2026 }
2027
2028 static void gdb_breakpoint_remove_all(void)
2029 {
2030 CPUState *cpu;
2031 CPUArchState *env;
2032
2033 if (kvm_enabled()) {
2034 kvm_remove_all_breakpoints(ENV_GET_CPU(gdbserver_state->c_cpu));
2035 return;
2036 }
2037
2038 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2039 env = cpu->env_ptr;
2040 cpu_breakpoint_remove_all(env, BP_GDB);
2041 #ifndef CONFIG_USER_ONLY
2042 cpu_watchpoint_remove_all(env, BP_GDB);
2043 #endif
2044 }
2045 }
2046
2047 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2048 {
2049 CPUState *cpu = ENV_GET_CPU(s->c_cpu);
2050 CPUClass *cc = CPU_GET_CLASS(cpu);
2051
2052 cpu_synchronize_state(cpu);
2053 if (cc->set_pc) {
2054 cc->set_pc(cpu, pc);
2055 }
2056 }
2057
2058 static CPUArchState *find_cpu(uint32_t thread_id)
2059 {
2060 CPUState *cpu;
2061
2062 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2063 if (cpu_index(cpu) == thread_id) {
2064 return cpu->env_ptr;
2065 }
2066 }
2067
2068 return NULL;
2069 }
2070
2071 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2072 {
2073 CPUArchState *env;
2074 const char *p;
2075 uint32_t thread;
2076 int ch, reg_size, type, res;
2077 char buf[MAX_PACKET_LENGTH];
2078 uint8_t mem_buf[MAX_PACKET_LENGTH];
2079 uint8_t *registers;
2080 target_ulong addr, len;
2081
2082 #ifdef DEBUG_GDB
2083 printf("command='%s'\n", line_buf);
2084 #endif
2085 p = line_buf;
2086 ch = *p++;
2087 switch(ch) {
2088 case '?':
2089 /* TODO: Make this return the correct value for user-mode. */
2090 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2091 cpu_index(ENV_GET_CPU(s->c_cpu)));
2092 put_packet(s, buf);
2093 /* Remove all the breakpoints when this query is issued,
2094 * because gdb is doing and initial connect and the state
2095 * should be cleaned up.
2096 */
2097 gdb_breakpoint_remove_all();
2098 break;
2099 case 'c':
2100 if (*p != '\0') {
2101 addr = strtoull(p, (char **)&p, 16);
2102 gdb_set_cpu_pc(s, addr);
2103 }
2104 s->signal = 0;
2105 gdb_continue(s);
2106 return RS_IDLE;
2107 case 'C':
2108 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2109 if (s->signal == -1)
2110 s->signal = 0;
2111 gdb_continue(s);
2112 return RS_IDLE;
2113 case 'v':
2114 if (strncmp(p, "Cont", 4) == 0) {
2115 int res_signal, res_thread;
2116
2117 p += 4;
2118 if (*p == '?') {
2119 put_packet(s, "vCont;c;C;s;S");
2120 break;
2121 }
2122 res = 0;
2123 res_signal = 0;
2124 res_thread = 0;
2125 while (*p) {
2126 int action, signal;
2127
2128 if (*p++ != ';') {
2129 res = 0;
2130 break;
2131 }
2132 action = *p++;
2133 signal = 0;
2134 if (action == 'C' || action == 'S') {
2135 signal = strtoul(p, (char **)&p, 16);
2136 } else if (action != 'c' && action != 's') {
2137 res = 0;
2138 break;
2139 }
2140 thread = 0;
2141 if (*p == ':') {
2142 thread = strtoull(p+1, (char **)&p, 16);
2143 }
2144 action = tolower(action);
2145 if (res == 0 || (res == 'c' && action == 's')) {
2146 res = action;
2147 res_signal = signal;
2148 res_thread = thread;
2149 }
2150 }
2151 if (res) {
2152 if (res_thread != -1 && res_thread != 0) {
2153 env = find_cpu(res_thread);
2154 if (env == NULL) {
2155 put_packet(s, "E22");
2156 break;
2157 }
2158 s->c_cpu = env;
2159 }
2160 if (res == 's') {
2161 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2162 }
2163 s->signal = res_signal;
2164 gdb_continue(s);
2165 return RS_IDLE;
2166 }
2167 break;
2168 } else {
2169 goto unknown_command;
2170 }
2171 case 'k':
2172 #ifdef CONFIG_USER_ONLY
2173 /* Kill the target */
2174 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2175 exit(0);
2176 #endif
2177 case 'D':
2178 /* Detach packet */
2179 gdb_breakpoint_remove_all();
2180 gdb_syscall_mode = GDB_SYS_DISABLED;
2181 gdb_continue(s);
2182 put_packet(s, "OK");
2183 break;
2184 case 's':
2185 if (*p != '\0') {
2186 addr = strtoull(p, (char **)&p, 16);
2187 gdb_set_cpu_pc(s, addr);
2188 }
2189 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2190 gdb_continue(s);
2191 return RS_IDLE;
2192 case 'F':
2193 {
2194 target_ulong ret;
2195 target_ulong err;
2196
2197 ret = strtoull(p, (char **)&p, 16);
2198 if (*p == ',') {
2199 p++;
2200 err = strtoull(p, (char **)&p, 16);
2201 } else {
2202 err = 0;
2203 }
2204 if (*p == ',')
2205 p++;
2206 type = *p;
2207 if (s->current_syscall_cb) {
2208 s->current_syscall_cb(s->c_cpu, ret, err);
2209 s->current_syscall_cb = NULL;
2210 }
2211 if (type == 'C') {
2212 put_packet(s, "T02");
2213 } else {
2214 gdb_continue(s);
2215 }
2216 }
2217 break;
2218 case 'g':
2219 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2220 env = s->g_cpu;
2221 len = 0;
2222 for (addr = 0; addr < num_g_regs; addr++) {
2223 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2224 len += reg_size;
2225 }
2226 memtohex(buf, mem_buf, len);
2227 put_packet(s, buf);
2228 break;
2229 case 'G':
2230 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2231 env = s->g_cpu;
2232 registers = mem_buf;
2233 len = strlen(p) / 2;
2234 hextomem((uint8_t *)registers, p, len);
2235 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2236 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2237 len -= reg_size;
2238 registers += reg_size;
2239 }
2240 put_packet(s, "OK");
2241 break;
2242 case 'm':
2243 addr = strtoull(p, (char **)&p, 16);
2244 if (*p == ',')
2245 p++;
2246 len = strtoull(p, NULL, 16);
2247 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2248 put_packet (s, "E14");
2249 } else {
2250 memtohex(buf, mem_buf, len);
2251 put_packet(s, buf);
2252 }
2253 break;
2254 case 'M':
2255 addr = strtoull(p, (char **)&p, 16);
2256 if (*p == ',')
2257 p++;
2258 len = strtoull(p, (char **)&p, 16);
2259 if (*p == ':')
2260 p++;
2261 hextomem(mem_buf, p, len);
2262 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2263 put_packet(s, "E14");
2264 } else {
2265 put_packet(s, "OK");
2266 }
2267 break;
2268 case 'p':
2269 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2270 This works, but can be very slow. Anything new enough to
2271 understand XML also knows how to use this properly. */
2272 if (!gdb_has_xml)
2273 goto unknown_command;
2274 addr = strtoull(p, (char **)&p, 16);
2275 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2276 if (reg_size) {
2277 memtohex(buf, mem_buf, reg_size);
2278 put_packet(s, buf);
2279 } else {
2280 put_packet(s, "E14");
2281 }
2282 break;
2283 case 'P':
2284 if (!gdb_has_xml)
2285 goto unknown_command;
2286 addr = strtoull(p, (char **)&p, 16);
2287 if (*p == '=')
2288 p++;
2289 reg_size = strlen(p) / 2;
2290 hextomem(mem_buf, p, reg_size);
2291 gdb_write_register(s->g_cpu, mem_buf, addr);
2292 put_packet(s, "OK");
2293 break;
2294 case 'Z':
2295 case 'z':
2296 type = strtoul(p, (char **)&p, 16);
2297 if (*p == ',')
2298 p++;
2299 addr = strtoull(p, (char **)&p, 16);
2300 if (*p == ',')
2301 p++;
2302 len = strtoull(p, (char **)&p, 16);
2303 if (ch == 'Z')
2304 res = gdb_breakpoint_insert(addr, len, type);
2305 else
2306 res = gdb_breakpoint_remove(addr, len, type);
2307 if (res >= 0)
2308 put_packet(s, "OK");
2309 else if (res == -ENOSYS)
2310 put_packet(s, "");
2311 else
2312 put_packet(s, "E22");
2313 break;
2314 case 'H':
2315 type = *p++;
2316 thread = strtoull(p, (char **)&p, 16);
2317 if (thread == -1 || thread == 0) {
2318 put_packet(s, "OK");
2319 break;
2320 }
2321 env = find_cpu(thread);
2322 if (env == NULL) {
2323 put_packet(s, "E22");
2324 break;
2325 }
2326 switch (type) {
2327 case 'c':
2328 s->c_cpu = env;
2329 put_packet(s, "OK");
2330 break;
2331 case 'g':
2332 s->g_cpu = env;
2333 put_packet(s, "OK");
2334 break;
2335 default:
2336 put_packet(s, "E22");
2337 break;
2338 }
2339 break;
2340 case 'T':
2341 thread = strtoull(p, (char **)&p, 16);
2342 env = find_cpu(thread);
2343
2344 if (env != NULL) {
2345 put_packet(s, "OK");
2346 } else {
2347 put_packet(s, "E22");
2348 }
2349 break;
2350 case 'q':
2351 case 'Q':
2352 /* parse any 'q' packets here */
2353 if (!strcmp(p,"qemu.sstepbits")) {
2354 /* Query Breakpoint bit definitions */
2355 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2356 SSTEP_ENABLE,
2357 SSTEP_NOIRQ,
2358 SSTEP_NOTIMER);
2359 put_packet(s, buf);
2360 break;
2361 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2362 /* Display or change the sstep_flags */
2363 p += 10;
2364 if (*p != '=') {
2365 /* Display current setting */
2366 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2367 put_packet(s, buf);
2368 break;
2369 }
2370 p++;
2371 type = strtoul(p, (char **)&p, 16);
2372 sstep_flags = type;
2373 put_packet(s, "OK");
2374 break;
2375 } else if (strcmp(p,"C") == 0) {
2376 /* "Current thread" remains vague in the spec, so always return
2377 * the first CPU (gdb returns the first thread). */
2378 put_packet(s, "QC1");
2379 break;
2380 } else if (strcmp(p,"fThreadInfo") == 0) {
2381 s->query_cpu = first_cpu;
2382 goto report_cpuinfo;
2383 } else if (strcmp(p,"sThreadInfo") == 0) {
2384 report_cpuinfo:
2385 if (s->query_cpu) {
2386 snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu));
2387 put_packet(s, buf);
2388 s->query_cpu = s->query_cpu->next_cpu;
2389 } else
2390 put_packet(s, "l");
2391 break;
2392 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2393 thread = strtoull(p+16, (char **)&p, 16);
2394 env = find_cpu(thread);
2395 if (env != NULL) {
2396 CPUState *cpu = ENV_GET_CPU(env);
2397 cpu_synchronize_state(cpu);
2398 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2399 "CPU#%d [%s]", cpu->cpu_index,
2400 cpu->halted ? "halted " : "running");
2401 memtohex(buf, mem_buf, len);
2402 put_packet(s, buf);
2403 }
2404 break;
2405 }
2406 #ifdef CONFIG_USER_ONLY
2407 else if (strncmp(p, "Offsets", 7) == 0) {
2408 TaskState *ts = s->c_cpu->opaque;
2409
2410 snprintf(buf, sizeof(buf),
2411 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2412 ";Bss=" TARGET_ABI_FMT_lx,
2413 ts->info->code_offset,
2414 ts->info->data_offset,
2415 ts->info->data_offset);
2416 put_packet(s, buf);
2417 break;
2418 }
2419 #else /* !CONFIG_USER_ONLY */
2420 else if (strncmp(p, "Rcmd,", 5) == 0) {
2421 int len = strlen(p + 5);
2422
2423 if ((len % 2) != 0) {
2424 put_packet(s, "E01");
2425 break;
2426 }
2427 hextomem(mem_buf, p + 5, len);
2428 len = len / 2;
2429 mem_buf[len++] = 0;
2430 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2431 put_packet(s, "OK");
2432 break;
2433 }
2434 #endif /* !CONFIG_USER_ONLY */
2435 if (strncmp(p, "Supported", 9) == 0) {
2436 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2437 #ifdef GDB_CORE_XML
2438 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2439 #endif
2440 put_packet(s, buf);
2441 break;
2442 }
2443 #ifdef GDB_CORE_XML
2444 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2445 const char *xml;
2446 target_ulong total_len;
2447
2448 gdb_has_xml = 1;
2449 p += 19;
2450 xml = get_feature_xml(p, &p);
2451 if (!xml) {
2452 snprintf(buf, sizeof(buf), "E00");
2453 put_packet(s, buf);
2454 break;
2455 }
2456
2457 if (*p == ':')
2458 p++;
2459 addr = strtoul(p, (char **)&p, 16);
2460 if (*p == ',')
2461 p++;
2462 len = strtoul(p, (char **)&p, 16);
2463
2464 total_len = strlen(xml);
2465 if (addr > total_len) {
2466 snprintf(buf, sizeof(buf), "E00");
2467 put_packet(s, buf);
2468 break;
2469 }
2470 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2471 len = (MAX_PACKET_LENGTH - 5) / 2;
2472 if (len < total_len - addr) {
2473 buf[0] = 'm';
2474 len = memtox(buf + 1, xml + addr, len);
2475 } else {
2476 buf[0] = 'l';
2477 len = memtox(buf + 1, xml + addr, total_len - addr);
2478 }
2479 put_packet_binary(s, buf, len + 1);
2480 break;
2481 }
2482 #endif
2483 /* Unrecognised 'q' command. */
2484 goto unknown_command;
2485
2486 default:
2487 unknown_command:
2488 /* put empty packet */
2489 buf[0] = '\0';
2490 put_packet(s, buf);
2491 break;
2492 }
2493 return RS_IDLE;
2494 }
2495
2496 void gdb_set_stop_cpu(CPUState *cpu)
2497 {
2498 CPUArchState *env = cpu->env_ptr;
2499
2500 gdbserver_state->c_cpu = env;
2501 gdbserver_state->g_cpu = env;
2502 }
2503
2504 #ifndef CONFIG_USER_ONLY
2505 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2506 {
2507 GDBState *s = gdbserver_state;
2508 CPUArchState *env = s->c_cpu;
2509 CPUState *cpu = ENV_GET_CPU(env);
2510 char buf[256];
2511 const char *type;
2512 int ret;
2513
2514 if (running || s->state == RS_INACTIVE) {
2515 return;
2516 }
2517 /* Is there a GDB syscall waiting to be sent? */
2518 if (s->current_syscall_cb) {
2519 put_packet(s, s->syscall_buf);
2520 return;
2521 }
2522 switch (state) {
2523 case RUN_STATE_DEBUG:
2524 if (env->watchpoint_hit) {
2525 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2526 case BP_MEM_READ:
2527 type = "r";
2528 break;
2529 case BP_MEM_ACCESS:
2530 type = "a";
2531 break;
2532 default:
2533 type = "";
2534 break;
2535 }
2536 snprintf(buf, sizeof(buf),
2537 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2538 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2539 env->watchpoint_hit->vaddr);
2540 env->watchpoint_hit = NULL;
2541 goto send_packet;
2542 }
2543 tb_flush(env);
2544 ret = GDB_SIGNAL_TRAP;
2545 break;
2546 case RUN_STATE_PAUSED:
2547 ret = GDB_SIGNAL_INT;
2548 break;
2549 case RUN_STATE_SHUTDOWN:
2550 ret = GDB_SIGNAL_QUIT;
2551 break;
2552 case RUN_STATE_IO_ERROR:
2553 ret = GDB_SIGNAL_IO;
2554 break;
2555 case RUN_STATE_WATCHDOG:
2556 ret = GDB_SIGNAL_ALRM;
2557 break;
2558 case RUN_STATE_INTERNAL_ERROR:
2559 ret = GDB_SIGNAL_ABRT;
2560 break;
2561 case RUN_STATE_SAVE_VM:
2562 case RUN_STATE_RESTORE_VM:
2563 return;
2564 case RUN_STATE_FINISH_MIGRATE:
2565 ret = GDB_SIGNAL_XCPU;
2566 break;
2567 default:
2568 ret = GDB_SIGNAL_UNKNOWN;
2569 break;
2570 }
2571 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2572
2573 send_packet:
2574 put_packet(s, buf);
2575
2576 /* disable single step if it was enabled */
2577 cpu_single_step(cpu, 0);
2578 }
2579 #endif
2580
2581 /* Send a gdb syscall request.
2582 This accepts limited printf-style format specifiers, specifically:
2583 %x - target_ulong argument printed in hex.
2584 %lx - 64-bit argument printed in hex.
2585 %s - string pointer (target_ulong) and length (int) pair. */
2586 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2587 {
2588 va_list va;
2589 char *p;
2590 char *p_end;
2591 target_ulong addr;
2592 uint64_t i64;
2593 GDBState *s;
2594
2595 s = gdbserver_state;
2596 if (!s)
2597 return;
2598 s->current_syscall_cb = cb;
2599 #ifndef CONFIG_USER_ONLY
2600 vm_stop(RUN_STATE_DEBUG);
2601 #endif
2602 va_start(va, fmt);
2603 p = s->syscall_buf;
2604 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2605 *(p++) = 'F';
2606 while (*fmt) {
2607 if (*fmt == '%') {
2608 fmt++;
2609 switch (*fmt++) {
2610 case 'x':
2611 addr = va_arg(va, target_ulong);
2612 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2613 break;
2614 case 'l':
2615 if (*(fmt++) != 'x')
2616 goto bad_format;
2617 i64 = va_arg(va, uint64_t);
2618 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2619 break;
2620 case 's':
2621 addr = va_arg(va, target_ulong);
2622 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2623 addr, va_arg(va, int));
2624 break;
2625 default:
2626 bad_format:
2627 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2628 fmt - 1);
2629 break;
2630 }
2631 } else {
2632 *(p++) = *(fmt++);
2633 }
2634 }
2635 *p = 0;
2636 va_end(va);
2637 #ifdef CONFIG_USER_ONLY
2638 put_packet(s, s->syscall_buf);
2639 gdb_handlesig(s->c_cpu, 0);
2640 #else
2641 /* In this case wait to send the syscall packet until notification that
2642 the CPU has stopped. This must be done because if the packet is sent
2643 now the reply from the syscall request could be received while the CPU
2644 is still in the running state, which can cause packets to be dropped
2645 and state transition 'T' packets to be sent while the syscall is still
2646 being processed. */
2647 cpu_exit(ENV_GET_CPU(s->c_cpu));
2648 #endif
2649 }
2650
2651 static void gdb_read_byte(GDBState *s, int ch)
2652 {
2653 int i, csum;
2654 uint8_t reply;
2655
2656 #ifndef CONFIG_USER_ONLY
2657 if (s->last_packet_len) {
2658 /* Waiting for a response to the last packet. If we see the start
2659 of a new command then abandon the previous response. */
2660 if (ch == '-') {
2661 #ifdef DEBUG_GDB
2662 printf("Got NACK, retransmitting\n");
2663 #endif
2664 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2665 }
2666 #ifdef DEBUG_GDB
2667 else if (ch == '+')
2668 printf("Got ACK\n");
2669 else
2670 printf("Got '%c' when expecting ACK/NACK\n", ch);
2671 #endif
2672 if (ch == '+' || ch == '$')
2673 s->last_packet_len = 0;
2674 if (ch != '$')
2675 return;
2676 }
2677 if (runstate_is_running()) {
2678 /* when the CPU is running, we cannot do anything except stop
2679 it when receiving a char */
2680 vm_stop(RUN_STATE_PAUSED);
2681 } else
2682 #endif
2683 {
2684 switch(s->state) {
2685 case RS_IDLE:
2686 if (ch == '$') {
2687 s->line_buf_index = 0;
2688 s->state = RS_GETLINE;
2689 }
2690 break;
2691 case RS_GETLINE:
2692 if (ch == '#') {
2693 s->state = RS_CHKSUM1;
2694 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2695 s->state = RS_IDLE;
2696 } else {
2697 s->line_buf[s->line_buf_index++] = ch;
2698 }
2699 break;
2700 case RS_CHKSUM1:
2701 s->line_buf[s->line_buf_index] = '\0';
2702 s->line_csum = fromhex(ch) << 4;
2703 s->state = RS_CHKSUM2;
2704 break;
2705 case RS_CHKSUM2:
2706 s->line_csum |= fromhex(ch);
2707 csum = 0;
2708 for(i = 0; i < s->line_buf_index; i++) {
2709 csum += s->line_buf[i];
2710 }
2711 if (s->line_csum != (csum & 0xff)) {
2712 reply = '-';
2713 put_buffer(s, &reply, 1);
2714 s->state = RS_IDLE;
2715 } else {
2716 reply = '+';
2717 put_buffer(s, &reply, 1);
2718 s->state = gdb_handle_packet(s, s->line_buf);
2719 }
2720 break;
2721 default:
2722 abort();
2723 }
2724 }
2725 }
2726
2727 /* Tell the remote gdb that the process has exited. */
2728 void gdb_exit(CPUArchState *env, int code)
2729 {
2730 GDBState *s;
2731 char buf[4];
2732
2733 s = gdbserver_state;
2734 if (!s) {
2735 return;
2736 }
2737 #ifdef CONFIG_USER_ONLY
2738 if (gdbserver_fd < 0 || s->fd < 0) {
2739 return;
2740 }
2741 #endif
2742
2743 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2744 put_packet(s, buf);
2745
2746 #ifndef CONFIG_USER_ONLY
2747 if (s->chr) {
2748 qemu_chr_delete(s->chr);
2749 }
2750 #endif
2751 }
2752
2753 #ifdef CONFIG_USER_ONLY
2754 int
2755 gdb_queuesig (void)
2756 {
2757 GDBState *s;
2758
2759 s = gdbserver_state;
2760
2761 if (gdbserver_fd < 0 || s->fd < 0)
2762 return 0;
2763 else
2764 return 1;
2765 }
2766
2767 int
2768 gdb_handlesig(CPUArchState *env, int sig)
2769 {
2770 CPUState *cpu = ENV_GET_CPU(env);
2771 GDBState *s;
2772 char buf[256];
2773 int n;
2774
2775 s = gdbserver_state;
2776 if (gdbserver_fd < 0 || s->fd < 0) {
2777 return sig;
2778 }
2779
2780 /* disable single step if it was enabled */
2781 cpu_single_step(cpu, 0);
2782 tb_flush(env);
2783
2784 if (sig != 0) {
2785 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2786 put_packet(s, buf);
2787 }
2788 /* put_packet() might have detected that the peer terminated the
2789 connection. */
2790 if (s->fd < 0) {
2791 return sig;
2792 }
2793
2794 sig = 0;
2795 s->state = RS_IDLE;
2796 s->running_state = 0;
2797 while (s->running_state == 0) {
2798 n = read(s->fd, buf, 256);
2799 if (n > 0) {
2800 int i;
2801
2802 for (i = 0; i < n; i++) {
2803 gdb_read_byte(s, buf[i]);
2804 }
2805 } else if (n == 0 || errno != EAGAIN) {
2806 /* XXX: Connection closed. Should probably wait for another
2807 connection before continuing. */
2808 return sig;
2809 }
2810 }
2811 sig = s->signal;
2812 s->signal = 0;
2813 return sig;
2814 }
2815
2816 /* Tell the remote gdb that the process has exited due to SIG. */
2817 void gdb_signalled(CPUArchState *env, int sig)
2818 {
2819 GDBState *s;
2820 char buf[4];
2821
2822 s = gdbserver_state;
2823 if (gdbserver_fd < 0 || s->fd < 0) {
2824 return;
2825 }
2826
2827 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2828 put_packet(s, buf);
2829 }
2830
2831 static void gdb_accept(void)
2832 {
2833 GDBState *s;
2834 struct sockaddr_in sockaddr;
2835 socklen_t len;
2836 int fd;
2837
2838 for(;;) {
2839 len = sizeof(sockaddr);
2840 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2841 if (fd < 0 && errno != EINTR) {
2842 perror("accept");
2843 return;
2844 } else if (fd >= 0) {
2845 #ifndef _WIN32
2846 fcntl(fd, F_SETFD, FD_CLOEXEC);
2847 #endif
2848 break;
2849 }
2850 }
2851
2852 /* set short latency */
2853 socket_set_nodelay(fd);
2854
2855 s = g_malloc0(sizeof(GDBState));
2856 s->c_cpu = first_cpu->env_ptr;
2857 s->g_cpu = first_cpu->env_ptr;
2858 s->fd = fd;
2859 gdb_has_xml = 0;
2860
2861 gdbserver_state = s;
2862
2863 fcntl(fd, F_SETFL, O_NONBLOCK);
2864 }
2865
2866 static int gdbserver_open(int port)
2867 {
2868 struct sockaddr_in sockaddr;
2869 int fd, val, ret;
2870
2871 fd = socket(PF_INET, SOCK_STREAM, 0);
2872 if (fd < 0) {
2873 perror("socket");
2874 return -1;
2875 }
2876 #ifndef _WIN32
2877 fcntl(fd, F_SETFD, FD_CLOEXEC);
2878 #endif
2879
2880 /* allow fast reuse */
2881 val = 1;
2882 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
2883
2884 sockaddr.sin_family = AF_INET;
2885 sockaddr.sin_port = htons(port);
2886 sockaddr.sin_addr.s_addr = 0;
2887 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2888 if (ret < 0) {
2889 perror("bind");
2890 close(fd);
2891 return -1;
2892 }
2893 ret = listen(fd, 0);
2894 if (ret < 0) {
2895 perror("listen");
2896 close(fd);
2897 return -1;
2898 }
2899 return fd;
2900 }
2901
2902 int gdbserver_start(int port)
2903 {
2904 gdbserver_fd = gdbserver_open(port);
2905 if (gdbserver_fd < 0)
2906 return -1;
2907 /* accept connections */
2908 gdb_accept();
2909 return 0;
2910 }
2911
2912 /* Disable gdb stub for child processes. */
2913 void gdbserver_fork(CPUArchState *env)
2914 {
2915 GDBState *s = gdbserver_state;
2916 if (gdbserver_fd < 0 || s->fd < 0)
2917 return;
2918 close(s->fd);
2919 s->fd = -1;
2920 cpu_breakpoint_remove_all(env, BP_GDB);
2921 cpu_watchpoint_remove_all(env, BP_GDB);
2922 }
2923 #else
2924 static int gdb_chr_can_receive(void *opaque)
2925 {
2926 /* We can handle an arbitrarily large amount of data.
2927 Pick the maximum packet size, which is as good as anything. */
2928 return MAX_PACKET_LENGTH;
2929 }
2930
2931 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2932 {
2933 int i;
2934
2935 for (i = 0; i < size; i++) {
2936 gdb_read_byte(gdbserver_state, buf[i]);
2937 }
2938 }
2939
2940 static void gdb_chr_event(void *opaque, int event)
2941 {
2942 switch (event) {
2943 case CHR_EVENT_OPENED:
2944 vm_stop(RUN_STATE_PAUSED);
2945 gdb_has_xml = 0;
2946 break;
2947 default:
2948 break;
2949 }
2950 }
2951
2952 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2953 {
2954 char buf[MAX_PACKET_LENGTH];
2955
2956 buf[0] = 'O';
2957 if (len > (MAX_PACKET_LENGTH/2) - 1)
2958 len = (MAX_PACKET_LENGTH/2) - 1;
2959 memtohex(buf + 1, (uint8_t *)msg, len);
2960 put_packet(s, buf);
2961 }
2962
2963 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2964 {
2965 const char *p = (const char *)buf;
2966 int max_sz;
2967
2968 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2969 for (;;) {
2970 if (len <= max_sz) {
2971 gdb_monitor_output(gdbserver_state, p, len);
2972 break;
2973 }
2974 gdb_monitor_output(gdbserver_state, p, max_sz);
2975 p += max_sz;
2976 len -= max_sz;
2977 }
2978 return len;
2979 }
2980
2981 #ifndef _WIN32
2982 static void gdb_sigterm_handler(int signal)
2983 {
2984 if (runstate_is_running()) {
2985 vm_stop(RUN_STATE_PAUSED);
2986 }
2987 }
2988 #endif
2989
2990 int gdbserver_start(const char *device)
2991 {
2992 GDBState *s;
2993 char gdbstub_device_name[128];
2994 CharDriverState *chr = NULL;
2995 CharDriverState *mon_chr;
2996
2997 if (!device)
2998 return -1;
2999 if (strcmp(device, "none") != 0) {
3000 if (strstart(device, "tcp:", NULL)) {
3001 /* enforce required TCP attributes */
3002 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3003 "%s,nowait,nodelay,server", device);
3004 device = gdbstub_device_name;
3005 }
3006 #ifndef _WIN32
3007 else if (strcmp(device, "stdio") == 0) {
3008 struct sigaction act;
3009
3010 memset(&act, 0, sizeof(act));
3011 act.sa_handler = gdb_sigterm_handler;
3012 sigaction(SIGINT, &act, NULL);
3013 }
3014 #endif
3015 chr = qemu_chr_new("gdb", device, NULL);
3016 if (!chr)
3017 return -1;
3018
3019 qemu_chr_fe_claim_no_fail(chr);
3020 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3021 gdb_chr_event, NULL);
3022 }
3023
3024 s = gdbserver_state;
3025 if (!s) {
3026 s = g_malloc0(sizeof(GDBState));
3027 gdbserver_state = s;
3028
3029 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3030
3031 /* Initialize a monitor terminal for gdb */
3032 mon_chr = g_malloc0(sizeof(*mon_chr));
3033 mon_chr->chr_write = gdb_monitor_write;
3034 monitor_init(mon_chr, 0);
3035 } else {
3036 if (s->chr)
3037 qemu_chr_delete(s->chr);
3038 mon_chr = s->mon_chr;
3039 memset(s, 0, sizeof(GDBState));
3040 }
3041 s->c_cpu = first_cpu->env_ptr;
3042 s->g_cpu = first_cpu->env_ptr;
3043 s->chr = chr;
3044 s->state = chr ? RS_IDLE : RS_INACTIVE;
3045 s->mon_chr = mon_chr;
3046 s->current_syscall_cb = NULL;
3047
3048 return 0;
3049 }
3050 #endif