]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/misc/macio/cuda.c
cuda: add missing fields to VMStateDescription
[thirdparty/qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/mac.h"
28 #include "hw/input/adb.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31
32 /* XXX: implement all timer modes */
33
34 /* debug CUDA */
35 //#define DEBUG_CUDA
36
37 /* debug CUDA packets */
38 //#define DEBUG_CUDA_PACKET
39
40 #ifdef DEBUG_CUDA
41 #define CUDA_DPRINTF(fmt, ...) \
42 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
43 #else
44 #define CUDA_DPRINTF(fmt, ...)
45 #endif
46
47 /* Bits in B data register: all active low */
48 #define TREQ 0x08 /* Transfer request (input) */
49 #define TACK 0x10 /* Transfer acknowledge (output) */
50 #define TIP 0x20 /* Transfer in progress (output) */
51
52 /* Bits in ACR */
53 #define SR_CTRL 0x1c /* Shift register control bits */
54 #define SR_EXT 0x0c /* Shift on external clock */
55 #define SR_OUT 0x10 /* Shift out if 1 */
56
57 /* Bits in IFR and IER */
58 #define IER_SET 0x80 /* set bits in IER */
59 #define IER_CLR 0 /* clear bits in IER */
60 #define SR_INT 0x04 /* Shift register full/empty */
61 #define SR_DATA_INT 0x08
62 #define SR_CLOCK_INT 0x10
63 #define T1_INT 0x40 /* Timer 1 interrupt */
64 #define T2_INT 0x20 /* Timer 2 interrupt */
65
66 /* Bits in ACR */
67 #define T1MODE 0xc0 /* Timer 1 mode */
68 #define T1MODE_CONT 0x40 /* continuous interrupts */
69
70 /* commands (1st byte) */
71 #define ADB_PACKET 0
72 #define CUDA_PACKET 1
73 #define ERROR_PACKET 2
74 #define TIMER_PACKET 3
75 #define POWER_PACKET 4
76 #define MACIIC_PACKET 5
77 #define PMU_PACKET 6
78
79
80 /* CUDA commands (2nd byte) */
81 #define CUDA_WARM_START 0x0
82 #define CUDA_AUTOPOLL 0x1
83 #define CUDA_GET_6805_ADDR 0x2
84 #define CUDA_GET_TIME 0x3
85 #define CUDA_GET_PRAM 0x7
86 #define CUDA_SET_6805_ADDR 0x8
87 #define CUDA_SET_TIME 0x9
88 #define CUDA_POWERDOWN 0xa
89 #define CUDA_POWERUP_TIME 0xb
90 #define CUDA_SET_PRAM 0xc
91 #define CUDA_MS_RESET 0xd
92 #define CUDA_SEND_DFAC 0xe
93 #define CUDA_BATTERY_SWAP_SENSE 0x10
94 #define CUDA_RESET_SYSTEM 0x11
95 #define CUDA_SET_IPL 0x12
96 #define CUDA_FILE_SERVER_FLAG 0x13
97 #define CUDA_SET_AUTO_RATE 0x14
98 #define CUDA_GET_AUTO_RATE 0x16
99 #define CUDA_SET_DEVICE_LIST 0x19
100 #define CUDA_GET_DEVICE_LIST 0x1a
101 #define CUDA_SET_ONE_SECOND_MODE 0x1b
102 #define CUDA_SET_POWER_MESSAGES 0x21
103 #define CUDA_GET_SET_IIC 0x22
104 #define CUDA_WAKEUP 0x23
105 #define CUDA_TIMER_TICKLE 0x24
106 #define CUDA_COMBINED_FORMAT_IIC 0x25
107
108 #define CUDA_TIMER_FREQ (4700000 / 6)
109 #define CUDA_ADB_POLL_FREQ 50
110
111 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
112 #define RTC_OFFSET 2082844800
113
114 /* CUDA registers */
115 #define CUDA_REG_B 0x00
116 #define CUDA_REG_A 0x01
117 #define CUDA_REG_DIRB 0x02
118 #define CUDA_REG_DIRA 0x03
119 #define CUDA_REG_T1CL 0x04
120 #define CUDA_REG_T1CH 0x05
121 #define CUDA_REG_T1LL 0x06
122 #define CUDA_REG_T1LH 0x07
123 #define CUDA_REG_T2CL 0x08
124 #define CUDA_REG_T2CH 0x09
125 #define CUDA_REG_SR 0x0a
126 #define CUDA_REG_ACR 0x0b
127 #define CUDA_REG_PCR 0x0c
128 #define CUDA_REG_IFR 0x0d
129 #define CUDA_REG_IER 0x0e
130 #define CUDA_REG_ANH 0x0f
131
132 static void cuda_update(CUDAState *s);
133 static void cuda_receive_packet_from_host(CUDAState *s,
134 const uint8_t *data, int len);
135 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
136 int64_t current_time);
137
138 static void cuda_update_irq(CUDAState *s)
139 {
140 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
141 qemu_irq_raise(s->irq);
142 } else {
143 qemu_irq_lower(s->irq);
144 }
145 }
146
147 static uint64_t get_tb(uint64_t time, uint64_t freq)
148 {
149 return muldiv64(time, freq, get_ticks_per_sec());
150 }
151
152 static unsigned int get_counter(CUDATimer *ti)
153 {
154 int64_t d;
155 unsigned int counter;
156 uint64_t tb_diff;
157 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
158
159 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
160 tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
161 d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
162
163 if (ti->index == 0) {
164 /* the timer goes down from latch to -1 (period of latch + 2) */
165 if (d <= (ti->counter_value + 1)) {
166 counter = (ti->counter_value - d) & 0xffff;
167 } else {
168 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
169 counter = (ti->latch - counter) & 0xffff;
170 }
171 } else {
172 counter = (ti->counter_value - d) & 0xffff;
173 }
174 return counter;
175 }
176
177 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
178 {
179 CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
180 ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
181 s->frequency);
182 ti->counter_value = val;
183 cuda_timer_update(s, ti, ti->load_time);
184 }
185
186 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
187 {
188 int64_t d, next_time;
189 unsigned int counter;
190
191 /* current counter value */
192 d = muldiv64(current_time - s->load_time,
193 CUDA_TIMER_FREQ, get_ticks_per_sec());
194 /* the timer goes down from latch to -1 (period of latch + 2) */
195 if (d <= (s->counter_value + 1)) {
196 counter = (s->counter_value - d) & 0xffff;
197 } else {
198 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
199 counter = (s->latch - counter) & 0xffff;
200 }
201
202 /* Note: we consider the irq is raised on 0 */
203 if (counter == 0xffff) {
204 next_time = d + s->latch + 1;
205 } else if (counter == 0) {
206 next_time = d + s->latch + 2;
207 } else {
208 next_time = d + counter;
209 }
210 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
211 s->latch, d, next_time - d);
212 next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
213 s->load_time;
214 if (next_time <= current_time)
215 next_time = current_time + 1;
216 return next_time;
217 }
218
219 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
220 int64_t current_time)
221 {
222 if (!ti->timer)
223 return;
224 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
225 timer_del(ti->timer);
226 } else {
227 ti->next_irq_time = get_next_irq_time(ti, current_time);
228 timer_mod(ti->timer, ti->next_irq_time);
229 }
230 }
231
232 static void cuda_timer1(void *opaque)
233 {
234 CUDAState *s = opaque;
235 CUDATimer *ti = &s->timers[0];
236
237 cuda_timer_update(s, ti, ti->next_irq_time);
238 s->ifr |= T1_INT;
239 cuda_update_irq(s);
240 }
241
242 static void cuda_timer2(void *opaque)
243 {
244 CUDAState *s = opaque;
245 CUDATimer *ti = &s->timers[1];
246
247 cuda_timer_update(s, ti, ti->next_irq_time);
248 s->ifr |= T2_INT;
249 cuda_update_irq(s);
250 }
251
252 static void cuda_set_sr_int(void *opaque)
253 {
254 CUDAState *s = opaque;
255
256 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
257 s->ifr |= SR_INT;
258 cuda_update_irq(s);
259 }
260
261 static void cuda_delay_set_sr_int(CUDAState *s)
262 {
263 int64_t expire;
264
265 if (s->dirb == 0xff) {
266 /* Not in Mac OS, fire the IRQ directly */
267 cuda_set_sr_int(s);
268 return;
269 }
270
271 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
272
273 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
274 timer_mod(s->sr_delay_timer, expire);
275 }
276
277 static uint32_t cuda_readb(void *opaque, hwaddr addr)
278 {
279 CUDAState *s = opaque;
280 uint32_t val;
281
282 addr = (addr >> 9) & 0xf;
283 switch(addr) {
284 case CUDA_REG_B:
285 val = s->b;
286 break;
287 case CUDA_REG_A:
288 val = s->a;
289 break;
290 case CUDA_REG_DIRB:
291 val = s->dirb;
292 break;
293 case CUDA_REG_DIRA:
294 val = s->dira;
295 break;
296 case CUDA_REG_T1CL:
297 val = get_counter(&s->timers[0]) & 0xff;
298 s->ifr &= ~T1_INT;
299 cuda_update_irq(s);
300 break;
301 case CUDA_REG_T1CH:
302 val = get_counter(&s->timers[0]) >> 8;
303 cuda_update_irq(s);
304 break;
305 case CUDA_REG_T1LL:
306 val = s->timers[0].latch & 0xff;
307 break;
308 case CUDA_REG_T1LH:
309 /* XXX: check this */
310 val = (s->timers[0].latch >> 8) & 0xff;
311 break;
312 case CUDA_REG_T2CL:
313 val = get_counter(&s->timers[1]) & 0xff;
314 s->ifr &= ~T2_INT;
315 cuda_update_irq(s);
316 break;
317 case CUDA_REG_T2CH:
318 val = get_counter(&s->timers[1]) >> 8;
319 break;
320 case CUDA_REG_SR:
321 val = s->sr;
322 s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
323 cuda_update_irq(s);
324 break;
325 case CUDA_REG_ACR:
326 val = s->acr;
327 break;
328 case CUDA_REG_PCR:
329 val = s->pcr;
330 break;
331 case CUDA_REG_IFR:
332 val = s->ifr;
333 if (s->ifr & s->ier) {
334 val |= 0x80;
335 }
336 break;
337 case CUDA_REG_IER:
338 val = s->ier | 0x80;
339 break;
340 default:
341 case CUDA_REG_ANH:
342 val = s->anh;
343 break;
344 }
345 if (addr != CUDA_REG_IFR || val != 0) {
346 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
347 }
348
349 return val;
350 }
351
352 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
353 {
354 CUDAState *s = opaque;
355
356 addr = (addr >> 9) & 0xf;
357 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
358
359 switch(addr) {
360 case CUDA_REG_B:
361 s->b = val;
362 cuda_update(s);
363 break;
364 case CUDA_REG_A:
365 s->a = val;
366 break;
367 case CUDA_REG_DIRB:
368 s->dirb = val;
369 break;
370 case CUDA_REG_DIRA:
371 s->dira = val;
372 break;
373 case CUDA_REG_T1CL:
374 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
375 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
376 break;
377 case CUDA_REG_T1CH:
378 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
379 s->ifr &= ~T1_INT;
380 set_counter(s, &s->timers[0], s->timers[0].latch);
381 break;
382 case CUDA_REG_T1LL:
383 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
384 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
385 break;
386 case CUDA_REG_T1LH:
387 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
388 s->ifr &= ~T1_INT;
389 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
390 break;
391 case CUDA_REG_T2CL:
392 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
393 break;
394 case CUDA_REG_T2CH:
395 /* To ensure T2 generates an interrupt on zero crossing with the
396 common timer code, write the value directly from the latch to
397 the counter */
398 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
399 s->ifr &= ~T2_INT;
400 set_counter(s, &s->timers[1], s->timers[1].latch);
401 break;
402 case CUDA_REG_SR:
403 s->sr = val;
404 break;
405 case CUDA_REG_ACR:
406 s->acr = val;
407 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
408 cuda_update(s);
409 break;
410 case CUDA_REG_PCR:
411 s->pcr = val;
412 break;
413 case CUDA_REG_IFR:
414 /* reset bits */
415 s->ifr &= ~val;
416 cuda_update_irq(s);
417 break;
418 case CUDA_REG_IER:
419 if (val & IER_SET) {
420 /* set bits */
421 s->ier |= val & 0x7f;
422 } else {
423 /* reset bits */
424 s->ier &= ~val;
425 }
426 cuda_update_irq(s);
427 break;
428 default:
429 case CUDA_REG_ANH:
430 s->anh = val;
431 break;
432 }
433 }
434
435 /* NOTE: TIP and TREQ are negated */
436 static void cuda_update(CUDAState *s)
437 {
438 int packet_received, len;
439
440 packet_received = 0;
441 if (!(s->b & TIP)) {
442 /* transfer requested from host */
443
444 if (s->acr & SR_OUT) {
445 /* data output */
446 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
447 if (s->data_out_index < sizeof(s->data_out)) {
448 CUDA_DPRINTF("send: %02x\n", s->sr);
449 s->data_out[s->data_out_index++] = s->sr;
450 cuda_delay_set_sr_int(s);
451 }
452 }
453 } else {
454 if (s->data_in_index < s->data_in_size) {
455 /* data input */
456 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
457 s->sr = s->data_in[s->data_in_index++];
458 CUDA_DPRINTF("recv: %02x\n", s->sr);
459 /* indicate end of transfer */
460 if (s->data_in_index >= s->data_in_size) {
461 s->b = (s->b | TREQ);
462 }
463 cuda_delay_set_sr_int(s);
464 }
465 }
466 }
467 } else {
468 /* no transfer requested: handle sync case */
469 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
470 /* update TREQ state each time TACK change state */
471 if (s->b & TACK)
472 s->b = (s->b | TREQ);
473 else
474 s->b = (s->b & ~TREQ);
475 cuda_delay_set_sr_int(s);
476 } else {
477 if (!(s->last_b & TIP)) {
478 /* handle end of host to cuda transfer */
479 packet_received = (s->data_out_index > 0);
480 /* always an IRQ at the end of transfer */
481 cuda_delay_set_sr_int(s);
482 }
483 /* signal if there is data to read */
484 if (s->data_in_index < s->data_in_size) {
485 s->b = (s->b & ~TREQ);
486 }
487 }
488 }
489
490 s->last_acr = s->acr;
491 s->last_b = s->b;
492
493 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
494 recursively */
495 if (packet_received) {
496 len = s->data_out_index;
497 s->data_out_index = 0;
498 cuda_receive_packet_from_host(s, s->data_out, len);
499 }
500 }
501
502 static void cuda_send_packet_to_host(CUDAState *s,
503 const uint8_t *data, int len)
504 {
505 #ifdef DEBUG_CUDA_PACKET
506 {
507 int i;
508 printf("cuda_send_packet_to_host:\n");
509 for(i = 0; i < len; i++)
510 printf(" %02x", data[i]);
511 printf("\n");
512 }
513 #endif
514 memcpy(s->data_in, data, len);
515 s->data_in_size = len;
516 s->data_in_index = 0;
517 cuda_update(s);
518 cuda_delay_set_sr_int(s);
519 }
520
521 static void cuda_adb_poll(void *opaque)
522 {
523 CUDAState *s = opaque;
524 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
525 int olen;
526
527 olen = adb_poll(&s->adb_bus, obuf + 2);
528 if (olen > 0) {
529 obuf[0] = ADB_PACKET;
530 obuf[1] = 0x40; /* polled data */
531 cuda_send_packet_to_host(s, obuf, olen + 2);
532 }
533 timer_mod(s->adb_poll_timer,
534 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
535 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
536 }
537
538 static void cuda_receive_packet(CUDAState *s,
539 const uint8_t *data, int len)
540 {
541 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
542 int autopoll;
543 uint32_t ti;
544
545 switch(data[0]) {
546 case CUDA_AUTOPOLL:
547 autopoll = (data[1] != 0);
548 if (autopoll != s->autopoll) {
549 s->autopoll = autopoll;
550 if (autopoll) {
551 timer_mod(s->adb_poll_timer,
552 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
553 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
554 } else {
555 timer_del(s->adb_poll_timer);
556 }
557 }
558 cuda_send_packet_to_host(s, obuf, 3);
559 break;
560 case CUDA_GET_6805_ADDR:
561 cuda_send_packet_to_host(s, obuf, 3);
562 break;
563 case CUDA_SET_TIME:
564 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
565 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
566 cuda_send_packet_to_host(s, obuf, 3);
567 break;
568 case CUDA_GET_TIME:
569 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
570 obuf[3] = ti >> 24;
571 obuf[4] = ti >> 16;
572 obuf[5] = ti >> 8;
573 obuf[6] = ti;
574 cuda_send_packet_to_host(s, obuf, 7);
575 break;
576 case CUDA_FILE_SERVER_FLAG:
577 case CUDA_SET_DEVICE_LIST:
578 case CUDA_SET_AUTO_RATE:
579 case CUDA_SET_POWER_MESSAGES:
580 cuda_send_packet_to_host(s, obuf, 3);
581 break;
582 case CUDA_POWERDOWN:
583 cuda_send_packet_to_host(s, obuf, 3);
584 qemu_system_shutdown_request();
585 break;
586 case CUDA_RESET_SYSTEM:
587 cuda_send_packet_to_host(s, obuf, 3);
588 qemu_system_reset_request();
589 break;
590 case CUDA_COMBINED_FORMAT_IIC:
591 obuf[0] = ERROR_PACKET;
592 obuf[1] = 0x5;
593 obuf[2] = CUDA_PACKET;
594 obuf[3] = data[0];
595 cuda_send_packet_to_host(s, obuf, 4);
596 break;
597 case CUDA_GET_SET_IIC:
598 if (len == 4) {
599 cuda_send_packet_to_host(s, obuf, 3);
600 } else {
601 obuf[0] = ERROR_PACKET;
602 obuf[1] = 0x2;
603 obuf[2] = CUDA_PACKET;
604 obuf[3] = data[0];
605 cuda_send_packet_to_host(s, obuf, 4);
606 }
607 break;
608 default:
609 break;
610 }
611 }
612
613 static void cuda_receive_packet_from_host(CUDAState *s,
614 const uint8_t *data, int len)
615 {
616 #ifdef DEBUG_CUDA_PACKET
617 {
618 int i;
619 printf("cuda_receive_packet_from_host:\n");
620 for(i = 0; i < len; i++)
621 printf(" %02x", data[i]);
622 printf("\n");
623 }
624 #endif
625 switch(data[0]) {
626 case ADB_PACKET:
627 {
628 uint8_t obuf[ADB_MAX_OUT_LEN + 3];
629 int olen;
630 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
631 if (olen > 0) {
632 obuf[0] = ADB_PACKET;
633 obuf[1] = 0x00;
634 cuda_send_packet_to_host(s, obuf, olen + 2);
635 } else {
636 /* error */
637 obuf[0] = ADB_PACKET;
638 obuf[1] = -olen;
639 obuf[2] = data[1];
640 olen = 0;
641 cuda_send_packet_to_host(s, obuf, olen + 3);
642 }
643 }
644 break;
645 case CUDA_PACKET:
646 cuda_receive_packet(s, data + 1, len - 1);
647 break;
648 }
649 }
650
651 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
652 {
653 }
654
655 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
656 {
657 }
658
659 static uint32_t cuda_readw (void *opaque, hwaddr addr)
660 {
661 return 0;
662 }
663
664 static uint32_t cuda_readl (void *opaque, hwaddr addr)
665 {
666 return 0;
667 }
668
669 static const MemoryRegionOps cuda_ops = {
670 .old_mmio = {
671 .write = {
672 cuda_writeb,
673 cuda_writew,
674 cuda_writel,
675 },
676 .read = {
677 cuda_readb,
678 cuda_readw,
679 cuda_readl,
680 },
681 },
682 .endianness = DEVICE_NATIVE_ENDIAN,
683 };
684
685 static bool cuda_timer_exist(void *opaque, int version_id)
686 {
687 CUDATimer *s = opaque;
688
689 return s->timer != NULL;
690 }
691
692 static const VMStateDescription vmstate_cuda_timer = {
693 .name = "cuda_timer",
694 .version_id = 0,
695 .minimum_version_id = 0,
696 .fields = (VMStateField[]) {
697 VMSTATE_UINT16(latch, CUDATimer),
698 VMSTATE_UINT16(counter_value, CUDATimer),
699 VMSTATE_INT64(load_time, CUDATimer),
700 VMSTATE_INT64(next_irq_time, CUDATimer),
701 VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
702 VMSTATE_END_OF_LIST()
703 }
704 };
705
706 static const VMStateDescription vmstate_cuda = {
707 .name = "cuda",
708 .version_id = 3,
709 .minimum_version_id = 3,
710 .fields = (VMStateField[]) {
711 VMSTATE_UINT8(a, CUDAState),
712 VMSTATE_UINT8(b, CUDAState),
713 VMSTATE_UINT8(last_b, CUDAState),
714 VMSTATE_UINT8(dira, CUDAState),
715 VMSTATE_UINT8(dirb, CUDAState),
716 VMSTATE_UINT8(sr, CUDAState),
717 VMSTATE_UINT8(acr, CUDAState),
718 VMSTATE_UINT8(last_acr, CUDAState),
719 VMSTATE_UINT8(pcr, CUDAState),
720 VMSTATE_UINT8(ifr, CUDAState),
721 VMSTATE_UINT8(ier, CUDAState),
722 VMSTATE_UINT8(anh, CUDAState),
723 VMSTATE_INT32(data_in_size, CUDAState),
724 VMSTATE_INT32(data_in_index, CUDAState),
725 VMSTATE_INT32(data_out_index, CUDAState),
726 VMSTATE_UINT8(autopoll, CUDAState),
727 VMSTATE_BUFFER(data_in, CUDAState),
728 VMSTATE_BUFFER(data_out, CUDAState),
729 VMSTATE_UINT32(tick_offset, CUDAState),
730 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
731 vmstate_cuda_timer, CUDATimer),
732 VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
733 VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
734 VMSTATE_END_OF_LIST()
735 }
736 };
737
738 static void cuda_reset(DeviceState *dev)
739 {
740 CUDAState *s = CUDA(dev);
741
742 s->b = 0;
743 s->a = 0;
744 s->dirb = 0xff;
745 s->dira = 0;
746 s->sr = 0;
747 s->acr = 0;
748 s->pcr = 0;
749 s->ifr = 0;
750 s->ier = 0;
751 // s->ier = T1_INT | SR_INT;
752 s->anh = 0;
753 s->data_in_size = 0;
754 s->data_in_index = 0;
755 s->data_out_index = 0;
756 s->autopoll = 0;
757
758 s->timers[0].latch = 0xffff;
759 set_counter(s, &s->timers[0], 0xffff);
760
761 s->timers[1].latch = 0xffff;
762
763 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
764 }
765
766 static void cuda_realizefn(DeviceState *dev, Error **errp)
767 {
768 CUDAState *s = CUDA(dev);
769 struct tm tm;
770
771 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
772 s->timers[0].frequency = s->frequency;
773 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
774 s->timers[1].frequency = (SCALE_US * 6000) / 4700;
775
776 qemu_get_timedate(&tm, 0);
777 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
778
779 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
780 }
781
782 static void cuda_initfn(Object *obj)
783 {
784 SysBusDevice *d = SYS_BUS_DEVICE(obj);
785 CUDAState *s = CUDA(obj);
786 int i;
787
788 memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
789 sysbus_init_mmio(d, &s->mem);
790 sysbus_init_irq(d, &s->irq);
791
792 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
793 s->timers[i].index = i;
794 }
795
796 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
797 DEVICE(obj), "adb.0");
798 }
799
800 static Property cuda_properties[] = {
801 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
802 DEFINE_PROP_END_OF_LIST()
803 };
804
805 static void cuda_class_init(ObjectClass *oc, void *data)
806 {
807 DeviceClass *dc = DEVICE_CLASS(oc);
808
809 dc->realize = cuda_realizefn;
810 dc->reset = cuda_reset;
811 dc->vmsd = &vmstate_cuda;
812 dc->props = cuda_properties;
813 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
814 }
815
816 static const TypeInfo cuda_type_info = {
817 .name = TYPE_CUDA,
818 .parent = TYPE_SYS_BUS_DEVICE,
819 .instance_size = sizeof(CUDAState),
820 .instance_init = cuda_initfn,
821 .class_init = cuda_class_init,
822 };
823
824 static void cuda_register_types(void)
825 {
826 type_register_static(&cuda_type_info);
827 }
828
829 type_init(cuda_register_types)