]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/i386.cc
3e2483664dca0814c099bb23c2a4a3e3d436bead
[thirdparty/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40
41 namespace
42 {
43
44 using namespace gold;
45
46 class Output_data_plt_i386;
47
48 // The i386 target class.
49 // TLS info comes from
50 // http://people.redhat.com/drepper/tls.pdf
51 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
52
53 class Target_i386 : public Sized_target<32, false>
54 {
55 public:
56 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
57
58 Target_i386()
59 : Sized_target<32, false>(&i386_info),
60 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
61 copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
62 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
63 { }
64
65 // Scan the relocations to look for symbol adjustments.
66 void
67 scan_relocs(const General_options& options,
68 Symbol_table* symtab,
69 Layout* layout,
70 Sized_relobj<32, false>* object,
71 unsigned int data_shndx,
72 unsigned int sh_type,
73 const unsigned char* prelocs,
74 size_t reloc_count,
75 Output_section* output_section,
76 bool needs_special_offset_handling,
77 size_t local_symbol_count,
78 const unsigned char* plocal_symbols);
79
80 // Finalize the sections.
81 void
82 do_finalize_sections(Layout*);
83
84 // Return the value to use for a dynamic which requires special
85 // treatment.
86 uint64_t
87 do_dynsym_value(const Symbol*) const;
88
89 // Relocate a section.
90 void
91 relocate_section(const Relocate_info<32, false>*,
92 unsigned int sh_type,
93 const unsigned char* prelocs,
94 size_t reloc_count,
95 Output_section* output_section,
96 bool needs_special_offset_handling,
97 unsigned char* view,
98 elfcpp::Elf_types<32>::Elf_Addr view_address,
99 section_size_type view_size);
100
101 // Scan the relocs during a relocatable link.
102 void
103 scan_relocatable_relocs(const General_options& options,
104 Symbol_table* symtab,
105 Layout* layout,
106 Sized_relobj<32, false>* object,
107 unsigned int data_shndx,
108 unsigned int sh_type,
109 const unsigned char* prelocs,
110 size_t reloc_count,
111 Output_section* output_section,
112 bool needs_special_offset_handling,
113 size_t local_symbol_count,
114 const unsigned char* plocal_symbols,
115 Relocatable_relocs*);
116
117 // Relocate a section during a relocatable link.
118 void
119 relocate_for_relocatable(const Relocate_info<32, false>*,
120 unsigned int sh_type,
121 const unsigned char* prelocs,
122 size_t reloc_count,
123 Output_section* output_section,
124 off_t offset_in_output_section,
125 const Relocatable_relocs*,
126 unsigned char* view,
127 elfcpp::Elf_types<32>::Elf_Addr view_address,
128 section_size_type view_size,
129 unsigned char* reloc_view,
130 section_size_type reloc_view_size);
131
132 // Return a string used to fill a code section with nops.
133 std::string
134 do_code_fill(section_size_type length) const;
135
136 // Return whether SYM is defined by the ABI.
137 bool
138 do_is_defined_by_abi(Symbol* sym) const
139 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
140
141 // Return the size of the GOT section.
142 section_size_type
143 got_size()
144 {
145 gold_assert(this->got_ != NULL);
146 return this->got_->data_size();
147 }
148
149 private:
150 // The class which scans relocations.
151 struct Scan
152 {
153 inline void
154 local(const General_options& options, Symbol_table* symtab,
155 Layout* layout, Target_i386* target,
156 Sized_relobj<32, false>* object,
157 unsigned int data_shndx,
158 Output_section* output_section,
159 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
160 const elfcpp::Sym<32, false>& lsym);
161
162 inline void
163 global(const General_options& options, Symbol_table* symtab,
164 Layout* layout, Target_i386* target,
165 Sized_relobj<32, false>* object,
166 unsigned int data_shndx,
167 Output_section* output_section,
168 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
169 Symbol* gsym);
170
171 static void
172 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
173
174 static void
175 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
176 Symbol*);
177 };
178
179 // The class which implements relocation.
180 class Relocate
181 {
182 public:
183 Relocate()
184 : skip_call_tls_get_addr_(false),
185 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
186 { }
187
188 ~Relocate()
189 {
190 if (this->skip_call_tls_get_addr_)
191 {
192 // FIXME: This needs to specify the location somehow.
193 gold_error(_("missing expected TLS relocation"));
194 }
195 }
196
197 // Return whether the static relocation needs to be applied.
198 inline bool
199 should_apply_static_reloc(const Sized_symbol<32>* gsym,
200 int ref_flags,
201 bool is_32bit);
202
203 // Do a relocation. Return false if the caller should not issue
204 // any warnings about this relocation.
205 inline bool
206 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
207 const elfcpp::Rel<32, false>&,
208 unsigned int r_type, const Sized_symbol<32>*,
209 const Symbol_value<32>*,
210 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
211 section_size_type);
212
213 private:
214 // Do a TLS relocation.
215 inline void
216 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
217 size_t relnum, const elfcpp::Rel<32, false>&,
218 unsigned int r_type, const Sized_symbol<32>*,
219 const Symbol_value<32>*,
220 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
221 section_size_type);
222
223 // Do a TLS General-Dynamic to Initial-Exec transition.
224 inline void
225 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
226 Output_segment* tls_segment,
227 const elfcpp::Rel<32, false>&, unsigned int r_type,
228 elfcpp::Elf_types<32>::Elf_Addr value,
229 unsigned char* view,
230 section_size_type view_size);
231
232 // Do a TLS General-Dynamic to Local-Exec transition.
233 inline void
234 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
235 Output_segment* tls_segment,
236 const elfcpp::Rel<32, false>&, unsigned int r_type,
237 elfcpp::Elf_types<32>::Elf_Addr value,
238 unsigned char* view,
239 section_size_type view_size);
240
241 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
242 // transition.
243 inline void
244 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
245 Output_segment* tls_segment,
246 const elfcpp::Rel<32, false>&, unsigned int r_type,
247 elfcpp::Elf_types<32>::Elf_Addr value,
248 unsigned char* view,
249 section_size_type view_size);
250
251 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
252 // transition.
253 inline void
254 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
255 Output_segment* tls_segment,
256 const elfcpp::Rel<32, false>&, unsigned int r_type,
257 elfcpp::Elf_types<32>::Elf_Addr value,
258 unsigned char* view,
259 section_size_type view_size);
260
261 // Do a TLS Local-Dynamic to Local-Exec transition.
262 inline void
263 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
264 Output_segment* tls_segment,
265 const elfcpp::Rel<32, false>&, unsigned int r_type,
266 elfcpp::Elf_types<32>::Elf_Addr value,
267 unsigned char* view,
268 section_size_type view_size);
269
270 // Do a TLS Initial-Exec to Local-Exec transition.
271 static inline void
272 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
273 Output_segment* tls_segment,
274 const elfcpp::Rel<32, false>&, unsigned int r_type,
275 elfcpp::Elf_types<32>::Elf_Addr value,
276 unsigned char* view,
277 section_size_type view_size);
278
279 // We need to keep track of which type of local dynamic relocation
280 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
281 enum Local_dynamic_type
282 {
283 LOCAL_DYNAMIC_NONE,
284 LOCAL_DYNAMIC_SUN,
285 LOCAL_DYNAMIC_GNU
286 };
287
288 // This is set if we should skip the next reloc, which should be a
289 // PLT32 reloc against ___tls_get_addr.
290 bool skip_call_tls_get_addr_;
291 // The type of local dynamic relocation we have seen in the section
292 // being relocated, if any.
293 Local_dynamic_type local_dynamic_type_;
294 };
295
296 // A class which returns the size required for a relocation type,
297 // used while scanning relocs during a relocatable link.
298 class Relocatable_size_for_reloc
299 {
300 public:
301 unsigned int
302 get_size_for_reloc(unsigned int, Relobj*);
303 };
304
305 // Adjust TLS relocation type based on the options and whether this
306 // is a local symbol.
307 static tls::Tls_optimization
308 optimize_tls_reloc(bool is_final, int r_type);
309
310 // Get the GOT section, creating it if necessary.
311 Output_data_got<32, false>*
312 got_section(Symbol_table*, Layout*);
313
314 // Get the GOT PLT section.
315 Output_data_space*
316 got_plt_section() const
317 {
318 gold_assert(this->got_plt_ != NULL);
319 return this->got_plt_;
320 }
321
322 // Create a PLT entry for a global symbol.
323 void
324 make_plt_entry(Symbol_table*, Layout*, Symbol*);
325
326 // Define the _TLS_MODULE_BASE_ symbol at the end of the TLS segment.
327 void
328 define_tls_base_symbol(Symbol_table*, Layout*);
329
330 // Create a GOT entry for the TLS module index.
331 unsigned int
332 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
333 Sized_relobj<32, false>* object);
334
335 // Get the PLT section.
336 const Output_data_plt_i386*
337 plt_section() const
338 {
339 gold_assert(this->plt_ != NULL);
340 return this->plt_;
341 }
342
343 // Get the dynamic reloc section, creating it if necessary.
344 Reloc_section*
345 rel_dyn_section(Layout*);
346
347 // Return true if the symbol may need a COPY relocation.
348 // References from an executable object to non-function symbols
349 // defined in a dynamic object may need a COPY relocation.
350 bool
351 may_need_copy_reloc(Symbol* gsym)
352 {
353 return (!parameters->options().shared()
354 && gsym->is_from_dynobj()
355 && gsym->type() != elfcpp::STT_FUNC);
356 }
357
358 // Add a potential copy relocation.
359 void
360 copy_reloc(Symbol_table* symtab, Layout* layout, Relobj* object,
361 unsigned int shndx, Output_section* output_section,
362 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
363 {
364 this->copy_relocs_.copy_reloc(symtab, layout,
365 symtab->get_sized_symbol<32>(sym),
366 object, shndx, output_section, reloc,
367 this->rel_dyn_section(layout));
368 }
369
370 // Information about this specific target which we pass to the
371 // general Target structure.
372 static const Target::Target_info i386_info;
373
374 // The types of GOT entries needed for this platform.
375 enum Got_type
376 {
377 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
378 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
379 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
380 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
381 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
382 };
383
384 // The GOT section.
385 Output_data_got<32, false>* got_;
386 // The PLT section.
387 Output_data_plt_i386* plt_;
388 // The GOT PLT section.
389 Output_data_space* got_plt_;
390 // The dynamic reloc section.
391 Reloc_section* rel_dyn_;
392 // Relocs saved to avoid a COPY reloc.
393 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
394 // Space for variables copied with a COPY reloc.
395 Output_data_space* dynbss_;
396 // Offset of the GOT entry for the TLS module index.
397 unsigned int got_mod_index_offset_;
398 // True if the _TLS_MODULE_BASE_ symbol has been defined.
399 bool tls_base_symbol_defined_;
400 };
401
402 const Target::Target_info Target_i386::i386_info =
403 {
404 32, // size
405 false, // is_big_endian
406 elfcpp::EM_386, // machine_code
407 false, // has_make_symbol
408 false, // has_resolve
409 true, // has_code_fill
410 true, // is_default_stack_executable
411 '\0', // wrap_char
412 "/usr/lib/libc.so.1", // dynamic_linker
413 0x08048000, // default_text_segment_address
414 0x1000, // abi_pagesize (overridable by -z max-page-size)
415 0x1000 // common_pagesize (overridable by -z common-page-size)
416 };
417
418 // Get the GOT section, creating it if necessary.
419
420 Output_data_got<32, false>*
421 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
422 {
423 if (this->got_ == NULL)
424 {
425 gold_assert(symtab != NULL && layout != NULL);
426
427 this->got_ = new Output_data_got<32, false>();
428
429 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
430 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
431 this->got_);
432
433 // The old GNU linker creates a .got.plt section. We just
434 // create another set of data in the .got section. Note that we
435 // always create a PLT if we create a GOT, although the PLT
436 // might be empty.
437 this->got_plt_ = new Output_data_space(4);
438 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
439 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
440 this->got_plt_);
441
442 // The first three entries are reserved.
443 this->got_plt_->set_current_data_size(3 * 4);
444
445 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
446 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
447 this->got_plt_,
448 0, 0, elfcpp::STT_OBJECT,
449 elfcpp::STB_LOCAL,
450 elfcpp::STV_HIDDEN, 0,
451 false, false);
452 }
453
454 return this->got_;
455 }
456
457 // Get the dynamic reloc section, creating it if necessary.
458
459 Target_i386::Reloc_section*
460 Target_i386::rel_dyn_section(Layout* layout)
461 {
462 if (this->rel_dyn_ == NULL)
463 {
464 gold_assert(layout != NULL);
465 this->rel_dyn_ = new Reloc_section();
466 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
467 elfcpp::SHF_ALLOC, this->rel_dyn_);
468 }
469 return this->rel_dyn_;
470 }
471
472 // A class to handle the PLT data.
473
474 class Output_data_plt_i386 : public Output_section_data
475 {
476 public:
477 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
478
479 Output_data_plt_i386(Layout*, Output_data_space*);
480
481 // Add an entry to the PLT.
482 void
483 add_entry(Symbol* gsym);
484
485 // Return the .rel.plt section data.
486 const Reloc_section*
487 rel_plt() const
488 { return this->rel_; }
489
490 protected:
491 void
492 do_adjust_output_section(Output_section* os);
493
494 private:
495 // The size of an entry in the PLT.
496 static const int plt_entry_size = 16;
497
498 // The first entry in the PLT for an executable.
499 static unsigned char exec_first_plt_entry[plt_entry_size];
500
501 // The first entry in the PLT for a shared object.
502 static unsigned char dyn_first_plt_entry[plt_entry_size];
503
504 // Other entries in the PLT for an executable.
505 static unsigned char exec_plt_entry[plt_entry_size];
506
507 // Other entries in the PLT for a shared object.
508 static unsigned char dyn_plt_entry[plt_entry_size];
509
510 // Set the final size.
511 void
512 set_final_data_size()
513 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
514
515 // Write out the PLT data.
516 void
517 do_write(Output_file*);
518
519 // The reloc section.
520 Reloc_section* rel_;
521 // The .got.plt section.
522 Output_data_space* got_plt_;
523 // The number of PLT entries.
524 unsigned int count_;
525 };
526
527 // Create the PLT section. The ordinary .got section is an argument,
528 // since we need to refer to the start. We also create our own .got
529 // section just for PLT entries.
530
531 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
532 Output_data_space* got_plt)
533 : Output_section_data(4), got_plt_(got_plt), count_(0)
534 {
535 this->rel_ = new Reloc_section();
536 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
537 elfcpp::SHF_ALLOC, this->rel_);
538 }
539
540 void
541 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
542 {
543 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
544 // linker, and so do we.
545 os->set_entsize(4);
546 }
547
548 // Add an entry to the PLT.
549
550 void
551 Output_data_plt_i386::add_entry(Symbol* gsym)
552 {
553 gold_assert(!gsym->has_plt_offset());
554
555 // Note that when setting the PLT offset we skip the initial
556 // reserved PLT entry.
557 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
558
559 ++this->count_;
560
561 section_offset_type got_offset = this->got_plt_->current_data_size();
562
563 // Every PLT entry needs a GOT entry which points back to the PLT
564 // entry (this will be changed by the dynamic linker, normally
565 // lazily when the function is called).
566 this->got_plt_->set_current_data_size(got_offset + 4);
567
568 // Every PLT entry needs a reloc.
569 gsym->set_needs_dynsym_entry();
570 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
571 got_offset);
572
573 // Note that we don't need to save the symbol. The contents of the
574 // PLT are independent of which symbols are used. The symbols only
575 // appear in the relocations.
576 }
577
578 // The first entry in the PLT for an executable.
579
580 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
581 {
582 0xff, 0x35, // pushl contents of memory address
583 0, 0, 0, 0, // replaced with address of .got + 4
584 0xff, 0x25, // jmp indirect
585 0, 0, 0, 0, // replaced with address of .got + 8
586 0, 0, 0, 0 // unused
587 };
588
589 // The first entry in the PLT for a shared object.
590
591 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
592 {
593 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
594 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
595 0, 0, 0, 0 // unused
596 };
597
598 // Subsequent entries in the PLT for an executable.
599
600 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
601 {
602 0xff, 0x25, // jmp indirect
603 0, 0, 0, 0, // replaced with address of symbol in .got
604 0x68, // pushl immediate
605 0, 0, 0, 0, // replaced with offset into relocation table
606 0xe9, // jmp relative
607 0, 0, 0, 0 // replaced with offset to start of .plt
608 };
609
610 // Subsequent entries in the PLT for a shared object.
611
612 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
613 {
614 0xff, 0xa3, // jmp *offset(%ebx)
615 0, 0, 0, 0, // replaced with offset of symbol in .got
616 0x68, // pushl immediate
617 0, 0, 0, 0, // replaced with offset into relocation table
618 0xe9, // jmp relative
619 0, 0, 0, 0 // replaced with offset to start of .plt
620 };
621
622 // Write out the PLT. This uses the hand-coded instructions above,
623 // and adjusts them as needed. This is all specified by the i386 ELF
624 // Processor Supplement.
625
626 void
627 Output_data_plt_i386::do_write(Output_file* of)
628 {
629 const off_t offset = this->offset();
630 const section_size_type oview_size =
631 convert_to_section_size_type(this->data_size());
632 unsigned char* const oview = of->get_output_view(offset, oview_size);
633
634 const off_t got_file_offset = this->got_plt_->offset();
635 const section_size_type got_size =
636 convert_to_section_size_type(this->got_plt_->data_size());
637 unsigned char* const got_view = of->get_output_view(got_file_offset,
638 got_size);
639
640 unsigned char* pov = oview;
641
642 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
643 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
644
645 if (parameters->options().shared())
646 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
647 else
648 {
649 memcpy(pov, exec_first_plt_entry, plt_entry_size);
650 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
651 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
652 }
653 pov += plt_entry_size;
654
655 unsigned char* got_pov = got_view;
656
657 memset(got_pov, 0, 12);
658 got_pov += 12;
659
660 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
661
662 unsigned int plt_offset = plt_entry_size;
663 unsigned int plt_rel_offset = 0;
664 unsigned int got_offset = 12;
665 const unsigned int count = this->count_;
666 for (unsigned int i = 0;
667 i < count;
668 ++i,
669 pov += plt_entry_size,
670 got_pov += 4,
671 plt_offset += plt_entry_size,
672 plt_rel_offset += rel_size,
673 got_offset += 4)
674 {
675 // Set and adjust the PLT entry itself.
676
677 if (parameters->options().shared())
678 {
679 memcpy(pov, dyn_plt_entry, plt_entry_size);
680 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
681 }
682 else
683 {
684 memcpy(pov, exec_plt_entry, plt_entry_size);
685 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
686 (got_address
687 + got_offset));
688 }
689
690 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
691 elfcpp::Swap<32, false>::writeval(pov + 12,
692 - (plt_offset + plt_entry_size));
693
694 // Set the entry in the GOT.
695 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
696 }
697
698 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
699 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
700
701 of->write_output_view(offset, oview_size, oview);
702 of->write_output_view(got_file_offset, got_size, got_view);
703 }
704
705 // Create a PLT entry for a global symbol.
706
707 void
708 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
709 {
710 if (gsym->has_plt_offset())
711 return;
712
713 if (this->plt_ == NULL)
714 {
715 // Create the GOT sections first.
716 this->got_section(symtab, layout);
717
718 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
719 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
720 (elfcpp::SHF_ALLOC
721 | elfcpp::SHF_EXECINSTR),
722 this->plt_);
723 }
724
725 this->plt_->add_entry(gsym);
726 }
727
728 // Define the _TLS_MODULE_BASE_ symbol at the end of the TLS segment.
729
730 void
731 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
732 {
733 if (this->tls_base_symbol_defined_)
734 return;
735
736 Output_segment* tls_segment = layout->tls_segment();
737 if (tls_segment != NULL)
738 {
739 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
740 tls_segment, 0, 0,
741 elfcpp::STT_TLS,
742 elfcpp::STB_LOCAL,
743 elfcpp::STV_HIDDEN, 0,
744 Symbol::SEGMENT_END, true);
745 }
746 this->tls_base_symbol_defined_ = true;
747 }
748
749 // Create a GOT entry for the TLS module index.
750
751 unsigned int
752 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
753 Sized_relobj<32, false>* object)
754 {
755 if (this->got_mod_index_offset_ == -1U)
756 {
757 gold_assert(symtab != NULL && layout != NULL && object != NULL);
758 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
759 Output_data_got<32, false>* got = this->got_section(symtab, layout);
760 unsigned int got_offset = got->add_constant(0);
761 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
762 got_offset);
763 got->add_constant(0);
764 this->got_mod_index_offset_ = got_offset;
765 }
766 return this->got_mod_index_offset_;
767 }
768
769 // Optimize the TLS relocation type based on what we know about the
770 // symbol. IS_FINAL is true if the final address of this symbol is
771 // known at link time.
772
773 tls::Tls_optimization
774 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
775 {
776 // If we are generating a shared library, then we can't do anything
777 // in the linker.
778 if (parameters->options().shared())
779 return tls::TLSOPT_NONE;
780
781 switch (r_type)
782 {
783 case elfcpp::R_386_TLS_GD:
784 case elfcpp::R_386_TLS_GOTDESC:
785 case elfcpp::R_386_TLS_DESC_CALL:
786 // These are General-Dynamic which permits fully general TLS
787 // access. Since we know that we are generating an executable,
788 // we can convert this to Initial-Exec. If we also know that
789 // this is a local symbol, we can further switch to Local-Exec.
790 if (is_final)
791 return tls::TLSOPT_TO_LE;
792 return tls::TLSOPT_TO_IE;
793
794 case elfcpp::R_386_TLS_LDM:
795 // This is Local-Dynamic, which refers to a local symbol in the
796 // dynamic TLS block. Since we know that we generating an
797 // executable, we can switch to Local-Exec.
798 return tls::TLSOPT_TO_LE;
799
800 case elfcpp::R_386_TLS_LDO_32:
801 // Another type of Local-Dynamic relocation.
802 return tls::TLSOPT_TO_LE;
803
804 case elfcpp::R_386_TLS_IE:
805 case elfcpp::R_386_TLS_GOTIE:
806 case elfcpp::R_386_TLS_IE_32:
807 // These are Initial-Exec relocs which get the thread offset
808 // from the GOT. If we know that we are linking against the
809 // local symbol, we can switch to Local-Exec, which links the
810 // thread offset into the instruction.
811 if (is_final)
812 return tls::TLSOPT_TO_LE;
813 return tls::TLSOPT_NONE;
814
815 case elfcpp::R_386_TLS_LE:
816 case elfcpp::R_386_TLS_LE_32:
817 // When we already have Local-Exec, there is nothing further we
818 // can do.
819 return tls::TLSOPT_NONE;
820
821 default:
822 gold_unreachable();
823 }
824 }
825
826 // Report an unsupported relocation against a local symbol.
827
828 void
829 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
830 unsigned int r_type)
831 {
832 gold_error(_("%s: unsupported reloc %u against local symbol"),
833 object->name().c_str(), r_type);
834 }
835
836 // Scan a relocation for a local symbol.
837
838 inline void
839 Target_i386::Scan::local(const General_options&,
840 Symbol_table* symtab,
841 Layout* layout,
842 Target_i386* target,
843 Sized_relobj<32, false>* object,
844 unsigned int data_shndx,
845 Output_section* output_section,
846 const elfcpp::Rel<32, false>& reloc,
847 unsigned int r_type,
848 const elfcpp::Sym<32, false>& lsym)
849 {
850 switch (r_type)
851 {
852 case elfcpp::R_386_NONE:
853 case elfcpp::R_386_GNU_VTINHERIT:
854 case elfcpp::R_386_GNU_VTENTRY:
855 break;
856
857 case elfcpp::R_386_32:
858 // If building a shared library (or a position-independent
859 // executable), we need to create a dynamic relocation for
860 // this location. The relocation applied at link time will
861 // apply the link-time value, so we flag the location with
862 // an R_386_RELATIVE relocation so the dynamic loader can
863 // relocate it easily.
864 if (parameters->options().output_is_position_independent())
865 {
866 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
867 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
868 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
869 output_section, data_shndx,
870 reloc.get_r_offset());
871 }
872 break;
873
874 case elfcpp::R_386_16:
875 case elfcpp::R_386_8:
876 // If building a shared library (or a position-independent
877 // executable), we need to create a dynamic relocation for
878 // this location. Because the addend needs to remain in the
879 // data section, we need to be careful not to apply this
880 // relocation statically.
881 if (parameters->options().output_is_position_independent())
882 {
883 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
884 if (lsym.get_st_type() != elfcpp::STT_SECTION)
885 {
886 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
887 rel_dyn->add_local(object, r_sym, r_type, output_section,
888 data_shndx, reloc.get_r_offset());
889 }
890 else
891 {
892 gold_assert(lsym.get_st_value() == 0);
893 rel_dyn->add_local_section(object, lsym.get_st_shndx(),
894 r_type, output_section,
895 data_shndx, reloc.get_r_offset());
896 }
897 }
898 break;
899
900 case elfcpp::R_386_PC32:
901 case elfcpp::R_386_PC16:
902 case elfcpp::R_386_PC8:
903 break;
904
905 case elfcpp::R_386_PLT32:
906 // Since we know this is a local symbol, we can handle this as a
907 // PC32 reloc.
908 break;
909
910 case elfcpp::R_386_GOTOFF:
911 case elfcpp::R_386_GOTPC:
912 // We need a GOT section.
913 target->got_section(symtab, layout);
914 break;
915
916 case elfcpp::R_386_GOT32:
917 {
918 // The symbol requires a GOT entry.
919 Output_data_got<32, false>* got = target->got_section(symtab, layout);
920 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
921 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
922 {
923 // If we are generating a shared object, we need to add a
924 // dynamic RELATIVE relocation for this symbol's GOT entry.
925 if (parameters->options().output_is_position_independent())
926 {
927 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
928 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
929 rel_dyn->add_local_relative(
930 object, r_sym, elfcpp::R_386_RELATIVE, got,
931 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
932 }
933 }
934 }
935 break;
936
937 // These are relocations which should only be seen by the
938 // dynamic linker, and should never be seen here.
939 case elfcpp::R_386_COPY:
940 case elfcpp::R_386_GLOB_DAT:
941 case elfcpp::R_386_JUMP_SLOT:
942 case elfcpp::R_386_RELATIVE:
943 case elfcpp::R_386_TLS_TPOFF:
944 case elfcpp::R_386_TLS_DTPMOD32:
945 case elfcpp::R_386_TLS_DTPOFF32:
946 case elfcpp::R_386_TLS_TPOFF32:
947 case elfcpp::R_386_TLS_DESC:
948 gold_error(_("%s: unexpected reloc %u in object file"),
949 object->name().c_str(), r_type);
950 break;
951
952 // These are initial TLS relocs, which are expected when
953 // linking.
954 case elfcpp::R_386_TLS_GD: // Global-dynamic
955 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
956 case elfcpp::R_386_TLS_DESC_CALL:
957 case elfcpp::R_386_TLS_LDM: // Local-dynamic
958 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
959 case elfcpp::R_386_TLS_IE: // Initial-exec
960 case elfcpp::R_386_TLS_IE_32:
961 case elfcpp::R_386_TLS_GOTIE:
962 case elfcpp::R_386_TLS_LE: // Local-exec
963 case elfcpp::R_386_TLS_LE_32:
964 {
965 bool output_is_shared = parameters->options().shared();
966 const tls::Tls_optimization optimized_type
967 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
968 switch (r_type)
969 {
970 case elfcpp::R_386_TLS_GD: // Global-dynamic
971 if (optimized_type == tls::TLSOPT_NONE)
972 {
973 // Create a pair of GOT entries for the module index and
974 // dtv-relative offset.
975 Output_data_got<32, false>* got
976 = target->got_section(symtab, layout);
977 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
978 got->add_local_pair_with_rel(object, r_sym,
979 lsym.get_st_shndx(),
980 GOT_TYPE_TLS_PAIR,
981 target->rel_dyn_section(layout),
982 elfcpp::R_386_TLS_DTPMOD32, 0);
983 }
984 else if (optimized_type != tls::TLSOPT_TO_LE)
985 unsupported_reloc_local(object, r_type);
986 break;
987
988 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
989 target->define_tls_base_symbol(symtab, layout);
990 if (optimized_type == tls::TLSOPT_NONE)
991 {
992 // Create a double GOT entry with an R_386_TLS_DESC reloc.
993 Output_data_got<32, false>* got
994 = target->got_section(symtab, layout);
995 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
996 got->add_local_pair_with_rel(object, r_sym,
997 lsym.get_st_shndx(),
998 GOT_TYPE_TLS_DESC,
999 target->rel_dyn_section(layout),
1000 elfcpp::R_386_TLS_DESC, 0);
1001 }
1002 else if (optimized_type != tls::TLSOPT_TO_LE)
1003 unsupported_reloc_local(object, r_type);
1004 break;
1005
1006 case elfcpp::R_386_TLS_DESC_CALL:
1007 break;
1008
1009 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1010 if (optimized_type == tls::TLSOPT_NONE)
1011 {
1012 // Create a GOT entry for the module index.
1013 target->got_mod_index_entry(symtab, layout, object);
1014 }
1015 else if (optimized_type != tls::TLSOPT_TO_LE)
1016 unsupported_reloc_local(object, r_type);
1017 break;
1018
1019 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1020 break;
1021
1022 case elfcpp::R_386_TLS_IE: // Initial-exec
1023 case elfcpp::R_386_TLS_IE_32:
1024 case elfcpp::R_386_TLS_GOTIE:
1025 layout->set_has_static_tls();
1026 if (optimized_type == tls::TLSOPT_NONE)
1027 {
1028 // For the R_386_TLS_IE relocation, we need to create a
1029 // dynamic relocation when building a shared library.
1030 if (r_type == elfcpp::R_386_TLS_IE
1031 && parameters->options().shared())
1032 {
1033 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1034 unsigned int r_sym
1035 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1036 rel_dyn->add_local_relative(object, r_sym,
1037 elfcpp::R_386_RELATIVE,
1038 output_section, data_shndx,
1039 reloc.get_r_offset());
1040 }
1041 // Create a GOT entry for the tp-relative offset.
1042 Output_data_got<32, false>* got
1043 = target->got_section(symtab, layout);
1044 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1045 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1046 ? elfcpp::R_386_TLS_TPOFF32
1047 : elfcpp::R_386_TLS_TPOFF);
1048 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1049 ? GOT_TYPE_TLS_OFFSET
1050 : GOT_TYPE_TLS_NOFFSET);
1051 got->add_local_with_rel(object, r_sym, got_type,
1052 target->rel_dyn_section(layout),
1053 dyn_r_type);
1054 }
1055 else if (optimized_type != tls::TLSOPT_TO_LE)
1056 unsupported_reloc_local(object, r_type);
1057 break;
1058
1059 case elfcpp::R_386_TLS_LE: // Local-exec
1060 case elfcpp::R_386_TLS_LE_32:
1061 layout->set_has_static_tls();
1062 if (output_is_shared)
1063 {
1064 // We need to create a dynamic relocation.
1065 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1066 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1067 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1068 ? elfcpp::R_386_TLS_TPOFF32
1069 : elfcpp::R_386_TLS_TPOFF);
1070 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1071 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1072 data_shndx, reloc.get_r_offset());
1073 }
1074 break;
1075
1076 default:
1077 gold_unreachable();
1078 }
1079 }
1080 break;
1081
1082 case elfcpp::R_386_32PLT:
1083 case elfcpp::R_386_TLS_GD_32:
1084 case elfcpp::R_386_TLS_GD_PUSH:
1085 case elfcpp::R_386_TLS_GD_CALL:
1086 case elfcpp::R_386_TLS_GD_POP:
1087 case elfcpp::R_386_TLS_LDM_32:
1088 case elfcpp::R_386_TLS_LDM_PUSH:
1089 case elfcpp::R_386_TLS_LDM_CALL:
1090 case elfcpp::R_386_TLS_LDM_POP:
1091 case elfcpp::R_386_USED_BY_INTEL_200:
1092 default:
1093 unsupported_reloc_local(object, r_type);
1094 break;
1095 }
1096 }
1097
1098 // Report an unsupported relocation against a global symbol.
1099
1100 void
1101 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1102 unsigned int r_type,
1103 Symbol* gsym)
1104 {
1105 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1106 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1107 }
1108
1109 // Scan a relocation for a global symbol.
1110
1111 inline void
1112 Target_i386::Scan::global(const General_options&,
1113 Symbol_table* symtab,
1114 Layout* layout,
1115 Target_i386* target,
1116 Sized_relobj<32, false>* object,
1117 unsigned int data_shndx,
1118 Output_section* output_section,
1119 const elfcpp::Rel<32, false>& reloc,
1120 unsigned int r_type,
1121 Symbol* gsym)
1122 {
1123 switch (r_type)
1124 {
1125 case elfcpp::R_386_NONE:
1126 case elfcpp::R_386_GNU_VTINHERIT:
1127 case elfcpp::R_386_GNU_VTENTRY:
1128 break;
1129
1130 case elfcpp::R_386_32:
1131 case elfcpp::R_386_16:
1132 case elfcpp::R_386_8:
1133 {
1134 // Make a PLT entry if necessary.
1135 if (gsym->needs_plt_entry())
1136 {
1137 target->make_plt_entry(symtab, layout, gsym);
1138 // Since this is not a PC-relative relocation, we may be
1139 // taking the address of a function. In that case we need to
1140 // set the entry in the dynamic symbol table to the address of
1141 // the PLT entry.
1142 if (gsym->is_from_dynobj() && !parameters->options().shared())
1143 gsym->set_needs_dynsym_value();
1144 }
1145 // Make a dynamic relocation if necessary.
1146 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1147 {
1148 if (target->may_need_copy_reloc(gsym))
1149 {
1150 target->copy_reloc(symtab, layout, object,
1151 data_shndx, output_section, gsym, reloc);
1152 }
1153 else if (r_type == elfcpp::R_386_32
1154 && gsym->can_use_relative_reloc(false))
1155 {
1156 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1157 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1158 output_section, object,
1159 data_shndx, reloc.get_r_offset());
1160 }
1161 else
1162 {
1163 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1164 rel_dyn->add_global(gsym, r_type, output_section, object,
1165 data_shndx, reloc.get_r_offset());
1166 }
1167 }
1168 }
1169 break;
1170
1171 case elfcpp::R_386_PC32:
1172 case elfcpp::R_386_PC16:
1173 case elfcpp::R_386_PC8:
1174 {
1175 // Make a PLT entry if necessary.
1176 if (gsym->needs_plt_entry())
1177 {
1178 // These relocations are used for function calls only in
1179 // non-PIC code. For a 32-bit relocation in a shared library,
1180 // we'll need a text relocation anyway, so we can skip the
1181 // PLT entry and let the dynamic linker bind the call directly
1182 // to the target. For smaller relocations, we should use a
1183 // PLT entry to ensure that the call can reach.
1184 if (!parameters->options().shared()
1185 || r_type != elfcpp::R_386_PC32)
1186 target->make_plt_entry(symtab, layout, gsym);
1187 }
1188 // Make a dynamic relocation if necessary.
1189 int flags = Symbol::NON_PIC_REF;
1190 if (gsym->type() == elfcpp::STT_FUNC)
1191 flags |= Symbol::FUNCTION_CALL;
1192 if (gsym->needs_dynamic_reloc(flags))
1193 {
1194 if (target->may_need_copy_reloc(gsym))
1195 {
1196 target->copy_reloc(symtab, layout, object,
1197 data_shndx, output_section, gsym, reloc);
1198 }
1199 else
1200 {
1201 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1202 rel_dyn->add_global(gsym, r_type, output_section, object,
1203 data_shndx, reloc.get_r_offset());
1204 }
1205 }
1206 }
1207 break;
1208
1209 case elfcpp::R_386_GOT32:
1210 {
1211 // The symbol requires a GOT entry.
1212 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1213 if (gsym->final_value_is_known())
1214 got->add_global(gsym, GOT_TYPE_STANDARD);
1215 else
1216 {
1217 // If this symbol is not fully resolved, we need to add a
1218 // GOT entry with a dynamic relocation.
1219 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1220 if (gsym->is_from_dynobj()
1221 || gsym->is_undefined()
1222 || gsym->is_preemptible())
1223 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
1224 rel_dyn, elfcpp::R_386_GLOB_DAT);
1225 else
1226 {
1227 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1228 rel_dyn->add_global_relative(
1229 gsym, elfcpp::R_386_RELATIVE, got,
1230 gsym->got_offset(GOT_TYPE_STANDARD));
1231 }
1232 }
1233 }
1234 break;
1235
1236 case elfcpp::R_386_PLT32:
1237 // If the symbol is fully resolved, this is just a PC32 reloc.
1238 // Otherwise we need a PLT entry.
1239 if (gsym->final_value_is_known())
1240 break;
1241 // If building a shared library, we can also skip the PLT entry
1242 // if the symbol is defined in the output file and is protected
1243 // or hidden.
1244 if (gsym->is_defined()
1245 && !gsym->is_from_dynobj()
1246 && !gsym->is_preemptible())
1247 break;
1248 target->make_plt_entry(symtab, layout, gsym);
1249 break;
1250
1251 case elfcpp::R_386_GOTOFF:
1252 case elfcpp::R_386_GOTPC:
1253 // We need a GOT section.
1254 target->got_section(symtab, layout);
1255 break;
1256
1257 // These are relocations which should only be seen by the
1258 // dynamic linker, and should never be seen here.
1259 case elfcpp::R_386_COPY:
1260 case elfcpp::R_386_GLOB_DAT:
1261 case elfcpp::R_386_JUMP_SLOT:
1262 case elfcpp::R_386_RELATIVE:
1263 case elfcpp::R_386_TLS_TPOFF:
1264 case elfcpp::R_386_TLS_DTPMOD32:
1265 case elfcpp::R_386_TLS_DTPOFF32:
1266 case elfcpp::R_386_TLS_TPOFF32:
1267 case elfcpp::R_386_TLS_DESC:
1268 gold_error(_("%s: unexpected reloc %u in object file"),
1269 object->name().c_str(), r_type);
1270 break;
1271
1272 // These are initial tls relocs, which are expected when
1273 // linking.
1274 case elfcpp::R_386_TLS_GD: // Global-dynamic
1275 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1276 case elfcpp::R_386_TLS_DESC_CALL:
1277 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1278 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1279 case elfcpp::R_386_TLS_IE: // Initial-exec
1280 case elfcpp::R_386_TLS_IE_32:
1281 case elfcpp::R_386_TLS_GOTIE:
1282 case elfcpp::R_386_TLS_LE: // Local-exec
1283 case elfcpp::R_386_TLS_LE_32:
1284 {
1285 const bool is_final = gsym->final_value_is_known();
1286 const tls::Tls_optimization optimized_type
1287 = Target_i386::optimize_tls_reloc(is_final, r_type);
1288 switch (r_type)
1289 {
1290 case elfcpp::R_386_TLS_GD: // Global-dynamic
1291 if (optimized_type == tls::TLSOPT_NONE)
1292 {
1293 // Create a pair of GOT entries for the module index and
1294 // dtv-relative offset.
1295 Output_data_got<32, false>* got
1296 = target->got_section(symtab, layout);
1297 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
1298 target->rel_dyn_section(layout),
1299 elfcpp::R_386_TLS_DTPMOD32,
1300 elfcpp::R_386_TLS_DTPOFF32);
1301 }
1302 else if (optimized_type == tls::TLSOPT_TO_IE)
1303 {
1304 // Create a GOT entry for the tp-relative offset.
1305 Output_data_got<32, false>* got
1306 = target->got_section(symtab, layout);
1307 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1308 target->rel_dyn_section(layout),
1309 elfcpp::R_386_TLS_TPOFF);
1310 }
1311 else if (optimized_type != tls::TLSOPT_TO_LE)
1312 unsupported_reloc_global(object, r_type, gsym);
1313 break;
1314
1315 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
1316 target->define_tls_base_symbol(symtab, layout);
1317 if (optimized_type == tls::TLSOPT_NONE)
1318 {
1319 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1320 Output_data_got<32, false>* got
1321 = target->got_section(symtab, layout);
1322 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC,
1323 target->rel_dyn_section(layout),
1324 elfcpp::R_386_TLS_DESC, 0);
1325 }
1326 else if (optimized_type == tls::TLSOPT_TO_IE)
1327 {
1328 // Create a GOT entry for the tp-relative offset.
1329 Output_data_got<32, false>* got
1330 = target->got_section(symtab, layout);
1331 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1332 target->rel_dyn_section(layout),
1333 elfcpp::R_386_TLS_TPOFF);
1334 }
1335 else if (optimized_type != tls::TLSOPT_TO_LE)
1336 unsupported_reloc_global(object, r_type, gsym);
1337 break;
1338
1339 case elfcpp::R_386_TLS_DESC_CALL:
1340 break;
1341
1342 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1343 if (optimized_type == tls::TLSOPT_NONE)
1344 {
1345 // Create a GOT entry for the module index.
1346 target->got_mod_index_entry(symtab, layout, object);
1347 }
1348 else if (optimized_type != tls::TLSOPT_TO_LE)
1349 unsupported_reloc_global(object, r_type, gsym);
1350 break;
1351
1352 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1353 break;
1354
1355 case elfcpp::R_386_TLS_IE: // Initial-exec
1356 case elfcpp::R_386_TLS_IE_32:
1357 case elfcpp::R_386_TLS_GOTIE:
1358 layout->set_has_static_tls();
1359 if (optimized_type == tls::TLSOPT_NONE)
1360 {
1361 // For the R_386_TLS_IE relocation, we need to create a
1362 // dynamic relocation when building a shared library.
1363 if (r_type == elfcpp::R_386_TLS_IE
1364 && parameters->options().shared())
1365 {
1366 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1367 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1368 output_section, object,
1369 data_shndx,
1370 reloc.get_r_offset());
1371 }
1372 // Create a GOT entry for the tp-relative offset.
1373 Output_data_got<32, false>* got
1374 = target->got_section(symtab, layout);
1375 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1376 ? elfcpp::R_386_TLS_TPOFF32
1377 : elfcpp::R_386_TLS_TPOFF);
1378 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1379 ? GOT_TYPE_TLS_OFFSET
1380 : GOT_TYPE_TLS_NOFFSET);
1381 got->add_global_with_rel(gsym, got_type,
1382 target->rel_dyn_section(layout),
1383 dyn_r_type);
1384 }
1385 else if (optimized_type != tls::TLSOPT_TO_LE)
1386 unsupported_reloc_global(object, r_type, gsym);
1387 break;
1388
1389 case elfcpp::R_386_TLS_LE: // Local-exec
1390 case elfcpp::R_386_TLS_LE_32:
1391 layout->set_has_static_tls();
1392 if (parameters->options().shared())
1393 {
1394 // We need to create a dynamic relocation.
1395 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1396 ? elfcpp::R_386_TLS_TPOFF32
1397 : elfcpp::R_386_TLS_TPOFF);
1398 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1399 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1400 data_shndx, reloc.get_r_offset());
1401 }
1402 break;
1403
1404 default:
1405 gold_unreachable();
1406 }
1407 }
1408 break;
1409
1410 case elfcpp::R_386_32PLT:
1411 case elfcpp::R_386_TLS_GD_32:
1412 case elfcpp::R_386_TLS_GD_PUSH:
1413 case elfcpp::R_386_TLS_GD_CALL:
1414 case elfcpp::R_386_TLS_GD_POP:
1415 case elfcpp::R_386_TLS_LDM_32:
1416 case elfcpp::R_386_TLS_LDM_PUSH:
1417 case elfcpp::R_386_TLS_LDM_CALL:
1418 case elfcpp::R_386_TLS_LDM_POP:
1419 case elfcpp::R_386_USED_BY_INTEL_200:
1420 default:
1421 unsupported_reloc_global(object, r_type, gsym);
1422 break;
1423 }
1424 }
1425
1426 // Scan relocations for a section.
1427
1428 void
1429 Target_i386::scan_relocs(const General_options& options,
1430 Symbol_table* symtab,
1431 Layout* layout,
1432 Sized_relobj<32, false>* object,
1433 unsigned int data_shndx,
1434 unsigned int sh_type,
1435 const unsigned char* prelocs,
1436 size_t reloc_count,
1437 Output_section* output_section,
1438 bool needs_special_offset_handling,
1439 size_t local_symbol_count,
1440 const unsigned char* plocal_symbols)
1441 {
1442 if (sh_type == elfcpp::SHT_RELA)
1443 {
1444 gold_error(_("%s: unsupported RELA reloc section"),
1445 object->name().c_str());
1446 return;
1447 }
1448
1449 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1450 Target_i386::Scan>(
1451 options,
1452 symtab,
1453 layout,
1454 this,
1455 object,
1456 data_shndx,
1457 prelocs,
1458 reloc_count,
1459 output_section,
1460 needs_special_offset_handling,
1461 local_symbol_count,
1462 plocal_symbols);
1463 }
1464
1465 // Finalize the sections.
1466
1467 void
1468 Target_i386::do_finalize_sections(Layout* layout)
1469 {
1470 // Fill in some more dynamic tags.
1471 Output_data_dynamic* const odyn = layout->dynamic_data();
1472 if (odyn != NULL)
1473 {
1474 if (this->got_plt_ != NULL)
1475 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1476
1477 if (this->plt_ != NULL)
1478 {
1479 const Output_data* od = this->plt_->rel_plt();
1480 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1481 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1482 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1483 }
1484
1485 if (this->rel_dyn_ != NULL)
1486 {
1487 const Output_data* od = this->rel_dyn_;
1488 odyn->add_section_address(elfcpp::DT_REL, od);
1489 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1490 odyn->add_constant(elfcpp::DT_RELENT,
1491 elfcpp::Elf_sizes<32>::rel_size);
1492 }
1493
1494 if (!parameters->options().shared())
1495 {
1496 // The value of the DT_DEBUG tag is filled in by the dynamic
1497 // linker at run time, and used by the debugger.
1498 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1499 }
1500 }
1501
1502 // Emit any relocs we saved in an attempt to avoid generating COPY
1503 // relocs.
1504 if (this->copy_relocs_.any_saved_relocs())
1505 this->copy_relocs_.emit(this->rel_dyn_section(layout));
1506 }
1507
1508 // Return whether a direct absolute static relocation needs to be applied.
1509 // In cases where Scan::local() or Scan::global() has created
1510 // a dynamic relocation other than R_386_RELATIVE, the addend
1511 // of the relocation is carried in the data, and we must not
1512 // apply the static relocation.
1513
1514 inline bool
1515 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1516 int ref_flags,
1517 bool is_32bit)
1518 {
1519 // For local symbols, we will have created a non-RELATIVE dynamic
1520 // relocation only if (a) the output is position independent,
1521 // (b) the relocation is absolute (not pc- or segment-relative), and
1522 // (c) the relocation is not 32 bits wide.
1523 if (gsym == NULL)
1524 return !(parameters->options().output_is_position_independent()
1525 && (ref_flags & Symbol::ABSOLUTE_REF)
1526 && !is_32bit);
1527
1528 // For global symbols, we use the same helper routines used in the
1529 // scan pass. If we did not create a dynamic relocation, or if we
1530 // created a RELATIVE dynamic relocation, we should apply the static
1531 // relocation.
1532 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1533 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1534 && gsym->can_use_relative_reloc(ref_flags
1535 & Symbol::FUNCTION_CALL);
1536 return !has_dyn || is_rel;
1537 }
1538
1539 // Perform a relocation.
1540
1541 inline bool
1542 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1543 Target_i386* target,
1544 size_t relnum,
1545 const elfcpp::Rel<32, false>& rel,
1546 unsigned int r_type,
1547 const Sized_symbol<32>* gsym,
1548 const Symbol_value<32>* psymval,
1549 unsigned char* view,
1550 elfcpp::Elf_types<32>::Elf_Addr address,
1551 section_size_type view_size)
1552 {
1553 if (this->skip_call_tls_get_addr_)
1554 {
1555 if (r_type != elfcpp::R_386_PLT32
1556 || gsym == NULL
1557 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1558 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1559 _("missing expected TLS relocation"));
1560 else
1561 {
1562 this->skip_call_tls_get_addr_ = false;
1563 return false;
1564 }
1565 }
1566
1567 // Pick the value to use for symbols defined in shared objects.
1568 Symbol_value<32> symval;
1569 bool is_nonpic = (r_type == elfcpp::R_386_PC8
1570 || r_type == elfcpp::R_386_PC16
1571 || r_type == elfcpp::R_386_PC32);
1572 if (gsym != NULL
1573 && (gsym->is_from_dynobj()
1574 || (parameters->options().shared()
1575 && (gsym->is_undefined() || gsym->is_preemptible())))
1576 && gsym->has_plt_offset()
1577 && (!is_nonpic || !parameters->options().shared()))
1578 {
1579 symval.set_output_value(target->plt_section()->address()
1580 + gsym->plt_offset());
1581 psymval = &symval;
1582 }
1583
1584 const Sized_relobj<32, false>* object = relinfo->object;
1585
1586 // Get the GOT offset if needed.
1587 // The GOT pointer points to the end of the GOT section.
1588 // We need to subtract the size of the GOT section to get
1589 // the actual offset to use in the relocation.
1590 bool have_got_offset = false;
1591 unsigned int got_offset = 0;
1592 switch (r_type)
1593 {
1594 case elfcpp::R_386_GOT32:
1595 if (gsym != NULL)
1596 {
1597 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1598 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
1599 - target->got_size());
1600 }
1601 else
1602 {
1603 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1604 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1605 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1606 - target->got_size());
1607 }
1608 have_got_offset = true;
1609 break;
1610
1611 default:
1612 break;
1613 }
1614
1615 switch (r_type)
1616 {
1617 case elfcpp::R_386_NONE:
1618 case elfcpp::R_386_GNU_VTINHERIT:
1619 case elfcpp::R_386_GNU_VTENTRY:
1620 break;
1621
1622 case elfcpp::R_386_32:
1623 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true))
1624 Relocate_functions<32, false>::rel32(view, object, psymval);
1625 break;
1626
1627 case elfcpp::R_386_PC32:
1628 {
1629 int ref_flags = Symbol::NON_PIC_REF;
1630 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1631 ref_flags |= Symbol::FUNCTION_CALL;
1632 if (should_apply_static_reloc(gsym, ref_flags, true))
1633 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1634 }
1635 break;
1636
1637 case elfcpp::R_386_16:
1638 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1639 Relocate_functions<32, false>::rel16(view, object, psymval);
1640 break;
1641
1642 case elfcpp::R_386_PC16:
1643 {
1644 int ref_flags = Symbol::NON_PIC_REF;
1645 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1646 ref_flags |= Symbol::FUNCTION_CALL;
1647 if (should_apply_static_reloc(gsym, ref_flags, false))
1648 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1649 }
1650 break;
1651
1652 case elfcpp::R_386_8:
1653 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1654 Relocate_functions<32, false>::rel8(view, object, psymval);
1655 break;
1656
1657 case elfcpp::R_386_PC8:
1658 {
1659 int ref_flags = Symbol::NON_PIC_REF;
1660 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1661 ref_flags |= Symbol::FUNCTION_CALL;
1662 if (should_apply_static_reloc(gsym, ref_flags, false))
1663 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1664 }
1665 break;
1666
1667 case elfcpp::R_386_PLT32:
1668 gold_assert(gsym == NULL
1669 || gsym->has_plt_offset()
1670 || gsym->final_value_is_known()
1671 || (gsym->is_defined()
1672 && !gsym->is_from_dynobj()
1673 && !gsym->is_preemptible()));
1674 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1675 break;
1676
1677 case elfcpp::R_386_GOT32:
1678 gold_assert(have_got_offset);
1679 Relocate_functions<32, false>::rel32(view, got_offset);
1680 break;
1681
1682 case elfcpp::R_386_GOTOFF:
1683 {
1684 elfcpp::Elf_types<32>::Elf_Addr value;
1685 value = (psymval->value(object, 0)
1686 - target->got_plt_section()->address());
1687 Relocate_functions<32, false>::rel32(view, value);
1688 }
1689 break;
1690
1691 case elfcpp::R_386_GOTPC:
1692 {
1693 elfcpp::Elf_types<32>::Elf_Addr value;
1694 value = target->got_plt_section()->address();
1695 Relocate_functions<32, false>::pcrel32(view, value, address);
1696 }
1697 break;
1698
1699 case elfcpp::R_386_COPY:
1700 case elfcpp::R_386_GLOB_DAT:
1701 case elfcpp::R_386_JUMP_SLOT:
1702 case elfcpp::R_386_RELATIVE:
1703 // These are outstanding tls relocs, which are unexpected when
1704 // linking.
1705 case elfcpp::R_386_TLS_TPOFF:
1706 case elfcpp::R_386_TLS_DTPMOD32:
1707 case elfcpp::R_386_TLS_DTPOFF32:
1708 case elfcpp::R_386_TLS_TPOFF32:
1709 case elfcpp::R_386_TLS_DESC:
1710 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1711 _("unexpected reloc %u in object file"),
1712 r_type);
1713 break;
1714
1715 // These are initial tls relocs, which are expected when
1716 // linking.
1717 case elfcpp::R_386_TLS_GD: // Global-dynamic
1718 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1719 case elfcpp::R_386_TLS_DESC_CALL:
1720 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1721 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1722 case elfcpp::R_386_TLS_IE: // Initial-exec
1723 case elfcpp::R_386_TLS_IE_32:
1724 case elfcpp::R_386_TLS_GOTIE:
1725 case elfcpp::R_386_TLS_LE: // Local-exec
1726 case elfcpp::R_386_TLS_LE_32:
1727 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1728 view, address, view_size);
1729 break;
1730
1731 case elfcpp::R_386_32PLT:
1732 case elfcpp::R_386_TLS_GD_32:
1733 case elfcpp::R_386_TLS_GD_PUSH:
1734 case elfcpp::R_386_TLS_GD_CALL:
1735 case elfcpp::R_386_TLS_GD_POP:
1736 case elfcpp::R_386_TLS_LDM_32:
1737 case elfcpp::R_386_TLS_LDM_PUSH:
1738 case elfcpp::R_386_TLS_LDM_CALL:
1739 case elfcpp::R_386_TLS_LDM_POP:
1740 case elfcpp::R_386_USED_BY_INTEL_200:
1741 default:
1742 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1743 _("unsupported reloc %u"),
1744 r_type);
1745 break;
1746 }
1747
1748 return true;
1749 }
1750
1751 // Perform a TLS relocation.
1752
1753 inline void
1754 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1755 Target_i386* target,
1756 size_t relnum,
1757 const elfcpp::Rel<32, false>& rel,
1758 unsigned int r_type,
1759 const Sized_symbol<32>* gsym,
1760 const Symbol_value<32>* psymval,
1761 unsigned char* view,
1762 elfcpp::Elf_types<32>::Elf_Addr,
1763 section_size_type view_size)
1764 {
1765 Output_segment* tls_segment = relinfo->layout->tls_segment();
1766
1767 const Sized_relobj<32, false>* object = relinfo->object;
1768
1769 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1770
1771 const bool is_final =
1772 (gsym == NULL
1773 ? !parameters->options().output_is_position_independent()
1774 : gsym->final_value_is_known());
1775 const tls::Tls_optimization optimized_type
1776 = Target_i386::optimize_tls_reloc(is_final, r_type);
1777 switch (r_type)
1778 {
1779 case elfcpp::R_386_TLS_GD: // Global-dynamic
1780 if (optimized_type == tls::TLSOPT_TO_LE)
1781 {
1782 gold_assert(tls_segment != NULL);
1783 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1784 rel, r_type, value, view,
1785 view_size);
1786 break;
1787 }
1788 else
1789 {
1790 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1791 ? GOT_TYPE_TLS_NOFFSET
1792 : GOT_TYPE_TLS_PAIR);
1793 unsigned int got_offset;
1794 if (gsym != NULL)
1795 {
1796 gold_assert(gsym->has_got_offset(got_type));
1797 got_offset = gsym->got_offset(got_type) - target->got_size();
1798 }
1799 else
1800 {
1801 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1802 gold_assert(object->local_has_got_offset(r_sym, got_type));
1803 got_offset = (object->local_got_offset(r_sym, got_type)
1804 - target->got_size());
1805 }
1806 if (optimized_type == tls::TLSOPT_TO_IE)
1807 {
1808 gold_assert(tls_segment != NULL);
1809 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1810 got_offset, view, view_size);
1811 break;
1812 }
1813 else if (optimized_type == tls::TLSOPT_NONE)
1814 {
1815 // Relocate the field with the offset of the pair of GOT
1816 // entries.
1817 Relocate_functions<32, false>::rel32(view, got_offset);
1818 break;
1819 }
1820 }
1821 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1822 _("unsupported reloc %u"),
1823 r_type);
1824 break;
1825
1826 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1827 case elfcpp::R_386_TLS_DESC_CALL:
1828 if (optimized_type == tls::TLSOPT_TO_LE)
1829 {
1830 gold_assert(tls_segment != NULL);
1831 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
1832 rel, r_type, value, view,
1833 view_size);
1834 break;
1835 }
1836 else
1837 {
1838 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1839 ? GOT_TYPE_TLS_NOFFSET
1840 : GOT_TYPE_TLS_DESC);
1841 unsigned int got_offset;
1842 if (gsym != NULL)
1843 {
1844 gold_assert(gsym->has_got_offset(got_type));
1845 got_offset = gsym->got_offset(got_type) - target->got_size();
1846 }
1847 else
1848 {
1849 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1850 gold_assert(object->local_has_got_offset(r_sym, got_type));
1851 got_offset = (object->local_got_offset(r_sym, got_type)
1852 - target->got_size());
1853 }
1854 if (optimized_type == tls::TLSOPT_TO_IE)
1855 {
1856 gold_assert(tls_segment != NULL);
1857 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1858 got_offset, view, view_size);
1859 break;
1860 }
1861 else if (optimized_type == tls::TLSOPT_NONE)
1862 {
1863 if (r_type == elfcpp::R_386_TLS_GOTDESC)
1864 {
1865 // Relocate the field with the offset of the pair of GOT
1866 // entries.
1867 Relocate_functions<32, false>::rel32(view, got_offset);
1868 }
1869 break;
1870 }
1871 }
1872 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1873 _("unsupported reloc %u"),
1874 r_type);
1875 break;
1876
1877 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1878 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1879 {
1880 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1881 _("both SUN and GNU model "
1882 "TLS relocations"));
1883 break;
1884 }
1885 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1886 if (optimized_type == tls::TLSOPT_TO_LE)
1887 {
1888 gold_assert(tls_segment != NULL);
1889 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1890 value, view, view_size);
1891 break;
1892 }
1893 else if (optimized_type == tls::TLSOPT_NONE)
1894 {
1895 // Relocate the field with the offset of the GOT entry for
1896 // the module index.
1897 unsigned int got_offset;
1898 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1899 - target->got_size());
1900 Relocate_functions<32, false>::rel32(view, got_offset);
1901 break;
1902 }
1903 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1904 _("unsupported reloc %u"),
1905 r_type);
1906 break;
1907
1908 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1909 // This reloc can appear in debugging sections, in which case we
1910 // won't see the TLS_LDM reloc. The local_dynamic_type field
1911 // tells us this.
1912 if (optimized_type == tls::TLSOPT_TO_LE)
1913 {
1914 gold_assert(tls_segment != NULL);
1915 value -= tls_segment->memsz();
1916 }
1917 Relocate_functions<32, false>::rel32(view, value);
1918 break;
1919
1920 case elfcpp::R_386_TLS_IE: // Initial-exec
1921 case elfcpp::R_386_TLS_GOTIE:
1922 case elfcpp::R_386_TLS_IE_32:
1923 if (optimized_type == tls::TLSOPT_TO_LE)
1924 {
1925 gold_assert(tls_segment != NULL);
1926 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1927 rel, r_type, value, view,
1928 view_size);
1929 break;
1930 }
1931 else if (optimized_type == tls::TLSOPT_NONE)
1932 {
1933 // Relocate the field with the offset of the GOT entry for
1934 // the tp-relative offset of the symbol.
1935 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1936 ? GOT_TYPE_TLS_OFFSET
1937 : GOT_TYPE_TLS_NOFFSET);
1938 unsigned int got_offset;
1939 if (gsym != NULL)
1940 {
1941 gold_assert(gsym->has_got_offset(got_type));
1942 got_offset = gsym->got_offset(got_type);
1943 }
1944 else
1945 {
1946 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1947 gold_assert(object->local_has_got_offset(r_sym, got_type));
1948 got_offset = object->local_got_offset(r_sym, got_type);
1949 }
1950 // For the R_386_TLS_IE relocation, we need to apply the
1951 // absolute address of the GOT entry.
1952 if (r_type == elfcpp::R_386_TLS_IE)
1953 got_offset += target->got_plt_section()->address();
1954 // All GOT offsets are relative to the end of the GOT.
1955 got_offset -= target->got_size();
1956 Relocate_functions<32, false>::rel32(view, got_offset);
1957 break;
1958 }
1959 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1960 _("unsupported reloc %u"),
1961 r_type);
1962 break;
1963
1964 case elfcpp::R_386_TLS_LE: // Local-exec
1965 // If we're creating a shared library, a dynamic relocation will
1966 // have been created for this location, so do not apply it now.
1967 if (!parameters->options().shared())
1968 {
1969 gold_assert(tls_segment != NULL);
1970 value -= tls_segment->memsz();
1971 Relocate_functions<32, false>::rel32(view, value);
1972 }
1973 break;
1974
1975 case elfcpp::R_386_TLS_LE_32:
1976 // If we're creating a shared library, a dynamic relocation will
1977 // have been created for this location, so do not apply it now.
1978 if (!parameters->options().shared())
1979 {
1980 gold_assert(tls_segment != NULL);
1981 value = tls_segment->memsz() - value;
1982 Relocate_functions<32, false>::rel32(view, value);
1983 }
1984 break;
1985 }
1986 }
1987
1988 // Do a relocation in which we convert a TLS General-Dynamic to a
1989 // Local-Exec.
1990
1991 inline void
1992 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1993 size_t relnum,
1994 Output_segment* tls_segment,
1995 const elfcpp::Rel<32, false>& rel,
1996 unsigned int,
1997 elfcpp::Elf_types<32>::Elf_Addr value,
1998 unsigned char* view,
1999 section_size_type view_size)
2000 {
2001 // leal foo(,%reg,1),%eax; call ___tls_get_addr
2002 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2003 // leal foo(%reg),%eax; call ___tls_get_addr
2004 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2005
2006 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2007 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2008
2009 unsigned char op1 = view[-1];
2010 unsigned char op2 = view[-2];
2011
2012 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2013 op2 == 0x8d || op2 == 0x04);
2014 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2015
2016 int roff = 5;
2017
2018 if (op2 == 0x04)
2019 {
2020 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2021 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2022 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2023 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2024 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2025 }
2026 else
2027 {
2028 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2029 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2030 if (rel.get_r_offset() + 9 < view_size
2031 && view[9] == 0x90)
2032 {
2033 // There is a trailing nop. Use the size byte subl.
2034 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2035 roff = 6;
2036 }
2037 else
2038 {
2039 // Use the five byte subl.
2040 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2041 }
2042 }
2043
2044 value = tls_segment->memsz() - value;
2045 Relocate_functions<32, false>::rel32(view + roff, value);
2046
2047 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2048 // We can skip it.
2049 this->skip_call_tls_get_addr_ = true;
2050 }
2051
2052 // Do a relocation in which we convert a TLS General-Dynamic to an
2053 // Initial-Exec.
2054
2055 inline void
2056 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2057 size_t relnum,
2058 Output_segment*,
2059 const elfcpp::Rel<32, false>& rel,
2060 unsigned int,
2061 elfcpp::Elf_types<32>::Elf_Addr value,
2062 unsigned char* view,
2063 section_size_type view_size)
2064 {
2065 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
2066 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
2067
2068 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2069 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2070
2071 unsigned char op1 = view[-1];
2072 unsigned char op2 = view[-2];
2073
2074 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2075 op2 == 0x8d || op2 == 0x04);
2076 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2077
2078 int roff = 5;
2079
2080 // FIXME: For now, support only the first (SIB) form.
2081 tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
2082
2083 if (op2 == 0x04)
2084 {
2085 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2086 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2087 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2088 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2089 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2090 }
2091 else
2092 {
2093 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2094 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2095 if (rel.get_r_offset() + 9 < view_size
2096 && view[9] == 0x90)
2097 {
2098 // FIXME: This is not the right instruction sequence.
2099 // There is a trailing nop. Use the size byte subl.
2100 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2101 roff = 6;
2102 }
2103 else
2104 {
2105 // FIXME: This is not the right instruction sequence.
2106 // Use the five byte subl.
2107 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2108 }
2109 }
2110
2111 Relocate_functions<32, false>::rel32(view + roff, value);
2112
2113 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2114 // We can skip it.
2115 this->skip_call_tls_get_addr_ = true;
2116 }
2117
2118 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2119 // General-Dynamic to a Local-Exec.
2120
2121 inline void
2122 Target_i386::Relocate::tls_desc_gd_to_le(
2123 const Relocate_info<32, false>* relinfo,
2124 size_t relnum,
2125 Output_segment* tls_segment,
2126 const elfcpp::Rel<32, false>& rel,
2127 unsigned int r_type,
2128 elfcpp::Elf_types<32>::Elf_Addr value,
2129 unsigned char* view,
2130 section_size_type view_size)
2131 {
2132 if (r_type == elfcpp::R_386_TLS_GOTDESC)
2133 {
2134 // leal foo@TLSDESC(%ebx), %eax
2135 // ==> leal foo@NTPOFF, %eax
2136 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2137 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2138 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2139 view[-2] == 0x8d && view[-1] == 0x83);
2140 view[-1] = 0x05;
2141 value -= tls_segment->memsz();
2142 Relocate_functions<32, false>::rel32(view, value);
2143 }
2144 else
2145 {
2146 // call *foo@TLSCALL(%eax)
2147 // ==> nop; nop
2148 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2149 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2150 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2151 view[0] == 0xff && view[1] == 0x10);
2152 view[0] = 0x66;
2153 view[1] = 0x90;
2154 }
2155 }
2156
2157 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2158 // General-Dynamic to an Initial-Exec.
2159
2160 inline void
2161 Target_i386::Relocate::tls_desc_gd_to_ie(
2162 const Relocate_info<32, false>* relinfo,
2163 size_t relnum,
2164 Output_segment*,
2165 const elfcpp::Rel<32, false>& rel,
2166 unsigned int r_type,
2167 elfcpp::Elf_types<32>::Elf_Addr value,
2168 unsigned char* view,
2169 section_size_type view_size)
2170 {
2171 if (r_type == elfcpp::R_386_TLS_GOTDESC)
2172 {
2173 // leal foo@TLSDESC(%ebx), %eax
2174 // ==> movl foo@GOTNTPOFF(%ebx), %eax
2175 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2176 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2177 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2178 view[-2] == 0x8d && view[-1] == 0x83);
2179 view[-2] = 0x8b;
2180 Relocate_functions<32, false>::rel32(view, value);
2181 }
2182 else
2183 {
2184 // call *foo@TLSCALL(%eax)
2185 // ==> nop; nop
2186 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2187 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2188 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2189 view[0] == 0xff && view[1] == 0x10);
2190 view[0] = 0x66;
2191 view[1] = 0x90;
2192 }
2193 }
2194
2195 // Do a relocation in which we convert a TLS Local-Dynamic to a
2196 // Local-Exec.
2197
2198 inline void
2199 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2200 size_t relnum,
2201 Output_segment*,
2202 const elfcpp::Rel<32, false>& rel,
2203 unsigned int,
2204 elfcpp::Elf_types<32>::Elf_Addr,
2205 unsigned char* view,
2206 section_size_type view_size)
2207 {
2208 // leal foo(%reg), %eax; call ___tls_get_addr
2209 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2210
2211 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2212 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2213
2214 // FIXME: Does this test really always pass?
2215 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2216 view[-2] == 0x8d && view[-1] == 0x83);
2217
2218 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2219
2220 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2221
2222 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2223 // We can skip it.
2224 this->skip_call_tls_get_addr_ = true;
2225 }
2226
2227 // Do a relocation in which we convert a TLS Initial-Exec to a
2228 // Local-Exec.
2229
2230 inline void
2231 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2232 size_t relnum,
2233 Output_segment* tls_segment,
2234 const elfcpp::Rel<32, false>& rel,
2235 unsigned int r_type,
2236 elfcpp::Elf_types<32>::Elf_Addr value,
2237 unsigned char* view,
2238 section_size_type view_size)
2239 {
2240 // We have to actually change the instructions, which means that we
2241 // need to examine the opcodes to figure out which instruction we
2242 // are looking at.
2243 if (r_type == elfcpp::R_386_TLS_IE)
2244 {
2245 // movl %gs:XX,%eax ==> movl $YY,%eax
2246 // movl %gs:XX,%reg ==> movl $YY,%reg
2247 // addl %gs:XX,%reg ==> addl $YY,%reg
2248 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2249 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2250
2251 unsigned char op1 = view[-1];
2252 if (op1 == 0xa1)
2253 {
2254 // movl XX,%eax ==> movl $YY,%eax
2255 view[-1] = 0xb8;
2256 }
2257 else
2258 {
2259 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2260
2261 unsigned char op2 = view[-2];
2262 if (op2 == 0x8b)
2263 {
2264 // movl XX,%reg ==> movl $YY,%reg
2265 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2266 (op1 & 0xc7) == 0x05);
2267 view[-2] = 0xc7;
2268 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2269 }
2270 else if (op2 == 0x03)
2271 {
2272 // addl XX,%reg ==> addl $YY,%reg
2273 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2274 (op1 & 0xc7) == 0x05);
2275 view[-2] = 0x81;
2276 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2277 }
2278 else
2279 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2280 }
2281 }
2282 else
2283 {
2284 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2285 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2286 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2287 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2288 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2289
2290 unsigned char op1 = view[-1];
2291 unsigned char op2 = view[-2];
2292 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2293 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2294 if (op2 == 0x8b)
2295 {
2296 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2297 view[-2] = 0xc7;
2298 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2299 }
2300 else if (op2 == 0x2b)
2301 {
2302 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2303 view[-2] = 0x81;
2304 view[-1] = 0xe8 | ((op1 >> 3) & 7);
2305 }
2306 else if (op2 == 0x03)
2307 {
2308 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2309 view[-2] = 0x81;
2310 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2311 }
2312 else
2313 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2314 }
2315
2316 value = tls_segment->memsz() - value;
2317 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2318 value = - value;
2319
2320 Relocate_functions<32, false>::rel32(view, value);
2321 }
2322
2323 // Relocate section data.
2324
2325 void
2326 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2327 unsigned int sh_type,
2328 const unsigned char* prelocs,
2329 size_t reloc_count,
2330 Output_section* output_section,
2331 bool needs_special_offset_handling,
2332 unsigned char* view,
2333 elfcpp::Elf_types<32>::Elf_Addr address,
2334 section_size_type view_size)
2335 {
2336 gold_assert(sh_type == elfcpp::SHT_REL);
2337
2338 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2339 Target_i386::Relocate>(
2340 relinfo,
2341 this,
2342 prelocs,
2343 reloc_count,
2344 output_section,
2345 needs_special_offset_handling,
2346 view,
2347 address,
2348 view_size);
2349 }
2350
2351 // Return the size of a relocation while scanning during a relocatable
2352 // link.
2353
2354 unsigned int
2355 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2356 unsigned int r_type,
2357 Relobj* object)
2358 {
2359 switch (r_type)
2360 {
2361 case elfcpp::R_386_NONE:
2362 case elfcpp::R_386_GNU_VTINHERIT:
2363 case elfcpp::R_386_GNU_VTENTRY:
2364 case elfcpp::R_386_TLS_GD: // Global-dynamic
2365 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2366 case elfcpp::R_386_TLS_DESC_CALL:
2367 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2368 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2369 case elfcpp::R_386_TLS_IE: // Initial-exec
2370 case elfcpp::R_386_TLS_IE_32:
2371 case elfcpp::R_386_TLS_GOTIE:
2372 case elfcpp::R_386_TLS_LE: // Local-exec
2373 case elfcpp::R_386_TLS_LE_32:
2374 return 0;
2375
2376 case elfcpp::R_386_32:
2377 case elfcpp::R_386_PC32:
2378 case elfcpp::R_386_GOT32:
2379 case elfcpp::R_386_PLT32:
2380 case elfcpp::R_386_GOTOFF:
2381 case elfcpp::R_386_GOTPC:
2382 return 4;
2383
2384 case elfcpp::R_386_16:
2385 case elfcpp::R_386_PC16:
2386 return 2;
2387
2388 case elfcpp::R_386_8:
2389 case elfcpp::R_386_PC8:
2390 return 1;
2391
2392 // These are relocations which should only be seen by the
2393 // dynamic linker, and should never be seen here.
2394 case elfcpp::R_386_COPY:
2395 case elfcpp::R_386_GLOB_DAT:
2396 case elfcpp::R_386_JUMP_SLOT:
2397 case elfcpp::R_386_RELATIVE:
2398 case elfcpp::R_386_TLS_TPOFF:
2399 case elfcpp::R_386_TLS_DTPMOD32:
2400 case elfcpp::R_386_TLS_DTPOFF32:
2401 case elfcpp::R_386_TLS_TPOFF32:
2402 case elfcpp::R_386_TLS_DESC:
2403 object->error(_("unexpected reloc %u in object file"), r_type);
2404 return 0;
2405
2406 case elfcpp::R_386_32PLT:
2407 case elfcpp::R_386_TLS_GD_32:
2408 case elfcpp::R_386_TLS_GD_PUSH:
2409 case elfcpp::R_386_TLS_GD_CALL:
2410 case elfcpp::R_386_TLS_GD_POP:
2411 case elfcpp::R_386_TLS_LDM_32:
2412 case elfcpp::R_386_TLS_LDM_PUSH:
2413 case elfcpp::R_386_TLS_LDM_CALL:
2414 case elfcpp::R_386_TLS_LDM_POP:
2415 case elfcpp::R_386_USED_BY_INTEL_200:
2416 default:
2417 object->error(_("unsupported reloc %u in object file"), r_type);
2418 return 0;
2419 }
2420 }
2421
2422 // Scan the relocs during a relocatable link.
2423
2424 void
2425 Target_i386::scan_relocatable_relocs(const General_options& options,
2426 Symbol_table* symtab,
2427 Layout* layout,
2428 Sized_relobj<32, false>* object,
2429 unsigned int data_shndx,
2430 unsigned int sh_type,
2431 const unsigned char* prelocs,
2432 size_t reloc_count,
2433 Output_section* output_section,
2434 bool needs_special_offset_handling,
2435 size_t local_symbol_count,
2436 const unsigned char* plocal_symbols,
2437 Relocatable_relocs* rr)
2438 {
2439 gold_assert(sh_type == elfcpp::SHT_REL);
2440
2441 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2442 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2443
2444 gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
2445 Scan_relocatable_relocs>(
2446 options,
2447 symtab,
2448 layout,
2449 object,
2450 data_shndx,
2451 prelocs,
2452 reloc_count,
2453 output_section,
2454 needs_special_offset_handling,
2455 local_symbol_count,
2456 plocal_symbols,
2457 rr);
2458 }
2459
2460 // Relocate a section during a relocatable link.
2461
2462 void
2463 Target_i386::relocate_for_relocatable(
2464 const Relocate_info<32, false>* relinfo,
2465 unsigned int sh_type,
2466 const unsigned char* prelocs,
2467 size_t reloc_count,
2468 Output_section* output_section,
2469 off_t offset_in_output_section,
2470 const Relocatable_relocs* rr,
2471 unsigned char* view,
2472 elfcpp::Elf_types<32>::Elf_Addr view_address,
2473 section_size_type view_size,
2474 unsigned char* reloc_view,
2475 section_size_type reloc_view_size)
2476 {
2477 gold_assert(sh_type == elfcpp::SHT_REL);
2478
2479 gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
2480 relinfo,
2481 prelocs,
2482 reloc_count,
2483 output_section,
2484 offset_in_output_section,
2485 rr,
2486 view,
2487 view_address,
2488 view_size,
2489 reloc_view,
2490 reloc_view_size);
2491 }
2492
2493 // Return the value to use for a dynamic which requires special
2494 // treatment. This is how we support equality comparisons of function
2495 // pointers across shared library boundaries, as described in the
2496 // processor specific ABI supplement.
2497
2498 uint64_t
2499 Target_i386::do_dynsym_value(const Symbol* gsym) const
2500 {
2501 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2502 return this->plt_section()->address() + gsym->plt_offset();
2503 }
2504
2505 // Return a string used to fill a code section with nops to take up
2506 // the specified length.
2507
2508 std::string
2509 Target_i386::do_code_fill(section_size_type length) const
2510 {
2511 if (length >= 16)
2512 {
2513 // Build a jmp instruction to skip over the bytes.
2514 unsigned char jmp[5];
2515 jmp[0] = 0xe9;
2516 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2517 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2518 + std::string(length - 5, '\0'));
2519 }
2520
2521 // Nop sequences of various lengths.
2522 const char nop1[1] = { 0x90 }; // nop
2523 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2524 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2525 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2526 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2527 0x00 }; // leal 0(%esi,1),%esi
2528 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2529 0x00, 0x00 };
2530 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2531 0x00, 0x00, 0x00 };
2532 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2533 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2534 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2535 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2536 0x00 };
2537 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2538 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2539 0x00, 0x00 };
2540 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2541 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2542 0x00, 0x00, 0x00 };
2543 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2544 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2545 0x00, 0x00, 0x00, 0x00 };
2546 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2547 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2548 0x27, 0x00, 0x00, 0x00,
2549 0x00 };
2550 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2551 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2552 0xbc, 0x27, 0x00, 0x00,
2553 0x00, 0x00 };
2554 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2555 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2556 0x90, 0x90, 0x90, 0x90,
2557 0x90, 0x90, 0x90 };
2558
2559 const char* nops[16] = {
2560 NULL,
2561 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2562 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2563 };
2564
2565 return std::string(nops[length], length);
2566 }
2567
2568 // The selector for i386 object files.
2569
2570 class Target_selector_i386 : public Target_selector
2571 {
2572 public:
2573 Target_selector_i386()
2574 : Target_selector(elfcpp::EM_386, 32, false, "elf32-i386")
2575 { }
2576
2577 Target*
2578 do_instantiate_target()
2579 { return new Target_i386(); }
2580 };
2581
2582 Target_selector_i386 target_selector_i386;
2583
2584 } // End anonymous namespace.