]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
2011-04-27 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
84 this->length_ = len;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101 if (start == end)
102 return;
103 gold_assert(start < end);
104
105 ++Free_list::num_removes;
106
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
110
111 for (; p != this->list_.end(); ++p)
112 {
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
116 {
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
123 p->start_ = end;
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
126 p->end_ = start;
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
129 else
130 {
131 Free_list_node newnode(p->start_, start);
132 p->start_ = end;
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
135 }
136 this->last_remove_ = p;
137 return;
138 }
139 }
140
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
159 if (len == 0)
160 return align_address(minoff, align);
161
162 ++Free_list::num_allocates;
163
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165 {
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
170 if (end <= p->end_)
171 {
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
175 p->start_ = end;
176 else if (p->end_ <= end + 3)
177 p->end_ = start;
178 else
179 {
180 Free_list_node newnode(p->start_, start);
181 p->start_ = end;
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
184 }
185 return start;
186 }
187 }
188 return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
230 {
231 for(Layout::Section_list::const_iterator p = sections.begin();
232 p != sections.end();
233 ++p)
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
238 ++p)
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 {
252 Output_section* os = *p;
253 Section_info info;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
259 }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
267 {
268 size_t i = 0;
269 for(Layout::Section_list::const_iterator p = sections.begin();
270 p != sections.end();
271 ++p, ++i)
272 {
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278 if (i >= this->section_infos_.size())
279 {
280 gold_fatal("Section_info of %s missing.\n", os->name());
281 }
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
290 }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections. This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301 Layout* layout = this->layout_;
302 off_t file_size = layout->finalize(this->input_objects_,
303 this->symtab_,
304 this->target_,
305 task);
306
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
309
310 if (this->mapfile_ != NULL)
311 {
312 this->mapfile_->print_discarded_sections(this->input_objects_);
313 layout->print_to_mapfile(this->mapfile_);
314 }
315
316 Output_file* of;
317 if (layout->incremental_base() == NULL)
318 {
319 of = new Output_file(parameters->options().output_file_name());
320 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321 of->set_is_temporary();
322 of->open(file_size);
323 }
324 else
325 {
326 of = layout->incremental_base()->output_file();
327
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
332 // overwriting it.
333 if (parameters->incremental_update())
334 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335 this->layout_,
336 of);
337
338 of->resize(file_size);
339 }
340
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_, this->input_objects_,
343 this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349 : number_of_input_files_(number_of_input_files),
350 script_options_(script_options),
351 namepool_(),
352 sympool_(),
353 dynpool_(),
354 signatures_(),
355 section_name_map_(),
356 segment_list_(),
357 section_list_(),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL),
361 tls_segment_(NULL),
362 relro_segment_(NULL),
363 increase_relro_(0),
364 symtab_section_(NULL),
365 symtab_xindex_(NULL),
366 dynsym_section_(NULL),
367 dynsym_xindex_(NULL),
368 dynamic_section_(NULL),
369 dynamic_symbol_(NULL),
370 dynamic_data_(NULL),
371 eh_frame_section_(NULL),
372 eh_frame_data_(NULL),
373 added_eh_frame_data_(false),
374 eh_frame_hdr_section_(NULL),
375 build_id_note_(NULL),
376 debug_abbrev_(NULL),
377 debug_info_(NULL),
378 group_signatures_(),
379 output_file_size_(-1),
380 have_added_input_section_(false),
381 sections_are_attached_(false),
382 input_requires_executable_stack_(false),
383 input_with_gnu_stack_note_(false),
384 input_without_gnu_stack_note_(false),
385 has_static_tls_(false),
386 any_postprocessing_sections_(false),
387 resized_signatures_(false),
388 have_stabstr_section_(false),
389 incremental_inputs_(NULL),
390 record_output_section_data_from_script_(false),
391 script_output_section_data_list_(),
392 segment_states_(NULL),
393 relaxation_debug_check_(NULL),
394 incremental_base_(NULL),
395 free_list_()
396 {
397 // Make space for more than enough segments for a typical file.
398 // This is just for efficiency--it's OK if we wind up needing more.
399 this->segment_list_.reserve(12);
400
401 // We expect two unattached Output_data objects: the file header and
402 // the segment headers.
403 this->special_output_list_.reserve(2);
404
405 // Initialize structure needed for an incremental build.
406 if (parameters->incremental())
407 this->incremental_inputs_ = new Incremental_inputs;
408
409 // The section name pool is worth optimizing in all cases, because
410 // it is small, but there are often overlaps due to .rel sections.
411 this->namepool_.set_optimize();
412 }
413
414 // For incremental links, record the base file to be modified.
415
416 void
417 Layout::set_incremental_base(Incremental_binary* base)
418 {
419 this->incremental_base_ = base;
420 this->free_list_.init(base->output_file()->filesize(), true);
421 }
422
423 // Hash a key we use to look up an output section mapping.
424
425 size_t
426 Layout::Hash_key::operator()(const Layout::Key& k) const
427 {
428 return k.first + k.second.first + k.second.second;
429 }
430
431 // Returns whether the given section is in the list of
432 // debug-sections-used-by-some-version-of-gdb. Currently,
433 // we've checked versions of gdb up to and including 6.7.1.
434
435 static const char* gdb_sections[] =
436 { ".debug_abbrev",
437 // ".debug_aranges", // not used by gdb as of 6.7.1
438 ".debug_frame",
439 ".debug_info",
440 ".debug_types",
441 ".debug_line",
442 ".debug_loc",
443 ".debug_macinfo",
444 // ".debug_pubnames", // not used by gdb as of 6.7.1
445 ".debug_ranges",
446 ".debug_str",
447 };
448
449 static const char* lines_only_debug_sections[] =
450 { ".debug_abbrev",
451 // ".debug_aranges", // not used by gdb as of 6.7.1
452 // ".debug_frame",
453 ".debug_info",
454 // ".debug_types",
455 ".debug_line",
456 // ".debug_loc",
457 // ".debug_macinfo",
458 // ".debug_pubnames", // not used by gdb as of 6.7.1
459 // ".debug_ranges",
460 ".debug_str",
461 };
462
463 static inline bool
464 is_gdb_debug_section(const char* str)
465 {
466 // We can do this faster: binary search or a hashtable. But why bother?
467 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
468 if (strcmp(str, gdb_sections[i]) == 0)
469 return true;
470 return false;
471 }
472
473 static inline bool
474 is_lines_only_debug_section(const char* str)
475 {
476 // We can do this faster: binary search or a hashtable. But why bother?
477 for (size_t i = 0;
478 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
479 ++i)
480 if (strcmp(str, lines_only_debug_sections[i]) == 0)
481 return true;
482 return false;
483 }
484
485 // Sometimes we compress sections. This is typically done for
486 // sections that are not part of normal program execution (such as
487 // .debug_* sections), and where the readers of these sections know
488 // how to deal with compressed sections. This routine doesn't say for
489 // certain whether we'll compress -- it depends on commandline options
490 // as well -- just whether this section is a candidate for compression.
491 // (The Output_compressed_section class decides whether to compress
492 // a given section, and picks the name of the compressed section.)
493
494 static bool
495 is_compressible_debug_section(const char* secname)
496 {
497 return (is_prefix_of(".debug", secname));
498 }
499
500 // We may see compressed debug sections in input files. Return TRUE
501 // if this is the name of a compressed debug section.
502
503 bool
504 is_compressed_debug_section(const char* secname)
505 {
506 return (is_prefix_of(".zdebug", secname));
507 }
508
509 // Whether to include this section in the link.
510
511 template<int size, bool big_endian>
512 bool
513 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
514 const elfcpp::Shdr<size, big_endian>& shdr)
515 {
516 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
517 return false;
518
519 switch (shdr.get_sh_type())
520 {
521 case elfcpp::SHT_NULL:
522 case elfcpp::SHT_SYMTAB:
523 case elfcpp::SHT_DYNSYM:
524 case elfcpp::SHT_HASH:
525 case elfcpp::SHT_DYNAMIC:
526 case elfcpp::SHT_SYMTAB_SHNDX:
527 return false;
528
529 case elfcpp::SHT_STRTAB:
530 // Discard the sections which have special meanings in the ELF
531 // ABI. Keep others (e.g., .stabstr). We could also do this by
532 // checking the sh_link fields of the appropriate sections.
533 return (strcmp(name, ".dynstr") != 0
534 && strcmp(name, ".strtab") != 0
535 && strcmp(name, ".shstrtab") != 0);
536
537 case elfcpp::SHT_RELA:
538 case elfcpp::SHT_REL:
539 case elfcpp::SHT_GROUP:
540 // If we are emitting relocations these should be handled
541 // elsewhere.
542 gold_assert(!parameters->options().relocatable()
543 && !parameters->options().emit_relocs());
544 return false;
545
546 case elfcpp::SHT_PROGBITS:
547 if (parameters->options().strip_debug()
548 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
549 {
550 if (is_debug_info_section(name))
551 return false;
552 }
553 if (parameters->options().strip_debug_non_line()
554 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
555 {
556 // Debugging sections can only be recognized by name.
557 if (is_prefix_of(".debug", name)
558 && !is_lines_only_debug_section(name))
559 return false;
560 }
561 if (parameters->options().strip_debug_gdb()
562 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
563 {
564 // Debugging sections can only be recognized by name.
565 if (is_prefix_of(".debug", name)
566 && !is_gdb_debug_section(name))
567 return false;
568 }
569 if (parameters->options().strip_lto_sections()
570 && !parameters->options().relocatable()
571 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572 {
573 // Ignore LTO sections containing intermediate code.
574 if (is_prefix_of(".gnu.lto_", name))
575 return false;
576 }
577 // The GNU linker strips .gnu_debuglink sections, so we do too.
578 // This is a feature used to keep debugging information in
579 // separate files.
580 if (strcmp(name, ".gnu_debuglink") == 0)
581 return false;
582 return true;
583
584 default:
585 return true;
586 }
587 }
588
589 // Return an output section named NAME, or NULL if there is none.
590
591 Output_section*
592 Layout::find_output_section(const char* name) const
593 {
594 for (Section_list::const_iterator p = this->section_list_.begin();
595 p != this->section_list_.end();
596 ++p)
597 if (strcmp((*p)->name(), name) == 0)
598 return *p;
599 return NULL;
600 }
601
602 // Return an output segment of type TYPE, with segment flags SET set
603 // and segment flags CLEAR clear. Return NULL if there is none.
604
605 Output_segment*
606 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
607 elfcpp::Elf_Word clear) const
608 {
609 for (Segment_list::const_iterator p = this->segment_list_.begin();
610 p != this->segment_list_.end();
611 ++p)
612 if (static_cast<elfcpp::PT>((*p)->type()) == type
613 && ((*p)->flags() & set) == set
614 && ((*p)->flags() & clear) == 0)
615 return *p;
616 return NULL;
617 }
618
619 // Return the output section to use for section NAME with type TYPE
620 // and section flags FLAGS. NAME must be canonicalized in the string
621 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
622 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
623 // is used by the dynamic linker. IS_RELRO is true for a relro
624 // section. IS_LAST_RELRO is true for the last relro section.
625 // IS_FIRST_NON_RELRO is true for the first non-relro section.
626
627 Output_section*
628 Layout::get_output_section(const char* name, Stringpool::Key name_key,
629 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
630 Output_section_order order, bool is_relro)
631 {
632 elfcpp::Elf_Xword lookup_flags = flags;
633
634 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
635 // read-write with read-only sections. Some other ELF linkers do
636 // not do this. FIXME: Perhaps there should be an option
637 // controlling this.
638 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
639
640 const Key key(name_key, std::make_pair(type, lookup_flags));
641 const std::pair<Key, Output_section*> v(key, NULL);
642 std::pair<Section_name_map::iterator, bool> ins(
643 this->section_name_map_.insert(v));
644
645 if (!ins.second)
646 return ins.first->second;
647 else
648 {
649 // This is the first time we've seen this name/type/flags
650 // combination. For compatibility with the GNU linker, we
651 // combine sections with contents and zero flags with sections
652 // with non-zero flags. This is a workaround for cases where
653 // assembler code forgets to set section flags. FIXME: Perhaps
654 // there should be an option to control this.
655 Output_section* os = NULL;
656
657 if (type == elfcpp::SHT_PROGBITS)
658 {
659 if (flags == 0)
660 {
661 Output_section* same_name = this->find_output_section(name);
662 if (same_name != NULL
663 && same_name->type() == elfcpp::SHT_PROGBITS
664 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
665 os = same_name;
666 }
667 else if ((flags & elfcpp::SHF_TLS) == 0)
668 {
669 elfcpp::Elf_Xword zero_flags = 0;
670 const Key zero_key(name_key, std::make_pair(type, zero_flags));
671 Section_name_map::iterator p =
672 this->section_name_map_.find(zero_key);
673 if (p != this->section_name_map_.end())
674 os = p->second;
675 }
676 }
677
678 if (os == NULL)
679 os = this->make_output_section(name, type, flags, order, is_relro);
680
681 ins.first->second = os;
682 return os;
683 }
684 }
685
686 // Pick the output section to use for section NAME, in input file
687 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
688 // linker created section. IS_INPUT_SECTION is true if we are
689 // choosing an output section for an input section found in a input
690 // file. IS_INTERP is true if this is the .interp section.
691 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
692 // dynamic linker. IS_RELRO is true for a relro section.
693 // IS_LAST_RELRO is true for the last relro section.
694 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
695 // will return NULL if the input section should be discarded.
696
697 Output_section*
698 Layout::choose_output_section(const Relobj* relobj, const char* name,
699 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
700 bool is_input_section, Output_section_order order,
701 bool is_relro)
702 {
703 // We should not see any input sections after we have attached
704 // sections to segments.
705 gold_assert(!is_input_section || !this->sections_are_attached_);
706
707 // Some flags in the input section should not be automatically
708 // copied to the output section.
709 flags &= ~ (elfcpp::SHF_INFO_LINK
710 | elfcpp::SHF_GROUP
711 | elfcpp::SHF_MERGE
712 | elfcpp::SHF_STRINGS);
713
714 // We only clear the SHF_LINK_ORDER flag in for
715 // a non-relocatable link.
716 if (!parameters->options().relocatable())
717 flags &= ~elfcpp::SHF_LINK_ORDER;
718
719 if (this->script_options_->saw_sections_clause())
720 {
721 // We are using a SECTIONS clause, so the output section is
722 // chosen based only on the name.
723
724 Script_sections* ss = this->script_options_->script_sections();
725 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
726 Output_section** output_section_slot;
727 Script_sections::Section_type script_section_type;
728 const char* orig_name = name;
729 name = ss->output_section_name(file_name, name, &output_section_slot,
730 &script_section_type);
731 if (name == NULL)
732 {
733 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
734 "because it is not allowed by the "
735 "SECTIONS clause of the linker script"),
736 orig_name);
737 // The SECTIONS clause says to discard this input section.
738 return NULL;
739 }
740
741 // We can only handle script section types ST_NONE and ST_NOLOAD.
742 switch (script_section_type)
743 {
744 case Script_sections::ST_NONE:
745 break;
746 case Script_sections::ST_NOLOAD:
747 flags &= elfcpp::SHF_ALLOC;
748 break;
749 default:
750 gold_unreachable();
751 }
752
753 // If this is an orphan section--one not mentioned in the linker
754 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
755 // default processing below.
756
757 if (output_section_slot != NULL)
758 {
759 if (*output_section_slot != NULL)
760 {
761 (*output_section_slot)->update_flags_for_input_section(flags);
762 return *output_section_slot;
763 }
764
765 // We don't put sections found in the linker script into
766 // SECTION_NAME_MAP_. That keeps us from getting confused
767 // if an orphan section is mapped to a section with the same
768 // name as one in the linker script.
769
770 name = this->namepool_.add(name, false, NULL);
771
772 Output_section* os = this->make_output_section(name, type, flags,
773 order, is_relro);
774
775 os->set_found_in_sections_clause();
776
777 // Special handling for NOLOAD sections.
778 if (script_section_type == Script_sections::ST_NOLOAD)
779 {
780 os->set_is_noload();
781
782 // The constructor of Output_section sets addresses of non-ALLOC
783 // sections to 0 by default. We don't want that for NOLOAD
784 // sections even if they have no SHF_ALLOC flag.
785 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
786 && os->is_address_valid())
787 {
788 gold_assert(os->address() == 0
789 && !os->is_offset_valid()
790 && !os->is_data_size_valid());
791 os->reset_address_and_file_offset();
792 }
793 }
794
795 *output_section_slot = os;
796 return os;
797 }
798 }
799
800 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
801
802 size_t len = strlen(name);
803 char* uncompressed_name = NULL;
804
805 // Compressed debug sections should be mapped to the corresponding
806 // uncompressed section.
807 if (is_compressed_debug_section(name))
808 {
809 uncompressed_name = new char[len];
810 uncompressed_name[0] = '.';
811 gold_assert(name[0] == '.' && name[1] == 'z');
812 strncpy(&uncompressed_name[1], &name[2], len - 2);
813 uncompressed_name[len - 1] = '\0';
814 len -= 1;
815 name = uncompressed_name;
816 }
817
818 // Turn NAME from the name of the input section into the name of the
819 // output section.
820 if (is_input_section
821 && !this->script_options_->saw_sections_clause()
822 && !parameters->options().relocatable())
823 name = Layout::output_section_name(name, &len);
824
825 Stringpool::Key name_key;
826 name = this->namepool_.add_with_length(name, len, true, &name_key);
827
828 if (uncompressed_name != NULL)
829 delete[] uncompressed_name;
830
831 // Find or make the output section. The output section is selected
832 // based on the section name, type, and flags.
833 return this->get_output_section(name, name_key, type, flags, order, is_relro);
834 }
835
836 // For incremental links, record the initial fixed layout of a section
837 // from the base file, and return a pointer to the Output_section.
838
839 template<int size, bool big_endian>
840 Output_section*
841 Layout::init_fixed_output_section(const char* name,
842 elfcpp::Shdr<size, big_endian>& shdr)
843 {
844 unsigned int sh_type = shdr.get_sh_type();
845
846 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
847 // All others will be created from scratch and reallocated.
848 if (sh_type != elfcpp::SHT_PROGBITS
849 && sh_type != elfcpp::SHT_NOBITS
850 && sh_type != elfcpp::SHT_NOTE)
851 return NULL;
852
853 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
854 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
855 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
856 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
857 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
858 shdr.get_sh_addralign();
859
860 // Make the output section.
861 Stringpool::Key name_key;
862 name = this->namepool_.add(name, true, &name_key);
863 Output_section* os = this->get_output_section(name, name_key, sh_type,
864 sh_flags, ORDER_INVALID, false);
865 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
866 if (sh_type != elfcpp::SHT_NOBITS)
867 this->free_list_.remove(sh_offset, sh_offset + sh_size);
868 return os;
869 }
870
871 // Return the output section to use for input section SHNDX, with name
872 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
873 // index of a relocation section which applies to this section, or 0
874 // if none, or -1U if more than one. RELOC_TYPE is the type of the
875 // relocation section if there is one. Set *OFF to the offset of this
876 // input section without the output section. Return NULL if the
877 // section should be discarded. Set *OFF to -1 if the section
878 // contents should not be written directly to the output file, but
879 // will instead receive special handling.
880
881 template<int size, bool big_endian>
882 Output_section*
883 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
884 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
885 unsigned int reloc_shndx, unsigned int, off_t* off)
886 {
887 *off = 0;
888
889 if (!this->include_section(object, name, shdr))
890 return NULL;
891
892 Output_section* os;
893
894 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
895 // correct section types. Force them here.
896 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
897 if (sh_type == elfcpp::SHT_PROGBITS)
898 {
899 static const char init_array_prefix[] = ".init_array";
900 static const char preinit_array_prefix[] = ".preinit_array";
901 static const char fini_array_prefix[] = ".fini_array";
902 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
903 static size_t preinit_array_prefix_size =
904 sizeof(preinit_array_prefix) - 1;
905 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
906
907 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
908 sh_type = elfcpp::SHT_INIT_ARRAY;
909 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
910 == 0)
911 sh_type = elfcpp::SHT_PREINIT_ARRAY;
912 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
913 sh_type = elfcpp::SHT_FINI_ARRAY;
914 }
915
916 // In a relocatable link a grouped section must not be combined with
917 // any other sections.
918 if (parameters->options().relocatable()
919 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
920 {
921 name = this->namepool_.add(name, true, NULL);
922 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
923 ORDER_INVALID, false);
924 }
925 else
926 {
927 os = this->choose_output_section(object, name, sh_type,
928 shdr.get_sh_flags(), true,
929 ORDER_INVALID, false);
930 if (os == NULL)
931 return NULL;
932 }
933
934 // By default the GNU linker sorts input sections whose names match
935 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
936 // are sorted by name. This is used to implement constructor
937 // priority ordering. We are compatible.
938 if (!this->script_options_->saw_sections_clause()
939 && (is_prefix_of(".ctors.", name)
940 || is_prefix_of(".dtors.", name)
941 || is_prefix_of(".init_array.", name)
942 || is_prefix_of(".fini_array.", name)))
943 os->set_must_sort_attached_input_sections();
944
945 // FIXME: Handle SHF_LINK_ORDER somewhere.
946
947 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
948 this->script_options_->saw_sections_clause());
949 this->have_added_input_section_ = true;
950
951 return os;
952 }
953
954 // Handle a relocation section when doing a relocatable link.
955
956 template<int size, bool big_endian>
957 Output_section*
958 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
959 unsigned int,
960 const elfcpp::Shdr<size, big_endian>& shdr,
961 Output_section* data_section,
962 Relocatable_relocs* rr)
963 {
964 gold_assert(parameters->options().relocatable()
965 || parameters->options().emit_relocs());
966
967 int sh_type = shdr.get_sh_type();
968
969 std::string name;
970 if (sh_type == elfcpp::SHT_REL)
971 name = ".rel";
972 else if (sh_type == elfcpp::SHT_RELA)
973 name = ".rela";
974 else
975 gold_unreachable();
976 name += data_section->name();
977
978 // In a relocatable link relocs for a grouped section must not be
979 // combined with other reloc sections.
980 Output_section* os;
981 if (!parameters->options().relocatable()
982 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
983 os = this->choose_output_section(object, name.c_str(), sh_type,
984 shdr.get_sh_flags(), false,
985 ORDER_INVALID, false);
986 else
987 {
988 const char* n = this->namepool_.add(name.c_str(), true, NULL);
989 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
990 ORDER_INVALID, false);
991 }
992
993 os->set_should_link_to_symtab();
994 os->set_info_section(data_section);
995
996 Output_section_data* posd;
997 if (sh_type == elfcpp::SHT_REL)
998 {
999 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1001 size,
1002 big_endian>(rr);
1003 }
1004 else if (sh_type == elfcpp::SHT_RELA)
1005 {
1006 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1007 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1008 size,
1009 big_endian>(rr);
1010 }
1011 else
1012 gold_unreachable();
1013
1014 os->add_output_section_data(posd);
1015 rr->set_output_data(posd);
1016
1017 return os;
1018 }
1019
1020 // Handle a group section when doing a relocatable link.
1021
1022 template<int size, bool big_endian>
1023 void
1024 Layout::layout_group(Symbol_table* symtab,
1025 Sized_relobj<size, big_endian>* object,
1026 unsigned int,
1027 const char* group_section_name,
1028 const char* signature,
1029 const elfcpp::Shdr<size, big_endian>& shdr,
1030 elfcpp::Elf_Word flags,
1031 std::vector<unsigned int>* shndxes)
1032 {
1033 gold_assert(parameters->options().relocatable());
1034 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1035 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1036 Output_section* os = this->make_output_section(group_section_name,
1037 elfcpp::SHT_GROUP,
1038 shdr.get_sh_flags(),
1039 ORDER_INVALID, false);
1040
1041 // We need to find a symbol with the signature in the symbol table.
1042 // If we don't find one now, we need to look again later.
1043 Symbol* sym = symtab->lookup(signature, NULL);
1044 if (sym != NULL)
1045 os->set_info_symndx(sym);
1046 else
1047 {
1048 // Reserve some space to minimize reallocations.
1049 if (this->group_signatures_.empty())
1050 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1051
1052 // We will wind up using a symbol whose name is the signature.
1053 // So just put the signature in the symbol name pool to save it.
1054 signature = symtab->canonicalize_name(signature);
1055 this->group_signatures_.push_back(Group_signature(os, signature));
1056 }
1057
1058 os->set_should_link_to_symtab();
1059 os->set_entsize(4);
1060
1061 section_size_type entry_count =
1062 convert_to_section_size_type(shdr.get_sh_size() / 4);
1063 Output_section_data* posd =
1064 new Output_data_group<size, big_endian>(object, entry_count, flags,
1065 shndxes);
1066 os->add_output_section_data(posd);
1067 }
1068
1069 // Special GNU handling of sections name .eh_frame. They will
1070 // normally hold exception frame data as defined by the C++ ABI
1071 // (http://codesourcery.com/cxx-abi/).
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
1076 const unsigned char* symbols,
1077 off_t symbols_size,
1078 const unsigned char* symbol_names,
1079 off_t symbol_names_size,
1080 unsigned int shndx,
1081 const elfcpp::Shdr<size, big_endian>& shdr,
1082 unsigned int reloc_shndx, unsigned int reloc_type,
1083 off_t* off)
1084 {
1085 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1086 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1087
1088 const char* const name = ".eh_frame";
1089 Output_section* os = this->choose_output_section(object, name,
1090 elfcpp::SHT_PROGBITS,
1091 elfcpp::SHF_ALLOC, false,
1092 ORDER_EHFRAME, false);
1093 if (os == NULL)
1094 return NULL;
1095
1096 if (this->eh_frame_section_ == NULL)
1097 {
1098 this->eh_frame_section_ = os;
1099 this->eh_frame_data_ = new Eh_frame();
1100
1101 // For incremental linking, we do not optimize .eh_frame sections
1102 // or create a .eh_frame_hdr section.
1103 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1104 {
1105 Output_section* hdr_os =
1106 this->choose_output_section(NULL, ".eh_frame_hdr",
1107 elfcpp::SHT_PROGBITS,
1108 elfcpp::SHF_ALLOC, false,
1109 ORDER_EHFRAME, false);
1110
1111 if (hdr_os != NULL)
1112 {
1113 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1114 this->eh_frame_data_);
1115 hdr_os->add_output_section_data(hdr_posd);
1116
1117 hdr_os->set_after_input_sections();
1118
1119 if (!this->script_options_->saw_phdrs_clause())
1120 {
1121 Output_segment* hdr_oseg;
1122 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1123 elfcpp::PF_R);
1124 hdr_oseg->add_output_section_to_nonload(hdr_os,
1125 elfcpp::PF_R);
1126 }
1127
1128 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1129 }
1130 }
1131 }
1132
1133 gold_assert(this->eh_frame_section_ == os);
1134
1135 if (!parameters->incremental()
1136 && this->eh_frame_data_->add_ehframe_input_section(object,
1137 symbols,
1138 symbols_size,
1139 symbol_names,
1140 symbol_names_size,
1141 shndx,
1142 reloc_shndx,
1143 reloc_type))
1144 {
1145 os->update_flags_for_input_section(shdr.get_sh_flags());
1146
1147 // A writable .eh_frame section is a RELRO section.
1148 if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
1149 os->set_is_relro();
1150
1151 // We found a .eh_frame section we are going to optimize, so now
1152 // we can add the set of optimized sections to the output
1153 // section. We need to postpone adding this until we've found a
1154 // section we can optimize so that the .eh_frame section in
1155 // crtbegin.o winds up at the start of the output section.
1156 if (!this->added_eh_frame_data_)
1157 {
1158 os->add_output_section_data(this->eh_frame_data_);
1159 this->added_eh_frame_data_ = true;
1160 }
1161 *off = -1;
1162 }
1163 else
1164 {
1165 // We couldn't handle this .eh_frame section for some reason.
1166 // Add it as a normal section.
1167 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1168 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1169 saw_sections_clause);
1170 this->have_added_input_section_ = true;
1171 }
1172
1173 return os;
1174 }
1175
1176 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1177 // the output section.
1178
1179 Output_section*
1180 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1181 elfcpp::Elf_Xword flags,
1182 Output_section_data* posd,
1183 Output_section_order order, bool is_relro)
1184 {
1185 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1186 false, order, is_relro);
1187 if (os != NULL)
1188 os->add_output_section_data(posd);
1189 return os;
1190 }
1191
1192 // Map section flags to segment flags.
1193
1194 elfcpp::Elf_Word
1195 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1196 {
1197 elfcpp::Elf_Word ret = elfcpp::PF_R;
1198 if ((flags & elfcpp::SHF_WRITE) != 0)
1199 ret |= elfcpp::PF_W;
1200 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1201 ret |= elfcpp::PF_X;
1202 return ret;
1203 }
1204
1205 // Make a new Output_section, and attach it to segments as
1206 // appropriate. ORDER is the order in which this section should
1207 // appear in the output segment. IS_RELRO is true if this is a relro
1208 // (read-only after relocations) section.
1209
1210 Output_section*
1211 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1212 elfcpp::Elf_Xword flags,
1213 Output_section_order order, bool is_relro)
1214 {
1215 Output_section* os;
1216 if ((flags & elfcpp::SHF_ALLOC) == 0
1217 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1218 && is_compressible_debug_section(name))
1219 os = new Output_compressed_section(&parameters->options(), name, type,
1220 flags);
1221 else if ((flags & elfcpp::SHF_ALLOC) == 0
1222 && parameters->options().strip_debug_non_line()
1223 && strcmp(".debug_abbrev", name) == 0)
1224 {
1225 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1226 name, type, flags);
1227 if (this->debug_info_)
1228 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1229 }
1230 else if ((flags & elfcpp::SHF_ALLOC) == 0
1231 && parameters->options().strip_debug_non_line()
1232 && strcmp(".debug_info", name) == 0)
1233 {
1234 os = this->debug_info_ = new Output_reduced_debug_info_section(
1235 name, type, flags);
1236 if (this->debug_abbrev_)
1237 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1238 }
1239 else
1240 {
1241 // FIXME: const_cast is ugly.
1242 Target* target = const_cast<Target*>(&parameters->target());
1243 os = target->make_output_section(name, type, flags);
1244 }
1245
1246 // With -z relro, we have to recognize the special sections by name.
1247 // There is no other way.
1248 bool is_relro_local = false;
1249 if (!this->script_options_->saw_sections_clause()
1250 && parameters->options().relro()
1251 && type == elfcpp::SHT_PROGBITS
1252 && (flags & elfcpp::SHF_ALLOC) != 0
1253 && (flags & elfcpp::SHF_WRITE) != 0)
1254 {
1255 if (strcmp(name, ".data.rel.ro") == 0)
1256 is_relro = true;
1257 else if (strcmp(name, ".data.rel.ro.local") == 0)
1258 {
1259 is_relro = true;
1260 is_relro_local = true;
1261 }
1262 else if (type == elfcpp::SHT_INIT_ARRAY
1263 || type == elfcpp::SHT_FINI_ARRAY
1264 || type == elfcpp::SHT_PREINIT_ARRAY)
1265 is_relro = true;
1266 else if (strcmp(name, ".ctors") == 0
1267 || strcmp(name, ".dtors") == 0
1268 || strcmp(name, ".jcr") == 0)
1269 is_relro = true;
1270 }
1271
1272 if (is_relro)
1273 os->set_is_relro();
1274
1275 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1276 order = this->default_section_order(os, is_relro_local);
1277
1278 os->set_order(order);
1279
1280 parameters->target().new_output_section(os);
1281
1282 this->section_list_.push_back(os);
1283
1284 // The GNU linker by default sorts some sections by priority, so we
1285 // do the same. We need to know that this might happen before we
1286 // attach any input sections.
1287 if (!this->script_options_->saw_sections_clause()
1288 && (strcmp(name, ".ctors") == 0
1289 || strcmp(name, ".dtors") == 0
1290 || strcmp(name, ".init_array") == 0
1291 || strcmp(name, ".fini_array") == 0))
1292 os->set_may_sort_attached_input_sections();
1293
1294 // Check for .stab*str sections, as .stab* sections need to link to
1295 // them.
1296 if (type == elfcpp::SHT_STRTAB
1297 && !this->have_stabstr_section_
1298 && strncmp(name, ".stab", 5) == 0
1299 && strcmp(name + strlen(name) - 3, "str") == 0)
1300 this->have_stabstr_section_ = true;
1301
1302 // If we have already attached the sections to segments, then we
1303 // need to attach this one now. This happens for sections created
1304 // directly by the linker.
1305 if (this->sections_are_attached_)
1306 this->attach_section_to_segment(os);
1307
1308 return os;
1309 }
1310
1311 // Return the default order in which a section should be placed in an
1312 // output segment. This function captures a lot of the ideas in
1313 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1314 // linker created section is normally set when the section is created;
1315 // this function is used for input sections.
1316
1317 Output_section_order
1318 Layout::default_section_order(Output_section* os, bool is_relro_local)
1319 {
1320 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1321 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1322 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1323 bool is_bss = false;
1324
1325 switch (os->type())
1326 {
1327 default:
1328 case elfcpp::SHT_PROGBITS:
1329 break;
1330 case elfcpp::SHT_NOBITS:
1331 is_bss = true;
1332 break;
1333 case elfcpp::SHT_RELA:
1334 case elfcpp::SHT_REL:
1335 if (!is_write)
1336 return ORDER_DYNAMIC_RELOCS;
1337 break;
1338 case elfcpp::SHT_HASH:
1339 case elfcpp::SHT_DYNAMIC:
1340 case elfcpp::SHT_SHLIB:
1341 case elfcpp::SHT_DYNSYM:
1342 case elfcpp::SHT_GNU_HASH:
1343 case elfcpp::SHT_GNU_verdef:
1344 case elfcpp::SHT_GNU_verneed:
1345 case elfcpp::SHT_GNU_versym:
1346 if (!is_write)
1347 return ORDER_DYNAMIC_LINKER;
1348 break;
1349 case elfcpp::SHT_NOTE:
1350 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1351 }
1352
1353 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1354 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1355
1356 if (!is_bss && !is_write)
1357 {
1358 if (is_execinstr)
1359 {
1360 if (strcmp(os->name(), ".init") == 0)
1361 return ORDER_INIT;
1362 else if (strcmp(os->name(), ".fini") == 0)
1363 return ORDER_FINI;
1364 }
1365 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1366 }
1367
1368 if (os->is_relro())
1369 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1370
1371 if (os->is_small_section())
1372 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1373 if (os->is_large_section())
1374 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1375
1376 return is_bss ? ORDER_BSS : ORDER_DATA;
1377 }
1378
1379 // Attach output sections to segments. This is called after we have
1380 // seen all the input sections.
1381
1382 void
1383 Layout::attach_sections_to_segments()
1384 {
1385 for (Section_list::iterator p = this->section_list_.begin();
1386 p != this->section_list_.end();
1387 ++p)
1388 this->attach_section_to_segment(*p);
1389
1390 this->sections_are_attached_ = true;
1391 }
1392
1393 // Attach an output section to a segment.
1394
1395 void
1396 Layout::attach_section_to_segment(Output_section* os)
1397 {
1398 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1399 this->unattached_section_list_.push_back(os);
1400 else
1401 this->attach_allocated_section_to_segment(os);
1402 }
1403
1404 // Attach an allocated output section to a segment.
1405
1406 void
1407 Layout::attach_allocated_section_to_segment(Output_section* os)
1408 {
1409 elfcpp::Elf_Xword flags = os->flags();
1410 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1411
1412 if (parameters->options().relocatable())
1413 return;
1414
1415 // If we have a SECTIONS clause, we can't handle the attachment to
1416 // segments until after we've seen all the sections.
1417 if (this->script_options_->saw_sections_clause())
1418 return;
1419
1420 gold_assert(!this->script_options_->saw_phdrs_clause());
1421
1422 // This output section goes into a PT_LOAD segment.
1423
1424 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1425
1426 // Check for --section-start.
1427 uint64_t addr;
1428 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1429
1430 // In general the only thing we really care about for PT_LOAD
1431 // segments is whether or not they are writable or executable,
1432 // so that is how we search for them.
1433 // Large data sections also go into their own PT_LOAD segment.
1434 // People who need segments sorted on some other basis will
1435 // have to use a linker script.
1436
1437 Segment_list::const_iterator p;
1438 for (p = this->segment_list_.begin();
1439 p != this->segment_list_.end();
1440 ++p)
1441 {
1442 if ((*p)->type() != elfcpp::PT_LOAD)
1443 continue;
1444 if (!parameters->options().omagic()
1445 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1446 continue;
1447 if (parameters->options().rosegment()
1448 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1449 continue;
1450 // If -Tbss was specified, we need to separate the data and BSS
1451 // segments.
1452 if (parameters->options().user_set_Tbss())
1453 {
1454 if ((os->type() == elfcpp::SHT_NOBITS)
1455 == (*p)->has_any_data_sections())
1456 continue;
1457 }
1458 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1459 continue;
1460
1461 if (is_address_set)
1462 {
1463 if ((*p)->are_addresses_set())
1464 continue;
1465
1466 (*p)->add_initial_output_data(os);
1467 (*p)->update_flags_for_output_section(seg_flags);
1468 (*p)->set_addresses(addr, addr);
1469 break;
1470 }
1471
1472 (*p)->add_output_section_to_load(this, os, seg_flags);
1473 break;
1474 }
1475
1476 if (p == this->segment_list_.end())
1477 {
1478 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1479 seg_flags);
1480 if (os->is_large_data_section())
1481 oseg->set_is_large_data_segment();
1482 oseg->add_output_section_to_load(this, os, seg_flags);
1483 if (is_address_set)
1484 oseg->set_addresses(addr, addr);
1485 }
1486
1487 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1488 // segment.
1489 if (os->type() == elfcpp::SHT_NOTE)
1490 {
1491 // See if we already have an equivalent PT_NOTE segment.
1492 for (p = this->segment_list_.begin();
1493 p != segment_list_.end();
1494 ++p)
1495 {
1496 if ((*p)->type() == elfcpp::PT_NOTE
1497 && (((*p)->flags() & elfcpp::PF_W)
1498 == (seg_flags & elfcpp::PF_W)))
1499 {
1500 (*p)->add_output_section_to_nonload(os, seg_flags);
1501 break;
1502 }
1503 }
1504
1505 if (p == this->segment_list_.end())
1506 {
1507 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1508 seg_flags);
1509 oseg->add_output_section_to_nonload(os, seg_flags);
1510 }
1511 }
1512
1513 // If we see a loadable SHF_TLS section, we create a PT_TLS
1514 // segment. There can only be one such segment.
1515 if ((flags & elfcpp::SHF_TLS) != 0)
1516 {
1517 if (this->tls_segment_ == NULL)
1518 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1519 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1520 }
1521
1522 // If -z relro is in effect, and we see a relro section, we create a
1523 // PT_GNU_RELRO segment. There can only be one such segment.
1524 if (os->is_relro() && parameters->options().relro())
1525 {
1526 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1527 if (this->relro_segment_ == NULL)
1528 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1529 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1530 }
1531 }
1532
1533 // Make an output section for a script.
1534
1535 Output_section*
1536 Layout::make_output_section_for_script(
1537 const char* name,
1538 Script_sections::Section_type section_type)
1539 {
1540 name = this->namepool_.add(name, false, NULL);
1541 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1542 if (section_type == Script_sections::ST_NOLOAD)
1543 sh_flags = 0;
1544 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1545 sh_flags, ORDER_INVALID,
1546 false);
1547 os->set_found_in_sections_clause();
1548 if (section_type == Script_sections::ST_NOLOAD)
1549 os->set_is_noload();
1550 return os;
1551 }
1552
1553 // Return the number of segments we expect to see.
1554
1555 size_t
1556 Layout::expected_segment_count() const
1557 {
1558 size_t ret = this->segment_list_.size();
1559
1560 // If we didn't see a SECTIONS clause in a linker script, we should
1561 // already have the complete list of segments. Otherwise we ask the
1562 // SECTIONS clause how many segments it expects, and add in the ones
1563 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1564
1565 if (!this->script_options_->saw_sections_clause())
1566 return ret;
1567 else
1568 {
1569 const Script_sections* ss = this->script_options_->script_sections();
1570 return ret + ss->expected_segment_count(this);
1571 }
1572 }
1573
1574 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1575 // is whether we saw a .note.GNU-stack section in the object file.
1576 // GNU_STACK_FLAGS is the section flags. The flags give the
1577 // protection required for stack memory. We record this in an
1578 // executable as a PT_GNU_STACK segment. If an object file does not
1579 // have a .note.GNU-stack segment, we must assume that it is an old
1580 // object. On some targets that will force an executable stack.
1581
1582 void
1583 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1584 const Object* obj)
1585 {
1586 if (!seen_gnu_stack)
1587 {
1588 this->input_without_gnu_stack_note_ = true;
1589 if (parameters->options().warn_execstack()
1590 && parameters->target().is_default_stack_executable())
1591 gold_warning(_("%s: missing .note.GNU-stack section"
1592 " implies executable stack"),
1593 obj->name().c_str());
1594 }
1595 else
1596 {
1597 this->input_with_gnu_stack_note_ = true;
1598 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1599 {
1600 this->input_requires_executable_stack_ = true;
1601 if (parameters->options().warn_execstack()
1602 || parameters->options().is_stack_executable())
1603 gold_warning(_("%s: requires executable stack"),
1604 obj->name().c_str());
1605 }
1606 }
1607 }
1608
1609 // Create automatic note sections.
1610
1611 void
1612 Layout::create_notes()
1613 {
1614 this->create_gold_note();
1615 this->create_executable_stack_info();
1616 this->create_build_id();
1617 }
1618
1619 // Create the dynamic sections which are needed before we read the
1620 // relocs.
1621
1622 void
1623 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1624 {
1625 if (parameters->doing_static_link())
1626 return;
1627
1628 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1629 elfcpp::SHT_DYNAMIC,
1630 (elfcpp::SHF_ALLOC
1631 | elfcpp::SHF_WRITE),
1632 false, ORDER_RELRO,
1633 true);
1634
1635 this->dynamic_symbol_ =
1636 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1637 this->dynamic_section_, 0, 0,
1638 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1639 elfcpp::STV_HIDDEN, 0, false, false);
1640
1641 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1642
1643 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1644 }
1645
1646 // For each output section whose name can be represented as C symbol,
1647 // define __start and __stop symbols for the section. This is a GNU
1648 // extension.
1649
1650 void
1651 Layout::define_section_symbols(Symbol_table* symtab)
1652 {
1653 for (Section_list::const_iterator p = this->section_list_.begin();
1654 p != this->section_list_.end();
1655 ++p)
1656 {
1657 const char* const name = (*p)->name();
1658 if (is_cident(name))
1659 {
1660 const std::string name_string(name);
1661 const std::string start_name(cident_section_start_prefix
1662 + name_string);
1663 const std::string stop_name(cident_section_stop_prefix
1664 + name_string);
1665
1666 symtab->define_in_output_data(start_name.c_str(),
1667 NULL, // version
1668 Symbol_table::PREDEFINED,
1669 *p,
1670 0, // value
1671 0, // symsize
1672 elfcpp::STT_NOTYPE,
1673 elfcpp::STB_GLOBAL,
1674 elfcpp::STV_DEFAULT,
1675 0, // nonvis
1676 false, // offset_is_from_end
1677 true); // only_if_ref
1678
1679 symtab->define_in_output_data(stop_name.c_str(),
1680 NULL, // version
1681 Symbol_table::PREDEFINED,
1682 *p,
1683 0, // value
1684 0, // symsize
1685 elfcpp::STT_NOTYPE,
1686 elfcpp::STB_GLOBAL,
1687 elfcpp::STV_DEFAULT,
1688 0, // nonvis
1689 true, // offset_is_from_end
1690 true); // only_if_ref
1691 }
1692 }
1693 }
1694
1695 // Define symbols for group signatures.
1696
1697 void
1698 Layout::define_group_signatures(Symbol_table* symtab)
1699 {
1700 for (Group_signatures::iterator p = this->group_signatures_.begin();
1701 p != this->group_signatures_.end();
1702 ++p)
1703 {
1704 Symbol* sym = symtab->lookup(p->signature, NULL);
1705 if (sym != NULL)
1706 p->section->set_info_symndx(sym);
1707 else
1708 {
1709 // Force the name of the group section to the group
1710 // signature, and use the group's section symbol as the
1711 // signature symbol.
1712 if (strcmp(p->section->name(), p->signature) != 0)
1713 {
1714 const char* name = this->namepool_.add(p->signature,
1715 true, NULL);
1716 p->section->set_name(name);
1717 }
1718 p->section->set_needs_symtab_index();
1719 p->section->set_info_section_symndx(p->section);
1720 }
1721 }
1722
1723 this->group_signatures_.clear();
1724 }
1725
1726 // Find the first read-only PT_LOAD segment, creating one if
1727 // necessary.
1728
1729 Output_segment*
1730 Layout::find_first_load_seg()
1731 {
1732 Output_segment* best = NULL;
1733 for (Segment_list::const_iterator p = this->segment_list_.begin();
1734 p != this->segment_list_.end();
1735 ++p)
1736 {
1737 if ((*p)->type() == elfcpp::PT_LOAD
1738 && ((*p)->flags() & elfcpp::PF_R) != 0
1739 && (parameters->options().omagic()
1740 || ((*p)->flags() & elfcpp::PF_W) == 0))
1741 {
1742 if (best == NULL || this->segment_precedes(*p, best))
1743 best = *p;
1744 }
1745 }
1746 if (best != NULL)
1747 return best;
1748
1749 gold_assert(!this->script_options_->saw_phdrs_clause());
1750
1751 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1752 elfcpp::PF_R);
1753 return load_seg;
1754 }
1755
1756 // Save states of all current output segments. Store saved states
1757 // in SEGMENT_STATES.
1758
1759 void
1760 Layout::save_segments(Segment_states* segment_states)
1761 {
1762 for (Segment_list::const_iterator p = this->segment_list_.begin();
1763 p != this->segment_list_.end();
1764 ++p)
1765 {
1766 Output_segment* segment = *p;
1767 // Shallow copy.
1768 Output_segment* copy = new Output_segment(*segment);
1769 (*segment_states)[segment] = copy;
1770 }
1771 }
1772
1773 // Restore states of output segments and delete any segment not found in
1774 // SEGMENT_STATES.
1775
1776 void
1777 Layout::restore_segments(const Segment_states* segment_states)
1778 {
1779 // Go through the segment list and remove any segment added in the
1780 // relaxation loop.
1781 this->tls_segment_ = NULL;
1782 this->relro_segment_ = NULL;
1783 Segment_list::iterator list_iter = this->segment_list_.begin();
1784 while (list_iter != this->segment_list_.end())
1785 {
1786 Output_segment* segment = *list_iter;
1787 Segment_states::const_iterator states_iter =
1788 segment_states->find(segment);
1789 if (states_iter != segment_states->end())
1790 {
1791 const Output_segment* copy = states_iter->second;
1792 // Shallow copy to restore states.
1793 *segment = *copy;
1794
1795 // Also fix up TLS and RELRO segment pointers as appropriate.
1796 if (segment->type() == elfcpp::PT_TLS)
1797 this->tls_segment_ = segment;
1798 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1799 this->relro_segment_ = segment;
1800
1801 ++list_iter;
1802 }
1803 else
1804 {
1805 list_iter = this->segment_list_.erase(list_iter);
1806 // This is a segment created during section layout. It should be
1807 // safe to remove it since we should have removed all pointers to it.
1808 delete segment;
1809 }
1810 }
1811 }
1812
1813 // Clean up after relaxation so that sections can be laid out again.
1814
1815 void
1816 Layout::clean_up_after_relaxation()
1817 {
1818 // Restore the segments to point state just prior to the relaxation loop.
1819 Script_sections* script_section = this->script_options_->script_sections();
1820 script_section->release_segments();
1821 this->restore_segments(this->segment_states_);
1822
1823 // Reset section addresses and file offsets
1824 for (Section_list::iterator p = this->section_list_.begin();
1825 p != this->section_list_.end();
1826 ++p)
1827 {
1828 (*p)->restore_states();
1829
1830 // If an input section changes size because of relaxation,
1831 // we need to adjust the section offsets of all input sections.
1832 // after such a section.
1833 if ((*p)->section_offsets_need_adjustment())
1834 (*p)->adjust_section_offsets();
1835
1836 (*p)->reset_address_and_file_offset();
1837 }
1838
1839 // Reset special output object address and file offsets.
1840 for (Data_list::iterator p = this->special_output_list_.begin();
1841 p != this->special_output_list_.end();
1842 ++p)
1843 (*p)->reset_address_and_file_offset();
1844
1845 // A linker script may have created some output section data objects.
1846 // They are useless now.
1847 for (Output_section_data_list::const_iterator p =
1848 this->script_output_section_data_list_.begin();
1849 p != this->script_output_section_data_list_.end();
1850 ++p)
1851 delete *p;
1852 this->script_output_section_data_list_.clear();
1853 }
1854
1855 // Prepare for relaxation.
1856
1857 void
1858 Layout::prepare_for_relaxation()
1859 {
1860 // Create an relaxation debug check if in debugging mode.
1861 if (is_debugging_enabled(DEBUG_RELAXATION))
1862 this->relaxation_debug_check_ = new Relaxation_debug_check();
1863
1864 // Save segment states.
1865 this->segment_states_ = new Segment_states();
1866 this->save_segments(this->segment_states_);
1867
1868 for(Section_list::const_iterator p = this->section_list_.begin();
1869 p != this->section_list_.end();
1870 ++p)
1871 (*p)->save_states();
1872
1873 if (is_debugging_enabled(DEBUG_RELAXATION))
1874 this->relaxation_debug_check_->check_output_data_for_reset_values(
1875 this->section_list_, this->special_output_list_);
1876
1877 // Also enable recording of output section data from scripts.
1878 this->record_output_section_data_from_script_ = true;
1879 }
1880
1881 // Relaxation loop body: If target has no relaxation, this runs only once
1882 // Otherwise, the target relaxation hook is called at the end of
1883 // each iteration. If the hook returns true, it means re-layout of
1884 // section is required.
1885 //
1886 // The number of segments created by a linking script without a PHDRS
1887 // clause may be affected by section sizes and alignments. There is
1888 // a remote chance that relaxation causes different number of PT_LOAD
1889 // segments are created and sections are attached to different segments.
1890 // Therefore, we always throw away all segments created during section
1891 // layout. In order to be able to restart the section layout, we keep
1892 // a copy of the segment list right before the relaxation loop and use
1893 // that to restore the segments.
1894 //
1895 // PASS is the current relaxation pass number.
1896 // SYMTAB is a symbol table.
1897 // PLOAD_SEG is the address of a pointer for the load segment.
1898 // PHDR_SEG is a pointer to the PHDR segment.
1899 // SEGMENT_HEADERS points to the output segment header.
1900 // FILE_HEADER points to the output file header.
1901 // PSHNDX is the address to store the output section index.
1902
1903 off_t inline
1904 Layout::relaxation_loop_body(
1905 int pass,
1906 Target* target,
1907 Symbol_table* symtab,
1908 Output_segment** pload_seg,
1909 Output_segment* phdr_seg,
1910 Output_segment_headers* segment_headers,
1911 Output_file_header* file_header,
1912 unsigned int* pshndx)
1913 {
1914 // If this is not the first iteration, we need to clean up after
1915 // relaxation so that we can lay out the sections again.
1916 if (pass != 0)
1917 this->clean_up_after_relaxation();
1918
1919 // If there is a SECTIONS clause, put all the input sections into
1920 // the required order.
1921 Output_segment* load_seg;
1922 if (this->script_options_->saw_sections_clause())
1923 load_seg = this->set_section_addresses_from_script(symtab);
1924 else if (parameters->options().relocatable())
1925 load_seg = NULL;
1926 else
1927 load_seg = this->find_first_load_seg();
1928
1929 if (parameters->options().oformat_enum()
1930 != General_options::OBJECT_FORMAT_ELF)
1931 load_seg = NULL;
1932
1933 // If the user set the address of the text segment, that may not be
1934 // compatible with putting the segment headers and file headers into
1935 // that segment.
1936 if (parameters->options().user_set_Ttext())
1937 load_seg = NULL;
1938
1939 gold_assert(phdr_seg == NULL
1940 || load_seg != NULL
1941 || this->script_options_->saw_sections_clause());
1942
1943 // If the address of the load segment we found has been set by
1944 // --section-start rather than by a script, then adjust the VMA and
1945 // LMA downward if possible to include the file and section headers.
1946 uint64_t header_gap = 0;
1947 if (load_seg != NULL
1948 && load_seg->are_addresses_set()
1949 && !this->script_options_->saw_sections_clause()
1950 && !parameters->options().relocatable())
1951 {
1952 file_header->finalize_data_size();
1953 segment_headers->finalize_data_size();
1954 size_t sizeof_headers = (file_header->data_size()
1955 + segment_headers->data_size());
1956 const uint64_t abi_pagesize = target->abi_pagesize();
1957 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1958 hdr_paddr &= ~(abi_pagesize - 1);
1959 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1960 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1961 load_seg = NULL;
1962 else
1963 {
1964 load_seg->set_addresses(load_seg->vaddr() - subtract,
1965 load_seg->paddr() - subtract);
1966 header_gap = subtract - sizeof_headers;
1967 }
1968 }
1969
1970 // Lay out the segment headers.
1971 if (!parameters->options().relocatable())
1972 {
1973 gold_assert(segment_headers != NULL);
1974 if (header_gap != 0 && load_seg != NULL)
1975 {
1976 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1977 load_seg->add_initial_output_data(z);
1978 }
1979 if (load_seg != NULL)
1980 load_seg->add_initial_output_data(segment_headers);
1981 if (phdr_seg != NULL)
1982 phdr_seg->add_initial_output_data(segment_headers);
1983 }
1984
1985 // Lay out the file header.
1986 if (load_seg != NULL)
1987 load_seg->add_initial_output_data(file_header);
1988
1989 if (this->script_options_->saw_phdrs_clause()
1990 && !parameters->options().relocatable())
1991 {
1992 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1993 // clause in a linker script.
1994 Script_sections* ss = this->script_options_->script_sections();
1995 ss->put_headers_in_phdrs(file_header, segment_headers);
1996 }
1997
1998 // We set the output section indexes in set_segment_offsets and
1999 // set_section_indexes.
2000 *pshndx = 1;
2001
2002 // Set the file offsets of all the segments, and all the sections
2003 // they contain.
2004 off_t off;
2005 if (!parameters->options().relocatable())
2006 off = this->set_segment_offsets(target, load_seg, pshndx);
2007 else
2008 off = this->set_relocatable_section_offsets(file_header, pshndx);
2009
2010 // Verify that the dummy relaxation does not change anything.
2011 if (is_debugging_enabled(DEBUG_RELAXATION))
2012 {
2013 if (pass == 0)
2014 this->relaxation_debug_check_->read_sections(this->section_list_);
2015 else
2016 this->relaxation_debug_check_->verify_sections(this->section_list_);
2017 }
2018
2019 *pload_seg = load_seg;
2020 return off;
2021 }
2022
2023 // Search the list of patterns and find the postion of the given section
2024 // name in the output section. If the section name matches a glob
2025 // pattern and a non-glob name, then the non-glob position takes
2026 // precedence. Return 0 if no match is found.
2027
2028 unsigned int
2029 Layout::find_section_order_index(const std::string& section_name)
2030 {
2031 Unordered_map<std::string, unsigned int>::iterator map_it;
2032 map_it = this->input_section_position_.find(section_name);
2033 if (map_it != this->input_section_position_.end())
2034 return map_it->second;
2035
2036 // Absolute match failed. Linear search the glob patterns.
2037 std::vector<std::string>::iterator it;
2038 for (it = this->input_section_glob_.begin();
2039 it != this->input_section_glob_.end();
2040 ++it)
2041 {
2042 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2043 {
2044 map_it = this->input_section_position_.find(*it);
2045 gold_assert(map_it != this->input_section_position_.end());
2046 return map_it->second;
2047 }
2048 }
2049 return 0;
2050 }
2051
2052 // Read the sequence of input sections from the file specified with
2053 // --section-ordering-file.
2054
2055 void
2056 Layout::read_layout_from_file()
2057 {
2058 const char* filename = parameters->options().section_ordering_file();
2059 std::ifstream in;
2060 std::string line;
2061
2062 in.open(filename);
2063 if (!in)
2064 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2065 filename, strerror(errno));
2066
2067 std::getline(in, line); // this chops off the trailing \n, if any
2068 unsigned int position = 1;
2069
2070 while (in)
2071 {
2072 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2073 line.resize(line.length() - 1);
2074 // Ignore comments, beginning with '#'
2075 if (line[0] == '#')
2076 {
2077 std::getline(in, line);
2078 continue;
2079 }
2080 this->input_section_position_[line] = position;
2081 // Store all glob patterns in a vector.
2082 if (is_wildcard_string(line.c_str()))
2083 this->input_section_glob_.push_back(line);
2084 position++;
2085 std::getline(in, line);
2086 }
2087 }
2088
2089 // Finalize the layout. When this is called, we have created all the
2090 // output sections and all the output segments which are based on
2091 // input sections. We have several things to do, and we have to do
2092 // them in the right order, so that we get the right results correctly
2093 // and efficiently.
2094
2095 // 1) Finalize the list of output segments and create the segment
2096 // table header.
2097
2098 // 2) Finalize the dynamic symbol table and associated sections.
2099
2100 // 3) Determine the final file offset of all the output segments.
2101
2102 // 4) Determine the final file offset of all the SHF_ALLOC output
2103 // sections.
2104
2105 // 5) Create the symbol table sections and the section name table
2106 // section.
2107
2108 // 6) Finalize the symbol table: set symbol values to their final
2109 // value and make a final determination of which symbols are going
2110 // into the output symbol table.
2111
2112 // 7) Create the section table header.
2113
2114 // 8) Determine the final file offset of all the output sections which
2115 // are not SHF_ALLOC, including the section table header.
2116
2117 // 9) Finalize the ELF file header.
2118
2119 // This function returns the size of the output file.
2120
2121 off_t
2122 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2123 Target* target, const Task* task)
2124 {
2125 target->finalize_sections(this, input_objects, symtab);
2126
2127 this->count_local_symbols(task, input_objects);
2128
2129 this->link_stabs_sections();
2130
2131 Output_segment* phdr_seg = NULL;
2132 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2133 {
2134 // There was a dynamic object in the link. We need to create
2135 // some information for the dynamic linker.
2136
2137 // Create the PT_PHDR segment which will hold the program
2138 // headers.
2139 if (!this->script_options_->saw_phdrs_clause())
2140 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2141
2142 // Create the dynamic symbol table, including the hash table.
2143 Output_section* dynstr;
2144 std::vector<Symbol*> dynamic_symbols;
2145 unsigned int local_dynamic_count;
2146 Versions versions(*this->script_options()->version_script_info(),
2147 &this->dynpool_);
2148 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2149 &local_dynamic_count, &dynamic_symbols,
2150 &versions);
2151
2152 // Create the .interp section to hold the name of the
2153 // interpreter, and put it in a PT_INTERP segment.
2154 if (!parameters->options().shared())
2155 this->create_interp(target);
2156
2157 // Finish the .dynamic section to hold the dynamic data, and put
2158 // it in a PT_DYNAMIC segment.
2159 this->finish_dynamic_section(input_objects, symtab);
2160
2161 // We should have added everything we need to the dynamic string
2162 // table.
2163 this->dynpool_.set_string_offsets();
2164
2165 // Create the version sections. We can't do this until the
2166 // dynamic string table is complete.
2167 this->create_version_sections(&versions, symtab, local_dynamic_count,
2168 dynamic_symbols, dynstr);
2169
2170 // Set the size of the _DYNAMIC symbol. We can't do this until
2171 // after we call create_version_sections.
2172 this->set_dynamic_symbol_size(symtab);
2173 }
2174
2175 // Create segment headers.
2176 Output_segment_headers* segment_headers =
2177 (parameters->options().relocatable()
2178 ? NULL
2179 : new Output_segment_headers(this->segment_list_));
2180
2181 // Lay out the file header.
2182 Output_file_header* file_header
2183 = new Output_file_header(target, symtab, segment_headers,
2184 parameters->options().entry());
2185
2186 this->special_output_list_.push_back(file_header);
2187 if (segment_headers != NULL)
2188 this->special_output_list_.push_back(segment_headers);
2189
2190 // Find approriate places for orphan output sections if we are using
2191 // a linker script.
2192 if (this->script_options_->saw_sections_clause())
2193 this->place_orphan_sections_in_script();
2194
2195 Output_segment* load_seg;
2196 off_t off;
2197 unsigned int shndx;
2198 int pass = 0;
2199
2200 // Take a snapshot of the section layout as needed.
2201 if (target->may_relax())
2202 this->prepare_for_relaxation();
2203
2204 // Run the relaxation loop to lay out sections.
2205 do
2206 {
2207 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2208 phdr_seg, segment_headers, file_header,
2209 &shndx);
2210 pass++;
2211 }
2212 while (target->may_relax()
2213 && target->relax(pass, input_objects, symtab, this, task));
2214
2215 // Set the file offsets of all the non-data sections we've seen so
2216 // far which don't have to wait for the input sections. We need
2217 // this in order to finalize local symbols in non-allocated
2218 // sections.
2219 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2220
2221 // Set the section indexes of all unallocated sections seen so far,
2222 // in case any of them are somehow referenced by a symbol.
2223 shndx = this->set_section_indexes(shndx);
2224
2225 // Create the symbol table sections.
2226 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2227 if (!parameters->doing_static_link())
2228 this->assign_local_dynsym_offsets(input_objects);
2229
2230 // Process any symbol assignments from a linker script. This must
2231 // be called after the symbol table has been finalized.
2232 this->script_options_->finalize_symbols(symtab, this);
2233
2234 // Create the incremental inputs sections.
2235 if (this->incremental_inputs_)
2236 {
2237 this->incremental_inputs_->finalize();
2238 this->create_incremental_info_sections(symtab);
2239 }
2240
2241 // Create the .shstrtab section.
2242 Output_section* shstrtab_section = this->create_shstrtab();
2243
2244 // Set the file offsets of the rest of the non-data sections which
2245 // don't have to wait for the input sections.
2246 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2247
2248 // Now that all sections have been created, set the section indexes
2249 // for any sections which haven't been done yet.
2250 shndx = this->set_section_indexes(shndx);
2251
2252 // Create the section table header.
2253 this->create_shdrs(shstrtab_section, &off);
2254
2255 // If there are no sections which require postprocessing, we can
2256 // handle the section names now, and avoid a resize later.
2257 if (!this->any_postprocessing_sections_)
2258 {
2259 off = this->set_section_offsets(off,
2260 POSTPROCESSING_SECTIONS_PASS);
2261 off =
2262 this->set_section_offsets(off,
2263 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2264 }
2265
2266 file_header->set_section_info(this->section_headers_, shstrtab_section);
2267
2268 // Now we know exactly where everything goes in the output file
2269 // (except for non-allocated sections which require postprocessing).
2270 Output_data::layout_complete();
2271
2272 this->output_file_size_ = off;
2273
2274 return off;
2275 }
2276
2277 // Create a note header following the format defined in the ELF ABI.
2278 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2279 // of the section to create, DESCSZ is the size of the descriptor.
2280 // ALLOCATE is true if the section should be allocated in memory.
2281 // This returns the new note section. It sets *TRAILING_PADDING to
2282 // the number of trailing zero bytes required.
2283
2284 Output_section*
2285 Layout::create_note(const char* name, int note_type,
2286 const char* section_name, size_t descsz,
2287 bool allocate, size_t* trailing_padding)
2288 {
2289 // Authorities all agree that the values in a .note field should
2290 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2291 // they differ on what the alignment is for 64-bit binaries.
2292 // The GABI says unambiguously they take 8-byte alignment:
2293 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2294 // Other documentation says alignment should always be 4 bytes:
2295 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2296 // GNU ld and GNU readelf both support the latter (at least as of
2297 // version 2.16.91), and glibc always generates the latter for
2298 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2299 // here.
2300 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2301 const int size = parameters->target().get_size();
2302 #else
2303 const int size = 32;
2304 #endif
2305
2306 // The contents of the .note section.
2307 size_t namesz = strlen(name) + 1;
2308 size_t aligned_namesz = align_address(namesz, size / 8);
2309 size_t aligned_descsz = align_address(descsz, size / 8);
2310
2311 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2312
2313 unsigned char* buffer = new unsigned char[notehdrsz];
2314 memset(buffer, 0, notehdrsz);
2315
2316 bool is_big_endian = parameters->target().is_big_endian();
2317
2318 if (size == 32)
2319 {
2320 if (!is_big_endian)
2321 {
2322 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2323 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2324 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2325 }
2326 else
2327 {
2328 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2329 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2330 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2331 }
2332 }
2333 else if (size == 64)
2334 {
2335 if (!is_big_endian)
2336 {
2337 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2338 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2339 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2340 }
2341 else
2342 {
2343 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2344 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2345 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2346 }
2347 }
2348 else
2349 gold_unreachable();
2350
2351 memcpy(buffer + 3 * (size / 8), name, namesz);
2352
2353 elfcpp::Elf_Xword flags = 0;
2354 Output_section_order order = ORDER_INVALID;
2355 if (allocate)
2356 {
2357 flags = elfcpp::SHF_ALLOC;
2358 order = ORDER_RO_NOTE;
2359 }
2360 Output_section* os = this->choose_output_section(NULL, section_name,
2361 elfcpp::SHT_NOTE,
2362 flags, false, order, false);
2363 if (os == NULL)
2364 return NULL;
2365
2366 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2367 size / 8,
2368 "** note header");
2369 os->add_output_section_data(posd);
2370
2371 *trailing_padding = aligned_descsz - descsz;
2372
2373 return os;
2374 }
2375
2376 // For an executable or shared library, create a note to record the
2377 // version of gold used to create the binary.
2378
2379 void
2380 Layout::create_gold_note()
2381 {
2382 if (parameters->options().relocatable()
2383 || parameters->incremental_update())
2384 return;
2385
2386 std::string desc = std::string("gold ") + gold::get_version_string();
2387
2388 size_t trailing_padding;
2389 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2390 ".note.gnu.gold-version", desc.size(),
2391 false, &trailing_padding);
2392 if (os == NULL)
2393 return;
2394
2395 Output_section_data* posd = new Output_data_const(desc, 4);
2396 os->add_output_section_data(posd);
2397
2398 if (trailing_padding > 0)
2399 {
2400 posd = new Output_data_zero_fill(trailing_padding, 0);
2401 os->add_output_section_data(posd);
2402 }
2403 }
2404
2405 // Record whether the stack should be executable. This can be set
2406 // from the command line using the -z execstack or -z noexecstack
2407 // options. Otherwise, if any input file has a .note.GNU-stack
2408 // section with the SHF_EXECINSTR flag set, the stack should be
2409 // executable. Otherwise, if at least one input file a
2410 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2411 // section, we use the target default for whether the stack should be
2412 // executable. Otherwise, we don't generate a stack note. When
2413 // generating a object file, we create a .note.GNU-stack section with
2414 // the appropriate marking. When generating an executable or shared
2415 // library, we create a PT_GNU_STACK segment.
2416
2417 void
2418 Layout::create_executable_stack_info()
2419 {
2420 bool is_stack_executable;
2421 if (parameters->options().is_execstack_set())
2422 is_stack_executable = parameters->options().is_stack_executable();
2423 else if (!this->input_with_gnu_stack_note_)
2424 return;
2425 else
2426 {
2427 if (this->input_requires_executable_stack_)
2428 is_stack_executable = true;
2429 else if (this->input_without_gnu_stack_note_)
2430 is_stack_executable =
2431 parameters->target().is_default_stack_executable();
2432 else
2433 is_stack_executable = false;
2434 }
2435
2436 if (parameters->options().relocatable())
2437 {
2438 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2439 elfcpp::Elf_Xword flags = 0;
2440 if (is_stack_executable)
2441 flags |= elfcpp::SHF_EXECINSTR;
2442 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2443 ORDER_INVALID, false);
2444 }
2445 else
2446 {
2447 if (this->script_options_->saw_phdrs_clause())
2448 return;
2449 int flags = elfcpp::PF_R | elfcpp::PF_W;
2450 if (is_stack_executable)
2451 flags |= elfcpp::PF_X;
2452 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2453 }
2454 }
2455
2456 // If --build-id was used, set up the build ID note.
2457
2458 void
2459 Layout::create_build_id()
2460 {
2461 if (!parameters->options().user_set_build_id())
2462 return;
2463
2464 const char* style = parameters->options().build_id();
2465 if (strcmp(style, "none") == 0)
2466 return;
2467
2468 // Set DESCSZ to the size of the note descriptor. When possible,
2469 // set DESC to the note descriptor contents.
2470 size_t descsz;
2471 std::string desc;
2472 if (strcmp(style, "md5") == 0)
2473 descsz = 128 / 8;
2474 else if (strcmp(style, "sha1") == 0)
2475 descsz = 160 / 8;
2476 else if (strcmp(style, "uuid") == 0)
2477 {
2478 const size_t uuidsz = 128 / 8;
2479
2480 char buffer[uuidsz];
2481 memset(buffer, 0, uuidsz);
2482
2483 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2484 if (descriptor < 0)
2485 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2486 strerror(errno));
2487 else
2488 {
2489 ssize_t got = ::read(descriptor, buffer, uuidsz);
2490 release_descriptor(descriptor, true);
2491 if (got < 0)
2492 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2493 else if (static_cast<size_t>(got) != uuidsz)
2494 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2495 uuidsz, got);
2496 }
2497
2498 desc.assign(buffer, uuidsz);
2499 descsz = uuidsz;
2500 }
2501 else if (strncmp(style, "0x", 2) == 0)
2502 {
2503 hex_init();
2504 const char* p = style + 2;
2505 while (*p != '\0')
2506 {
2507 if (hex_p(p[0]) && hex_p(p[1]))
2508 {
2509 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2510 desc += c;
2511 p += 2;
2512 }
2513 else if (*p == '-' || *p == ':')
2514 ++p;
2515 else
2516 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2517 style);
2518 }
2519 descsz = desc.size();
2520 }
2521 else
2522 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2523
2524 // Create the note.
2525 size_t trailing_padding;
2526 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2527 ".note.gnu.build-id", descsz, true,
2528 &trailing_padding);
2529 if (os == NULL)
2530 return;
2531
2532 if (!desc.empty())
2533 {
2534 // We know the value already, so we fill it in now.
2535 gold_assert(desc.size() == descsz);
2536
2537 Output_section_data* posd = new Output_data_const(desc, 4);
2538 os->add_output_section_data(posd);
2539
2540 if (trailing_padding != 0)
2541 {
2542 posd = new Output_data_zero_fill(trailing_padding, 0);
2543 os->add_output_section_data(posd);
2544 }
2545 }
2546 else
2547 {
2548 // We need to compute a checksum after we have completed the
2549 // link.
2550 gold_assert(trailing_padding == 0);
2551 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2552 os->add_output_section_data(this->build_id_note_);
2553 }
2554 }
2555
2556 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2557 // field of the former should point to the latter. I'm not sure who
2558 // started this, but the GNU linker does it, and some tools depend
2559 // upon it.
2560
2561 void
2562 Layout::link_stabs_sections()
2563 {
2564 if (!this->have_stabstr_section_)
2565 return;
2566
2567 for (Section_list::iterator p = this->section_list_.begin();
2568 p != this->section_list_.end();
2569 ++p)
2570 {
2571 if ((*p)->type() != elfcpp::SHT_STRTAB)
2572 continue;
2573
2574 const char* name = (*p)->name();
2575 if (strncmp(name, ".stab", 5) != 0)
2576 continue;
2577
2578 size_t len = strlen(name);
2579 if (strcmp(name + len - 3, "str") != 0)
2580 continue;
2581
2582 std::string stab_name(name, len - 3);
2583 Output_section* stab_sec;
2584 stab_sec = this->find_output_section(stab_name.c_str());
2585 if (stab_sec != NULL)
2586 stab_sec->set_link_section(*p);
2587 }
2588 }
2589
2590 // Create .gnu_incremental_inputs and related sections needed
2591 // for the next run of incremental linking to check what has changed.
2592
2593 void
2594 Layout::create_incremental_info_sections(Symbol_table* symtab)
2595 {
2596 Incremental_inputs* incr = this->incremental_inputs_;
2597
2598 gold_assert(incr != NULL);
2599
2600 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2601 incr->create_data_sections(symtab);
2602
2603 // Add the .gnu_incremental_inputs section.
2604 const char* incremental_inputs_name =
2605 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2606 Output_section* incremental_inputs_os =
2607 this->make_output_section(incremental_inputs_name,
2608 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2609 ORDER_INVALID, false);
2610 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2611
2612 // Add the .gnu_incremental_symtab section.
2613 const char* incremental_symtab_name =
2614 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2615 Output_section* incremental_symtab_os =
2616 this->make_output_section(incremental_symtab_name,
2617 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2618 ORDER_INVALID, false);
2619 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2620 incremental_symtab_os->set_entsize(4);
2621
2622 // Add the .gnu_incremental_relocs section.
2623 const char* incremental_relocs_name =
2624 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2625 Output_section* incremental_relocs_os =
2626 this->make_output_section(incremental_relocs_name,
2627 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2628 ORDER_INVALID, false);
2629 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2630 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2631
2632 // Add the .gnu_incremental_got_plt section.
2633 const char* incremental_got_plt_name =
2634 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2635 Output_section* incremental_got_plt_os =
2636 this->make_output_section(incremental_got_plt_name,
2637 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2638 ORDER_INVALID, false);
2639 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2640
2641 // Add the .gnu_incremental_strtab section.
2642 const char* incremental_strtab_name =
2643 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2644 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2645 elfcpp::SHT_STRTAB, 0,
2646 ORDER_INVALID, false);
2647 Output_data_strtab* strtab_data =
2648 new Output_data_strtab(incr->get_stringpool());
2649 incremental_strtab_os->add_output_section_data(strtab_data);
2650
2651 incremental_inputs_os->set_after_input_sections();
2652 incremental_symtab_os->set_after_input_sections();
2653 incremental_relocs_os->set_after_input_sections();
2654 incremental_got_plt_os->set_after_input_sections();
2655
2656 incremental_inputs_os->set_link_section(incremental_strtab_os);
2657 incremental_symtab_os->set_link_section(incremental_inputs_os);
2658 incremental_relocs_os->set_link_section(incremental_inputs_os);
2659 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2660 }
2661
2662 // Return whether SEG1 should be before SEG2 in the output file. This
2663 // is based entirely on the segment type and flags. When this is
2664 // called the segment addresses has normally not yet been set.
2665
2666 bool
2667 Layout::segment_precedes(const Output_segment* seg1,
2668 const Output_segment* seg2)
2669 {
2670 elfcpp::Elf_Word type1 = seg1->type();
2671 elfcpp::Elf_Word type2 = seg2->type();
2672
2673 // The single PT_PHDR segment is required to precede any loadable
2674 // segment. We simply make it always first.
2675 if (type1 == elfcpp::PT_PHDR)
2676 {
2677 gold_assert(type2 != elfcpp::PT_PHDR);
2678 return true;
2679 }
2680 if (type2 == elfcpp::PT_PHDR)
2681 return false;
2682
2683 // The single PT_INTERP segment is required to precede any loadable
2684 // segment. We simply make it always second.
2685 if (type1 == elfcpp::PT_INTERP)
2686 {
2687 gold_assert(type2 != elfcpp::PT_INTERP);
2688 return true;
2689 }
2690 if (type2 == elfcpp::PT_INTERP)
2691 return false;
2692
2693 // We then put PT_LOAD segments before any other segments.
2694 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2695 return true;
2696 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2697 return false;
2698
2699 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2700 // segment, because that is where the dynamic linker expects to find
2701 // it (this is just for efficiency; other positions would also work
2702 // correctly).
2703 if (type1 == elfcpp::PT_TLS
2704 && type2 != elfcpp::PT_TLS
2705 && type2 != elfcpp::PT_GNU_RELRO)
2706 return false;
2707 if (type2 == elfcpp::PT_TLS
2708 && type1 != elfcpp::PT_TLS
2709 && type1 != elfcpp::PT_GNU_RELRO)
2710 return true;
2711
2712 // We put the PT_GNU_RELRO segment last, because that is where the
2713 // dynamic linker expects to find it (as with PT_TLS, this is just
2714 // for efficiency).
2715 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2716 return false;
2717 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2718 return true;
2719
2720 const elfcpp::Elf_Word flags1 = seg1->flags();
2721 const elfcpp::Elf_Word flags2 = seg2->flags();
2722
2723 // The order of non-PT_LOAD segments is unimportant. We simply sort
2724 // by the numeric segment type and flags values. There should not
2725 // be more than one segment with the same type and flags.
2726 if (type1 != elfcpp::PT_LOAD)
2727 {
2728 if (type1 != type2)
2729 return type1 < type2;
2730 gold_assert(flags1 != flags2);
2731 return flags1 < flags2;
2732 }
2733
2734 // If the addresses are set already, sort by load address.
2735 if (seg1->are_addresses_set())
2736 {
2737 if (!seg2->are_addresses_set())
2738 return true;
2739
2740 unsigned int section_count1 = seg1->output_section_count();
2741 unsigned int section_count2 = seg2->output_section_count();
2742 if (section_count1 == 0 && section_count2 > 0)
2743 return true;
2744 if (section_count1 > 0 && section_count2 == 0)
2745 return false;
2746
2747 uint64_t paddr1 = (seg1->are_addresses_set()
2748 ? seg1->paddr()
2749 : seg1->first_section_load_address());
2750 uint64_t paddr2 = (seg2->are_addresses_set()
2751 ? seg2->paddr()
2752 : seg2->first_section_load_address());
2753
2754 if (paddr1 != paddr2)
2755 return paddr1 < paddr2;
2756 }
2757 else if (seg2->are_addresses_set())
2758 return false;
2759
2760 // A segment which holds large data comes after a segment which does
2761 // not hold large data.
2762 if (seg1->is_large_data_segment())
2763 {
2764 if (!seg2->is_large_data_segment())
2765 return false;
2766 }
2767 else if (seg2->is_large_data_segment())
2768 return true;
2769
2770 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2771 // segments come before writable segments. Then writable segments
2772 // with data come before writable segments without data. Then
2773 // executable segments come before non-executable segments. Then
2774 // the unlikely case of a non-readable segment comes before the
2775 // normal case of a readable segment. If there are multiple
2776 // segments with the same type and flags, we require that the
2777 // address be set, and we sort by virtual address and then physical
2778 // address.
2779 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2780 return (flags1 & elfcpp::PF_W) == 0;
2781 if ((flags1 & elfcpp::PF_W) != 0
2782 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2783 return seg1->has_any_data_sections();
2784 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2785 return (flags1 & elfcpp::PF_X) != 0;
2786 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2787 return (flags1 & elfcpp::PF_R) == 0;
2788
2789 // We shouldn't get here--we shouldn't create segments which we
2790 // can't distinguish.
2791 gold_unreachable();
2792 }
2793
2794 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2795
2796 static off_t
2797 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2798 {
2799 uint64_t unsigned_off = off;
2800 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2801 | (addr & (abi_pagesize - 1)));
2802 if (aligned_off < unsigned_off)
2803 aligned_off += abi_pagesize;
2804 return aligned_off;
2805 }
2806
2807 // Set the file offsets of all the segments, and all the sections they
2808 // contain. They have all been created. LOAD_SEG must be be laid out
2809 // first. Return the offset of the data to follow.
2810
2811 off_t
2812 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2813 unsigned int* pshndx)
2814 {
2815 // Sort them into the final order.
2816 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2817 Layout::Compare_segments());
2818
2819 // Find the PT_LOAD segments, and set their addresses and offsets
2820 // and their section's addresses and offsets.
2821 uint64_t addr;
2822 if (parameters->options().user_set_Ttext())
2823 addr = parameters->options().Ttext();
2824 else if (parameters->options().output_is_position_independent())
2825 addr = 0;
2826 else
2827 addr = target->default_text_segment_address();
2828 off_t off = 0;
2829
2830 // If LOAD_SEG is NULL, then the file header and segment headers
2831 // will not be loadable. But they still need to be at offset 0 in
2832 // the file. Set their offsets now.
2833 if (load_seg == NULL)
2834 {
2835 for (Data_list::iterator p = this->special_output_list_.begin();
2836 p != this->special_output_list_.end();
2837 ++p)
2838 {
2839 off = align_address(off, (*p)->addralign());
2840 (*p)->set_address_and_file_offset(0, off);
2841 off += (*p)->data_size();
2842 }
2843 }
2844
2845 unsigned int increase_relro = this->increase_relro_;
2846 if (this->script_options_->saw_sections_clause())
2847 increase_relro = 0;
2848
2849 const bool check_sections = parameters->options().check_sections();
2850 Output_segment* last_load_segment = NULL;
2851
2852 for (Segment_list::iterator p = this->segment_list_.begin();
2853 p != this->segment_list_.end();
2854 ++p)
2855 {
2856 if ((*p)->type() == elfcpp::PT_LOAD)
2857 {
2858 if (load_seg != NULL && load_seg != *p)
2859 gold_unreachable();
2860 load_seg = NULL;
2861
2862 bool are_addresses_set = (*p)->are_addresses_set();
2863 if (are_addresses_set)
2864 {
2865 // When it comes to setting file offsets, we care about
2866 // the physical address.
2867 addr = (*p)->paddr();
2868 }
2869 else if (parameters->options().user_set_Tdata()
2870 && ((*p)->flags() & elfcpp::PF_W) != 0
2871 && (!parameters->options().user_set_Tbss()
2872 || (*p)->has_any_data_sections()))
2873 {
2874 addr = parameters->options().Tdata();
2875 are_addresses_set = true;
2876 }
2877 else if (parameters->options().user_set_Tbss()
2878 && ((*p)->flags() & elfcpp::PF_W) != 0
2879 && !(*p)->has_any_data_sections())
2880 {
2881 addr = parameters->options().Tbss();
2882 are_addresses_set = true;
2883 }
2884
2885 uint64_t orig_addr = addr;
2886 uint64_t orig_off = off;
2887
2888 uint64_t aligned_addr = 0;
2889 uint64_t abi_pagesize = target->abi_pagesize();
2890 uint64_t common_pagesize = target->common_pagesize();
2891
2892 if (!parameters->options().nmagic()
2893 && !parameters->options().omagic())
2894 (*p)->set_minimum_p_align(common_pagesize);
2895
2896 if (!are_addresses_set)
2897 {
2898 // Skip the address forward one page, maintaining the same
2899 // position within the page. This lets us store both segments
2900 // overlapping on a single page in the file, but the loader will
2901 // put them on different pages in memory. We will revisit this
2902 // decision once we know the size of the segment.
2903
2904 addr = align_address(addr, (*p)->maximum_alignment());
2905 aligned_addr = addr;
2906
2907 if ((addr & (abi_pagesize - 1)) != 0)
2908 addr = addr + abi_pagesize;
2909
2910 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2911 }
2912
2913 if (!parameters->options().nmagic()
2914 && !parameters->options().omagic())
2915 off = align_file_offset(off, addr, abi_pagesize);
2916 else if (load_seg == NULL)
2917 {
2918 // This is -N or -n with a section script which prevents
2919 // us from using a load segment. We need to ensure that
2920 // the file offset is aligned to the alignment of the
2921 // segment. This is because the linker script
2922 // implicitly assumed a zero offset. If we don't align
2923 // here, then the alignment of the sections in the
2924 // linker script may not match the alignment of the
2925 // sections in the set_section_addresses call below,
2926 // causing an error about dot moving backward.
2927 off = align_address(off, (*p)->maximum_alignment());
2928 }
2929
2930 unsigned int shndx_hold = *pshndx;
2931 bool has_relro = false;
2932 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2933 &increase_relro,
2934 &has_relro,
2935 &off, pshndx);
2936
2937 // Now that we know the size of this segment, we may be able
2938 // to save a page in memory, at the cost of wasting some
2939 // file space, by instead aligning to the start of a new
2940 // page. Here we use the real machine page size rather than
2941 // the ABI mandated page size. If the segment has been
2942 // aligned so that the relro data ends at a page boundary,
2943 // we do not try to realign it.
2944
2945 if (!are_addresses_set
2946 && !has_relro
2947 && aligned_addr != addr
2948 && !parameters->incremental_update())
2949 {
2950 uint64_t first_off = (common_pagesize
2951 - (aligned_addr
2952 & (common_pagesize - 1)));
2953 uint64_t last_off = new_addr & (common_pagesize - 1);
2954 if (first_off > 0
2955 && last_off > 0
2956 && ((aligned_addr & ~ (common_pagesize - 1))
2957 != (new_addr & ~ (common_pagesize - 1)))
2958 && first_off + last_off <= common_pagesize)
2959 {
2960 *pshndx = shndx_hold;
2961 addr = align_address(aligned_addr, common_pagesize);
2962 addr = align_address(addr, (*p)->maximum_alignment());
2963 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2964 off = align_file_offset(off, addr, abi_pagesize);
2965
2966 increase_relro = this->increase_relro_;
2967 if (this->script_options_->saw_sections_clause())
2968 increase_relro = 0;
2969 has_relro = false;
2970
2971 new_addr = (*p)->set_section_addresses(this, true, addr,
2972 &increase_relro,
2973 &has_relro,
2974 &off, pshndx);
2975 }
2976 }
2977
2978 addr = new_addr;
2979
2980 // Implement --check-sections. We know that the segments
2981 // are sorted by LMA.
2982 if (check_sections && last_load_segment != NULL)
2983 {
2984 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2985 if (last_load_segment->paddr() + last_load_segment->memsz()
2986 > (*p)->paddr())
2987 {
2988 unsigned long long lb1 = last_load_segment->paddr();
2989 unsigned long long le1 = lb1 + last_load_segment->memsz();
2990 unsigned long long lb2 = (*p)->paddr();
2991 unsigned long long le2 = lb2 + (*p)->memsz();
2992 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2993 "[0x%llx -> 0x%llx]"),
2994 lb1, le1, lb2, le2);
2995 }
2996 }
2997 last_load_segment = *p;
2998 }
2999 }
3000
3001 // Handle the non-PT_LOAD segments, setting their offsets from their
3002 // section's offsets.
3003 for (Segment_list::iterator p = this->segment_list_.begin();
3004 p != this->segment_list_.end();
3005 ++p)
3006 {
3007 if ((*p)->type() != elfcpp::PT_LOAD)
3008 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3009 ? increase_relro
3010 : 0);
3011 }
3012
3013 // Set the TLS offsets for each section in the PT_TLS segment.
3014 if (this->tls_segment_ != NULL)
3015 this->tls_segment_->set_tls_offsets();
3016
3017 return off;
3018 }
3019
3020 // Set the offsets of all the allocated sections when doing a
3021 // relocatable link. This does the same jobs as set_segment_offsets,
3022 // only for a relocatable link.
3023
3024 off_t
3025 Layout::set_relocatable_section_offsets(Output_data* file_header,
3026 unsigned int* pshndx)
3027 {
3028 off_t off = 0;
3029
3030 file_header->set_address_and_file_offset(0, 0);
3031 off += file_header->data_size();
3032
3033 for (Section_list::iterator p = this->section_list_.begin();
3034 p != this->section_list_.end();
3035 ++p)
3036 {
3037 // We skip unallocated sections here, except that group sections
3038 // have to come first.
3039 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3040 && (*p)->type() != elfcpp::SHT_GROUP)
3041 continue;
3042
3043 off = align_address(off, (*p)->addralign());
3044
3045 // The linker script might have set the address.
3046 if (!(*p)->is_address_valid())
3047 (*p)->set_address(0);
3048 (*p)->set_file_offset(off);
3049 (*p)->finalize_data_size();
3050 off += (*p)->data_size();
3051
3052 (*p)->set_out_shndx(*pshndx);
3053 ++*pshndx;
3054 }
3055
3056 return off;
3057 }
3058
3059 // Set the file offset of all the sections not associated with a
3060 // segment.
3061
3062 off_t
3063 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3064 {
3065 off_t startoff = off;
3066 off_t maxoff = off;
3067
3068 for (Section_list::iterator p = this->unattached_section_list_.begin();
3069 p != this->unattached_section_list_.end();
3070 ++p)
3071 {
3072 // The symtab section is handled in create_symtab_sections.
3073 if (*p == this->symtab_section_)
3074 continue;
3075
3076 // If we've already set the data size, don't set it again.
3077 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3078 continue;
3079
3080 if (pass == BEFORE_INPUT_SECTIONS_PASS
3081 && (*p)->requires_postprocessing())
3082 {
3083 (*p)->create_postprocessing_buffer();
3084 this->any_postprocessing_sections_ = true;
3085 }
3086
3087 if (pass == BEFORE_INPUT_SECTIONS_PASS
3088 && (*p)->after_input_sections())
3089 continue;
3090 else if (pass == POSTPROCESSING_SECTIONS_PASS
3091 && (!(*p)->after_input_sections()
3092 || (*p)->type() == elfcpp::SHT_STRTAB))
3093 continue;
3094 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3095 && (!(*p)->after_input_sections()
3096 || (*p)->type() != elfcpp::SHT_STRTAB))
3097 continue;
3098
3099 if (!parameters->incremental_update())
3100 {
3101 off = align_address(off, (*p)->addralign());
3102 (*p)->set_file_offset(off);
3103 (*p)->finalize_data_size();
3104 }
3105 else
3106 {
3107 // Incremental update: allocate file space from free list.
3108 (*p)->pre_finalize_data_size();
3109 off_t current_size = (*p)->current_data_size();
3110 off = this->allocate(current_size, (*p)->addralign(), startoff);
3111 if (off == -1)
3112 {
3113 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3114 this->free_list_.dump();
3115 gold_assert((*p)->output_section() != NULL);
3116 gold_fatal(_("out of patch space for section %s; "
3117 "relink with --incremental-full"),
3118 (*p)->output_section()->name());
3119 }
3120 (*p)->set_file_offset(off);
3121 (*p)->finalize_data_size();
3122 if ((*p)->data_size() > current_size)
3123 {
3124 gold_assert((*p)->output_section() != NULL);
3125 gold_fatal(_("%s: section changed size; "
3126 "relink with --incremental-full"),
3127 (*p)->output_section()->name());
3128 }
3129 gold_debug(DEBUG_INCREMENTAL,
3130 "set_section_offsets: %08lx %08lx %s",
3131 static_cast<long>(off),
3132 static_cast<long>((*p)->data_size()),
3133 ((*p)->output_section() != NULL
3134 ? (*p)->output_section()->name() : "(special)"));
3135 }
3136
3137 off += (*p)->data_size();
3138 if (off > maxoff)
3139 maxoff = off;
3140
3141 // At this point the name must be set.
3142 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3143 this->namepool_.add((*p)->name(), false, NULL);
3144 }
3145 return maxoff;
3146 }
3147
3148 // Set the section indexes of all the sections not associated with a
3149 // segment.
3150
3151 unsigned int
3152 Layout::set_section_indexes(unsigned int shndx)
3153 {
3154 for (Section_list::iterator p = this->unattached_section_list_.begin();
3155 p != this->unattached_section_list_.end();
3156 ++p)
3157 {
3158 if (!(*p)->has_out_shndx())
3159 {
3160 (*p)->set_out_shndx(shndx);
3161 ++shndx;
3162 }
3163 }
3164 return shndx;
3165 }
3166
3167 // Set the section addresses according to the linker script. This is
3168 // only called when we see a SECTIONS clause. This returns the
3169 // program segment which should hold the file header and segment
3170 // headers, if any. It will return NULL if they should not be in a
3171 // segment.
3172
3173 Output_segment*
3174 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3175 {
3176 Script_sections* ss = this->script_options_->script_sections();
3177 gold_assert(ss->saw_sections_clause());
3178 return this->script_options_->set_section_addresses(symtab, this);
3179 }
3180
3181 // Place the orphan sections in the linker script.
3182
3183 void
3184 Layout::place_orphan_sections_in_script()
3185 {
3186 Script_sections* ss = this->script_options_->script_sections();
3187 gold_assert(ss->saw_sections_clause());
3188
3189 // Place each orphaned output section in the script.
3190 for (Section_list::iterator p = this->section_list_.begin();
3191 p != this->section_list_.end();
3192 ++p)
3193 {
3194 if (!(*p)->found_in_sections_clause())
3195 ss->place_orphan(*p);
3196 }
3197 }
3198
3199 // Count the local symbols in the regular symbol table and the dynamic
3200 // symbol table, and build the respective string pools.
3201
3202 void
3203 Layout::count_local_symbols(const Task* task,
3204 const Input_objects* input_objects)
3205 {
3206 // First, figure out an upper bound on the number of symbols we'll
3207 // be inserting into each pool. This helps us create the pools with
3208 // the right size, to avoid unnecessary hashtable resizing.
3209 unsigned int symbol_count = 0;
3210 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3211 p != input_objects->relobj_end();
3212 ++p)
3213 symbol_count += (*p)->local_symbol_count();
3214
3215 // Go from "upper bound" to "estimate." We overcount for two
3216 // reasons: we double-count symbols that occur in more than one
3217 // object file, and we count symbols that are dropped from the
3218 // output. Add it all together and assume we overcount by 100%.
3219 symbol_count /= 2;
3220
3221 // We assume all symbols will go into both the sympool and dynpool.
3222 this->sympool_.reserve(symbol_count);
3223 this->dynpool_.reserve(symbol_count);
3224
3225 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3226 p != input_objects->relobj_end();
3227 ++p)
3228 {
3229 Task_lock_obj<Object> tlo(task, *p);
3230 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3231 }
3232 }
3233
3234 // Create the symbol table sections. Here we also set the final
3235 // values of the symbols. At this point all the loadable sections are
3236 // fully laid out. SHNUM is the number of sections so far.
3237
3238 void
3239 Layout::create_symtab_sections(const Input_objects* input_objects,
3240 Symbol_table* symtab,
3241 unsigned int shnum,
3242 off_t* poff)
3243 {
3244 int symsize;
3245 unsigned int align;
3246 if (parameters->target().get_size() == 32)
3247 {
3248 symsize = elfcpp::Elf_sizes<32>::sym_size;
3249 align = 4;
3250 }
3251 else if (parameters->target().get_size() == 64)
3252 {
3253 symsize = elfcpp::Elf_sizes<64>::sym_size;
3254 align = 8;
3255 }
3256 else
3257 gold_unreachable();
3258
3259 // Compute file offsets relative to the start of the symtab section.
3260 off_t off = 0;
3261
3262 // Save space for the dummy symbol at the start of the section. We
3263 // never bother to write this out--it will just be left as zero.
3264 off += symsize;
3265 unsigned int local_symbol_index = 1;
3266
3267 // Add STT_SECTION symbols for each Output section which needs one.
3268 for (Section_list::iterator p = this->section_list_.begin();
3269 p != this->section_list_.end();
3270 ++p)
3271 {
3272 if (!(*p)->needs_symtab_index())
3273 (*p)->set_symtab_index(-1U);
3274 else
3275 {
3276 (*p)->set_symtab_index(local_symbol_index);
3277 ++local_symbol_index;
3278 off += symsize;
3279 }
3280 }
3281
3282 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3283 p != input_objects->relobj_end();
3284 ++p)
3285 {
3286 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3287 off, symtab);
3288 off += (index - local_symbol_index) * symsize;
3289 local_symbol_index = index;
3290 }
3291
3292 unsigned int local_symcount = local_symbol_index;
3293 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3294
3295 off_t dynoff;
3296 size_t dyn_global_index;
3297 size_t dyncount;
3298 if (this->dynsym_section_ == NULL)
3299 {
3300 dynoff = 0;
3301 dyn_global_index = 0;
3302 dyncount = 0;
3303 }
3304 else
3305 {
3306 dyn_global_index = this->dynsym_section_->info();
3307 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3308 dynoff = this->dynsym_section_->offset() + locsize;
3309 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3310 gold_assert(static_cast<off_t>(dyncount * symsize)
3311 == this->dynsym_section_->data_size() - locsize);
3312 }
3313
3314 off_t global_off = off;
3315 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3316 &this->sympool_, &local_symcount);
3317
3318 if (!parameters->options().strip_all())
3319 {
3320 this->sympool_.set_string_offsets();
3321
3322 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3323 Output_section* osymtab = this->make_output_section(symtab_name,
3324 elfcpp::SHT_SYMTAB,
3325 0, ORDER_INVALID,
3326 false);
3327 this->symtab_section_ = osymtab;
3328
3329 Output_section_data* pos = new Output_data_fixed_space(off, align,
3330 "** symtab");
3331 osymtab->add_output_section_data(pos);
3332
3333 // We generate a .symtab_shndx section if we have more than
3334 // SHN_LORESERVE sections. Technically it is possible that we
3335 // don't need one, because it is possible that there are no
3336 // symbols in any of sections with indexes larger than
3337 // SHN_LORESERVE. That is probably unusual, though, and it is
3338 // easier to always create one than to compute section indexes
3339 // twice (once here, once when writing out the symbols).
3340 if (shnum >= elfcpp::SHN_LORESERVE)
3341 {
3342 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3343 false, NULL);
3344 Output_section* osymtab_xindex =
3345 this->make_output_section(symtab_xindex_name,
3346 elfcpp::SHT_SYMTAB_SHNDX, 0,
3347 ORDER_INVALID, false);
3348
3349 size_t symcount = off / symsize;
3350 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3351
3352 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3353
3354 osymtab_xindex->set_link_section(osymtab);
3355 osymtab_xindex->set_addralign(4);
3356 osymtab_xindex->set_entsize(4);
3357
3358 osymtab_xindex->set_after_input_sections();
3359
3360 // This tells the driver code to wait until the symbol table
3361 // has written out before writing out the postprocessing
3362 // sections, including the .symtab_shndx section.
3363 this->any_postprocessing_sections_ = true;
3364 }
3365
3366 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3367 Output_section* ostrtab = this->make_output_section(strtab_name,
3368 elfcpp::SHT_STRTAB,
3369 0, ORDER_INVALID,
3370 false);
3371
3372 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3373 ostrtab->add_output_section_data(pstr);
3374
3375 off_t symtab_off;
3376 if (!parameters->incremental_update())
3377 symtab_off = align_address(*poff, align);
3378 else
3379 {
3380 symtab_off = this->allocate(off, align, *poff);
3381 if (off == -1)
3382 gold_fatal(_("out of patch space for symbol table; "
3383 "relink with --incremental-full"));
3384 gold_debug(DEBUG_INCREMENTAL,
3385 "create_symtab_sections: %08lx %08lx .symtab",
3386 static_cast<long>(symtab_off),
3387 static_cast<long>(off));
3388 }
3389
3390 symtab->set_file_offset(symtab_off + global_off);
3391 osymtab->set_file_offset(symtab_off);
3392 osymtab->finalize_data_size();
3393 osymtab->set_link_section(ostrtab);
3394 osymtab->set_info(local_symcount);
3395 osymtab->set_entsize(symsize);
3396
3397 if (symtab_off + off > *poff)
3398 *poff = symtab_off + off;
3399 }
3400 }
3401
3402 // Create the .shstrtab section, which holds the names of the
3403 // sections. At the time this is called, we have created all the
3404 // output sections except .shstrtab itself.
3405
3406 Output_section*
3407 Layout::create_shstrtab()
3408 {
3409 // FIXME: We don't need to create a .shstrtab section if we are
3410 // stripping everything.
3411
3412 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3413
3414 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3415 ORDER_INVALID, false);
3416
3417 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3418 {
3419 // We can't write out this section until we've set all the
3420 // section names, and we don't set the names of compressed
3421 // output sections until relocations are complete. FIXME: With
3422 // the current names we use, this is unnecessary.
3423 os->set_after_input_sections();
3424 }
3425
3426 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3427 os->add_output_section_data(posd);
3428
3429 return os;
3430 }
3431
3432 // Create the section headers. SIZE is 32 or 64. OFF is the file
3433 // offset.
3434
3435 void
3436 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3437 {
3438 Output_section_headers* oshdrs;
3439 oshdrs = new Output_section_headers(this,
3440 &this->segment_list_,
3441 &this->section_list_,
3442 &this->unattached_section_list_,
3443 &this->namepool_,
3444 shstrtab_section);
3445 off_t off;
3446 if (!parameters->incremental_update())
3447 off = align_address(*poff, oshdrs->addralign());
3448 else
3449 {
3450 oshdrs->pre_finalize_data_size();
3451 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3452 if (off == -1)
3453 gold_fatal(_("out of patch space for section header table; "
3454 "relink with --incremental-full"));
3455 gold_debug(DEBUG_INCREMENTAL,
3456 "create_shdrs: %08lx %08lx (section header table)",
3457 static_cast<long>(off),
3458 static_cast<long>(off + oshdrs->data_size()));
3459 }
3460 oshdrs->set_address_and_file_offset(0, off);
3461 off += oshdrs->data_size();
3462 if (off > *poff)
3463 *poff = off;
3464 this->section_headers_ = oshdrs;
3465 }
3466
3467 // Count the allocated sections.
3468
3469 size_t
3470 Layout::allocated_output_section_count() const
3471 {
3472 size_t section_count = 0;
3473 for (Segment_list::const_iterator p = this->segment_list_.begin();
3474 p != this->segment_list_.end();
3475 ++p)
3476 section_count += (*p)->output_section_count();
3477 return section_count;
3478 }
3479
3480 // Create the dynamic symbol table.
3481
3482 void
3483 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3484 Symbol_table* symtab,
3485 Output_section** pdynstr,
3486 unsigned int* plocal_dynamic_count,
3487 std::vector<Symbol*>* pdynamic_symbols,
3488 Versions* pversions)
3489 {
3490 // Count all the symbols in the dynamic symbol table, and set the
3491 // dynamic symbol indexes.
3492
3493 // Skip symbol 0, which is always all zeroes.
3494 unsigned int index = 1;
3495
3496 // Add STT_SECTION symbols for each Output section which needs one.
3497 for (Section_list::iterator p = this->section_list_.begin();
3498 p != this->section_list_.end();
3499 ++p)
3500 {
3501 if (!(*p)->needs_dynsym_index())
3502 (*p)->set_dynsym_index(-1U);
3503 else
3504 {
3505 (*p)->set_dynsym_index(index);
3506 ++index;
3507 }
3508 }
3509
3510 // Count the local symbols that need to go in the dynamic symbol table,
3511 // and set the dynamic symbol indexes.
3512 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3513 p != input_objects->relobj_end();
3514 ++p)
3515 {
3516 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3517 index = new_index;
3518 }
3519
3520 unsigned int local_symcount = index;
3521 *plocal_dynamic_count = local_symcount;
3522
3523 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3524 &this->dynpool_, pversions);
3525
3526 int symsize;
3527 unsigned int align;
3528 const int size = parameters->target().get_size();
3529 if (size == 32)
3530 {
3531 symsize = elfcpp::Elf_sizes<32>::sym_size;
3532 align = 4;
3533 }
3534 else if (size == 64)
3535 {
3536 symsize = elfcpp::Elf_sizes<64>::sym_size;
3537 align = 8;
3538 }
3539 else
3540 gold_unreachable();
3541
3542 // Create the dynamic symbol table section.
3543
3544 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3545 elfcpp::SHT_DYNSYM,
3546 elfcpp::SHF_ALLOC,
3547 false,
3548 ORDER_DYNAMIC_LINKER,
3549 false);
3550
3551 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3552 align,
3553 "** dynsym");
3554 dynsym->add_output_section_data(odata);
3555
3556 dynsym->set_info(local_symcount);
3557 dynsym->set_entsize(symsize);
3558 dynsym->set_addralign(align);
3559
3560 this->dynsym_section_ = dynsym;
3561
3562 Output_data_dynamic* const odyn = this->dynamic_data_;
3563 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3564 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3565
3566 // If there are more than SHN_LORESERVE allocated sections, we
3567 // create a .dynsym_shndx section. It is possible that we don't
3568 // need one, because it is possible that there are no dynamic
3569 // symbols in any of the sections with indexes larger than
3570 // SHN_LORESERVE. This is probably unusual, though, and at this
3571 // time we don't know the actual section indexes so it is
3572 // inconvenient to check.
3573 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3574 {
3575 Output_section* dynsym_xindex =
3576 this->choose_output_section(NULL, ".dynsym_shndx",
3577 elfcpp::SHT_SYMTAB_SHNDX,
3578 elfcpp::SHF_ALLOC,
3579 false, ORDER_DYNAMIC_LINKER, false);
3580
3581 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3582
3583 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3584
3585 dynsym_xindex->set_link_section(dynsym);
3586 dynsym_xindex->set_addralign(4);
3587 dynsym_xindex->set_entsize(4);
3588
3589 dynsym_xindex->set_after_input_sections();
3590
3591 // This tells the driver code to wait until the symbol table has
3592 // written out before writing out the postprocessing sections,
3593 // including the .dynsym_shndx section.
3594 this->any_postprocessing_sections_ = true;
3595 }
3596
3597 // Create the dynamic string table section.
3598
3599 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3600 elfcpp::SHT_STRTAB,
3601 elfcpp::SHF_ALLOC,
3602 false,
3603 ORDER_DYNAMIC_LINKER,
3604 false);
3605
3606 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3607 dynstr->add_output_section_data(strdata);
3608
3609 dynsym->set_link_section(dynstr);
3610 this->dynamic_section_->set_link_section(dynstr);
3611
3612 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3613 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3614
3615 *pdynstr = dynstr;
3616
3617 // Create the hash tables.
3618
3619 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3620 || strcmp(parameters->options().hash_style(), "both") == 0)
3621 {
3622 unsigned char* phash;
3623 unsigned int hashlen;
3624 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3625 &phash, &hashlen);
3626
3627 Output_section* hashsec =
3628 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3629 elfcpp::SHF_ALLOC, false,
3630 ORDER_DYNAMIC_LINKER, false);
3631
3632 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3633 hashlen,
3634 align,
3635 "** hash");
3636 hashsec->add_output_section_data(hashdata);
3637
3638 hashsec->set_link_section(dynsym);
3639 hashsec->set_entsize(4);
3640
3641 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3642 }
3643
3644 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3645 || strcmp(parameters->options().hash_style(), "both") == 0)
3646 {
3647 unsigned char* phash;
3648 unsigned int hashlen;
3649 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3650 &phash, &hashlen);
3651
3652 Output_section* hashsec =
3653 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3654 elfcpp::SHF_ALLOC, false,
3655 ORDER_DYNAMIC_LINKER, false);
3656
3657 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3658 hashlen,
3659 align,
3660 "** hash");
3661 hashsec->add_output_section_data(hashdata);
3662
3663 hashsec->set_link_section(dynsym);
3664
3665 // For a 64-bit target, the entries in .gnu.hash do not have a
3666 // uniform size, so we only set the entry size for a 32-bit
3667 // target.
3668 if (parameters->target().get_size() == 32)
3669 hashsec->set_entsize(4);
3670
3671 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3672 }
3673 }
3674
3675 // Assign offsets to each local portion of the dynamic symbol table.
3676
3677 void
3678 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3679 {
3680 Output_section* dynsym = this->dynsym_section_;
3681 gold_assert(dynsym != NULL);
3682
3683 off_t off = dynsym->offset();
3684
3685 // Skip the dummy symbol at the start of the section.
3686 off += dynsym->entsize();
3687
3688 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3689 p != input_objects->relobj_end();
3690 ++p)
3691 {
3692 unsigned int count = (*p)->set_local_dynsym_offset(off);
3693 off += count * dynsym->entsize();
3694 }
3695 }
3696
3697 // Create the version sections.
3698
3699 void
3700 Layout::create_version_sections(const Versions* versions,
3701 const Symbol_table* symtab,
3702 unsigned int local_symcount,
3703 const std::vector<Symbol*>& dynamic_symbols,
3704 const Output_section* dynstr)
3705 {
3706 if (!versions->any_defs() && !versions->any_needs())
3707 return;
3708
3709 switch (parameters->size_and_endianness())
3710 {
3711 #ifdef HAVE_TARGET_32_LITTLE
3712 case Parameters::TARGET_32_LITTLE:
3713 this->sized_create_version_sections<32, false>(versions, symtab,
3714 local_symcount,
3715 dynamic_symbols, dynstr);
3716 break;
3717 #endif
3718 #ifdef HAVE_TARGET_32_BIG
3719 case Parameters::TARGET_32_BIG:
3720 this->sized_create_version_sections<32, true>(versions, symtab,
3721 local_symcount,
3722 dynamic_symbols, dynstr);
3723 break;
3724 #endif
3725 #ifdef HAVE_TARGET_64_LITTLE
3726 case Parameters::TARGET_64_LITTLE:
3727 this->sized_create_version_sections<64, false>(versions, symtab,
3728 local_symcount,
3729 dynamic_symbols, dynstr);
3730 break;
3731 #endif
3732 #ifdef HAVE_TARGET_64_BIG
3733 case Parameters::TARGET_64_BIG:
3734 this->sized_create_version_sections<64, true>(versions, symtab,
3735 local_symcount,
3736 dynamic_symbols, dynstr);
3737 break;
3738 #endif
3739 default:
3740 gold_unreachable();
3741 }
3742 }
3743
3744 // Create the version sections, sized version.
3745
3746 template<int size, bool big_endian>
3747 void
3748 Layout::sized_create_version_sections(
3749 const Versions* versions,
3750 const Symbol_table* symtab,
3751 unsigned int local_symcount,
3752 const std::vector<Symbol*>& dynamic_symbols,
3753 const Output_section* dynstr)
3754 {
3755 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3756 elfcpp::SHT_GNU_versym,
3757 elfcpp::SHF_ALLOC,
3758 false,
3759 ORDER_DYNAMIC_LINKER,
3760 false);
3761
3762 unsigned char* vbuf;
3763 unsigned int vsize;
3764 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3765 local_symcount,
3766 dynamic_symbols,
3767 &vbuf, &vsize);
3768
3769 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3770 "** versions");
3771
3772 vsec->add_output_section_data(vdata);
3773 vsec->set_entsize(2);
3774 vsec->set_link_section(this->dynsym_section_);
3775
3776 Output_data_dynamic* const odyn = this->dynamic_data_;
3777 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3778
3779 if (versions->any_defs())
3780 {
3781 Output_section* vdsec;
3782 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3783 elfcpp::SHT_GNU_verdef,
3784 elfcpp::SHF_ALLOC,
3785 false, ORDER_DYNAMIC_LINKER, false);
3786
3787 unsigned char* vdbuf;
3788 unsigned int vdsize;
3789 unsigned int vdentries;
3790 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3791 &vdsize, &vdentries);
3792
3793 Output_section_data* vddata =
3794 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3795
3796 vdsec->add_output_section_data(vddata);
3797 vdsec->set_link_section(dynstr);
3798 vdsec->set_info(vdentries);
3799
3800 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3801 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3802 }
3803
3804 if (versions->any_needs())
3805 {
3806 Output_section* vnsec;
3807 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3808 elfcpp::SHT_GNU_verneed,
3809 elfcpp::SHF_ALLOC,
3810 false, ORDER_DYNAMIC_LINKER, false);
3811
3812 unsigned char* vnbuf;
3813 unsigned int vnsize;
3814 unsigned int vnentries;
3815 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3816 &vnbuf, &vnsize,
3817 &vnentries);
3818
3819 Output_section_data* vndata =
3820 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3821
3822 vnsec->add_output_section_data(vndata);
3823 vnsec->set_link_section(dynstr);
3824 vnsec->set_info(vnentries);
3825
3826 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3827 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3828 }
3829 }
3830
3831 // Create the .interp section and PT_INTERP segment.
3832
3833 void
3834 Layout::create_interp(const Target* target)
3835 {
3836 const char* interp = parameters->options().dynamic_linker();
3837 if (interp == NULL)
3838 {
3839 interp = target->dynamic_linker();
3840 gold_assert(interp != NULL);
3841 }
3842
3843 size_t len = strlen(interp) + 1;
3844
3845 Output_section_data* odata = new Output_data_const(interp, len, 1);
3846
3847 Output_section* osec = this->choose_output_section(NULL, ".interp",
3848 elfcpp::SHT_PROGBITS,
3849 elfcpp::SHF_ALLOC,
3850 false, ORDER_INTERP,
3851 false);
3852 osec->add_output_section_data(odata);
3853
3854 if (!this->script_options_->saw_phdrs_clause())
3855 {
3856 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3857 elfcpp::PF_R);
3858 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3859 }
3860 }
3861
3862 // Add dynamic tags for the PLT and the dynamic relocs. This is
3863 // called by the target-specific code. This does nothing if not doing
3864 // a dynamic link.
3865
3866 // USE_REL is true for REL relocs rather than RELA relocs.
3867
3868 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3869
3870 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3871 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3872 // some targets have multiple reloc sections in PLT_REL.
3873
3874 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3875 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3876
3877 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3878 // executable.
3879
3880 void
3881 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3882 const Output_data* plt_rel,
3883 const Output_data_reloc_generic* dyn_rel,
3884 bool add_debug, bool dynrel_includes_plt)
3885 {
3886 Output_data_dynamic* odyn = this->dynamic_data_;
3887 if (odyn == NULL)
3888 return;
3889
3890 if (plt_got != NULL && plt_got->output_section() != NULL)
3891 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3892
3893 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3894 {
3895 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3896 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3897 odyn->add_constant(elfcpp::DT_PLTREL,
3898 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3899 }
3900
3901 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3902 {
3903 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3904 dyn_rel);
3905 if (plt_rel != NULL && dynrel_includes_plt)
3906 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3907 dyn_rel, plt_rel);
3908 else
3909 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3910 dyn_rel);
3911 const int size = parameters->target().get_size();
3912 elfcpp::DT rel_tag;
3913 int rel_size;
3914 if (use_rel)
3915 {
3916 rel_tag = elfcpp::DT_RELENT;
3917 if (size == 32)
3918 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3919 else if (size == 64)
3920 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3921 else
3922 gold_unreachable();
3923 }
3924 else
3925 {
3926 rel_tag = elfcpp::DT_RELAENT;
3927 if (size == 32)
3928 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3929 else if (size == 64)
3930 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3931 else
3932 gold_unreachable();
3933 }
3934 odyn->add_constant(rel_tag, rel_size);
3935
3936 if (parameters->options().combreloc())
3937 {
3938 size_t c = dyn_rel->relative_reloc_count();
3939 if (c > 0)
3940 odyn->add_constant((use_rel
3941 ? elfcpp::DT_RELCOUNT
3942 : elfcpp::DT_RELACOUNT),
3943 c);
3944 }
3945 }
3946
3947 if (add_debug && !parameters->options().shared())
3948 {
3949 // The value of the DT_DEBUG tag is filled in by the dynamic
3950 // linker at run time, and used by the debugger.
3951 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3952 }
3953 }
3954
3955 // Finish the .dynamic section and PT_DYNAMIC segment.
3956
3957 void
3958 Layout::finish_dynamic_section(const Input_objects* input_objects,
3959 const Symbol_table* symtab)
3960 {
3961 if (!this->script_options_->saw_phdrs_clause())
3962 {
3963 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3964 (elfcpp::PF_R
3965 | elfcpp::PF_W));
3966 oseg->add_output_section_to_nonload(this->dynamic_section_,
3967 elfcpp::PF_R | elfcpp::PF_W);
3968 }
3969
3970 Output_data_dynamic* const odyn = this->dynamic_data_;
3971
3972 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3973 p != input_objects->dynobj_end();
3974 ++p)
3975 {
3976 if (!(*p)->is_needed()
3977 && !(*p)->is_incremental()
3978 && (*p)->input_file()->options().as_needed())
3979 {
3980 // This dynamic object was linked with --as-needed, but it
3981 // is not needed.
3982 continue;
3983 }
3984
3985 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3986 }
3987
3988 if (parameters->options().shared())
3989 {
3990 const char* soname = parameters->options().soname();
3991 if (soname != NULL)
3992 odyn->add_string(elfcpp::DT_SONAME, soname);
3993 }
3994
3995 Symbol* sym = symtab->lookup(parameters->options().init());
3996 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3997 odyn->add_symbol(elfcpp::DT_INIT, sym);
3998
3999 sym = symtab->lookup(parameters->options().fini());
4000 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4001 odyn->add_symbol(elfcpp::DT_FINI, sym);
4002
4003 // Look for .init_array, .preinit_array and .fini_array by checking
4004 // section types.
4005 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4006 p != this->section_list_.end();
4007 ++p)
4008 switch((*p)->type())
4009 {
4010 case elfcpp::SHT_FINI_ARRAY:
4011 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4012 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4013 break;
4014 case elfcpp::SHT_INIT_ARRAY:
4015 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4016 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4017 break;
4018 case elfcpp::SHT_PREINIT_ARRAY:
4019 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4020 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4021 break;
4022 default:
4023 break;
4024 }
4025
4026 // Add a DT_RPATH entry if needed.
4027 const General_options::Dir_list& rpath(parameters->options().rpath());
4028 if (!rpath.empty())
4029 {
4030 std::string rpath_val;
4031 for (General_options::Dir_list::const_iterator p = rpath.begin();
4032 p != rpath.end();
4033 ++p)
4034 {
4035 if (rpath_val.empty())
4036 rpath_val = p->name();
4037 else
4038 {
4039 // Eliminate duplicates.
4040 General_options::Dir_list::const_iterator q;
4041 for (q = rpath.begin(); q != p; ++q)
4042 if (q->name() == p->name())
4043 break;
4044 if (q == p)
4045 {
4046 rpath_val += ':';
4047 rpath_val += p->name();
4048 }
4049 }
4050 }
4051
4052 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4053 if (parameters->options().enable_new_dtags())
4054 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4055 }
4056
4057 // Look for text segments that have dynamic relocations.
4058 bool have_textrel = false;
4059 if (!this->script_options_->saw_sections_clause())
4060 {
4061 for (Segment_list::const_iterator p = this->segment_list_.begin();
4062 p != this->segment_list_.end();
4063 ++p)
4064 {
4065 if (((*p)->flags() & elfcpp::PF_W) == 0
4066 && (*p)->has_dynamic_reloc())
4067 {
4068 have_textrel = true;
4069 break;
4070 }
4071 }
4072 }
4073 else
4074 {
4075 // We don't know the section -> segment mapping, so we are
4076 // conservative and just look for readonly sections with
4077 // relocations. If those sections wind up in writable segments,
4078 // then we have created an unnecessary DT_TEXTREL entry.
4079 for (Section_list::const_iterator p = this->section_list_.begin();
4080 p != this->section_list_.end();
4081 ++p)
4082 {
4083 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4084 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4085 && ((*p)->has_dynamic_reloc()))
4086 {
4087 have_textrel = true;
4088 break;
4089 }
4090 }
4091 }
4092
4093 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4094 // post-link tools can easily modify these flags if desired.
4095 unsigned int flags = 0;
4096 if (have_textrel)
4097 {
4098 // Add a DT_TEXTREL for compatibility with older loaders.
4099 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4100 flags |= elfcpp::DF_TEXTREL;
4101
4102 if (parameters->options().text())
4103 gold_error(_("read-only segment has dynamic relocations"));
4104 else if (parameters->options().warn_shared_textrel()
4105 && parameters->options().shared())
4106 gold_warning(_("shared library text segment is not shareable"));
4107 }
4108 if (parameters->options().shared() && this->has_static_tls())
4109 flags |= elfcpp::DF_STATIC_TLS;
4110 if (parameters->options().origin())
4111 flags |= elfcpp::DF_ORIGIN;
4112 if (parameters->options().Bsymbolic())
4113 {
4114 flags |= elfcpp::DF_SYMBOLIC;
4115 // Add DT_SYMBOLIC for compatibility with older loaders.
4116 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4117 }
4118 if (parameters->options().now())
4119 flags |= elfcpp::DF_BIND_NOW;
4120 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4121
4122 flags = 0;
4123 if (parameters->options().initfirst())
4124 flags |= elfcpp::DF_1_INITFIRST;
4125 if (parameters->options().interpose())
4126 flags |= elfcpp::DF_1_INTERPOSE;
4127 if (parameters->options().loadfltr())
4128 flags |= elfcpp::DF_1_LOADFLTR;
4129 if (parameters->options().nodefaultlib())
4130 flags |= elfcpp::DF_1_NODEFLIB;
4131 if (parameters->options().nodelete())
4132 flags |= elfcpp::DF_1_NODELETE;
4133 if (parameters->options().nodlopen())
4134 flags |= elfcpp::DF_1_NOOPEN;
4135 if (parameters->options().nodump())
4136 flags |= elfcpp::DF_1_NODUMP;
4137 if (!parameters->options().shared())
4138 flags &= ~(elfcpp::DF_1_INITFIRST
4139 | elfcpp::DF_1_NODELETE
4140 | elfcpp::DF_1_NOOPEN);
4141 if (parameters->options().origin())
4142 flags |= elfcpp::DF_1_ORIGIN;
4143 if (parameters->options().now())
4144 flags |= elfcpp::DF_1_NOW;
4145 if (flags)
4146 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4147 }
4148
4149 // Set the size of the _DYNAMIC symbol table to be the size of the
4150 // dynamic data.
4151
4152 void
4153 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4154 {
4155 Output_data_dynamic* const odyn = this->dynamic_data_;
4156 odyn->finalize_data_size();
4157 off_t data_size = odyn->data_size();
4158 const int size = parameters->target().get_size();
4159 if (size == 32)
4160 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4161 else if (size == 64)
4162 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4163 else
4164 gold_unreachable();
4165 }
4166
4167 // The mapping of input section name prefixes to output section names.
4168 // In some cases one prefix is itself a prefix of another prefix; in
4169 // such a case the longer prefix must come first. These prefixes are
4170 // based on the GNU linker default ELF linker script.
4171
4172 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4173 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4174 {
4175 MAPPING_INIT(".text.", ".text"),
4176 MAPPING_INIT(".ctors.", ".ctors"),
4177 MAPPING_INIT(".dtors.", ".dtors"),
4178 MAPPING_INIT(".rodata.", ".rodata"),
4179 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4180 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4181 MAPPING_INIT(".data.", ".data"),
4182 MAPPING_INIT(".bss.", ".bss"),
4183 MAPPING_INIT(".tdata.", ".tdata"),
4184 MAPPING_INIT(".tbss.", ".tbss"),
4185 MAPPING_INIT(".init_array.", ".init_array"),
4186 MAPPING_INIT(".fini_array.", ".fini_array"),
4187 MAPPING_INIT(".sdata.", ".sdata"),
4188 MAPPING_INIT(".sbss.", ".sbss"),
4189 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4190 // differently depending on whether it is creating a shared library.
4191 MAPPING_INIT(".sdata2.", ".sdata"),
4192 MAPPING_INIT(".sbss2.", ".sbss"),
4193 MAPPING_INIT(".lrodata.", ".lrodata"),
4194 MAPPING_INIT(".ldata.", ".ldata"),
4195 MAPPING_INIT(".lbss.", ".lbss"),
4196 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4197 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4198 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4199 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4200 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4201 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4202 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4203 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4204 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4205 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4206 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4207 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4208 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4209 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4210 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4211 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4212 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4213 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4214 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4215 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4216 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4217 };
4218 #undef MAPPING_INIT
4219
4220 const int Layout::section_name_mapping_count =
4221 (sizeof(Layout::section_name_mapping)
4222 / sizeof(Layout::section_name_mapping[0]));
4223
4224 // Choose the output section name to use given an input section name.
4225 // Set *PLEN to the length of the name. *PLEN is initialized to the
4226 // length of NAME.
4227
4228 const char*
4229 Layout::output_section_name(const char* name, size_t* plen)
4230 {
4231 // gcc 4.3 generates the following sorts of section names when it
4232 // needs a section name specific to a function:
4233 // .text.FN
4234 // .rodata.FN
4235 // .sdata2.FN
4236 // .data.FN
4237 // .data.rel.FN
4238 // .data.rel.local.FN
4239 // .data.rel.ro.FN
4240 // .data.rel.ro.local.FN
4241 // .sdata.FN
4242 // .bss.FN
4243 // .sbss.FN
4244 // .tdata.FN
4245 // .tbss.FN
4246
4247 // The GNU linker maps all of those to the part before the .FN,
4248 // except that .data.rel.local.FN is mapped to .data, and
4249 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4250 // beginning with .data.rel.ro.local are grouped together.
4251
4252 // For an anonymous namespace, the string FN can contain a '.'.
4253
4254 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4255 // GNU linker maps to .rodata.
4256
4257 // The .data.rel.ro sections are used with -z relro. The sections
4258 // are recognized by name. We use the same names that the GNU
4259 // linker does for these sections.
4260
4261 // It is hard to handle this in a principled way, so we don't even
4262 // try. We use a table of mappings. If the input section name is
4263 // not found in the table, we simply use it as the output section
4264 // name.
4265
4266 const Section_name_mapping* psnm = section_name_mapping;
4267 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4268 {
4269 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4270 {
4271 *plen = psnm->tolen;
4272 return psnm->to;
4273 }
4274 }
4275
4276 return name;
4277 }
4278
4279 // Check if a comdat group or .gnu.linkonce section with the given
4280 // NAME is selected for the link. If there is already a section,
4281 // *KEPT_SECTION is set to point to the existing section and the
4282 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4283 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4284 // *KEPT_SECTION is set to the internal copy and the function returns
4285 // true.
4286
4287 bool
4288 Layout::find_or_add_kept_section(const std::string& name,
4289 Relobj* object,
4290 unsigned int shndx,
4291 bool is_comdat,
4292 bool is_group_name,
4293 Kept_section** kept_section)
4294 {
4295 // It's normal to see a couple of entries here, for the x86 thunk
4296 // sections. If we see more than a few, we're linking a C++
4297 // program, and we resize to get more space to minimize rehashing.
4298 if (this->signatures_.size() > 4
4299 && !this->resized_signatures_)
4300 {
4301 reserve_unordered_map(&this->signatures_,
4302 this->number_of_input_files_ * 64);
4303 this->resized_signatures_ = true;
4304 }
4305
4306 Kept_section candidate;
4307 std::pair<Signatures::iterator, bool> ins =
4308 this->signatures_.insert(std::make_pair(name, candidate));
4309
4310 if (kept_section != NULL)
4311 *kept_section = &ins.first->second;
4312 if (ins.second)
4313 {
4314 // This is the first time we've seen this signature.
4315 ins.first->second.set_object(object);
4316 ins.first->second.set_shndx(shndx);
4317 if (is_comdat)
4318 ins.first->second.set_is_comdat();
4319 if (is_group_name)
4320 ins.first->second.set_is_group_name();
4321 return true;
4322 }
4323
4324 // We have already seen this signature.
4325
4326 if (ins.first->second.is_group_name())
4327 {
4328 // We've already seen a real section group with this signature.
4329 // If the kept group is from a plugin object, and we're in the
4330 // replacement phase, accept the new one as a replacement.
4331 if (ins.first->second.object() == NULL
4332 && parameters->options().plugins()->in_replacement_phase())
4333 {
4334 ins.first->second.set_object(object);
4335 ins.first->second.set_shndx(shndx);
4336 return true;
4337 }
4338 return false;
4339 }
4340 else if (is_group_name)
4341 {
4342 // This is a real section group, and we've already seen a
4343 // linkonce section with this signature. Record that we've seen
4344 // a section group, and don't include this section group.
4345 ins.first->second.set_is_group_name();
4346 return false;
4347 }
4348 else
4349 {
4350 // We've already seen a linkonce section and this is a linkonce
4351 // section. These don't block each other--this may be the same
4352 // symbol name with different section types.
4353 return true;
4354 }
4355 }
4356
4357 // Store the allocated sections into the section list.
4358
4359 void
4360 Layout::get_allocated_sections(Section_list* section_list) const
4361 {
4362 for (Section_list::const_iterator p = this->section_list_.begin();
4363 p != this->section_list_.end();
4364 ++p)
4365 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4366 section_list->push_back(*p);
4367 }
4368
4369 // Create an output segment.
4370
4371 Output_segment*
4372 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4373 {
4374 gold_assert(!parameters->options().relocatable());
4375 Output_segment* oseg = new Output_segment(type, flags);
4376 this->segment_list_.push_back(oseg);
4377
4378 if (type == elfcpp::PT_TLS)
4379 this->tls_segment_ = oseg;
4380 else if (type == elfcpp::PT_GNU_RELRO)
4381 this->relro_segment_ = oseg;
4382
4383 return oseg;
4384 }
4385
4386 // Return the file offset of the normal symbol table.
4387
4388 off_t
4389 Layout::symtab_section_offset() const
4390 {
4391 if (this->symtab_section_ != NULL)
4392 return this->symtab_section_->offset();
4393 return 0;
4394 }
4395
4396 // Write out the Output_sections. Most won't have anything to write,
4397 // since most of the data will come from input sections which are
4398 // handled elsewhere. But some Output_sections do have Output_data.
4399
4400 void
4401 Layout::write_output_sections(Output_file* of) const
4402 {
4403 for (Section_list::const_iterator p = this->section_list_.begin();
4404 p != this->section_list_.end();
4405 ++p)
4406 {
4407 if (!(*p)->after_input_sections())
4408 (*p)->write(of);
4409 }
4410 }
4411
4412 // Write out data not associated with a section or the symbol table.
4413
4414 void
4415 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4416 {
4417 if (!parameters->options().strip_all())
4418 {
4419 const Output_section* symtab_section = this->symtab_section_;
4420 for (Section_list::const_iterator p = this->section_list_.begin();
4421 p != this->section_list_.end();
4422 ++p)
4423 {
4424 if ((*p)->needs_symtab_index())
4425 {
4426 gold_assert(symtab_section != NULL);
4427 unsigned int index = (*p)->symtab_index();
4428 gold_assert(index > 0 && index != -1U);
4429 off_t off = (symtab_section->offset()
4430 + index * symtab_section->entsize());
4431 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4432 }
4433 }
4434 }
4435
4436 const Output_section* dynsym_section = this->dynsym_section_;
4437 for (Section_list::const_iterator p = this->section_list_.begin();
4438 p != this->section_list_.end();
4439 ++p)
4440 {
4441 if ((*p)->needs_dynsym_index())
4442 {
4443 gold_assert(dynsym_section != NULL);
4444 unsigned int index = (*p)->dynsym_index();
4445 gold_assert(index > 0 && index != -1U);
4446 off_t off = (dynsym_section->offset()
4447 + index * dynsym_section->entsize());
4448 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4449 }
4450 }
4451
4452 // Write out the Output_data which are not in an Output_section.
4453 for (Data_list::const_iterator p = this->special_output_list_.begin();
4454 p != this->special_output_list_.end();
4455 ++p)
4456 (*p)->write(of);
4457 }
4458
4459 // Write out the Output_sections which can only be written after the
4460 // input sections are complete.
4461
4462 void
4463 Layout::write_sections_after_input_sections(Output_file* of)
4464 {
4465 // Determine the final section offsets, and thus the final output
4466 // file size. Note we finalize the .shstrab last, to allow the
4467 // after_input_section sections to modify their section-names before
4468 // writing.
4469 if (this->any_postprocessing_sections_)
4470 {
4471 off_t off = this->output_file_size_;
4472 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4473
4474 // Now that we've finalized the names, we can finalize the shstrab.
4475 off =
4476 this->set_section_offsets(off,
4477 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4478
4479 if (off > this->output_file_size_)
4480 {
4481 of->resize(off);
4482 this->output_file_size_ = off;
4483 }
4484 }
4485
4486 for (Section_list::const_iterator p = this->section_list_.begin();
4487 p != this->section_list_.end();
4488 ++p)
4489 {
4490 if ((*p)->after_input_sections())
4491 (*p)->write(of);
4492 }
4493
4494 this->section_headers_->write(of);
4495 }
4496
4497 // If the build ID requires computing a checksum, do so here, and
4498 // write it out. We compute a checksum over the entire file because
4499 // that is simplest.
4500
4501 void
4502 Layout::write_build_id(Output_file* of) const
4503 {
4504 if (this->build_id_note_ == NULL)
4505 return;
4506
4507 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4508
4509 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4510 this->build_id_note_->data_size());
4511
4512 const char* style = parameters->options().build_id();
4513 if (strcmp(style, "sha1") == 0)
4514 {
4515 sha1_ctx ctx;
4516 sha1_init_ctx(&ctx);
4517 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4518 sha1_finish_ctx(&ctx, ov);
4519 }
4520 else if (strcmp(style, "md5") == 0)
4521 {
4522 md5_ctx ctx;
4523 md5_init_ctx(&ctx);
4524 md5_process_bytes(iv, this->output_file_size_, &ctx);
4525 md5_finish_ctx(&ctx, ov);
4526 }
4527 else
4528 gold_unreachable();
4529
4530 of->write_output_view(this->build_id_note_->offset(),
4531 this->build_id_note_->data_size(),
4532 ov);
4533
4534 of->free_input_view(0, this->output_file_size_, iv);
4535 }
4536
4537 // Write out a binary file. This is called after the link is
4538 // complete. IN is the temporary output file we used to generate the
4539 // ELF code. We simply walk through the segments, read them from
4540 // their file offset in IN, and write them to their load address in
4541 // the output file. FIXME: with a bit more work, we could support
4542 // S-records and/or Intel hex format here.
4543
4544 void
4545 Layout::write_binary(Output_file* in) const
4546 {
4547 gold_assert(parameters->options().oformat_enum()
4548 == General_options::OBJECT_FORMAT_BINARY);
4549
4550 // Get the size of the binary file.
4551 uint64_t max_load_address = 0;
4552 for (Segment_list::const_iterator p = this->segment_list_.begin();
4553 p != this->segment_list_.end();
4554 ++p)
4555 {
4556 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4557 {
4558 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4559 if (max_paddr > max_load_address)
4560 max_load_address = max_paddr;
4561 }
4562 }
4563
4564 Output_file out(parameters->options().output_file_name());
4565 out.open(max_load_address);
4566
4567 for (Segment_list::const_iterator p = this->segment_list_.begin();
4568 p != this->segment_list_.end();
4569 ++p)
4570 {
4571 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4572 {
4573 const unsigned char* vin = in->get_input_view((*p)->offset(),
4574 (*p)->filesz());
4575 unsigned char* vout = out.get_output_view((*p)->paddr(),
4576 (*p)->filesz());
4577 memcpy(vout, vin, (*p)->filesz());
4578 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4579 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4580 }
4581 }
4582
4583 out.close();
4584 }
4585
4586 // Print the output sections to the map file.
4587
4588 void
4589 Layout::print_to_mapfile(Mapfile* mapfile) const
4590 {
4591 for (Segment_list::const_iterator p = this->segment_list_.begin();
4592 p != this->segment_list_.end();
4593 ++p)
4594 (*p)->print_sections_to_mapfile(mapfile);
4595 }
4596
4597 // Print statistical information to stderr. This is used for --stats.
4598
4599 void
4600 Layout::print_stats() const
4601 {
4602 this->namepool_.print_stats("section name pool");
4603 this->sympool_.print_stats("output symbol name pool");
4604 this->dynpool_.print_stats("dynamic name pool");
4605
4606 for (Section_list::const_iterator p = this->section_list_.begin();
4607 p != this->section_list_.end();
4608 ++p)
4609 (*p)->print_merge_stats();
4610 }
4611
4612 // Write_sections_task methods.
4613
4614 // We can always run this task.
4615
4616 Task_token*
4617 Write_sections_task::is_runnable()
4618 {
4619 return NULL;
4620 }
4621
4622 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4623 // when finished.
4624
4625 void
4626 Write_sections_task::locks(Task_locker* tl)
4627 {
4628 tl->add(this, this->output_sections_blocker_);
4629 tl->add(this, this->final_blocker_);
4630 }
4631
4632 // Run the task--write out the data.
4633
4634 void
4635 Write_sections_task::run(Workqueue*)
4636 {
4637 this->layout_->write_output_sections(this->of_);
4638 }
4639
4640 // Write_data_task methods.
4641
4642 // We can always run this task.
4643
4644 Task_token*
4645 Write_data_task::is_runnable()
4646 {
4647 return NULL;
4648 }
4649
4650 // We need to unlock FINAL_BLOCKER when finished.
4651
4652 void
4653 Write_data_task::locks(Task_locker* tl)
4654 {
4655 tl->add(this, this->final_blocker_);
4656 }
4657
4658 // Run the task--write out the data.
4659
4660 void
4661 Write_data_task::run(Workqueue*)
4662 {
4663 this->layout_->write_data(this->symtab_, this->of_);
4664 }
4665
4666 // Write_symbols_task methods.
4667
4668 // We can always run this task.
4669
4670 Task_token*
4671 Write_symbols_task::is_runnable()
4672 {
4673 return NULL;
4674 }
4675
4676 // We need to unlock FINAL_BLOCKER when finished.
4677
4678 void
4679 Write_symbols_task::locks(Task_locker* tl)
4680 {
4681 tl->add(this, this->final_blocker_);
4682 }
4683
4684 // Run the task--write out the symbols.
4685
4686 void
4687 Write_symbols_task::run(Workqueue*)
4688 {
4689 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4690 this->layout_->symtab_xindex(),
4691 this->layout_->dynsym_xindex(), this->of_);
4692 }
4693
4694 // Write_after_input_sections_task methods.
4695
4696 // We can only run this task after the input sections have completed.
4697
4698 Task_token*
4699 Write_after_input_sections_task::is_runnable()
4700 {
4701 if (this->input_sections_blocker_->is_blocked())
4702 return this->input_sections_blocker_;
4703 return NULL;
4704 }
4705
4706 // We need to unlock FINAL_BLOCKER when finished.
4707
4708 void
4709 Write_after_input_sections_task::locks(Task_locker* tl)
4710 {
4711 tl->add(this, this->final_blocker_);
4712 }
4713
4714 // Run the task.
4715
4716 void
4717 Write_after_input_sections_task::run(Workqueue*)
4718 {
4719 this->layout_->write_sections_after_input_sections(this->of_);
4720 }
4721
4722 // Close_task_runner methods.
4723
4724 // Run the task--close the file.
4725
4726 void
4727 Close_task_runner::run(Workqueue*, const Task*)
4728 {
4729 // If we need to compute a checksum for the BUILD if, we do so here.
4730 this->layout_->write_build_id(this->of_);
4731
4732 // If we've been asked to create a binary file, we do so here.
4733 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4734 this->layout_->write_binary(this->of_);
4735
4736 this->of_->close();
4737 }
4738
4739 // Instantiate the templates we need. We could use the configure
4740 // script to restrict this to only the ones for implemented targets.
4741
4742 #ifdef HAVE_TARGET_32_LITTLE
4743 template
4744 Output_section*
4745 Layout::init_fixed_output_section<32, false>(
4746 const char* name,
4747 elfcpp::Shdr<32, false>& shdr);
4748 #endif
4749
4750 #ifdef HAVE_TARGET_32_BIG
4751 template
4752 Output_section*
4753 Layout::init_fixed_output_section<32, true>(
4754 const char* name,
4755 elfcpp::Shdr<32, true>& shdr);
4756 #endif
4757
4758 #ifdef HAVE_TARGET_64_LITTLE
4759 template
4760 Output_section*
4761 Layout::init_fixed_output_section<64, false>(
4762 const char* name,
4763 elfcpp::Shdr<64, false>& shdr);
4764 #endif
4765
4766 #ifdef HAVE_TARGET_64_BIG
4767 template
4768 Output_section*
4769 Layout::init_fixed_output_section<64, true>(
4770 const char* name,
4771 elfcpp::Shdr<64, true>& shdr);
4772 #endif
4773
4774 #ifdef HAVE_TARGET_32_LITTLE
4775 template
4776 Output_section*
4777 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4778 const char* name,
4779 const elfcpp::Shdr<32, false>& shdr,
4780 unsigned int, unsigned int, off_t*);
4781 #endif
4782
4783 #ifdef HAVE_TARGET_32_BIG
4784 template
4785 Output_section*
4786 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4787 const char* name,
4788 const elfcpp::Shdr<32, true>& shdr,
4789 unsigned int, unsigned int, off_t*);
4790 #endif
4791
4792 #ifdef HAVE_TARGET_64_LITTLE
4793 template
4794 Output_section*
4795 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4796 const char* name,
4797 const elfcpp::Shdr<64, false>& shdr,
4798 unsigned int, unsigned int, off_t*);
4799 #endif
4800
4801 #ifdef HAVE_TARGET_64_BIG
4802 template
4803 Output_section*
4804 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4805 const char* name,
4806 const elfcpp::Shdr<64, true>& shdr,
4807 unsigned int, unsigned int, off_t*);
4808 #endif
4809
4810 #ifdef HAVE_TARGET_32_LITTLE
4811 template
4812 Output_section*
4813 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4814 unsigned int reloc_shndx,
4815 const elfcpp::Shdr<32, false>& shdr,
4816 Output_section* data_section,
4817 Relocatable_relocs* rr);
4818 #endif
4819
4820 #ifdef HAVE_TARGET_32_BIG
4821 template
4822 Output_section*
4823 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4824 unsigned int reloc_shndx,
4825 const elfcpp::Shdr<32, true>& shdr,
4826 Output_section* data_section,
4827 Relocatable_relocs* rr);
4828 #endif
4829
4830 #ifdef HAVE_TARGET_64_LITTLE
4831 template
4832 Output_section*
4833 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4834 unsigned int reloc_shndx,
4835 const elfcpp::Shdr<64, false>& shdr,
4836 Output_section* data_section,
4837 Relocatable_relocs* rr);
4838 #endif
4839
4840 #ifdef HAVE_TARGET_64_BIG
4841 template
4842 Output_section*
4843 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4844 unsigned int reloc_shndx,
4845 const elfcpp::Shdr<64, true>& shdr,
4846 Output_section* data_section,
4847 Relocatable_relocs* rr);
4848 #endif
4849
4850 #ifdef HAVE_TARGET_32_LITTLE
4851 template
4852 void
4853 Layout::layout_group<32, false>(Symbol_table* symtab,
4854 Sized_relobj<32, false>* object,
4855 unsigned int,
4856 const char* group_section_name,
4857 const char* signature,
4858 const elfcpp::Shdr<32, false>& shdr,
4859 elfcpp::Elf_Word flags,
4860 std::vector<unsigned int>* shndxes);
4861 #endif
4862
4863 #ifdef HAVE_TARGET_32_BIG
4864 template
4865 void
4866 Layout::layout_group<32, true>(Symbol_table* symtab,
4867 Sized_relobj<32, true>* object,
4868 unsigned int,
4869 const char* group_section_name,
4870 const char* signature,
4871 const elfcpp::Shdr<32, true>& shdr,
4872 elfcpp::Elf_Word flags,
4873 std::vector<unsigned int>* shndxes);
4874 #endif
4875
4876 #ifdef HAVE_TARGET_64_LITTLE
4877 template
4878 void
4879 Layout::layout_group<64, false>(Symbol_table* symtab,
4880 Sized_relobj<64, false>* object,
4881 unsigned int,
4882 const char* group_section_name,
4883 const char* signature,
4884 const elfcpp::Shdr<64, false>& shdr,
4885 elfcpp::Elf_Word flags,
4886 std::vector<unsigned int>* shndxes);
4887 #endif
4888
4889 #ifdef HAVE_TARGET_64_BIG
4890 template
4891 void
4892 Layout::layout_group<64, true>(Symbol_table* symtab,
4893 Sized_relobj<64, true>* object,
4894 unsigned int,
4895 const char* group_section_name,
4896 const char* signature,
4897 const elfcpp::Shdr<64, true>& shdr,
4898 elfcpp::Elf_Word flags,
4899 std::vector<unsigned int>* shndxes);
4900 #endif
4901
4902 #ifdef HAVE_TARGET_32_LITTLE
4903 template
4904 Output_section*
4905 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4906 const unsigned char* symbols,
4907 off_t symbols_size,
4908 const unsigned char* symbol_names,
4909 off_t symbol_names_size,
4910 unsigned int shndx,
4911 const elfcpp::Shdr<32, false>& shdr,
4912 unsigned int reloc_shndx,
4913 unsigned int reloc_type,
4914 off_t* off);
4915 #endif
4916
4917 #ifdef HAVE_TARGET_32_BIG
4918 template
4919 Output_section*
4920 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4921 const unsigned char* symbols,
4922 off_t symbols_size,
4923 const unsigned char* symbol_names,
4924 off_t symbol_names_size,
4925 unsigned int shndx,
4926 const elfcpp::Shdr<32, true>& shdr,
4927 unsigned int reloc_shndx,
4928 unsigned int reloc_type,
4929 off_t* off);
4930 #endif
4931
4932 #ifdef HAVE_TARGET_64_LITTLE
4933 template
4934 Output_section*
4935 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4936 const unsigned char* symbols,
4937 off_t symbols_size,
4938 const unsigned char* symbol_names,
4939 off_t symbol_names_size,
4940 unsigned int shndx,
4941 const elfcpp::Shdr<64, false>& shdr,
4942 unsigned int reloc_shndx,
4943 unsigned int reloc_type,
4944 off_t* off);
4945 #endif
4946
4947 #ifdef HAVE_TARGET_64_BIG
4948 template
4949 Output_section*
4950 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4951 const unsigned char* symbols,
4952 off_t symbols_size,
4953 const unsigned char* symbol_names,
4954 off_t symbol_names_size,
4955 unsigned int shndx,
4956 const elfcpp::Shdr<64, true>& shdr,
4957 unsigned int reloc_shndx,
4958 unsigned int reloc_type,
4959 off_t* off);
4960 #endif
4961
4962 } // End namespace gold.