]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/misc/macio/cuda.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[thirdparty/qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw/hw.h"
26 #include "hw/ppc/mac.h"
27 #include "hw/input/adb.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30
31 /* XXX: implement all timer modes */
32
33 /* debug CUDA */
34 //#define DEBUG_CUDA
35
36 /* debug CUDA packets */
37 //#define DEBUG_CUDA_PACKET
38
39 #ifdef DEBUG_CUDA
40 #define CUDA_DPRINTF(fmt, ...) \
41 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
42 #else
43 #define CUDA_DPRINTF(fmt, ...)
44 #endif
45
46 /* Bits in B data register: all active low */
47 #define TREQ 0x08 /* Transfer request (input) */
48 #define TACK 0x10 /* Transfer acknowledge (output) */
49 #define TIP 0x20 /* Transfer in progress (output) */
50
51 /* Bits in ACR */
52 #define SR_CTRL 0x1c /* Shift register control bits */
53 #define SR_EXT 0x0c /* Shift on external clock */
54 #define SR_OUT 0x10 /* Shift out if 1 */
55
56 /* Bits in IFR and IER */
57 #define IER_SET 0x80 /* set bits in IER */
58 #define IER_CLR 0 /* clear bits in IER */
59 #define SR_INT 0x04 /* Shift register full/empty */
60 #define T1_INT 0x40 /* Timer 1 interrupt */
61 #define T2_INT 0x20 /* Timer 2 interrupt */
62
63 /* Bits in ACR */
64 #define T1MODE 0xc0 /* Timer 1 mode */
65 #define T1MODE_CONT 0x40 /* continuous interrupts */
66
67 /* commands (1st byte) */
68 #define ADB_PACKET 0
69 #define CUDA_PACKET 1
70 #define ERROR_PACKET 2
71 #define TIMER_PACKET 3
72 #define POWER_PACKET 4
73 #define MACIIC_PACKET 5
74 #define PMU_PACKET 6
75
76
77 /* CUDA commands (2nd byte) */
78 #define CUDA_WARM_START 0x0
79 #define CUDA_AUTOPOLL 0x1
80 #define CUDA_GET_6805_ADDR 0x2
81 #define CUDA_GET_TIME 0x3
82 #define CUDA_GET_PRAM 0x7
83 #define CUDA_SET_6805_ADDR 0x8
84 #define CUDA_SET_TIME 0x9
85 #define CUDA_POWERDOWN 0xa
86 #define CUDA_POWERUP_TIME 0xb
87 #define CUDA_SET_PRAM 0xc
88 #define CUDA_MS_RESET 0xd
89 #define CUDA_SEND_DFAC 0xe
90 #define CUDA_BATTERY_SWAP_SENSE 0x10
91 #define CUDA_RESET_SYSTEM 0x11
92 #define CUDA_SET_IPL 0x12
93 #define CUDA_FILE_SERVER_FLAG 0x13
94 #define CUDA_SET_AUTO_RATE 0x14
95 #define CUDA_GET_AUTO_RATE 0x16
96 #define CUDA_SET_DEVICE_LIST 0x19
97 #define CUDA_GET_DEVICE_LIST 0x1a
98 #define CUDA_SET_ONE_SECOND_MODE 0x1b
99 #define CUDA_SET_POWER_MESSAGES 0x21
100 #define CUDA_GET_SET_IIC 0x22
101 #define CUDA_WAKEUP 0x23
102 #define CUDA_TIMER_TICKLE 0x24
103 #define CUDA_COMBINED_FORMAT_IIC 0x25
104
105 #define CUDA_TIMER_FREQ (4700000 / 6)
106 #define CUDA_ADB_POLL_FREQ 50
107
108 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
109 #define RTC_OFFSET 2082844800
110
111 static void cuda_update(CUDAState *s);
112 static void cuda_receive_packet_from_host(CUDAState *s,
113 const uint8_t *data, int len);
114 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
115 int64_t current_time);
116
117 static void cuda_update_irq(CUDAState *s)
118 {
119 if (s->ifr & s->ier & (SR_INT | T1_INT)) {
120 qemu_irq_raise(s->irq);
121 } else {
122 qemu_irq_lower(s->irq);
123 }
124 }
125
126 static uint64_t get_tb(uint64_t freq)
127 {
128 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
129 freq, get_ticks_per_sec());
130 }
131
132 static unsigned int get_counter(CUDATimer *s)
133 {
134 int64_t d;
135 unsigned int counter;
136 uint64_t tb_diff;
137
138 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
139 tb_diff = get_tb(s->frequency) - s->load_time;
140 d = (tb_diff * 0xBF401675E5DULL) / (s->frequency << 24);
141
142 if (s->index == 0) {
143 /* the timer goes down from latch to -1 (period of latch + 2) */
144 if (d <= (s->counter_value + 1)) {
145 counter = (s->counter_value - d) & 0xffff;
146 } else {
147 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
148 counter = (s->latch - counter) & 0xffff;
149 }
150 } else {
151 counter = (s->counter_value - d) & 0xffff;
152 }
153 return counter;
154 }
155
156 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
157 {
158 CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
159 ti->load_time = get_tb(s->frequency);
160 ti->counter_value = val;
161 cuda_timer_update(s, ti, ti->load_time);
162 }
163
164 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
165 {
166 int64_t d, next_time;
167 unsigned int counter;
168
169 /* current counter value */
170 d = muldiv64(current_time - s->load_time,
171 CUDA_TIMER_FREQ, get_ticks_per_sec());
172 /* the timer goes down from latch to -1 (period of latch + 2) */
173 if (d <= (s->counter_value + 1)) {
174 counter = (s->counter_value - d) & 0xffff;
175 } else {
176 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
177 counter = (s->latch - counter) & 0xffff;
178 }
179
180 /* Note: we consider the irq is raised on 0 */
181 if (counter == 0xffff) {
182 next_time = d + s->latch + 1;
183 } else if (counter == 0) {
184 next_time = d + s->latch + 2;
185 } else {
186 next_time = d + counter;
187 }
188 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
189 s->latch, d, next_time - d);
190 next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
191 s->load_time;
192 if (next_time <= current_time)
193 next_time = current_time + 1;
194 return next_time;
195 }
196
197 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
198 int64_t current_time)
199 {
200 if (!ti->timer)
201 return;
202 if ((s->acr & T1MODE) != T1MODE_CONT) {
203 timer_del(ti->timer);
204 } else {
205 ti->next_irq_time = get_next_irq_time(ti, current_time);
206 timer_mod(ti->timer, ti->next_irq_time);
207 }
208 }
209
210 static void cuda_timer1(void *opaque)
211 {
212 CUDAState *s = opaque;
213 CUDATimer *ti = &s->timers[0];
214
215 cuda_timer_update(s, ti, ti->next_irq_time);
216 s->ifr |= T1_INT;
217 cuda_update_irq(s);
218 }
219
220 static uint32_t cuda_readb(void *opaque, hwaddr addr)
221 {
222 CUDAState *s = opaque;
223 uint32_t val;
224
225 addr = (addr >> 9) & 0xf;
226 switch(addr) {
227 case 0:
228 val = s->b;
229 break;
230 case 1:
231 val = s->a;
232 break;
233 case 2:
234 val = s->dirb;
235 break;
236 case 3:
237 val = s->dira;
238 break;
239 case 4:
240 val = get_counter(&s->timers[0]) & 0xff;
241 s->ifr &= ~T1_INT;
242 cuda_update_irq(s);
243 break;
244 case 5:
245 val = get_counter(&s->timers[0]) >> 8;
246 cuda_update_irq(s);
247 break;
248 case 6:
249 val = s->timers[0].latch & 0xff;
250 break;
251 case 7:
252 /* XXX: check this */
253 val = (s->timers[0].latch >> 8) & 0xff;
254 break;
255 case 8:
256 val = get_counter(&s->timers[1]) & 0xff;
257 s->ifr &= ~T2_INT;
258 break;
259 case 9:
260 val = get_counter(&s->timers[1]) >> 8;
261 break;
262 case 10:
263 val = s->sr;
264 s->ifr &= ~SR_INT;
265 cuda_update_irq(s);
266 break;
267 case 11:
268 val = s->acr;
269 break;
270 case 12:
271 val = s->pcr;
272 break;
273 case 13:
274 val = s->ifr;
275 if (s->ifr & s->ier)
276 val |= 0x80;
277 break;
278 case 14:
279 val = s->ier | 0x80;
280 break;
281 default:
282 case 15:
283 val = s->anh;
284 break;
285 }
286 if (addr != 13 || val != 0) {
287 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
288 }
289
290 return val;
291 }
292
293 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
294 {
295 CUDAState *s = opaque;
296
297 addr = (addr >> 9) & 0xf;
298 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
299
300 switch(addr) {
301 case 0:
302 s->b = val;
303 cuda_update(s);
304 break;
305 case 1:
306 s->a = val;
307 break;
308 case 2:
309 s->dirb = val;
310 break;
311 case 3:
312 s->dira = val;
313 break;
314 case 4:
315 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
316 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
317 break;
318 case 5:
319 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
320 s->ifr &= ~T1_INT;
321 set_counter(s, &s->timers[0], s->timers[0].latch);
322 break;
323 case 6:
324 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
325 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
326 break;
327 case 7:
328 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
329 s->ifr &= ~T1_INT;
330 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
331 break;
332 case 8:
333 s->timers[1].latch = val;
334 set_counter(s, &s->timers[1], val);
335 break;
336 case 9:
337 set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
338 break;
339 case 10:
340 s->sr = val;
341 break;
342 case 11:
343 s->acr = val;
344 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
345 cuda_update(s);
346 break;
347 case 12:
348 s->pcr = val;
349 break;
350 case 13:
351 /* reset bits */
352 s->ifr &= ~val;
353 cuda_update_irq(s);
354 break;
355 case 14:
356 if (val & IER_SET) {
357 /* set bits */
358 s->ier |= val & 0x7f;
359 } else {
360 /* reset bits */
361 s->ier &= ~val;
362 }
363 cuda_update_irq(s);
364 break;
365 default:
366 case 15:
367 s->anh = val;
368 break;
369 }
370 }
371
372 /* NOTE: TIP and TREQ are negated */
373 static void cuda_update(CUDAState *s)
374 {
375 int packet_received, len;
376
377 packet_received = 0;
378 if (!(s->b & TIP)) {
379 /* transfer requested from host */
380
381 if (s->acr & SR_OUT) {
382 /* data output */
383 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
384 if (s->data_out_index < sizeof(s->data_out)) {
385 CUDA_DPRINTF("send: %02x\n", s->sr);
386 s->data_out[s->data_out_index++] = s->sr;
387 s->ifr |= SR_INT;
388 cuda_update_irq(s);
389 }
390 }
391 } else {
392 if (s->data_in_index < s->data_in_size) {
393 /* data input */
394 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
395 s->sr = s->data_in[s->data_in_index++];
396 CUDA_DPRINTF("recv: %02x\n", s->sr);
397 /* indicate end of transfer */
398 if (s->data_in_index >= s->data_in_size) {
399 s->b = (s->b | TREQ);
400 }
401 s->ifr |= SR_INT;
402 cuda_update_irq(s);
403 }
404 }
405 }
406 } else {
407 /* no transfer requested: handle sync case */
408 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
409 /* update TREQ state each time TACK change state */
410 if (s->b & TACK)
411 s->b = (s->b | TREQ);
412 else
413 s->b = (s->b & ~TREQ);
414 s->ifr |= SR_INT;
415 cuda_update_irq(s);
416 } else {
417 if (!(s->last_b & TIP)) {
418 /* handle end of host to cuda transfer */
419 packet_received = (s->data_out_index > 0);
420 /* always an IRQ at the end of transfer */
421 s->ifr |= SR_INT;
422 cuda_update_irq(s);
423 }
424 /* signal if there is data to read */
425 if (s->data_in_index < s->data_in_size) {
426 s->b = (s->b & ~TREQ);
427 }
428 }
429 }
430
431 s->last_acr = s->acr;
432 s->last_b = s->b;
433
434 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
435 recursively */
436 if (packet_received) {
437 len = s->data_out_index;
438 s->data_out_index = 0;
439 cuda_receive_packet_from_host(s, s->data_out, len);
440 }
441 }
442
443 static void cuda_send_packet_to_host(CUDAState *s,
444 const uint8_t *data, int len)
445 {
446 #ifdef DEBUG_CUDA_PACKET
447 {
448 int i;
449 printf("cuda_send_packet_to_host:\n");
450 for(i = 0; i < len; i++)
451 printf(" %02x", data[i]);
452 printf("\n");
453 }
454 #endif
455 memcpy(s->data_in, data, len);
456 s->data_in_size = len;
457 s->data_in_index = 0;
458 cuda_update(s);
459 s->ifr |= SR_INT;
460 cuda_update_irq(s);
461 }
462
463 static void cuda_adb_poll(void *opaque)
464 {
465 CUDAState *s = opaque;
466 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
467 int olen;
468
469 olen = adb_poll(&s->adb_bus, obuf + 2);
470 if (olen > 0) {
471 obuf[0] = ADB_PACKET;
472 obuf[1] = 0x40; /* polled data */
473 cuda_send_packet_to_host(s, obuf, olen + 2);
474 }
475 timer_mod(s->adb_poll_timer,
476 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
477 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
478 }
479
480 static void cuda_receive_packet(CUDAState *s,
481 const uint8_t *data, int len)
482 {
483 uint8_t obuf[16];
484 int autopoll;
485 uint32_t ti;
486
487 switch(data[0]) {
488 case CUDA_AUTOPOLL:
489 autopoll = (data[1] != 0);
490 if (autopoll != s->autopoll) {
491 s->autopoll = autopoll;
492 if (autopoll) {
493 timer_mod(s->adb_poll_timer,
494 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
495 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
496 } else {
497 timer_del(s->adb_poll_timer);
498 }
499 }
500 obuf[0] = CUDA_PACKET;
501 obuf[1] = data[1];
502 cuda_send_packet_to_host(s, obuf, 2);
503 break;
504 case CUDA_SET_TIME:
505 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
506 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
507 obuf[0] = CUDA_PACKET;
508 obuf[1] = 0;
509 obuf[2] = 0;
510 cuda_send_packet_to_host(s, obuf, 3);
511 break;
512 case CUDA_GET_TIME:
513 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
514 obuf[0] = CUDA_PACKET;
515 obuf[1] = 0;
516 obuf[2] = 0;
517 obuf[3] = ti >> 24;
518 obuf[4] = ti >> 16;
519 obuf[5] = ti >> 8;
520 obuf[6] = ti;
521 cuda_send_packet_to_host(s, obuf, 7);
522 break;
523 case CUDA_FILE_SERVER_FLAG:
524 case CUDA_SET_DEVICE_LIST:
525 case CUDA_SET_AUTO_RATE:
526 case CUDA_SET_POWER_MESSAGES:
527 obuf[0] = CUDA_PACKET;
528 obuf[1] = 0;
529 cuda_send_packet_to_host(s, obuf, 2);
530 break;
531 case CUDA_POWERDOWN:
532 obuf[0] = CUDA_PACKET;
533 obuf[1] = 0;
534 cuda_send_packet_to_host(s, obuf, 2);
535 qemu_system_shutdown_request();
536 break;
537 case CUDA_RESET_SYSTEM:
538 obuf[0] = CUDA_PACKET;
539 obuf[1] = 0;
540 cuda_send_packet_to_host(s, obuf, 2);
541 qemu_system_reset_request();
542 break;
543 default:
544 break;
545 }
546 }
547
548 static void cuda_receive_packet_from_host(CUDAState *s,
549 const uint8_t *data, int len)
550 {
551 #ifdef DEBUG_CUDA_PACKET
552 {
553 int i;
554 printf("cuda_receive_packet_from_host:\n");
555 for(i = 0; i < len; i++)
556 printf(" %02x", data[i]);
557 printf("\n");
558 }
559 #endif
560 switch(data[0]) {
561 case ADB_PACKET:
562 {
563 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
564 int olen;
565 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
566 if (olen > 0) {
567 obuf[0] = ADB_PACKET;
568 obuf[1] = 0x00;
569 } else {
570 /* error */
571 obuf[0] = ADB_PACKET;
572 obuf[1] = -olen;
573 olen = 0;
574 }
575 cuda_send_packet_to_host(s, obuf, olen + 2);
576 }
577 break;
578 case CUDA_PACKET:
579 cuda_receive_packet(s, data + 1, len - 1);
580 break;
581 }
582 }
583
584 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
585 {
586 }
587
588 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
589 {
590 }
591
592 static uint32_t cuda_readw (void *opaque, hwaddr addr)
593 {
594 return 0;
595 }
596
597 static uint32_t cuda_readl (void *opaque, hwaddr addr)
598 {
599 return 0;
600 }
601
602 static const MemoryRegionOps cuda_ops = {
603 .old_mmio = {
604 .write = {
605 cuda_writeb,
606 cuda_writew,
607 cuda_writel,
608 },
609 .read = {
610 cuda_readb,
611 cuda_readw,
612 cuda_readl,
613 },
614 },
615 .endianness = DEVICE_NATIVE_ENDIAN,
616 };
617
618 static bool cuda_timer_exist(void *opaque, int version_id)
619 {
620 CUDATimer *s = opaque;
621
622 return s->timer != NULL;
623 }
624
625 static const VMStateDescription vmstate_cuda_timer = {
626 .name = "cuda_timer",
627 .version_id = 0,
628 .minimum_version_id = 0,
629 .fields = (VMStateField[]) {
630 VMSTATE_UINT16(latch, CUDATimer),
631 VMSTATE_UINT16(counter_value, CUDATimer),
632 VMSTATE_INT64(load_time, CUDATimer),
633 VMSTATE_INT64(next_irq_time, CUDATimer),
634 VMSTATE_TIMER_TEST(timer, CUDATimer, cuda_timer_exist),
635 VMSTATE_END_OF_LIST()
636 }
637 };
638
639 static const VMStateDescription vmstate_cuda = {
640 .name = "cuda",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .fields = (VMStateField[]) {
644 VMSTATE_UINT8(a, CUDAState),
645 VMSTATE_UINT8(b, CUDAState),
646 VMSTATE_UINT8(dira, CUDAState),
647 VMSTATE_UINT8(dirb, CUDAState),
648 VMSTATE_UINT8(sr, CUDAState),
649 VMSTATE_UINT8(acr, CUDAState),
650 VMSTATE_UINT8(pcr, CUDAState),
651 VMSTATE_UINT8(ifr, CUDAState),
652 VMSTATE_UINT8(ier, CUDAState),
653 VMSTATE_UINT8(anh, CUDAState),
654 VMSTATE_INT32(data_in_size, CUDAState),
655 VMSTATE_INT32(data_in_index, CUDAState),
656 VMSTATE_INT32(data_out_index, CUDAState),
657 VMSTATE_UINT8(autopoll, CUDAState),
658 VMSTATE_BUFFER(data_in, CUDAState),
659 VMSTATE_BUFFER(data_out, CUDAState),
660 VMSTATE_UINT32(tick_offset, CUDAState),
661 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
662 vmstate_cuda_timer, CUDATimer),
663 VMSTATE_END_OF_LIST()
664 }
665 };
666
667 static void cuda_reset(DeviceState *dev)
668 {
669 CUDAState *s = CUDA(dev);
670
671 s->b = 0;
672 s->a = 0;
673 s->dirb = 0;
674 s->dira = 0;
675 s->sr = 0;
676 s->acr = 0;
677 s->pcr = 0;
678 s->ifr = 0;
679 s->ier = 0;
680 // s->ier = T1_INT | SR_INT;
681 s->anh = 0;
682 s->data_in_size = 0;
683 s->data_in_index = 0;
684 s->data_out_index = 0;
685 s->autopoll = 0;
686
687 s->timers[0].latch = 0xffff;
688 set_counter(s, &s->timers[0], 0xffff);
689
690 s->timers[1].latch = 0;
691 set_counter(s, &s->timers[1], 0xffff);
692 }
693
694 static void cuda_realizefn(DeviceState *dev, Error **errp)
695 {
696 CUDAState *s = CUDA(dev);
697 struct tm tm;
698
699 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
700 s->timers[0].frequency = s->frequency;
701 s->timers[1].frequency = s->frequency;
702
703 qemu_get_timedate(&tm, 0);
704 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
705
706 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
707 }
708
709 static void cuda_initfn(Object *obj)
710 {
711 SysBusDevice *d = SYS_BUS_DEVICE(obj);
712 CUDAState *s = CUDA(obj);
713 int i;
714
715 memory_region_init_io(&s->mem, NULL, &cuda_ops, s, "cuda", 0x2000);
716 sysbus_init_mmio(d, &s->mem);
717 sysbus_init_irq(d, &s->irq);
718
719 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
720 s->timers[i].index = i;
721 }
722
723 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
724 DEVICE(obj), "adb.0");
725 }
726
727 static Property cuda_properties[] = {
728 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
729 DEFINE_PROP_END_OF_LIST()
730 };
731
732 static void cuda_class_init(ObjectClass *oc, void *data)
733 {
734 DeviceClass *dc = DEVICE_CLASS(oc);
735
736 dc->realize = cuda_realizefn;
737 dc->reset = cuda_reset;
738 dc->vmsd = &vmstate_cuda;
739 dc->props = cuda_properties;
740 }
741
742 static const TypeInfo cuda_type_info = {
743 .name = TYPE_CUDA,
744 .parent = TYPE_SYS_BUS_DEVICE,
745 .instance_size = sizeof(CUDAState),
746 .instance_init = cuda_initfn,
747 .class_init = cuda_class_init,
748 };
749
750 static void cuda_register_types(void)
751 {
752 type_register_static(&cuda_type_info);
753 }
754
755 type_init(cuda_register_types)