]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/char/cadence_uart.c
hw/mips/mips_malta: Create IDE hard drive array dynamically
[thirdparty/qemu.git] / hw / char / cadence_uart.c
1 /*
2 * Device model for Cadence UART
3 *
4 * Reference: Xilinx Zynq 7000 reference manual
5 * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6 * - Chapter 19 UART Controller
7 * - Appendix B for Register details
8 *
9 * Copyright (c) 2010 Xilinx Inc.
10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11 * Copyright (c) 2012 PetaLogix Pty Ltd.
12 * Written by Haibing Ma
13 * M.Habib
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "migration/vmstate.h"
27 #include "chardev/char-fe.h"
28 #include "chardev/char-serial.h"
29 #include "qemu/timer.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "hw/char/cadence_uart.h"
33 #include "hw/irq.h"
34
35 #ifdef CADENCE_UART_ERR_DEBUG
36 #define DB_PRINT(...) do { \
37 fprintf(stderr, ": %s: ", __func__); \
38 fprintf(stderr, ## __VA_ARGS__); \
39 } while (0)
40 #else
41 #define DB_PRINT(...)
42 #endif
43
44 #define UART_SR_INTR_RTRIG 0x00000001
45 #define UART_SR_INTR_REMPTY 0x00000002
46 #define UART_SR_INTR_RFUL 0x00000004
47 #define UART_SR_INTR_TEMPTY 0x00000008
48 #define UART_SR_INTR_TFUL 0x00000010
49 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
50 #define UART_SR_TTRIG 0x00002000
51 #define UART_INTR_TTRIG 0x00000400
52 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
53 * SR, then the same bit in CISR is set high too */
54 #define UART_SR_TO_CISR_MASK 0x0000001F
55
56 #define UART_INTR_ROVR 0x00000020
57 #define UART_INTR_FRAME 0x00000040
58 #define UART_INTR_PARE 0x00000080
59 #define UART_INTR_TIMEOUT 0x00000100
60 #define UART_INTR_DMSI 0x00000200
61 #define UART_INTR_TOVR 0x00001000
62
63 #define UART_SR_RACTIVE 0x00000400
64 #define UART_SR_TACTIVE 0x00000800
65 #define UART_SR_FDELT 0x00001000
66
67 #define UART_CR_RXRST 0x00000001
68 #define UART_CR_TXRST 0x00000002
69 #define UART_CR_RX_EN 0x00000004
70 #define UART_CR_RX_DIS 0x00000008
71 #define UART_CR_TX_EN 0x00000010
72 #define UART_CR_TX_DIS 0x00000020
73 #define UART_CR_RST_TO 0x00000040
74 #define UART_CR_STARTBRK 0x00000080
75 #define UART_CR_STOPBRK 0x00000100
76
77 #define UART_MR_CLKS 0x00000001
78 #define UART_MR_CHRL 0x00000006
79 #define UART_MR_CHRL_SH 1
80 #define UART_MR_PAR 0x00000038
81 #define UART_MR_PAR_SH 3
82 #define UART_MR_NBSTOP 0x000000C0
83 #define UART_MR_NBSTOP_SH 6
84 #define UART_MR_CHMODE 0x00000300
85 #define UART_MR_CHMODE_SH 8
86 #define UART_MR_UCLKEN 0x00000400
87 #define UART_MR_IRMODE 0x00000800
88
89 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
90 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
91 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
92 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
93 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
94 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
95 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
96 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
97 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
98 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
99
100 #define UART_INPUT_CLK 50000000
101
102 #define R_CR (0x00/4)
103 #define R_MR (0x04/4)
104 #define R_IER (0x08/4)
105 #define R_IDR (0x0C/4)
106 #define R_IMR (0x10/4)
107 #define R_CISR (0x14/4)
108 #define R_BRGR (0x18/4)
109 #define R_RTOR (0x1C/4)
110 #define R_RTRIG (0x20/4)
111 #define R_MCR (0x24/4)
112 #define R_MSR (0x28/4)
113 #define R_SR (0x2C/4)
114 #define R_TX_RX (0x30/4)
115 #define R_BDIV (0x34/4)
116 #define R_FDEL (0x38/4)
117 #define R_PMIN (0x3C/4)
118 #define R_PWID (0x40/4)
119 #define R_TTRIG (0x44/4)
120
121
122 static void uart_update_status(CadenceUARTState *s)
123 {
124 s->r[R_SR] = 0;
125
126 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
127 : 0;
128 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
129 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
130
131 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
132 : 0;
133 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
134 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
135
136 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
137 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
138 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
139 }
140
141 static void fifo_trigger_update(void *opaque)
142 {
143 CadenceUARTState *s = opaque;
144
145 if (s->r[R_RTOR]) {
146 s->r[R_CISR] |= UART_INTR_TIMEOUT;
147 uart_update_status(s);
148 }
149 }
150
151 static void uart_rx_reset(CadenceUARTState *s)
152 {
153 s->rx_wpos = 0;
154 s->rx_count = 0;
155 qemu_chr_fe_accept_input(&s->chr);
156 }
157
158 static void uart_tx_reset(CadenceUARTState *s)
159 {
160 s->tx_count = 0;
161 }
162
163 static void uart_send_breaks(CadenceUARTState *s)
164 {
165 int break_enabled = 1;
166
167 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
168 &break_enabled);
169 }
170
171 static void uart_parameters_setup(CadenceUARTState *s)
172 {
173 QEMUSerialSetParams ssp;
174 unsigned int baud_rate, packet_size;
175
176 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
177 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
178
179 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
180 packet_size = 1;
181
182 switch (s->r[R_MR] & UART_MR_PAR) {
183 case UART_PARITY_EVEN:
184 ssp.parity = 'E';
185 packet_size++;
186 break;
187 case UART_PARITY_ODD:
188 ssp.parity = 'O';
189 packet_size++;
190 break;
191 default:
192 ssp.parity = 'N';
193 break;
194 }
195
196 switch (s->r[R_MR] & UART_MR_CHRL) {
197 case UART_DATA_BITS_6:
198 ssp.data_bits = 6;
199 break;
200 case UART_DATA_BITS_7:
201 ssp.data_bits = 7;
202 break;
203 default:
204 ssp.data_bits = 8;
205 break;
206 }
207
208 switch (s->r[R_MR] & UART_MR_NBSTOP) {
209 case UART_STOP_BITS_1:
210 ssp.stop_bits = 1;
211 break;
212 default:
213 ssp.stop_bits = 2;
214 break;
215 }
216
217 packet_size += ssp.data_bits + ssp.stop_bits;
218 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
219 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
220 }
221
222 static int uart_can_receive(void *opaque)
223 {
224 CadenceUARTState *s = opaque;
225 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
226 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
227
228 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
229 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
230 }
231 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
232 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
233 }
234 return ret;
235 }
236
237 static void uart_ctrl_update(CadenceUARTState *s)
238 {
239 if (s->r[R_CR] & UART_CR_TXRST) {
240 uart_tx_reset(s);
241 }
242
243 if (s->r[R_CR] & UART_CR_RXRST) {
244 uart_rx_reset(s);
245 }
246
247 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
248
249 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
250 uart_send_breaks(s);
251 }
252 }
253
254 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
255 {
256 CadenceUARTState *s = opaque;
257 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
258 int i;
259
260 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
261 return;
262 }
263
264 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
265 s->r[R_CISR] |= UART_INTR_ROVR;
266 } else {
267 for (i = 0; i < size; i++) {
268 s->rx_fifo[s->rx_wpos] = buf[i];
269 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
270 s->rx_count++;
271 }
272 timer_mod(s->fifo_trigger_handle, new_rx_time +
273 (s->char_tx_time * 4));
274 }
275 uart_update_status(s);
276 }
277
278 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
279 void *opaque)
280 {
281 CadenceUARTState *s = opaque;
282 int ret;
283
284 /* instant drain the fifo when there's no back-end */
285 if (!qemu_chr_fe_backend_connected(&s->chr)) {
286 s->tx_count = 0;
287 return FALSE;
288 }
289
290 if (!s->tx_count) {
291 return FALSE;
292 }
293
294 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
295
296 if (ret >= 0) {
297 s->tx_count -= ret;
298 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
299 }
300
301 if (s->tx_count) {
302 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
303 cadence_uart_xmit, s);
304 if (!r) {
305 s->tx_count = 0;
306 return FALSE;
307 }
308 }
309
310 uart_update_status(s);
311 return FALSE;
312 }
313
314 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
315 int size)
316 {
317 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
318 return;
319 }
320
321 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
322 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
323 /*
324 * This can only be a guest error via a bad tx fifo register push,
325 * as can_receive() should stop remote loop and echo modes ever getting
326 * us to here.
327 */
328 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
329 s->r[R_CISR] |= UART_INTR_ROVR;
330 }
331
332 memcpy(s->tx_fifo + s->tx_count, buf, size);
333 s->tx_count += size;
334
335 cadence_uart_xmit(NULL, G_IO_OUT, s);
336 }
337
338 static void uart_receive(void *opaque, const uint8_t *buf, int size)
339 {
340 CadenceUARTState *s = opaque;
341 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
342
343 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
344 uart_write_rx_fifo(opaque, buf, size);
345 }
346 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
347 uart_write_tx_fifo(s, buf, size);
348 }
349 }
350
351 static void uart_event(void *opaque, int event)
352 {
353 CadenceUARTState *s = opaque;
354 uint8_t buf = '\0';
355
356 if (event == CHR_EVENT_BREAK) {
357 uart_write_rx_fifo(opaque, &buf, 1);
358 }
359
360 uart_update_status(s);
361 }
362
363 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
364 {
365 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
366 return;
367 }
368
369 if (s->rx_count) {
370 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
371 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
372 *c = s->rx_fifo[rx_rpos];
373 s->rx_count--;
374
375 qemu_chr_fe_accept_input(&s->chr);
376 } else {
377 *c = 0;
378 }
379
380 uart_update_status(s);
381 }
382
383 static void uart_write(void *opaque, hwaddr offset,
384 uint64_t value, unsigned size)
385 {
386 CadenceUARTState *s = opaque;
387
388 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
389 offset >>= 2;
390 if (offset >= CADENCE_UART_R_MAX) {
391 return;
392 }
393 switch (offset) {
394 case R_IER: /* ier (wts imr) */
395 s->r[R_IMR] |= value;
396 break;
397 case R_IDR: /* idr (wtc imr) */
398 s->r[R_IMR] &= ~value;
399 break;
400 case R_IMR: /* imr (read only) */
401 break;
402 case R_CISR: /* cisr (wtc) */
403 s->r[R_CISR] &= ~value;
404 break;
405 case R_TX_RX: /* UARTDR */
406 switch (s->r[R_MR] & UART_MR_CHMODE) {
407 case NORMAL_MODE:
408 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
409 break;
410 case LOCAL_LOOPBACK:
411 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
412 break;
413 }
414 break;
415 case R_BRGR: /* Baud rate generator */
416 if (value >= 0x01) {
417 s->r[offset] = value & 0xFFFF;
418 }
419 break;
420 case R_BDIV: /* Baud rate divider */
421 if (value >= 0x04) {
422 s->r[offset] = value & 0xFF;
423 }
424 break;
425 default:
426 s->r[offset] = value;
427 }
428
429 switch (offset) {
430 case R_CR:
431 uart_ctrl_update(s);
432 break;
433 case R_MR:
434 uart_parameters_setup(s);
435 break;
436 }
437 uart_update_status(s);
438 }
439
440 static uint64_t uart_read(void *opaque, hwaddr offset,
441 unsigned size)
442 {
443 CadenceUARTState *s = opaque;
444 uint32_t c = 0;
445
446 offset >>= 2;
447 if (offset >= CADENCE_UART_R_MAX) {
448 c = 0;
449 } else if (offset == R_TX_RX) {
450 uart_read_rx_fifo(s, &c);
451 } else {
452 c = s->r[offset];
453 }
454
455 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
456 return c;
457 }
458
459 static const MemoryRegionOps uart_ops = {
460 .read = uart_read,
461 .write = uart_write,
462 .endianness = DEVICE_NATIVE_ENDIAN,
463 };
464
465 static void cadence_uart_reset(DeviceState *dev)
466 {
467 CadenceUARTState *s = CADENCE_UART(dev);
468
469 s->r[R_CR] = 0x00000128;
470 s->r[R_IMR] = 0;
471 s->r[R_CISR] = 0;
472 s->r[R_RTRIG] = 0x00000020;
473 s->r[R_BRGR] = 0x0000028B;
474 s->r[R_BDIV] = 0x0000000F;
475 s->r[R_TTRIG] = 0x00000020;
476
477 uart_rx_reset(s);
478 uart_tx_reset(s);
479
480 uart_update_status(s);
481 }
482
483 static void cadence_uart_realize(DeviceState *dev, Error **errp)
484 {
485 CadenceUARTState *s = CADENCE_UART(dev);
486
487 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488 fifo_trigger_update, s);
489
490 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
491 uart_event, NULL, s, NULL, true);
492 }
493
494 static void cadence_uart_init(Object *obj)
495 {
496 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
497 CadenceUARTState *s = CADENCE_UART(obj);
498
499 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
500 sysbus_init_mmio(sbd, &s->iomem);
501 sysbus_init_irq(sbd, &s->irq);
502
503 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
504 }
505
506 static int cadence_uart_post_load(void *opaque, int version_id)
507 {
508 CadenceUARTState *s = opaque;
509
510 /* Ensure these two aren't invalid numbers */
511 if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
512 s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
513 /* Value is invalid, abort */
514 return 1;
515 }
516
517 uart_parameters_setup(s);
518 uart_update_status(s);
519 return 0;
520 }
521
522 static const VMStateDescription vmstate_cadence_uart = {
523 .name = "cadence_uart",
524 .version_id = 2,
525 .minimum_version_id = 2,
526 .post_load = cadence_uart_post_load,
527 .fields = (VMStateField[]) {
528 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
529 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
530 CADENCE_UART_RX_FIFO_SIZE),
531 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
532 CADENCE_UART_TX_FIFO_SIZE),
533 VMSTATE_UINT32(rx_count, CadenceUARTState),
534 VMSTATE_UINT32(tx_count, CadenceUARTState),
535 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
536 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
537 VMSTATE_END_OF_LIST()
538 }
539 };
540
541 static Property cadence_uart_properties[] = {
542 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
543 DEFINE_PROP_END_OF_LIST(),
544 };
545
546 static void cadence_uart_class_init(ObjectClass *klass, void *data)
547 {
548 DeviceClass *dc = DEVICE_CLASS(klass);
549
550 dc->realize = cadence_uart_realize;
551 dc->vmsd = &vmstate_cadence_uart;
552 dc->reset = cadence_uart_reset;
553 dc->props = cadence_uart_properties;
554 }
555
556 static const TypeInfo cadence_uart_info = {
557 .name = TYPE_CADENCE_UART,
558 .parent = TYPE_SYS_BUS_DEVICE,
559 .instance_size = sizeof(CadenceUARTState),
560 .instance_init = cadence_uart_init,
561 .class_init = cadence_uart_class_init,
562 };
563
564 static void cadence_uart_register_types(void)
565 {
566 type_register_static(&cadence_uart_info);
567 }
568
569 type_init(cadence_uart_register_types)