]> git.ipfire.org Git - thirdparty/qemu.git/blob - gdbstub.c
f6b42825445cf4e57c52d3f3e50d343feddb3c9c
[thirdparty/qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * This implements a subset of the remote protocol as described in:
5 *
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
7 *
8 * Copyright (c) 2003-2005 Fabrice Bellard
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 *
23 * SPDX-License-Identifier: LGPL-2.0+
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
45
46 #define MAX_PACKET_LENGTH 4096
47
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
54
55 #ifdef CONFIG_USER_ONLY
56 #define GDB_ATTACHED "0"
57 #else
58 #define GDB_ATTACHED "1"
59 #endif
60
61 #ifndef CONFIG_USER_ONLY
62 static int phy_memory_mode;
63 #endif
64
65 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
66 uint8_t *buf, int len, bool is_write)
67 {
68 CPUClass *cc;
69
70 #ifndef CONFIG_USER_ONLY
71 if (phy_memory_mode) {
72 if (is_write) {
73 cpu_physical_memory_write(addr, buf, len);
74 } else {
75 cpu_physical_memory_read(addr, buf, len);
76 }
77 return 0;
78 }
79 #endif
80
81 cc = CPU_GET_CLASS(cpu);
82 if (cc->memory_rw_debug) {
83 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
84 }
85 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
86 }
87
88 /* Return the GDB index for a given vCPU state.
89 *
90 * For user mode this is simply the thread id. In system mode GDB
91 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
92 */
93 static inline int cpu_gdb_index(CPUState *cpu)
94 {
95 #if defined(CONFIG_USER_ONLY)
96 TaskState *ts = (TaskState *) cpu->opaque;
97 return ts->ts_tid;
98 #else
99 return cpu->cpu_index + 1;
100 #endif
101 }
102
103 enum {
104 GDB_SIGNAL_0 = 0,
105 GDB_SIGNAL_INT = 2,
106 GDB_SIGNAL_QUIT = 3,
107 GDB_SIGNAL_TRAP = 5,
108 GDB_SIGNAL_ABRT = 6,
109 GDB_SIGNAL_ALRM = 14,
110 GDB_SIGNAL_IO = 23,
111 GDB_SIGNAL_XCPU = 24,
112 GDB_SIGNAL_UNKNOWN = 143
113 };
114
115 #ifdef CONFIG_USER_ONLY
116
117 /* Map target signal numbers to GDB protocol signal numbers and vice
118 * versa. For user emulation's currently supported systems, we can
119 * assume most signals are defined.
120 */
121
122 static int gdb_signal_table[] = {
123 0,
124 TARGET_SIGHUP,
125 TARGET_SIGINT,
126 TARGET_SIGQUIT,
127 TARGET_SIGILL,
128 TARGET_SIGTRAP,
129 TARGET_SIGABRT,
130 -1, /* SIGEMT */
131 TARGET_SIGFPE,
132 TARGET_SIGKILL,
133 TARGET_SIGBUS,
134 TARGET_SIGSEGV,
135 TARGET_SIGSYS,
136 TARGET_SIGPIPE,
137 TARGET_SIGALRM,
138 TARGET_SIGTERM,
139 TARGET_SIGURG,
140 TARGET_SIGSTOP,
141 TARGET_SIGTSTP,
142 TARGET_SIGCONT,
143 TARGET_SIGCHLD,
144 TARGET_SIGTTIN,
145 TARGET_SIGTTOU,
146 TARGET_SIGIO,
147 TARGET_SIGXCPU,
148 TARGET_SIGXFSZ,
149 TARGET_SIGVTALRM,
150 TARGET_SIGPROF,
151 TARGET_SIGWINCH,
152 -1, /* SIGLOST */
153 TARGET_SIGUSR1,
154 TARGET_SIGUSR2,
155 #ifdef TARGET_SIGPWR
156 TARGET_SIGPWR,
157 #else
158 -1,
159 #endif
160 -1, /* SIGPOLL */
161 -1,
162 -1,
163 -1,
164 -1,
165 -1,
166 -1,
167 -1,
168 -1,
169 -1,
170 -1,
171 -1,
172 #ifdef __SIGRTMIN
173 __SIGRTMIN + 1,
174 __SIGRTMIN + 2,
175 __SIGRTMIN + 3,
176 __SIGRTMIN + 4,
177 __SIGRTMIN + 5,
178 __SIGRTMIN + 6,
179 __SIGRTMIN + 7,
180 __SIGRTMIN + 8,
181 __SIGRTMIN + 9,
182 __SIGRTMIN + 10,
183 __SIGRTMIN + 11,
184 __SIGRTMIN + 12,
185 __SIGRTMIN + 13,
186 __SIGRTMIN + 14,
187 __SIGRTMIN + 15,
188 __SIGRTMIN + 16,
189 __SIGRTMIN + 17,
190 __SIGRTMIN + 18,
191 __SIGRTMIN + 19,
192 __SIGRTMIN + 20,
193 __SIGRTMIN + 21,
194 __SIGRTMIN + 22,
195 __SIGRTMIN + 23,
196 __SIGRTMIN + 24,
197 __SIGRTMIN + 25,
198 __SIGRTMIN + 26,
199 __SIGRTMIN + 27,
200 __SIGRTMIN + 28,
201 __SIGRTMIN + 29,
202 __SIGRTMIN + 30,
203 __SIGRTMIN + 31,
204 -1, /* SIGCANCEL */
205 __SIGRTMIN,
206 __SIGRTMIN + 32,
207 __SIGRTMIN + 33,
208 __SIGRTMIN + 34,
209 __SIGRTMIN + 35,
210 __SIGRTMIN + 36,
211 __SIGRTMIN + 37,
212 __SIGRTMIN + 38,
213 __SIGRTMIN + 39,
214 __SIGRTMIN + 40,
215 __SIGRTMIN + 41,
216 __SIGRTMIN + 42,
217 __SIGRTMIN + 43,
218 __SIGRTMIN + 44,
219 __SIGRTMIN + 45,
220 __SIGRTMIN + 46,
221 __SIGRTMIN + 47,
222 __SIGRTMIN + 48,
223 __SIGRTMIN + 49,
224 __SIGRTMIN + 50,
225 __SIGRTMIN + 51,
226 __SIGRTMIN + 52,
227 __SIGRTMIN + 53,
228 __SIGRTMIN + 54,
229 __SIGRTMIN + 55,
230 __SIGRTMIN + 56,
231 __SIGRTMIN + 57,
232 __SIGRTMIN + 58,
233 __SIGRTMIN + 59,
234 __SIGRTMIN + 60,
235 __SIGRTMIN + 61,
236 __SIGRTMIN + 62,
237 __SIGRTMIN + 63,
238 __SIGRTMIN + 64,
239 __SIGRTMIN + 65,
240 __SIGRTMIN + 66,
241 __SIGRTMIN + 67,
242 __SIGRTMIN + 68,
243 __SIGRTMIN + 69,
244 __SIGRTMIN + 70,
245 __SIGRTMIN + 71,
246 __SIGRTMIN + 72,
247 __SIGRTMIN + 73,
248 __SIGRTMIN + 74,
249 __SIGRTMIN + 75,
250 __SIGRTMIN + 76,
251 __SIGRTMIN + 77,
252 __SIGRTMIN + 78,
253 __SIGRTMIN + 79,
254 __SIGRTMIN + 80,
255 __SIGRTMIN + 81,
256 __SIGRTMIN + 82,
257 __SIGRTMIN + 83,
258 __SIGRTMIN + 84,
259 __SIGRTMIN + 85,
260 __SIGRTMIN + 86,
261 __SIGRTMIN + 87,
262 __SIGRTMIN + 88,
263 __SIGRTMIN + 89,
264 __SIGRTMIN + 90,
265 __SIGRTMIN + 91,
266 __SIGRTMIN + 92,
267 __SIGRTMIN + 93,
268 __SIGRTMIN + 94,
269 __SIGRTMIN + 95,
270 -1, /* SIGINFO */
271 -1, /* UNKNOWN */
272 -1, /* DEFAULT */
273 -1,
274 -1,
275 -1,
276 -1,
277 -1,
278 -1
279 #endif
280 };
281 #else
282 /* In system mode we only need SIGINT and SIGTRAP; other signals
283 are not yet supported. */
284
285 enum {
286 TARGET_SIGINT = 2,
287 TARGET_SIGTRAP = 5
288 };
289
290 static int gdb_signal_table[] = {
291 -1,
292 -1,
293 TARGET_SIGINT,
294 -1,
295 -1,
296 TARGET_SIGTRAP
297 };
298 #endif
299
300 #ifdef CONFIG_USER_ONLY
301 static int target_signal_to_gdb (int sig)
302 {
303 int i;
304 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
305 if (gdb_signal_table[i] == sig)
306 return i;
307 return GDB_SIGNAL_UNKNOWN;
308 }
309 #endif
310
311 static int gdb_signal_to_target (int sig)
312 {
313 if (sig < ARRAY_SIZE (gdb_signal_table))
314 return gdb_signal_table[sig];
315 else
316 return -1;
317 }
318
319 typedef struct GDBRegisterState {
320 int base_reg;
321 int num_regs;
322 gdb_reg_cb get_reg;
323 gdb_reg_cb set_reg;
324 const char *xml;
325 struct GDBRegisterState *next;
326 } GDBRegisterState;
327
328 typedef struct GDBProcess {
329 uint32_t pid;
330 bool attached;
331
332 char target_xml[1024];
333 } GDBProcess;
334
335 enum RSState {
336 RS_INACTIVE,
337 RS_IDLE,
338 RS_GETLINE,
339 RS_GETLINE_ESC,
340 RS_GETLINE_RLE,
341 RS_CHKSUM1,
342 RS_CHKSUM2,
343 };
344 typedef struct GDBState {
345 bool init; /* have we been initialised? */
346 CPUState *c_cpu; /* current CPU for step/continue ops */
347 CPUState *g_cpu; /* current CPU for other ops */
348 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
349 enum RSState state; /* parsing state */
350 char line_buf[MAX_PACKET_LENGTH];
351 int line_buf_index;
352 int line_sum; /* running checksum */
353 int line_csum; /* checksum at the end of the packet */
354 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
355 int last_packet_len;
356 int signal;
357 #ifdef CONFIG_USER_ONLY
358 int fd;
359 int running_state;
360 #else
361 CharBackend chr;
362 Chardev *mon_chr;
363 #endif
364 bool multiprocess;
365 GDBProcess *processes;
366 int process_num;
367 char syscall_buf[256];
368 gdb_syscall_complete_cb current_syscall_cb;
369 GString *str_buf;
370 } GDBState;
371
372 /* By default use no IRQs and no timers while single stepping so as to
373 * make single stepping like an ICE HW step.
374 */
375 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
376
377 static GDBState gdbserver_state;
378
379 static void init_gdbserver_state(void)
380 {
381 g_assert(!gdbserver_state.init);
382 memset(&gdbserver_state, 0, sizeof(GDBState));
383 gdbserver_state.init = true;
384 gdbserver_state.str_buf = g_string_new(NULL);
385 }
386
387 #ifndef CONFIG_USER_ONLY
388 static void reset_gdbserver_state(void)
389 {
390 g_free(gdbserver_state.processes);
391 gdbserver_state.processes = NULL;
392 gdbserver_state.process_num = 0;
393 }
394 #endif
395
396 bool gdb_has_xml;
397
398 #ifdef CONFIG_USER_ONLY
399 /* XXX: This is not thread safe. Do we care? */
400 static int gdbserver_fd = -1;
401
402 static int get_char(void)
403 {
404 uint8_t ch;
405 int ret;
406
407 for(;;) {
408 ret = qemu_recv(gdbserver_state.fd, &ch, 1, 0);
409 if (ret < 0) {
410 if (errno == ECONNRESET)
411 gdbserver_state.fd = -1;
412 if (errno != EINTR)
413 return -1;
414 } else if (ret == 0) {
415 close(gdbserver_state.fd);
416 gdbserver_state.fd = -1;
417 return -1;
418 } else {
419 break;
420 }
421 }
422 return ch;
423 }
424 #endif
425
426 static enum {
427 GDB_SYS_UNKNOWN,
428 GDB_SYS_ENABLED,
429 GDB_SYS_DISABLED,
430 } gdb_syscall_mode;
431
432 /* Decide if either remote gdb syscalls or native file IO should be used. */
433 int use_gdb_syscalls(void)
434 {
435 SemihostingTarget target = semihosting_get_target();
436 if (target == SEMIHOSTING_TARGET_NATIVE) {
437 /* -semihosting-config target=native */
438 return false;
439 } else if (target == SEMIHOSTING_TARGET_GDB) {
440 /* -semihosting-config target=gdb */
441 return true;
442 }
443
444 /* -semihosting-config target=auto */
445 /* On the first call check if gdb is connected and remember. */
446 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
447 gdb_syscall_mode = gdbserver_state.init ?
448 GDB_SYS_ENABLED : GDB_SYS_DISABLED;
449 }
450 return gdb_syscall_mode == GDB_SYS_ENABLED;
451 }
452
453 /* Resume execution. */
454 static inline void gdb_continue(void)
455 {
456
457 #ifdef CONFIG_USER_ONLY
458 gdbserver_state.running_state = 1;
459 trace_gdbstub_op_continue();
460 #else
461 if (!runstate_needs_reset()) {
462 trace_gdbstub_op_continue();
463 vm_start();
464 }
465 #endif
466 }
467
468 /*
469 * Resume execution, per CPU actions. For user-mode emulation it's
470 * equivalent to gdb_continue.
471 */
472 static int gdb_continue_partial(char *newstates)
473 {
474 CPUState *cpu;
475 int res = 0;
476 #ifdef CONFIG_USER_ONLY
477 /*
478 * This is not exactly accurate, but it's an improvement compared to the
479 * previous situation, where only one CPU would be single-stepped.
480 */
481 CPU_FOREACH(cpu) {
482 if (newstates[cpu->cpu_index] == 's') {
483 trace_gdbstub_op_stepping(cpu->cpu_index);
484 cpu_single_step(cpu, sstep_flags);
485 }
486 }
487 gdbserver_state.running_state = 1;
488 #else
489 int flag = 0;
490
491 if (!runstate_needs_reset()) {
492 if (vm_prepare_start()) {
493 return 0;
494 }
495
496 CPU_FOREACH(cpu) {
497 switch (newstates[cpu->cpu_index]) {
498 case 0:
499 case 1:
500 break; /* nothing to do here */
501 case 's':
502 trace_gdbstub_op_stepping(cpu->cpu_index);
503 cpu_single_step(cpu, sstep_flags);
504 cpu_resume(cpu);
505 flag = 1;
506 break;
507 case 'c':
508 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
509 cpu_resume(cpu);
510 flag = 1;
511 break;
512 default:
513 res = -1;
514 break;
515 }
516 }
517 }
518 if (flag) {
519 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
520 }
521 #endif
522 return res;
523 }
524
525 static void put_buffer(const uint8_t *buf, int len)
526 {
527 #ifdef CONFIG_USER_ONLY
528 int ret;
529
530 while (len > 0) {
531 ret = send(gdbserver_state.fd, buf, len, 0);
532 if (ret < 0) {
533 if (errno != EINTR)
534 return;
535 } else {
536 buf += ret;
537 len -= ret;
538 }
539 }
540 #else
541 /* XXX this blocks entire thread. Rewrite to use
542 * qemu_chr_fe_write and background I/O callbacks */
543 qemu_chr_fe_write_all(&gdbserver_state.chr, buf, len);
544 #endif
545 }
546
547 static inline int fromhex(int v)
548 {
549 if (v >= '0' && v <= '9')
550 return v - '0';
551 else if (v >= 'A' && v <= 'F')
552 return v - 'A' + 10;
553 else if (v >= 'a' && v <= 'f')
554 return v - 'a' + 10;
555 else
556 return 0;
557 }
558
559 static inline int tohex(int v)
560 {
561 if (v < 10)
562 return v + '0';
563 else
564 return v - 10 + 'a';
565 }
566
567 /* writes 2*len+1 bytes in buf */
568 static void memtohex(GString *buf, const uint8_t *mem, int len)
569 {
570 int i, c;
571 for(i = 0; i < len; i++) {
572 c = mem[i];
573 g_string_append_c(buf, tohex(c >> 4));
574 g_string_append_c(buf, tohex(c & 0xf));
575 }
576 g_string_append_c(buf, '\0');
577 }
578
579 static void hextomem(uint8_t *mem, const char *buf, int len)
580 {
581 int i;
582
583 for(i = 0; i < len; i++) {
584 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
585 buf += 2;
586 }
587 }
588
589 static void hexdump(const char *buf, int len,
590 void (*trace_fn)(size_t ofs, char const *text))
591 {
592 char line_buffer[3 * 16 + 4 + 16 + 1];
593
594 size_t i;
595 for (i = 0; i < len || (i & 0xF); ++i) {
596 size_t byte_ofs = i & 15;
597
598 if (byte_ofs == 0) {
599 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
600 line_buffer[3 * 16 + 4 + 16] = 0;
601 }
602
603 size_t col_group = (i >> 2) & 3;
604 size_t hex_col = byte_ofs * 3 + col_group;
605 size_t txt_col = 3 * 16 + 4 + byte_ofs;
606
607 if (i < len) {
608 char value = buf[i];
609
610 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
611 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
612 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
613 ? value
614 : '.';
615 }
616
617 if (byte_ofs == 0xF)
618 trace_fn(i & -16, line_buffer);
619 }
620 }
621
622 /* return -1 if error, 0 if OK */
623 static int put_packet_binary(const char *buf, int len, bool dump)
624 {
625 int csum, i;
626 uint8_t *p;
627 uint8_t *ps = &gdbserver_state.last_packet[0];
628
629 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
630 hexdump(buf, len, trace_gdbstub_io_binaryreply);
631 }
632
633 for(;;) {
634 p = ps;
635 *(p++) = '$';
636 memcpy(p, buf, len);
637 p += len;
638 csum = 0;
639 for(i = 0; i < len; i++) {
640 csum += buf[i];
641 }
642 *(p++) = '#';
643 *(p++) = tohex((csum >> 4) & 0xf);
644 *(p++) = tohex((csum) & 0xf);
645
646 gdbserver_state.last_packet_len = p - ps;
647 put_buffer(ps, gdbserver_state.last_packet_len);
648
649 #ifdef CONFIG_USER_ONLY
650 i = get_char();
651 if (i < 0)
652 return -1;
653 if (i == '+')
654 break;
655 #else
656 break;
657 #endif
658 }
659 return 0;
660 }
661
662 /* return -1 if error, 0 if OK */
663 static int put_packet(const char *buf)
664 {
665 trace_gdbstub_io_reply(buf);
666
667 return put_packet_binary(buf, strlen(buf), false);
668 }
669
670 static void put_strbuf(void)
671 {
672 put_packet(gdbserver_state.str_buf->str);
673 }
674
675 /* Encode data using the encoding for 'x' packets. */
676 static void memtox(GString *buf, const char *mem, int len)
677 {
678 char c;
679
680 while (len--) {
681 c = *(mem++);
682 switch (c) {
683 case '#': case '$': case '*': case '}':
684 g_string_append_c(buf, '}');
685 g_string_append_c(buf, c ^ 0x20);
686 break;
687 default:
688 g_string_append_c(buf, c);
689 break;
690 }
691 }
692 }
693
694 static uint32_t gdb_get_cpu_pid(CPUState *cpu)
695 {
696 /* TODO: In user mode, we should use the task state PID */
697 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
698 /* Return the default process' PID */
699 int index = gdbserver_state.process_num - 1;
700 return gdbserver_state.processes[index].pid;
701 }
702 return cpu->cluster_index + 1;
703 }
704
705 static GDBProcess *gdb_get_process(uint32_t pid)
706 {
707 int i;
708
709 if (!pid) {
710 /* 0 means any process, we take the first one */
711 return &gdbserver_state.processes[0];
712 }
713
714 for (i = 0; i < gdbserver_state.process_num; i++) {
715 if (gdbserver_state.processes[i].pid == pid) {
716 return &gdbserver_state.processes[i];
717 }
718 }
719
720 return NULL;
721 }
722
723 static GDBProcess *gdb_get_cpu_process(CPUState *cpu)
724 {
725 return gdb_get_process(gdb_get_cpu_pid(cpu));
726 }
727
728 static CPUState *find_cpu(uint32_t thread_id)
729 {
730 CPUState *cpu;
731
732 CPU_FOREACH(cpu) {
733 if (cpu_gdb_index(cpu) == thread_id) {
734 return cpu;
735 }
736 }
737
738 return NULL;
739 }
740
741 static CPUState *get_first_cpu_in_process(GDBProcess *process)
742 {
743 CPUState *cpu;
744
745 CPU_FOREACH(cpu) {
746 if (gdb_get_cpu_pid(cpu) == process->pid) {
747 return cpu;
748 }
749 }
750
751 return NULL;
752 }
753
754 static CPUState *gdb_next_cpu_in_process(CPUState *cpu)
755 {
756 uint32_t pid = gdb_get_cpu_pid(cpu);
757 cpu = CPU_NEXT(cpu);
758
759 while (cpu) {
760 if (gdb_get_cpu_pid(cpu) == pid) {
761 break;
762 }
763
764 cpu = CPU_NEXT(cpu);
765 }
766
767 return cpu;
768 }
769
770 /* Return the cpu following @cpu, while ignoring unattached processes. */
771 static CPUState *gdb_next_attached_cpu(CPUState *cpu)
772 {
773 cpu = CPU_NEXT(cpu);
774
775 while (cpu) {
776 if (gdb_get_cpu_process(cpu)->attached) {
777 break;
778 }
779
780 cpu = CPU_NEXT(cpu);
781 }
782
783 return cpu;
784 }
785
786 /* Return the first attached cpu */
787 static CPUState *gdb_first_attached_cpu(void)
788 {
789 CPUState *cpu = first_cpu;
790 GDBProcess *process = gdb_get_cpu_process(cpu);
791
792 if (!process->attached) {
793 return gdb_next_attached_cpu(cpu);
794 }
795
796 return cpu;
797 }
798
799 static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid)
800 {
801 GDBProcess *process;
802 CPUState *cpu;
803
804 if (!pid && !tid) {
805 /* 0 means any process/thread, we take the first attached one */
806 return gdb_first_attached_cpu();
807 } else if (pid && !tid) {
808 /* any thread in a specific process */
809 process = gdb_get_process(pid);
810
811 if (process == NULL) {
812 return NULL;
813 }
814
815 if (!process->attached) {
816 return NULL;
817 }
818
819 return get_first_cpu_in_process(process);
820 } else {
821 /* a specific thread */
822 cpu = find_cpu(tid);
823
824 if (cpu == NULL) {
825 return NULL;
826 }
827
828 process = gdb_get_cpu_process(cpu);
829
830 if (pid && process->pid != pid) {
831 return NULL;
832 }
833
834 if (!process->attached) {
835 return NULL;
836 }
837
838 return cpu;
839 }
840 }
841
842 static const char *get_feature_xml(const char *p, const char **newp,
843 GDBProcess *process)
844 {
845 size_t len;
846 int i;
847 const char *name;
848 CPUState *cpu = get_first_cpu_in_process(process);
849 CPUClass *cc = CPU_GET_CLASS(cpu);
850
851 len = 0;
852 while (p[len] && p[len] != ':')
853 len++;
854 *newp = p + len;
855
856 name = NULL;
857 if (strncmp(p, "target.xml", len) == 0) {
858 char *buf = process->target_xml;
859 const size_t buf_sz = sizeof(process->target_xml);
860
861 /* Generate the XML description for this CPU. */
862 if (!buf[0]) {
863 GDBRegisterState *r;
864
865 pstrcat(buf, buf_sz,
866 "<?xml version=\"1.0\"?>"
867 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
868 "<target>");
869 if (cc->gdb_arch_name) {
870 gchar *arch = cc->gdb_arch_name(cpu);
871 pstrcat(buf, buf_sz, "<architecture>");
872 pstrcat(buf, buf_sz, arch);
873 pstrcat(buf, buf_sz, "</architecture>");
874 g_free(arch);
875 }
876 pstrcat(buf, buf_sz, "<xi:include href=\"");
877 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
878 pstrcat(buf, buf_sz, "\"/>");
879 for (r = cpu->gdb_regs; r; r = r->next) {
880 pstrcat(buf, buf_sz, "<xi:include href=\"");
881 pstrcat(buf, buf_sz, r->xml);
882 pstrcat(buf, buf_sz, "\"/>");
883 }
884 pstrcat(buf, buf_sz, "</target>");
885 }
886 return buf;
887 }
888 if (cc->gdb_get_dynamic_xml) {
889 char *xmlname = g_strndup(p, len);
890 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
891
892 g_free(xmlname);
893 if (xml) {
894 return xml;
895 }
896 }
897 for (i = 0; ; i++) {
898 name = xml_builtin[i][0];
899 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
900 break;
901 }
902 return name ? xml_builtin[i][1] : NULL;
903 }
904
905 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
906 {
907 CPUClass *cc = CPU_GET_CLASS(cpu);
908 CPUArchState *env = cpu->env_ptr;
909 GDBRegisterState *r;
910
911 if (reg < cc->gdb_num_core_regs) {
912 return cc->gdb_read_register(cpu, mem_buf, reg);
913 }
914
915 for (r = cpu->gdb_regs; r; r = r->next) {
916 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
917 return r->get_reg(env, mem_buf, reg - r->base_reg);
918 }
919 }
920 return 0;
921 }
922
923 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
924 {
925 CPUClass *cc = CPU_GET_CLASS(cpu);
926 CPUArchState *env = cpu->env_ptr;
927 GDBRegisterState *r;
928
929 if (reg < cc->gdb_num_core_regs) {
930 return cc->gdb_write_register(cpu, mem_buf, reg);
931 }
932
933 for (r = cpu->gdb_regs; r; r = r->next) {
934 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
935 return r->set_reg(env, mem_buf, reg - r->base_reg);
936 }
937 }
938 return 0;
939 }
940
941 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
942 specifies the first register number and these registers are included in
943 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
944 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
945 */
946
947 void gdb_register_coprocessor(CPUState *cpu,
948 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
949 int num_regs, const char *xml, int g_pos)
950 {
951 GDBRegisterState *s;
952 GDBRegisterState **p;
953
954 p = &cpu->gdb_regs;
955 while (*p) {
956 /* Check for duplicates. */
957 if (strcmp((*p)->xml, xml) == 0)
958 return;
959 p = &(*p)->next;
960 }
961
962 s = g_new0(GDBRegisterState, 1);
963 s->base_reg = cpu->gdb_num_regs;
964 s->num_regs = num_regs;
965 s->get_reg = get_reg;
966 s->set_reg = set_reg;
967 s->xml = xml;
968
969 /* Add to end of list. */
970 cpu->gdb_num_regs += num_regs;
971 *p = s;
972 if (g_pos) {
973 if (g_pos != s->base_reg) {
974 error_report("Error: Bad gdb register numbering for '%s', "
975 "expected %d got %d", xml, g_pos, s->base_reg);
976 } else {
977 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
978 }
979 }
980 }
981
982 #ifndef CONFIG_USER_ONLY
983 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
984 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
985 {
986 static const int xlat[] = {
987 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
988 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
989 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
990 };
991
992 CPUClass *cc = CPU_GET_CLASS(cpu);
993 int cputype = xlat[gdbtype];
994
995 if (cc->gdb_stop_before_watchpoint) {
996 cputype |= BP_STOP_BEFORE_ACCESS;
997 }
998 return cputype;
999 }
1000 #endif
1001
1002 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
1003 {
1004 CPUState *cpu;
1005 int err = 0;
1006
1007 if (kvm_enabled()) {
1008 return kvm_insert_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1009 }
1010
1011 switch (type) {
1012 case GDB_BREAKPOINT_SW:
1013 case GDB_BREAKPOINT_HW:
1014 CPU_FOREACH(cpu) {
1015 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
1016 if (err) {
1017 break;
1018 }
1019 }
1020 return err;
1021 #ifndef CONFIG_USER_ONLY
1022 case GDB_WATCHPOINT_WRITE:
1023 case GDB_WATCHPOINT_READ:
1024 case GDB_WATCHPOINT_ACCESS:
1025 CPU_FOREACH(cpu) {
1026 err = cpu_watchpoint_insert(cpu, addr, len,
1027 xlat_gdb_type(cpu, type), NULL);
1028 if (err) {
1029 break;
1030 }
1031 }
1032 return err;
1033 #endif
1034 default:
1035 return -ENOSYS;
1036 }
1037 }
1038
1039 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1040 {
1041 CPUState *cpu;
1042 int err = 0;
1043
1044 if (kvm_enabled()) {
1045 return kvm_remove_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1046 }
1047
1048 switch (type) {
1049 case GDB_BREAKPOINT_SW:
1050 case GDB_BREAKPOINT_HW:
1051 CPU_FOREACH(cpu) {
1052 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1053 if (err) {
1054 break;
1055 }
1056 }
1057 return err;
1058 #ifndef CONFIG_USER_ONLY
1059 case GDB_WATCHPOINT_WRITE:
1060 case GDB_WATCHPOINT_READ:
1061 case GDB_WATCHPOINT_ACCESS:
1062 CPU_FOREACH(cpu) {
1063 err = cpu_watchpoint_remove(cpu, addr, len,
1064 xlat_gdb_type(cpu, type));
1065 if (err)
1066 break;
1067 }
1068 return err;
1069 #endif
1070 default:
1071 return -ENOSYS;
1072 }
1073 }
1074
1075 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1076 {
1077 cpu_breakpoint_remove_all(cpu, BP_GDB);
1078 #ifndef CONFIG_USER_ONLY
1079 cpu_watchpoint_remove_all(cpu, BP_GDB);
1080 #endif
1081 }
1082
1083 static void gdb_process_breakpoint_remove_all(GDBProcess *p)
1084 {
1085 CPUState *cpu = get_first_cpu_in_process(p);
1086
1087 while (cpu) {
1088 gdb_cpu_breakpoint_remove_all(cpu);
1089 cpu = gdb_next_cpu_in_process(cpu);
1090 }
1091 }
1092
1093 static void gdb_breakpoint_remove_all(void)
1094 {
1095 CPUState *cpu;
1096
1097 if (kvm_enabled()) {
1098 kvm_remove_all_breakpoints(gdbserver_state.c_cpu);
1099 return;
1100 }
1101
1102 CPU_FOREACH(cpu) {
1103 gdb_cpu_breakpoint_remove_all(cpu);
1104 }
1105 }
1106
1107 static void gdb_set_cpu_pc(target_ulong pc)
1108 {
1109 CPUState *cpu = gdbserver_state.c_cpu;
1110
1111 cpu_synchronize_state(cpu);
1112 cpu_set_pc(cpu, pc);
1113 }
1114
1115 static void gdb_append_thread_id(CPUState *cpu, GString *buf)
1116 {
1117 if (gdbserver_state.multiprocess) {
1118 g_string_append_printf(buf, "p%02x.%02x",
1119 gdb_get_cpu_pid(cpu), cpu_gdb_index(cpu));
1120 } else {
1121 g_string_append_printf(buf, "%02x", cpu_gdb_index(cpu));
1122 }
1123 }
1124
1125 typedef enum GDBThreadIdKind {
1126 GDB_ONE_THREAD = 0,
1127 GDB_ALL_THREADS, /* One process, all threads */
1128 GDB_ALL_PROCESSES,
1129 GDB_READ_THREAD_ERR
1130 } GDBThreadIdKind;
1131
1132 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1133 uint32_t *pid, uint32_t *tid)
1134 {
1135 unsigned long p, t;
1136 int ret;
1137
1138 if (*buf == 'p') {
1139 buf++;
1140 ret = qemu_strtoul(buf, &buf, 16, &p);
1141
1142 if (ret) {
1143 return GDB_READ_THREAD_ERR;
1144 }
1145
1146 /* Skip '.' */
1147 buf++;
1148 } else {
1149 p = 1;
1150 }
1151
1152 ret = qemu_strtoul(buf, &buf, 16, &t);
1153
1154 if (ret) {
1155 return GDB_READ_THREAD_ERR;
1156 }
1157
1158 *end_buf = buf;
1159
1160 if (p == -1) {
1161 return GDB_ALL_PROCESSES;
1162 }
1163
1164 if (pid) {
1165 *pid = p;
1166 }
1167
1168 if (t == -1) {
1169 return GDB_ALL_THREADS;
1170 }
1171
1172 if (tid) {
1173 *tid = t;
1174 }
1175
1176 return GDB_ONE_THREAD;
1177 }
1178
1179 /**
1180 * gdb_handle_vcont - Parses and handles a vCont packet.
1181 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1182 * a format error, 0 on success.
1183 */
1184 static int gdb_handle_vcont(const char *p)
1185 {
1186 int res, signal = 0;
1187 char cur_action;
1188 char *newstates;
1189 unsigned long tmp;
1190 uint32_t pid, tid;
1191 GDBProcess *process;
1192 CPUState *cpu;
1193 GDBThreadIdKind kind;
1194 #ifdef CONFIG_USER_ONLY
1195 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1196
1197 CPU_FOREACH(cpu) {
1198 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1199 }
1200 #else
1201 MachineState *ms = MACHINE(qdev_get_machine());
1202 unsigned int max_cpus = ms->smp.max_cpus;
1203 #endif
1204 /* uninitialised CPUs stay 0 */
1205 newstates = g_new0(char, max_cpus);
1206
1207 /* mark valid CPUs with 1 */
1208 CPU_FOREACH(cpu) {
1209 newstates[cpu->cpu_index] = 1;
1210 }
1211
1212 /*
1213 * res keeps track of what error we are returning, with -ENOTSUP meaning
1214 * that the command is unknown or unsupported, thus returning an empty
1215 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1216 * or incorrect parameters passed.
1217 */
1218 res = 0;
1219 while (*p) {
1220 if (*p++ != ';') {
1221 res = -ENOTSUP;
1222 goto out;
1223 }
1224
1225 cur_action = *p++;
1226 if (cur_action == 'C' || cur_action == 'S') {
1227 cur_action = qemu_tolower(cur_action);
1228 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1229 if (res) {
1230 goto out;
1231 }
1232 signal = gdb_signal_to_target(tmp);
1233 } else if (cur_action != 'c' && cur_action != 's') {
1234 /* unknown/invalid/unsupported command */
1235 res = -ENOTSUP;
1236 goto out;
1237 }
1238
1239 if (*p == '\0' || *p == ';') {
1240 /*
1241 * No thread specifier, action is on "all threads". The
1242 * specification is unclear regarding the process to act on. We
1243 * choose all processes.
1244 */
1245 kind = GDB_ALL_PROCESSES;
1246 } else if (*p++ == ':') {
1247 kind = read_thread_id(p, &p, &pid, &tid);
1248 } else {
1249 res = -ENOTSUP;
1250 goto out;
1251 }
1252
1253 switch (kind) {
1254 case GDB_READ_THREAD_ERR:
1255 res = -EINVAL;
1256 goto out;
1257
1258 case GDB_ALL_PROCESSES:
1259 cpu = gdb_first_attached_cpu();
1260 while (cpu) {
1261 if (newstates[cpu->cpu_index] == 1) {
1262 newstates[cpu->cpu_index] = cur_action;
1263 }
1264
1265 cpu = gdb_next_attached_cpu(cpu);
1266 }
1267 break;
1268
1269 case GDB_ALL_THREADS:
1270 process = gdb_get_process(pid);
1271
1272 if (!process->attached) {
1273 res = -EINVAL;
1274 goto out;
1275 }
1276
1277 cpu = get_first_cpu_in_process(process);
1278 while (cpu) {
1279 if (newstates[cpu->cpu_index] == 1) {
1280 newstates[cpu->cpu_index] = cur_action;
1281 }
1282
1283 cpu = gdb_next_cpu_in_process(cpu);
1284 }
1285 break;
1286
1287 case GDB_ONE_THREAD:
1288 cpu = gdb_get_cpu(pid, tid);
1289
1290 /* invalid CPU/thread specified */
1291 if (!cpu) {
1292 res = -EINVAL;
1293 goto out;
1294 }
1295
1296 /* only use if no previous match occourred */
1297 if (newstates[cpu->cpu_index] == 1) {
1298 newstates[cpu->cpu_index] = cur_action;
1299 }
1300 break;
1301 }
1302 }
1303 gdbserver_state.signal = signal;
1304 gdb_continue_partial(newstates);
1305
1306 out:
1307 g_free(newstates);
1308
1309 return res;
1310 }
1311
1312 typedef union GdbCmdVariant {
1313 const char *data;
1314 uint8_t opcode;
1315 unsigned long val_ul;
1316 unsigned long long val_ull;
1317 struct {
1318 GDBThreadIdKind kind;
1319 uint32_t pid;
1320 uint32_t tid;
1321 } thread_id;
1322 } GdbCmdVariant;
1323
1324 static const char *cmd_next_param(const char *param, const char delimiter)
1325 {
1326 static const char all_delimiters[] = ",;:=";
1327 char curr_delimiters[2] = {0};
1328 const char *delimiters;
1329
1330 if (delimiter == '?') {
1331 delimiters = all_delimiters;
1332 } else if (delimiter == '0') {
1333 return strchr(param, '\0');
1334 } else if (delimiter == '.' && *param) {
1335 return param + 1;
1336 } else {
1337 curr_delimiters[0] = delimiter;
1338 delimiters = curr_delimiters;
1339 }
1340
1341 param += strcspn(param, delimiters);
1342 if (*param) {
1343 param++;
1344 }
1345 return param;
1346 }
1347
1348 static int cmd_parse_params(const char *data, const char *schema,
1349 GdbCmdVariant *params, int *num_params)
1350 {
1351 int curr_param;
1352 const char *curr_schema, *curr_data;
1353
1354 *num_params = 0;
1355
1356 if (!schema) {
1357 return 0;
1358 }
1359
1360 curr_schema = schema;
1361 curr_param = 0;
1362 curr_data = data;
1363 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1364 switch (curr_schema[0]) {
1365 case 'l':
1366 if (qemu_strtoul(curr_data, &curr_data, 16,
1367 &params[curr_param].val_ul)) {
1368 return -EINVAL;
1369 }
1370 curr_param++;
1371 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1372 break;
1373 case 'L':
1374 if (qemu_strtou64(curr_data, &curr_data, 16,
1375 (uint64_t *)&params[curr_param].val_ull)) {
1376 return -EINVAL;
1377 }
1378 curr_param++;
1379 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1380 break;
1381 case 's':
1382 params[curr_param].data = curr_data;
1383 curr_param++;
1384 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1385 break;
1386 case 'o':
1387 params[curr_param].opcode = *(uint8_t *)curr_data;
1388 curr_param++;
1389 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1390 break;
1391 case 't':
1392 params[curr_param].thread_id.kind =
1393 read_thread_id(curr_data, &curr_data,
1394 &params[curr_param].thread_id.pid,
1395 &params[curr_param].thread_id.tid);
1396 curr_param++;
1397 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1398 break;
1399 case '?':
1400 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1401 break;
1402 default:
1403 return -EINVAL;
1404 }
1405 curr_schema += 2;
1406 }
1407
1408 *num_params = curr_param;
1409 return 0;
1410 }
1411
1412 typedef struct GdbCmdContext {
1413 GdbCmdVariant *params;
1414 int num_params;
1415 uint8_t mem_buf[MAX_PACKET_LENGTH];
1416 } GdbCmdContext;
1417
1418 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1419
1420 /*
1421 * cmd_startswith -> cmd is compared using startswith
1422 *
1423 *
1424 * schema definitions:
1425 * Each schema parameter entry consists of 2 chars,
1426 * the first char represents the parameter type handling
1427 * the second char represents the delimiter for the next parameter
1428 *
1429 * Currently supported schema types:
1430 * 'l' -> unsigned long (stored in .val_ul)
1431 * 'L' -> unsigned long long (stored in .val_ull)
1432 * 's' -> string (stored in .data)
1433 * 'o' -> single char (stored in .opcode)
1434 * 't' -> thread id (stored in .thread_id)
1435 * '?' -> skip according to delimiter
1436 *
1437 * Currently supported delimiters:
1438 * '?' -> Stop at any delimiter (",;:=\0")
1439 * '0' -> Stop at "\0"
1440 * '.' -> Skip 1 char unless reached "\0"
1441 * Any other value is treated as the delimiter value itself
1442 */
1443 typedef struct GdbCmdParseEntry {
1444 GdbCmdHandler handler;
1445 const char *cmd;
1446 bool cmd_startswith;
1447 const char *schema;
1448 } GdbCmdParseEntry;
1449
1450 static inline int startswith(const char *string, const char *pattern)
1451 {
1452 return !strncmp(string, pattern, strlen(pattern));
1453 }
1454
1455 static int process_string_cmd(void *user_ctx, const char *data,
1456 const GdbCmdParseEntry *cmds, int num_cmds)
1457 {
1458 int i, schema_len, max_num_params = 0;
1459 GdbCmdContext gdb_ctx;
1460
1461 if (!cmds) {
1462 return -1;
1463 }
1464
1465 for (i = 0; i < num_cmds; i++) {
1466 const GdbCmdParseEntry *cmd = &cmds[i];
1467 g_assert(cmd->handler && cmd->cmd);
1468
1469 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1470 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1471 continue;
1472 }
1473
1474 if (cmd->schema) {
1475 schema_len = strlen(cmd->schema);
1476 if (schema_len % 2) {
1477 return -2;
1478 }
1479
1480 max_num_params = schema_len / 2;
1481 }
1482
1483 gdb_ctx.params =
1484 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1485 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1486
1487 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1488 gdb_ctx.params, &gdb_ctx.num_params)) {
1489 return -1;
1490 }
1491
1492 cmd->handler(&gdb_ctx, user_ctx);
1493 return 0;
1494 }
1495
1496 return -1;
1497 }
1498
1499 static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd)
1500 {
1501 if (!data) {
1502 return;
1503 }
1504
1505 g_string_set_size(gdbserver_state.str_buf, 0);
1506
1507 /* In case there was an error during the command parsing we must
1508 * send a NULL packet to indicate the command is not supported */
1509 if (process_string_cmd(NULL, data, cmd, 1)) {
1510 put_packet("");
1511 }
1512 }
1513
1514 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1515 {
1516 GDBProcess *process;
1517 uint32_t pid = 1;
1518
1519 if (gdbserver_state.multiprocess) {
1520 if (!gdb_ctx->num_params) {
1521 put_packet("E22");
1522 return;
1523 }
1524
1525 pid = gdb_ctx->params[0].val_ul;
1526 }
1527
1528 process = gdb_get_process(pid);
1529 gdb_process_breakpoint_remove_all(process);
1530 process->attached = false;
1531
1532 if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) {
1533 gdbserver_state.c_cpu = gdb_first_attached_cpu();
1534 }
1535
1536 if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) {
1537 gdbserver_state.g_cpu = gdb_first_attached_cpu();
1538 }
1539
1540 if (!gdbserver_state.c_cpu) {
1541 /* No more process attached */
1542 gdb_syscall_mode = GDB_SYS_DISABLED;
1543 gdb_continue();
1544 }
1545 put_packet("OK");
1546 }
1547
1548 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1549 {
1550 CPUState *cpu;
1551
1552 if (!gdb_ctx->num_params) {
1553 put_packet("E22");
1554 return;
1555 }
1556
1557 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1558 put_packet("E22");
1559 return;
1560 }
1561
1562 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
1563 gdb_ctx->params[0].thread_id.tid);
1564 if (!cpu) {
1565 put_packet("E22");
1566 return;
1567 }
1568
1569 put_packet("OK");
1570 }
1571
1572 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1573 {
1574 if (gdb_ctx->num_params) {
1575 gdb_set_cpu_pc(gdb_ctx->params[0].val_ull);
1576 }
1577
1578 gdbserver_state.signal = 0;
1579 gdb_continue();
1580 }
1581
1582 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1583 {
1584 unsigned long signal = 0;
1585
1586 /*
1587 * Note: C sig;[addr] is currently unsupported and we simply
1588 * omit the addr parameter
1589 */
1590 if (gdb_ctx->num_params) {
1591 signal = gdb_ctx->params[0].val_ul;
1592 }
1593
1594 gdbserver_state.signal = gdb_signal_to_target(signal);
1595 if (gdbserver_state.signal == -1) {
1596 gdbserver_state.signal = 0;
1597 }
1598 gdb_continue();
1599 }
1600
1601 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1602 {
1603 CPUState *cpu;
1604
1605 if (gdb_ctx->num_params != 2) {
1606 put_packet("E22");
1607 return;
1608 }
1609
1610 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1611 put_packet("E22");
1612 return;
1613 }
1614
1615 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1616 put_packet("OK");
1617 return;
1618 }
1619
1620 cpu = gdb_get_cpu(gdb_ctx->params[1].thread_id.pid,
1621 gdb_ctx->params[1].thread_id.tid);
1622 if (!cpu) {
1623 put_packet("E22");
1624 return;
1625 }
1626
1627 /*
1628 * Note: This command is deprecated and modern gdb's will be using the
1629 * vCont command instead.
1630 */
1631 switch (gdb_ctx->params[0].opcode) {
1632 case 'c':
1633 gdbserver_state.c_cpu = cpu;
1634 put_packet("OK");
1635 break;
1636 case 'g':
1637 gdbserver_state.g_cpu = cpu;
1638 put_packet("OK");
1639 break;
1640 default:
1641 put_packet("E22");
1642 break;
1643 }
1644 }
1645
1646 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1647 {
1648 int res;
1649
1650 if (gdb_ctx->num_params != 3) {
1651 put_packet("E22");
1652 return;
1653 }
1654
1655 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1656 gdb_ctx->params[1].val_ull,
1657 gdb_ctx->params[2].val_ull);
1658 if (res >= 0) {
1659 put_packet("OK");
1660 return;
1661 } else if (res == -ENOSYS) {
1662 put_packet("");
1663 return;
1664 }
1665
1666 put_packet("E22");
1667 }
1668
1669 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1670 {
1671 int res;
1672
1673 if (gdb_ctx->num_params != 3) {
1674 put_packet("E22");
1675 return;
1676 }
1677
1678 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1679 gdb_ctx->params[1].val_ull,
1680 gdb_ctx->params[2].val_ull);
1681 if (res >= 0) {
1682 put_packet("OK");
1683 return;
1684 } else if (res == -ENOSYS) {
1685 put_packet("");
1686 return;
1687 }
1688
1689 put_packet("E22");
1690 }
1691
1692 /*
1693 * handle_set/get_reg
1694 *
1695 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1696 * This works, but can be very slow. Anything new enough to understand
1697 * XML also knows how to use this properly. However to use this we
1698 * need to define a local XML file as well as be talking to a
1699 * reasonably modern gdb. Responding with an empty packet will cause
1700 * the remote gdb to fallback to older methods.
1701 */
1702
1703 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1704 {
1705 int reg_size;
1706
1707 if (!gdb_has_xml) {
1708 put_packet("");
1709 return;
1710 }
1711
1712 if (gdb_ctx->num_params != 2) {
1713 put_packet("E22");
1714 return;
1715 }
1716
1717 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1718 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1719 gdb_write_register(gdbserver_state.g_cpu, gdb_ctx->mem_buf,
1720 gdb_ctx->params[0].val_ull);
1721 put_packet("OK");
1722 }
1723
1724 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1725 {
1726 int reg_size;
1727
1728 if (!gdb_has_xml) {
1729 put_packet("");
1730 return;
1731 }
1732
1733 if (!gdb_ctx->num_params) {
1734 put_packet("E14");
1735 return;
1736 }
1737
1738 reg_size = gdb_read_register(gdbserver_state.g_cpu, gdb_ctx->mem_buf,
1739 gdb_ctx->params[0].val_ull);
1740 if (!reg_size) {
1741 put_packet("E14");
1742 return;
1743 }
1744
1745 memtohex(gdbserver_state.str_buf, gdb_ctx->mem_buf, reg_size);
1746 put_strbuf();
1747 }
1748
1749 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1750 {
1751 if (gdb_ctx->num_params != 3) {
1752 put_packet("E22");
1753 return;
1754 }
1755
1756 /* hextomem() reads 2*len bytes */
1757 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1758 put_packet("E22");
1759 return;
1760 }
1761
1762 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1763 gdb_ctx->params[1].val_ull);
1764 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1765 gdb_ctx->mem_buf,
1766 gdb_ctx->params[1].val_ull, true)) {
1767 put_packet("E14");
1768 return;
1769 }
1770
1771 put_packet("OK");
1772 }
1773
1774 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1775 {
1776 if (gdb_ctx->num_params != 2) {
1777 put_packet("E22");
1778 return;
1779 }
1780
1781 /* memtohex() doubles the required space */
1782 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1783 put_packet("E22");
1784 return;
1785 }
1786
1787 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1788 gdb_ctx->mem_buf,
1789 gdb_ctx->params[1].val_ull, false)) {
1790 put_packet("E14");
1791 return;
1792 }
1793
1794 memtohex(gdbserver_state.str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1795 put_strbuf();
1796 }
1797
1798 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1799 {
1800 target_ulong addr, len;
1801 uint8_t *registers;
1802 int reg_size;
1803
1804 if (!gdb_ctx->num_params) {
1805 return;
1806 }
1807
1808 cpu_synchronize_state(gdbserver_state.g_cpu);
1809 registers = gdb_ctx->mem_buf;
1810 len = strlen(gdb_ctx->params[0].data) / 2;
1811 hextomem(registers, gdb_ctx->params[0].data, len);
1812 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0;
1813 addr++) {
1814 reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, addr);
1815 len -= reg_size;
1816 registers += reg_size;
1817 }
1818 put_packet("OK");
1819 }
1820
1821 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1822 {
1823 target_ulong addr, len;
1824
1825 cpu_synchronize_state(gdbserver_state.g_cpu);
1826 len = 0;
1827 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs; addr++) {
1828 len += gdb_read_register(gdbserver_state.g_cpu, gdb_ctx->mem_buf + len,
1829 addr);
1830 }
1831
1832 memtohex(gdbserver_state.str_buf, gdb_ctx->mem_buf, len);
1833 put_strbuf();
1834 }
1835
1836 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1837 {
1838 if (gdb_ctx->num_params >= 1 && gdbserver_state.current_syscall_cb) {
1839 target_ulong ret, err;
1840
1841 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1842 if (gdb_ctx->num_params >= 2) {
1843 err = (target_ulong)gdb_ctx->params[1].val_ull;
1844 } else {
1845 err = 0;
1846 }
1847 gdbserver_state.current_syscall_cb(gdbserver_state.c_cpu, ret, err);
1848 gdbserver_state.current_syscall_cb = NULL;
1849 }
1850
1851 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1852 put_packet("T02");
1853 return;
1854 }
1855
1856 gdb_continue();
1857 }
1858
1859 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1860 {
1861 if (gdb_ctx->num_params) {
1862 gdb_set_cpu_pc((target_ulong)gdb_ctx->params[0].val_ull);
1863 }
1864
1865 cpu_single_step(gdbserver_state.c_cpu, sstep_flags);
1866 gdb_continue();
1867 }
1868
1869 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1870 {
1871 put_packet("vCont;c;C;s;S");
1872 }
1873
1874 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1875 {
1876 int res;
1877
1878 if (!gdb_ctx->num_params) {
1879 return;
1880 }
1881
1882 res = gdb_handle_vcont(gdb_ctx->params[0].data);
1883 if ((res == -EINVAL) || (res == -ERANGE)) {
1884 put_packet("E22");
1885 } else if (res) {
1886 put_packet("");
1887 }
1888 }
1889
1890 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1891 {
1892 GDBProcess *process;
1893 CPUState *cpu;
1894
1895 g_string_assign(gdbserver_state.str_buf, "E22");
1896 if (!gdb_ctx->num_params) {
1897 goto cleanup;
1898 }
1899
1900 process = gdb_get_process(gdb_ctx->params[0].val_ul);
1901 if (!process) {
1902 goto cleanup;
1903 }
1904
1905 cpu = get_first_cpu_in_process(process);
1906 if (!cpu) {
1907 goto cleanup;
1908 }
1909
1910 process->attached = true;
1911 gdbserver_state.g_cpu = cpu;
1912 gdbserver_state.c_cpu = cpu;
1913
1914 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
1915 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
1916 g_string_append_c(gdbserver_state.str_buf, ';');
1917 cleanup:
1918 put_strbuf();
1919 }
1920
1921 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1922 {
1923 /* Kill the target */
1924 put_packet("OK");
1925 error_report("QEMU: Terminated via GDBstub");
1926 exit(0);
1927 }
1928
1929 static GdbCmdParseEntry gdb_v_commands_table[] = {
1930 /* Order is important if has same prefix */
1931 {
1932 .handler = handle_v_cont_query,
1933 .cmd = "Cont?",
1934 .cmd_startswith = 1
1935 },
1936 {
1937 .handler = handle_v_cont,
1938 .cmd = "Cont",
1939 .cmd_startswith = 1,
1940 .schema = "s0"
1941 },
1942 {
1943 .handler = handle_v_attach,
1944 .cmd = "Attach;",
1945 .cmd_startswith = 1,
1946 .schema = "l0"
1947 },
1948 {
1949 .handler = handle_v_kill,
1950 .cmd = "Kill;",
1951 .cmd_startswith = 1
1952 },
1953 };
1954
1955 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
1956 {
1957 if (!gdb_ctx->num_params) {
1958 return;
1959 }
1960
1961 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
1962 gdb_v_commands_table,
1963 ARRAY_SIZE(gdb_v_commands_table))) {
1964 put_packet("");
1965 }
1966 }
1967
1968 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
1969 {
1970 g_string_printf(gdbserver_state.str_buf, "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1971 SSTEP_ENABLE, SSTEP_NOIRQ, SSTEP_NOTIMER);
1972 put_strbuf();
1973 }
1974
1975 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1976 {
1977 if (!gdb_ctx->num_params) {
1978 return;
1979 }
1980
1981 sstep_flags = gdb_ctx->params[0].val_ul;
1982 put_packet("OK");
1983 }
1984
1985 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1986 {
1987 g_string_printf(gdbserver_state.str_buf, "0x%x", sstep_flags);
1988 put_strbuf();
1989 }
1990
1991 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
1992 {
1993 CPUState *cpu;
1994 GDBProcess *process;
1995
1996 /*
1997 * "Current thread" remains vague in the spec, so always return
1998 * the first thread of the current process (gdb returns the
1999 * first thread).
2000 */
2001 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2002 cpu = get_first_cpu_in_process(process);
2003 g_string_assign(gdbserver_state.str_buf, "QC");
2004 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
2005 put_strbuf();
2006 }
2007
2008 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2009 {
2010 if (!gdbserver_state.query_cpu) {
2011 put_packet("l");
2012 return;
2013 }
2014
2015 g_string_assign(gdbserver_state.str_buf, "m");
2016 gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf);
2017 put_strbuf();
2018 gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu);
2019 }
2020
2021 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2022 {
2023 gdbserver_state.query_cpu = gdb_first_attached_cpu();
2024 handle_query_threads(gdb_ctx, user_ctx);
2025 }
2026
2027 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2028 {
2029 g_autoptr(GString) rs = g_string_new(NULL);
2030 CPUState *cpu;
2031
2032 if (!gdb_ctx->num_params ||
2033 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2034 put_packet("E22");
2035 return;
2036 }
2037
2038 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
2039 gdb_ctx->params[0].thread_id.tid);
2040 if (!cpu) {
2041 return;
2042 }
2043
2044 cpu_synchronize_state(cpu);
2045
2046 if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) {
2047 /* Print the CPU model and name in multiprocess mode */
2048 ObjectClass *oc = object_get_class(OBJECT(cpu));
2049 const char *cpu_model = object_class_get_name(oc);
2050 g_autofree char *cpu_name;
2051 cpu_name = object_get_canonical_path_component(OBJECT(cpu));
2052 g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name,
2053 cpu->halted ? "halted " : "running");
2054 } else {
2055 g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index,
2056 cpu->halted ? "halted " : "running");
2057 }
2058 trace_gdbstub_op_extra_info(rs->str);
2059 memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len);
2060 put_strbuf();
2061 }
2062
2063 #ifdef CONFIG_USER_ONLY
2064 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2065 {
2066 TaskState *ts;
2067
2068 ts = gdbserver_state.c_cpu->opaque;
2069 g_string_printf(gdbserver_state.str_buf,
2070 "Text=" TARGET_ABI_FMT_lx
2071 ";Data=" TARGET_ABI_FMT_lx
2072 ";Bss=" TARGET_ABI_FMT_lx,
2073 ts->info->code_offset,
2074 ts->info->data_offset,
2075 ts->info->data_offset);
2076 put_strbuf();
2077 }
2078 #else
2079 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2080 {
2081 int len;
2082
2083 if (!gdb_ctx->num_params) {
2084 put_packet("E22");
2085 return;
2086 }
2087
2088 len = strlen(gdb_ctx->params[0].data);
2089 if (len % 2) {
2090 put_packet("E01");
2091 return;
2092 }
2093
2094 len = len / 2;
2095 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[0].data, len);
2096 gdb_ctx->mem_buf[len++] = 0;
2097 qemu_chr_be_write(gdbserver_state.mon_chr, gdb_ctx->mem_buf, len);
2098 put_packet("OK");
2099
2100 }
2101 #endif
2102
2103 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2104 {
2105 CPUClass *cc;
2106
2107 g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
2108 cc = CPU_GET_CLASS(first_cpu);
2109 if (cc->gdb_core_xml_file) {
2110 g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+");
2111 }
2112
2113 if (gdb_ctx->num_params &&
2114 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2115 gdbserver_state.multiprocess = true;
2116 }
2117
2118 g_string_append(gdbserver_state.str_buf, ";multiprocess+");
2119 put_strbuf();
2120 }
2121
2122 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2123 {
2124 GDBProcess *process;
2125 CPUClass *cc;
2126 unsigned long len, total_len, addr;
2127 const char *xml;
2128 const char *p;
2129
2130 if (gdb_ctx->num_params < 3) {
2131 put_packet("E22");
2132 return;
2133 }
2134
2135 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2136 cc = CPU_GET_CLASS(gdbserver_state.g_cpu);
2137 if (!cc->gdb_core_xml_file) {
2138 put_packet("");
2139 return;
2140 }
2141
2142 gdb_has_xml = true;
2143 p = gdb_ctx->params[0].data;
2144 xml = get_feature_xml(p, &p, process);
2145 if (!xml) {
2146 put_packet("E00");
2147 return;
2148 }
2149
2150 addr = gdb_ctx->params[1].val_ul;
2151 len = gdb_ctx->params[2].val_ul;
2152 total_len = strlen(xml);
2153 if (addr > total_len) {
2154 put_packet("E00");
2155 return;
2156 }
2157
2158 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2159 len = (MAX_PACKET_LENGTH - 5) / 2;
2160 }
2161
2162 if (len < total_len - addr) {
2163 g_string_assign(gdbserver_state.str_buf, "m");
2164 memtox(gdbserver_state.str_buf, xml + addr, len);
2165 } else {
2166 g_string_assign(gdbserver_state.str_buf, "l");
2167 memtox(gdbserver_state.str_buf, xml + addr, total_len - addr);
2168 }
2169
2170 put_packet_binary(gdbserver_state.str_buf->str,
2171 gdbserver_state.str_buf->len, true);
2172 }
2173
2174 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2175 {
2176 put_packet(GDB_ATTACHED);
2177 }
2178
2179 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2180 {
2181 g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep");
2182 #ifndef CONFIG_USER_ONLY
2183 g_string_append(gdbserver_state.str_buf, ";PhyMemMode");
2184 #endif
2185 put_strbuf();
2186 }
2187
2188 #ifndef CONFIG_USER_ONLY
2189 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2190 void *user_ctx)
2191 {
2192 g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
2193 put_strbuf();
2194 }
2195
2196 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2197 {
2198 if (!gdb_ctx->num_params) {
2199 put_packet("E22");
2200 return;
2201 }
2202
2203 if (!gdb_ctx->params[0].val_ul) {
2204 phy_memory_mode = 0;
2205 } else {
2206 phy_memory_mode = 1;
2207 }
2208 put_packet("OK");
2209 }
2210 #endif
2211
2212 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2213 /* Order is important if has same prefix */
2214 {
2215 .handler = handle_query_qemu_sstepbits,
2216 .cmd = "qemu.sstepbits",
2217 },
2218 {
2219 .handler = handle_query_qemu_sstep,
2220 .cmd = "qemu.sstep",
2221 },
2222 {
2223 .handler = handle_set_qemu_sstep,
2224 .cmd = "qemu.sstep=",
2225 .cmd_startswith = 1,
2226 .schema = "l0"
2227 },
2228 };
2229
2230 static GdbCmdParseEntry gdb_gen_query_table[] = {
2231 {
2232 .handler = handle_query_curr_tid,
2233 .cmd = "C",
2234 },
2235 {
2236 .handler = handle_query_threads,
2237 .cmd = "sThreadInfo",
2238 },
2239 {
2240 .handler = handle_query_first_threads,
2241 .cmd = "fThreadInfo",
2242 },
2243 {
2244 .handler = handle_query_thread_extra,
2245 .cmd = "ThreadExtraInfo,",
2246 .cmd_startswith = 1,
2247 .schema = "t0"
2248 },
2249 #ifdef CONFIG_USER_ONLY
2250 {
2251 .handler = handle_query_offsets,
2252 .cmd = "Offsets",
2253 },
2254 #else
2255 {
2256 .handler = handle_query_rcmd,
2257 .cmd = "Rcmd,",
2258 .cmd_startswith = 1,
2259 .schema = "s0"
2260 },
2261 #endif
2262 {
2263 .handler = handle_query_supported,
2264 .cmd = "Supported:",
2265 .cmd_startswith = 1,
2266 .schema = "s0"
2267 },
2268 {
2269 .handler = handle_query_supported,
2270 .cmd = "Supported",
2271 .schema = "s0"
2272 },
2273 {
2274 .handler = handle_query_xfer_features,
2275 .cmd = "Xfer:features:read:",
2276 .cmd_startswith = 1,
2277 .schema = "s:l,l0"
2278 },
2279 {
2280 .handler = handle_query_attached,
2281 .cmd = "Attached:",
2282 .cmd_startswith = 1
2283 },
2284 {
2285 .handler = handle_query_attached,
2286 .cmd = "Attached",
2287 },
2288 {
2289 .handler = handle_query_qemu_supported,
2290 .cmd = "qemu.Supported",
2291 },
2292 #ifndef CONFIG_USER_ONLY
2293 {
2294 .handler = handle_query_qemu_phy_mem_mode,
2295 .cmd = "qemu.PhyMemMode",
2296 },
2297 #endif
2298 };
2299
2300 static GdbCmdParseEntry gdb_gen_set_table[] = {
2301 /* Order is important if has same prefix */
2302 {
2303 .handler = handle_set_qemu_sstep,
2304 .cmd = "qemu.sstep:",
2305 .cmd_startswith = 1,
2306 .schema = "l0"
2307 },
2308 #ifndef CONFIG_USER_ONLY
2309 {
2310 .handler = handle_set_qemu_phy_mem_mode,
2311 .cmd = "qemu.PhyMemMode:",
2312 .cmd_startswith = 1,
2313 .schema = "l0"
2314 },
2315 #endif
2316 };
2317
2318 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2319 {
2320 if (!gdb_ctx->num_params) {
2321 return;
2322 }
2323
2324 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2325 gdb_gen_query_set_common_table,
2326 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2327 return;
2328 }
2329
2330 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2331 gdb_gen_query_table,
2332 ARRAY_SIZE(gdb_gen_query_table))) {
2333 put_packet("");
2334 }
2335 }
2336
2337 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2338 {
2339 if (!gdb_ctx->num_params) {
2340 return;
2341 }
2342
2343 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2344 gdb_gen_query_set_common_table,
2345 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2346 return;
2347 }
2348
2349 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2350 gdb_gen_set_table,
2351 ARRAY_SIZE(gdb_gen_set_table))) {
2352 put_packet("");
2353 }
2354 }
2355
2356 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2357 {
2358 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
2359 gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf);
2360 g_string_append_c(gdbserver_state.str_buf, ';');
2361 put_strbuf();
2362 /*
2363 * Remove all the breakpoints when this query is issued,
2364 * because gdb is doing an initial connect and the state
2365 * should be cleaned up.
2366 */
2367 gdb_breakpoint_remove_all();
2368 }
2369
2370 static int gdb_handle_packet(const char *line_buf)
2371 {
2372 const GdbCmdParseEntry *cmd_parser = NULL;
2373
2374 trace_gdbstub_io_command(line_buf);
2375
2376 switch (line_buf[0]) {
2377 case '!':
2378 put_packet("OK");
2379 break;
2380 case '?':
2381 {
2382 static const GdbCmdParseEntry target_halted_cmd_desc = {
2383 .handler = handle_target_halt,
2384 .cmd = "?",
2385 .cmd_startswith = 1
2386 };
2387 cmd_parser = &target_halted_cmd_desc;
2388 }
2389 break;
2390 case 'c':
2391 {
2392 static const GdbCmdParseEntry continue_cmd_desc = {
2393 .handler = handle_continue,
2394 .cmd = "c",
2395 .cmd_startswith = 1,
2396 .schema = "L0"
2397 };
2398 cmd_parser = &continue_cmd_desc;
2399 }
2400 break;
2401 case 'C':
2402 {
2403 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2404 .handler = handle_cont_with_sig,
2405 .cmd = "C",
2406 .cmd_startswith = 1,
2407 .schema = "l0"
2408 };
2409 cmd_parser = &cont_with_sig_cmd_desc;
2410 }
2411 break;
2412 case 'v':
2413 {
2414 static const GdbCmdParseEntry v_cmd_desc = {
2415 .handler = handle_v_commands,
2416 .cmd = "v",
2417 .cmd_startswith = 1,
2418 .schema = "s0"
2419 };
2420 cmd_parser = &v_cmd_desc;
2421 }
2422 break;
2423 case 'k':
2424 /* Kill the target */
2425 error_report("QEMU: Terminated via GDBstub");
2426 exit(0);
2427 case 'D':
2428 {
2429 static const GdbCmdParseEntry detach_cmd_desc = {
2430 .handler = handle_detach,
2431 .cmd = "D",
2432 .cmd_startswith = 1,
2433 .schema = "?.l0"
2434 };
2435 cmd_parser = &detach_cmd_desc;
2436 }
2437 break;
2438 case 's':
2439 {
2440 static const GdbCmdParseEntry step_cmd_desc = {
2441 .handler = handle_step,
2442 .cmd = "s",
2443 .cmd_startswith = 1,
2444 .schema = "L0"
2445 };
2446 cmd_parser = &step_cmd_desc;
2447 }
2448 break;
2449 case 'F':
2450 {
2451 static const GdbCmdParseEntry file_io_cmd_desc = {
2452 .handler = handle_file_io,
2453 .cmd = "F",
2454 .cmd_startswith = 1,
2455 .schema = "L,L,o0"
2456 };
2457 cmd_parser = &file_io_cmd_desc;
2458 }
2459 break;
2460 case 'g':
2461 {
2462 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2463 .handler = handle_read_all_regs,
2464 .cmd = "g",
2465 .cmd_startswith = 1
2466 };
2467 cmd_parser = &read_all_regs_cmd_desc;
2468 }
2469 break;
2470 case 'G':
2471 {
2472 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2473 .handler = handle_write_all_regs,
2474 .cmd = "G",
2475 .cmd_startswith = 1,
2476 .schema = "s0"
2477 };
2478 cmd_parser = &write_all_regs_cmd_desc;
2479 }
2480 break;
2481 case 'm':
2482 {
2483 static const GdbCmdParseEntry read_mem_cmd_desc = {
2484 .handler = handle_read_mem,
2485 .cmd = "m",
2486 .cmd_startswith = 1,
2487 .schema = "L,L0"
2488 };
2489 cmd_parser = &read_mem_cmd_desc;
2490 }
2491 break;
2492 case 'M':
2493 {
2494 static const GdbCmdParseEntry write_mem_cmd_desc = {
2495 .handler = handle_write_mem,
2496 .cmd = "M",
2497 .cmd_startswith = 1,
2498 .schema = "L,L:s0"
2499 };
2500 cmd_parser = &write_mem_cmd_desc;
2501 }
2502 break;
2503 case 'p':
2504 {
2505 static const GdbCmdParseEntry get_reg_cmd_desc = {
2506 .handler = handle_get_reg,
2507 .cmd = "p",
2508 .cmd_startswith = 1,
2509 .schema = "L0"
2510 };
2511 cmd_parser = &get_reg_cmd_desc;
2512 }
2513 break;
2514 case 'P':
2515 {
2516 static const GdbCmdParseEntry set_reg_cmd_desc = {
2517 .handler = handle_set_reg,
2518 .cmd = "P",
2519 .cmd_startswith = 1,
2520 .schema = "L?s0"
2521 };
2522 cmd_parser = &set_reg_cmd_desc;
2523 }
2524 break;
2525 case 'Z':
2526 {
2527 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2528 .handler = handle_insert_bp,
2529 .cmd = "Z",
2530 .cmd_startswith = 1,
2531 .schema = "l?L?L0"
2532 };
2533 cmd_parser = &insert_bp_cmd_desc;
2534 }
2535 break;
2536 case 'z':
2537 {
2538 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2539 .handler = handle_remove_bp,
2540 .cmd = "z",
2541 .cmd_startswith = 1,
2542 .schema = "l?L?L0"
2543 };
2544 cmd_parser = &remove_bp_cmd_desc;
2545 }
2546 break;
2547 case 'H':
2548 {
2549 static const GdbCmdParseEntry set_thread_cmd_desc = {
2550 .handler = handle_set_thread,
2551 .cmd = "H",
2552 .cmd_startswith = 1,
2553 .schema = "o.t0"
2554 };
2555 cmd_parser = &set_thread_cmd_desc;
2556 }
2557 break;
2558 case 'T':
2559 {
2560 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2561 .handler = handle_thread_alive,
2562 .cmd = "T",
2563 .cmd_startswith = 1,
2564 .schema = "t0"
2565 };
2566 cmd_parser = &thread_alive_cmd_desc;
2567 }
2568 break;
2569 case 'q':
2570 {
2571 static const GdbCmdParseEntry gen_query_cmd_desc = {
2572 .handler = handle_gen_query,
2573 .cmd = "q",
2574 .cmd_startswith = 1,
2575 .schema = "s0"
2576 };
2577 cmd_parser = &gen_query_cmd_desc;
2578 }
2579 break;
2580 case 'Q':
2581 {
2582 static const GdbCmdParseEntry gen_set_cmd_desc = {
2583 .handler = handle_gen_set,
2584 .cmd = "Q",
2585 .cmd_startswith = 1,
2586 .schema = "s0"
2587 };
2588 cmd_parser = &gen_set_cmd_desc;
2589 }
2590 break;
2591 default:
2592 /* put empty packet */
2593 put_packet("");
2594 break;
2595 }
2596
2597 if (cmd_parser) {
2598 run_cmd_parser(line_buf, cmd_parser);
2599 }
2600
2601 return RS_IDLE;
2602 }
2603
2604 void gdb_set_stop_cpu(CPUState *cpu)
2605 {
2606 GDBProcess *p = gdb_get_cpu_process(cpu);
2607
2608 if (!p->attached) {
2609 /*
2610 * Having a stop CPU corresponding to a process that is not attached
2611 * confuses GDB. So we ignore the request.
2612 */
2613 return;
2614 }
2615
2616 gdbserver_state.c_cpu = cpu;
2617 gdbserver_state.g_cpu = cpu;
2618 }
2619
2620 #ifndef CONFIG_USER_ONLY
2621 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2622 {
2623 CPUState *cpu = gdbserver_state.c_cpu;
2624 g_autoptr(GString) buf = g_string_new(NULL);
2625 g_autoptr(GString) tid = g_string_new(NULL);
2626 const char *type;
2627 int ret;
2628
2629 if (running || gdbserver_state.state == RS_INACTIVE) {
2630 return;
2631 }
2632 /* Is there a GDB syscall waiting to be sent? */
2633 if (gdbserver_state.current_syscall_cb) {
2634 put_packet(gdbserver_state.syscall_buf);
2635 return;
2636 }
2637
2638 if (cpu == NULL) {
2639 /* No process attached */
2640 return;
2641 }
2642
2643 gdb_append_thread_id(cpu, tid);
2644
2645 switch (state) {
2646 case RUN_STATE_DEBUG:
2647 if (cpu->watchpoint_hit) {
2648 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2649 case BP_MEM_READ:
2650 type = "r";
2651 break;
2652 case BP_MEM_ACCESS:
2653 type = "a";
2654 break;
2655 default:
2656 type = "";
2657 break;
2658 }
2659 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2660 (target_ulong)cpu->watchpoint_hit->vaddr);
2661 g_string_printf(buf, "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2662 GDB_SIGNAL_TRAP, tid->str, type,
2663 (target_ulong)cpu->watchpoint_hit->vaddr);
2664 cpu->watchpoint_hit = NULL;
2665 goto send_packet;
2666 } else {
2667 trace_gdbstub_hit_break();
2668 }
2669 tb_flush(cpu);
2670 ret = GDB_SIGNAL_TRAP;
2671 break;
2672 case RUN_STATE_PAUSED:
2673 trace_gdbstub_hit_paused();
2674 ret = GDB_SIGNAL_INT;
2675 break;
2676 case RUN_STATE_SHUTDOWN:
2677 trace_gdbstub_hit_shutdown();
2678 ret = GDB_SIGNAL_QUIT;
2679 break;
2680 case RUN_STATE_IO_ERROR:
2681 trace_gdbstub_hit_io_error();
2682 ret = GDB_SIGNAL_IO;
2683 break;
2684 case RUN_STATE_WATCHDOG:
2685 trace_gdbstub_hit_watchdog();
2686 ret = GDB_SIGNAL_ALRM;
2687 break;
2688 case RUN_STATE_INTERNAL_ERROR:
2689 trace_gdbstub_hit_internal_error();
2690 ret = GDB_SIGNAL_ABRT;
2691 break;
2692 case RUN_STATE_SAVE_VM:
2693 case RUN_STATE_RESTORE_VM:
2694 return;
2695 case RUN_STATE_FINISH_MIGRATE:
2696 ret = GDB_SIGNAL_XCPU;
2697 break;
2698 default:
2699 trace_gdbstub_hit_unknown(state);
2700 ret = GDB_SIGNAL_UNKNOWN;
2701 break;
2702 }
2703 gdb_set_stop_cpu(cpu);
2704 g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
2705
2706 send_packet:
2707 put_packet(buf->str);
2708
2709 /* disable single step if it was enabled */
2710 cpu_single_step(cpu, 0);
2711 }
2712 #endif
2713
2714 /* Send a gdb syscall request.
2715 This accepts limited printf-style format specifiers, specifically:
2716 %x - target_ulong argument printed in hex.
2717 %lx - 64-bit argument printed in hex.
2718 %s - string pointer (target_ulong) and length (int) pair. */
2719 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2720 {
2721 char *p;
2722 char *p_end;
2723 target_ulong addr;
2724 uint64_t i64;
2725
2726 if (!gdbserver_state.init) {
2727 return;
2728 }
2729
2730 gdbserver_state.current_syscall_cb = cb;
2731 #ifndef CONFIG_USER_ONLY
2732 vm_stop(RUN_STATE_DEBUG);
2733 #endif
2734 p = &gdbserver_state.syscall_buf[0];
2735 p_end = &gdbserver_state.syscall_buf[sizeof(gdbserver_state.syscall_buf)];
2736 *(p++) = 'F';
2737 while (*fmt) {
2738 if (*fmt == '%') {
2739 fmt++;
2740 switch (*fmt++) {
2741 case 'x':
2742 addr = va_arg(va, target_ulong);
2743 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2744 break;
2745 case 'l':
2746 if (*(fmt++) != 'x')
2747 goto bad_format;
2748 i64 = va_arg(va, uint64_t);
2749 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2750 break;
2751 case 's':
2752 addr = va_arg(va, target_ulong);
2753 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2754 addr, va_arg(va, int));
2755 break;
2756 default:
2757 bad_format:
2758 error_report("gdbstub: Bad syscall format string '%s'",
2759 fmt - 1);
2760 break;
2761 }
2762 } else {
2763 *(p++) = *(fmt++);
2764 }
2765 }
2766 *p = 0;
2767 #ifdef CONFIG_USER_ONLY
2768 put_packet(gdbserver_state.syscall_buf);
2769 /* Return control to gdb for it to process the syscall request.
2770 * Since the protocol requires that gdb hands control back to us
2771 * using a "here are the results" F packet, we don't need to check
2772 * gdb_handlesig's return value (which is the signal to deliver if
2773 * execution was resumed via a continue packet).
2774 */
2775 gdb_handlesig(gdbserver_state.c_cpu, 0);
2776 #else
2777 /* In this case wait to send the syscall packet until notification that
2778 the CPU has stopped. This must be done because if the packet is sent
2779 now the reply from the syscall request could be received while the CPU
2780 is still in the running state, which can cause packets to be dropped
2781 and state transition 'T' packets to be sent while the syscall is still
2782 being processed. */
2783 qemu_cpu_kick(gdbserver_state.c_cpu);
2784 #endif
2785 }
2786
2787 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2788 {
2789 va_list va;
2790
2791 va_start(va, fmt);
2792 gdb_do_syscallv(cb, fmt, va);
2793 va_end(va);
2794 }
2795
2796 static void gdb_read_byte(uint8_t ch)
2797 {
2798 uint8_t reply;
2799
2800 #ifndef CONFIG_USER_ONLY
2801 if (gdbserver_state.last_packet_len) {
2802 /* Waiting for a response to the last packet. If we see the start
2803 of a new command then abandon the previous response. */
2804 if (ch == '-') {
2805 trace_gdbstub_err_got_nack();
2806 put_buffer((uint8_t *)gdbserver_state.last_packet, gdbserver_state.last_packet_len);
2807 } else if (ch == '+') {
2808 trace_gdbstub_io_got_ack();
2809 } else {
2810 trace_gdbstub_io_got_unexpected(ch);
2811 }
2812
2813 if (ch == '+' || ch == '$')
2814 gdbserver_state.last_packet_len = 0;
2815 if (ch != '$')
2816 return;
2817 }
2818 if (runstate_is_running()) {
2819 /* when the CPU is running, we cannot do anything except stop
2820 it when receiving a char */
2821 vm_stop(RUN_STATE_PAUSED);
2822 } else
2823 #endif
2824 {
2825 switch(gdbserver_state.state) {
2826 case RS_IDLE:
2827 if (ch == '$') {
2828 /* start of command packet */
2829 gdbserver_state.line_buf_index = 0;
2830 gdbserver_state.line_sum = 0;
2831 gdbserver_state.state = RS_GETLINE;
2832 } else {
2833 trace_gdbstub_err_garbage(ch);
2834 }
2835 break;
2836 case RS_GETLINE:
2837 if (ch == '}') {
2838 /* start escape sequence */
2839 gdbserver_state.state = RS_GETLINE_ESC;
2840 gdbserver_state.line_sum += ch;
2841 } else if (ch == '*') {
2842 /* start run length encoding sequence */
2843 gdbserver_state.state = RS_GETLINE_RLE;
2844 gdbserver_state.line_sum += ch;
2845 } else if (ch == '#') {
2846 /* end of command, start of checksum*/
2847 gdbserver_state.state = RS_CHKSUM1;
2848 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2849 trace_gdbstub_err_overrun();
2850 gdbserver_state.state = RS_IDLE;
2851 } else {
2852 /* unescaped command character */
2853 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch;
2854 gdbserver_state.line_sum += ch;
2855 }
2856 break;
2857 case RS_GETLINE_ESC:
2858 if (ch == '#') {
2859 /* unexpected end of command in escape sequence */
2860 gdbserver_state.state = RS_CHKSUM1;
2861 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2862 /* command buffer overrun */
2863 trace_gdbstub_err_overrun();
2864 gdbserver_state.state = RS_IDLE;
2865 } else {
2866 /* parse escaped character and leave escape state */
2867 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20;
2868 gdbserver_state.line_sum += ch;
2869 gdbserver_state.state = RS_GETLINE;
2870 }
2871 break;
2872 case RS_GETLINE_RLE:
2873 /*
2874 * Run-length encoding is explained in "Debugging with GDB /
2875 * Appendix E GDB Remote Serial Protocol / Overview".
2876 */
2877 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2878 /* invalid RLE count encoding */
2879 trace_gdbstub_err_invalid_repeat(ch);
2880 gdbserver_state.state = RS_GETLINE;
2881 } else {
2882 /* decode repeat length */
2883 int repeat = ch - ' ' + 3;
2884 if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) {
2885 /* that many repeats would overrun the command buffer */
2886 trace_gdbstub_err_overrun();
2887 gdbserver_state.state = RS_IDLE;
2888 } else if (gdbserver_state.line_buf_index < 1) {
2889 /* got a repeat but we have nothing to repeat */
2890 trace_gdbstub_err_invalid_rle();
2891 gdbserver_state.state = RS_GETLINE;
2892 } else {
2893 /* repeat the last character */
2894 memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index,
2895 gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat);
2896 gdbserver_state.line_buf_index += repeat;
2897 gdbserver_state.line_sum += ch;
2898 gdbserver_state.state = RS_GETLINE;
2899 }
2900 }
2901 break;
2902 case RS_CHKSUM1:
2903 /* get high hex digit of checksum */
2904 if (!isxdigit(ch)) {
2905 trace_gdbstub_err_checksum_invalid(ch);
2906 gdbserver_state.state = RS_GETLINE;
2907 break;
2908 }
2909 gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0';
2910 gdbserver_state.line_csum = fromhex(ch) << 4;
2911 gdbserver_state.state = RS_CHKSUM2;
2912 break;
2913 case RS_CHKSUM2:
2914 /* get low hex digit of checksum */
2915 if (!isxdigit(ch)) {
2916 trace_gdbstub_err_checksum_invalid(ch);
2917 gdbserver_state.state = RS_GETLINE;
2918 break;
2919 }
2920 gdbserver_state.line_csum |= fromhex(ch);
2921
2922 if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) {
2923 trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum);
2924 /* send NAK reply */
2925 reply = '-';
2926 put_buffer(&reply, 1);
2927 gdbserver_state.state = RS_IDLE;
2928 } else {
2929 /* send ACK reply */
2930 reply = '+';
2931 put_buffer(&reply, 1);
2932 gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf);
2933 }
2934 break;
2935 default:
2936 abort();
2937 }
2938 }
2939 }
2940
2941 /* Tell the remote gdb that the process has exited. */
2942 void gdb_exit(CPUArchState *env, int code)
2943 {
2944 char buf[4];
2945
2946 if (!gdbserver_state.init) {
2947 return;
2948 }
2949 #ifdef CONFIG_USER_ONLY
2950 if (gdbserver_fd < 0 || gdbserver_state.fd < 0) {
2951 return;
2952 }
2953 #endif
2954
2955 trace_gdbstub_op_exiting((uint8_t)code);
2956
2957 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2958 put_packet(buf);
2959
2960 #ifndef CONFIG_USER_ONLY
2961 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
2962 #endif
2963 }
2964
2965 /*
2966 * Create the process that will contain all the "orphan" CPUs (that are not
2967 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2968 * be attachable and thus will be invisible to the user.
2969 */
2970 static void create_default_process(GDBState *s)
2971 {
2972 GDBProcess *process;
2973 int max_pid = 0;
2974
2975 if (gdbserver_state.process_num) {
2976 max_pid = s->processes[s->process_num - 1].pid;
2977 }
2978
2979 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2980 process = &s->processes[s->process_num - 1];
2981
2982 /* We need an available PID slot for this process */
2983 assert(max_pid < UINT32_MAX);
2984
2985 process->pid = max_pid + 1;
2986 process->attached = false;
2987 process->target_xml[0] = '\0';
2988 }
2989
2990 #ifdef CONFIG_USER_ONLY
2991 int
2992 gdb_handlesig(CPUState *cpu, int sig)
2993 {
2994 char buf[256];
2995 int n;
2996
2997 if (gdbserver_fd < 0 || gdbserver_state.fd < 0) {
2998 return sig;
2999 }
3000
3001 /* disable single step if it was enabled */
3002 cpu_single_step(cpu, 0);
3003 tb_flush(cpu);
3004
3005 if (sig != 0) {
3006 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3007 put_packet(buf);
3008 }
3009 /* put_packet() might have detected that the peer terminated the
3010 connection. */
3011 if (gdbserver_state.fd < 0) {
3012 return sig;
3013 }
3014
3015 sig = 0;
3016 gdbserver_state.state = RS_IDLE;
3017 gdbserver_state.running_state = 0;
3018 while (gdbserver_state.running_state == 0) {
3019 n = read(gdbserver_state.fd, buf, 256);
3020 if (n > 0) {
3021 int i;
3022
3023 for (i = 0; i < n; i++) {
3024 gdb_read_byte(buf[i]);
3025 }
3026 } else {
3027 /* XXX: Connection closed. Should probably wait for another
3028 connection before continuing. */
3029 if (n == 0) {
3030 close(gdbserver_state.fd);
3031 }
3032 gdbserver_state.fd = -1;
3033 return sig;
3034 }
3035 }
3036 sig = gdbserver_state.signal;
3037 gdbserver_state.signal = 0;
3038 return sig;
3039 }
3040
3041 /* Tell the remote gdb that the process has exited due to SIG. */
3042 void gdb_signalled(CPUArchState *env, int sig)
3043 {
3044 char buf[4];
3045
3046 if (gdbserver_fd < 0 || gdbserver_state.fd < 0) {
3047 return;
3048 }
3049
3050 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3051 put_packet(buf);
3052 }
3053
3054 static bool gdb_accept(void)
3055 {
3056 struct sockaddr_in sockaddr;
3057 socklen_t len;
3058 int fd;
3059
3060 for(;;) {
3061 len = sizeof(sockaddr);
3062 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
3063 if (fd < 0 && errno != EINTR) {
3064 perror("accept");
3065 return false;
3066 } else if (fd >= 0) {
3067 qemu_set_cloexec(fd);
3068 break;
3069 }
3070 }
3071
3072 /* set short latency */
3073 if (socket_set_nodelay(fd)) {
3074 perror("setsockopt");
3075 close(fd);
3076 return false;
3077 }
3078
3079 init_gdbserver_state();
3080 create_default_process(&gdbserver_state);
3081 gdbserver_state.processes[0].attached = true;
3082 gdbserver_state.c_cpu = gdb_first_attached_cpu();
3083 gdbserver_state.g_cpu = gdbserver_state.c_cpu;
3084 gdbserver_state.fd = fd;
3085 gdb_has_xml = false;
3086 return true;
3087 }
3088
3089 static int gdbserver_open(int port)
3090 {
3091 struct sockaddr_in sockaddr;
3092 int fd, ret;
3093
3094 fd = socket(PF_INET, SOCK_STREAM, 0);
3095 if (fd < 0) {
3096 perror("socket");
3097 return -1;
3098 }
3099 qemu_set_cloexec(fd);
3100
3101 socket_set_fast_reuse(fd);
3102
3103 sockaddr.sin_family = AF_INET;
3104 sockaddr.sin_port = htons(port);
3105 sockaddr.sin_addr.s_addr = 0;
3106 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3107 if (ret < 0) {
3108 perror("bind");
3109 close(fd);
3110 return -1;
3111 }
3112 ret = listen(fd, 1);
3113 if (ret < 0) {
3114 perror("listen");
3115 close(fd);
3116 return -1;
3117 }
3118 return fd;
3119 }
3120
3121 int gdbserver_start(int port)
3122 {
3123 gdbserver_fd = gdbserver_open(port);
3124 if (gdbserver_fd < 0)
3125 return -1;
3126 /* accept connections */
3127 if (!gdb_accept()) {
3128 close(gdbserver_fd);
3129 gdbserver_fd = -1;
3130 return -1;
3131 }
3132 return 0;
3133 }
3134
3135 /* Disable gdb stub for child processes. */
3136 void gdbserver_fork(CPUState *cpu)
3137 {
3138 if (gdbserver_fd < 0 || gdbserver_state.fd < 0) {
3139 return;
3140 }
3141 close(gdbserver_state.fd);
3142 gdbserver_state.fd = -1;
3143 cpu_breakpoint_remove_all(cpu, BP_GDB);
3144 cpu_watchpoint_remove_all(cpu, BP_GDB);
3145 }
3146 #else
3147 static int gdb_chr_can_receive(void *opaque)
3148 {
3149 /* We can handle an arbitrarily large amount of data.
3150 Pick the maximum packet size, which is as good as anything. */
3151 return MAX_PACKET_LENGTH;
3152 }
3153
3154 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3155 {
3156 int i;
3157
3158 for (i = 0; i < size; i++) {
3159 gdb_read_byte(buf[i]);
3160 }
3161 }
3162
3163 static void gdb_chr_event(void *opaque, QEMUChrEvent event)
3164 {
3165 int i;
3166 GDBState *s = (GDBState *) opaque;
3167
3168 switch (event) {
3169 case CHR_EVENT_OPENED:
3170 /* Start with first process attached, others detached */
3171 for (i = 0; i < s->process_num; i++) {
3172 s->processes[i].attached = !i;
3173 }
3174
3175 s->c_cpu = gdb_first_attached_cpu();
3176 s->g_cpu = s->c_cpu;
3177
3178 vm_stop(RUN_STATE_PAUSED);
3179 gdb_has_xml = false;
3180 break;
3181 default:
3182 break;
3183 }
3184 }
3185
3186 static void gdb_monitor_output(const char *msg, int len)
3187 {
3188 g_autoptr(GString) buf = g_string_new("O");
3189 memtohex(buf, (uint8_t *)msg, len);
3190 put_packet(buf->str);
3191 }
3192
3193 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3194 {
3195 const char *p = (const char *)buf;
3196 int max_sz;
3197
3198 max_sz = (sizeof(gdbserver_state.last_packet) - 2) / 2;
3199 for (;;) {
3200 if (len <= max_sz) {
3201 gdb_monitor_output(p, len);
3202 break;
3203 }
3204 gdb_monitor_output(p, max_sz);
3205 p += max_sz;
3206 len -= max_sz;
3207 }
3208 return len;
3209 }
3210
3211 #ifndef _WIN32
3212 static void gdb_sigterm_handler(int signal)
3213 {
3214 if (runstate_is_running()) {
3215 vm_stop(RUN_STATE_PAUSED);
3216 }
3217 }
3218 #endif
3219
3220 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3221 bool *be_opened, Error **errp)
3222 {
3223 *be_opened = false;
3224 }
3225
3226 static void char_gdb_class_init(ObjectClass *oc, void *data)
3227 {
3228 ChardevClass *cc = CHARDEV_CLASS(oc);
3229
3230 cc->internal = true;
3231 cc->open = gdb_monitor_open;
3232 cc->chr_write = gdb_monitor_write;
3233 }
3234
3235 #define TYPE_CHARDEV_GDB "chardev-gdb"
3236
3237 static const TypeInfo char_gdb_type_info = {
3238 .name = TYPE_CHARDEV_GDB,
3239 .parent = TYPE_CHARDEV,
3240 .class_init = char_gdb_class_init,
3241 };
3242
3243 static int find_cpu_clusters(Object *child, void *opaque)
3244 {
3245 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3246 GDBState *s = (GDBState *) opaque;
3247 CPUClusterState *cluster = CPU_CLUSTER(child);
3248 GDBProcess *process;
3249
3250 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3251
3252 process = &s->processes[s->process_num - 1];
3253
3254 /*
3255 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3256 * runtime, we enforce here that the machine does not use a cluster ID
3257 * that would lead to PID 0.
3258 */
3259 assert(cluster->cluster_id != UINT32_MAX);
3260 process->pid = cluster->cluster_id + 1;
3261 process->attached = false;
3262 process->target_xml[0] = '\0';
3263
3264 return 0;
3265 }
3266
3267 return object_child_foreach(child, find_cpu_clusters, opaque);
3268 }
3269
3270 static int pid_order(const void *a, const void *b)
3271 {
3272 GDBProcess *pa = (GDBProcess *) a;
3273 GDBProcess *pb = (GDBProcess *) b;
3274
3275 if (pa->pid < pb->pid) {
3276 return -1;
3277 } else if (pa->pid > pb->pid) {
3278 return 1;
3279 } else {
3280 return 0;
3281 }
3282 }
3283
3284 static void create_processes(GDBState *s)
3285 {
3286 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3287
3288 if (gdbserver_state.processes) {
3289 /* Sort by PID */
3290 qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order);
3291 }
3292
3293 create_default_process(s);
3294 }
3295
3296 int gdbserver_start(const char *device)
3297 {
3298 trace_gdbstub_op_start(device);
3299
3300 char gdbstub_device_name[128];
3301 Chardev *chr = NULL;
3302 Chardev *mon_chr;
3303
3304 if (!first_cpu) {
3305 error_report("gdbstub: meaningless to attach gdb to a "
3306 "machine without any CPU.");
3307 return -1;
3308 }
3309
3310 if (!device)
3311 return -1;
3312 if (strcmp(device, "none") != 0) {
3313 if (strstart(device, "tcp:", NULL)) {
3314 /* enforce required TCP attributes */
3315 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3316 "%s,nowait,nodelay,server", device);
3317 device = gdbstub_device_name;
3318 }
3319 #ifndef _WIN32
3320 else if (strcmp(device, "stdio") == 0) {
3321 struct sigaction act;
3322
3323 memset(&act, 0, sizeof(act));
3324 act.sa_handler = gdb_sigterm_handler;
3325 sigaction(SIGINT, &act, NULL);
3326 }
3327 #endif
3328 /*
3329 * FIXME: it's a bit weird to allow using a mux chardev here
3330 * and implicitly setup a monitor. We may want to break this.
3331 */
3332 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3333 if (!chr)
3334 return -1;
3335 }
3336
3337 if (!gdbserver_state.init) {
3338 init_gdbserver_state();
3339
3340 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3341
3342 /* Initialize a monitor terminal for gdb */
3343 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3344 NULL, NULL, &error_abort);
3345 monitor_init_hmp(mon_chr, false, &error_abort);
3346 } else {
3347 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
3348 mon_chr = gdbserver_state.mon_chr;
3349 reset_gdbserver_state();
3350 }
3351
3352 create_processes(&gdbserver_state);
3353
3354 if (chr) {
3355 qemu_chr_fe_init(&gdbserver_state.chr, chr, &error_abort);
3356 qemu_chr_fe_set_handlers(&gdbserver_state.chr, gdb_chr_can_receive,
3357 gdb_chr_receive, gdb_chr_event,
3358 NULL, &gdbserver_state, NULL, true);
3359 }
3360 gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
3361 gdbserver_state.mon_chr = mon_chr;
3362 gdbserver_state.current_syscall_cb = NULL;
3363
3364 return 0;
3365 }
3366
3367 void gdbserver_cleanup(void)
3368 {
3369 if (gdbserver_state.init) {
3370 put_packet("W00");
3371 }
3372 }
3373
3374 static void register_types(void)
3375 {
3376 type_register_static(&char_gdb_type_info);
3377 }
3378
3379 type_init(register_types);
3380 #endif