]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/spapr.c
target/ppc: Handle NMI guest exit
[thirdparty/qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78
79 #include "hw/ppc/spapr_cpu_core.h"
80 #include "hw/mem/memory-device.h"
81 #include "hw/ppc/spapr_tpm_proxy.h"
82
83 #include "monitor/monitor.h"
84
85 #include <libfdt.h>
86
87 /* SLOF memory layout:
88 *
89 * SLOF raw image loaded at 0, copies its romfs right below the flat
90 * device-tree, then position SLOF itself 31M below that
91 *
92 * So we set FW_OVERHEAD to 40MB which should account for all of that
93 * and more
94 *
95 * We load our kernel at 4M, leaving space for SLOF initial image
96 */
97 #define FDT_MAX_SIZE 0x100000
98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE 0x400000
100 #define FW_FILE_NAME "slof.bin"
101 #define FW_OVERHEAD 0x2800000
102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
103
104 #define MIN_RMA_SLOF 128UL
105
106 #define PHANDLE_INTC 0x00001111
107
108 /* These two functions implement the VCPU id numbering: one to compute them
109 * all and one to identify thread 0 of a VCORE. Any change to the first one
110 * is likely to have an impact on the second one, so let's keep them close.
111 */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114 MachineState *ms = MACHINE(spapr);
115 unsigned int smp_threads = ms->smp.threads;
116
117 assert(spapr->vsmt);
118 return
119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122 PowerPCCPU *cpu)
123 {
124 assert(spapr->vsmt);
125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
133 */
134 return false;
135 }
136
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
147 },
148 };
149
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
154 }
155
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
160 }
161
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164 MachineState *ms = MACHINE(spapr);
165
166 assert(spapr->vsmt);
167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171 int smt_threads)
172 {
173 int i, ret = 0;
174 uint32_t servers_prop[smt_threads];
175 uint32_t gservers_prop[smt_threads * 2];
176 int index = spapr_get_vcpu_id(cpu);
177
178 if (cpu->compat_pvr) {
179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180 if (ret < 0) {
181 return ret;
182 }
183 }
184
185 /* Build interrupt servers and gservers properties */
186 for (i = 0; i < smt_threads; i++) {
187 servers_prop[i] = cpu_to_be32(index + i);
188 /* Hack, direct the group queues back to cpu 0 */
189 gservers_prop[i*2] = cpu_to_be32(index + i);
190 gservers_prop[i*2 + 1] = 0;
191 }
192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193 servers_prop, sizeof(servers_prop));
194 if (ret < 0) {
195 return ret;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198 gservers_prop, sizeof(gservers_prop));
199
200 return ret;
201 }
202
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205 int index = spapr_get_vcpu_id(cpu);
206 uint32_t associativity[] = {cpu_to_be32(0x5),
207 cpu_to_be32(0x0),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(cpu->node_id),
211 cpu_to_be32(index)};
212
213 /* Advertise NUMA via ibm,associativity */
214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215 sizeof(associativity));
216 }
217
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
222 {
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
254 };
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
257
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
261 }
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
265 }
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
269 }
270 if (!pa_features) {
271 return;
272 }
273
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
275 /*
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
281 */
282 pa_features[3] |= 0x20;
283 }
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
286 }
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
292 }
293
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
295 }
296
297 static hwaddr spapr_node0_size(MachineState *machine)
298 {
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
305 }
306 }
307 }
308 return machine->ram_size;
309 }
310
311 static void add_str(GString *s, const gchar *s1)
312 {
313 g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315
316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
318 {
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
323 };
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
327
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
330
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
340 }
341
342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
343 {
344 MachineState *machine = MACHINE(spapr);
345 hwaddr mem_start, node_size;
346 int i, nb_nodes = machine->numa_state->num_nodes;
347 NodeInfo *nodes = machine->numa_state->nodes;
348
349 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
350 if (!nodes[i].node_mem) {
351 continue;
352 }
353 if (mem_start >= machine->ram_size) {
354 node_size = 0;
355 } else {
356 node_size = nodes[i].node_mem;
357 if (node_size > machine->ram_size - mem_start) {
358 node_size = machine->ram_size - mem_start;
359 }
360 }
361 if (!mem_start) {
362 /* spapr_machine_init() checks for rma_size <= node0_size
363 * already */
364 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
365 mem_start += spapr->rma_size;
366 node_size -= spapr->rma_size;
367 }
368 for ( ; node_size; ) {
369 hwaddr sizetmp = pow2floor(node_size);
370
371 /* mem_start != 0 here */
372 if (ctzl(mem_start) < ctzl(sizetmp)) {
373 sizetmp = 1ULL << ctzl(mem_start);
374 }
375
376 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
377 node_size -= sizetmp;
378 mem_start += sizetmp;
379 }
380 }
381
382 return 0;
383 }
384
385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
386 SpaprMachineState *spapr)
387 {
388 MachineState *ms = MACHINE(spapr);
389 PowerPCCPU *cpu = POWERPC_CPU(cs);
390 CPUPPCState *env = &cpu->env;
391 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
392 int index = spapr_get_vcpu_id(cpu);
393 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
394 0xffffffff, 0xffffffff};
395 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
396 : SPAPR_TIMEBASE_FREQ;
397 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
398 uint32_t page_sizes_prop[64];
399 size_t page_sizes_prop_size;
400 unsigned int smp_threads = ms->smp.threads;
401 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
402 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
403 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
404 SpaprDrc *drc;
405 int drc_index;
406 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
407 int i;
408
409 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
410 if (drc) {
411 drc_index = spapr_drc_index(drc);
412 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
413 }
414
415 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
416 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
417
418 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
419 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
420 env->dcache_line_size)));
421 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
422 env->dcache_line_size)));
423 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
424 env->icache_line_size)));
425 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
426 env->icache_line_size)));
427
428 if (pcc->l1_dcache_size) {
429 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
430 pcc->l1_dcache_size)));
431 } else {
432 warn_report("Unknown L1 dcache size for cpu");
433 }
434 if (pcc->l1_icache_size) {
435 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
436 pcc->l1_icache_size)));
437 } else {
438 warn_report("Unknown L1 icache size for cpu");
439 }
440
441 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
442 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
443 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
444 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
445 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
446 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
447
448 if (env->spr_cb[SPR_PURR].oea_read) {
449 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
450 }
451 if (env->spr_cb[SPR_SPURR].oea_read) {
452 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
453 }
454
455 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
456 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
457 segs, sizeof(segs))));
458 }
459
460 /* Advertise VSX (vector extensions) if available
461 * 1 == VMX / Altivec available
462 * 2 == VSX available
463 *
464 * Only CPUs for which we create core types in spapr_cpu_core.c
465 * are possible, and all of those have VMX */
466 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
468 } else {
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
470 }
471
472 /* Advertise DFP (Decimal Floating Point) if available
473 * 0 / no property == no DFP
474 * 1 == DFP available */
475 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
477 }
478
479 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
480 sizeof(page_sizes_prop));
481 if (page_sizes_prop_size) {
482 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
483 page_sizes_prop, page_sizes_prop_size)));
484 }
485
486 spapr_populate_pa_features(spapr, cpu, fdt, offset);
487
488 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
489 cs->cpu_index / vcpus_per_socket)));
490
491 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
492 pft_size_prop, sizeof(pft_size_prop))));
493
494 if (ms->numa_state->num_nodes > 1) {
495 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
496 }
497
498 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
499
500 if (pcc->radix_page_info) {
501 for (i = 0; i < pcc->radix_page_info->count; i++) {
502 radix_AP_encodings[i] =
503 cpu_to_be32(pcc->radix_page_info->entries[i]);
504 }
505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
506 radix_AP_encodings,
507 pcc->radix_page_info->count *
508 sizeof(radix_AP_encodings[0]))));
509 }
510
511 /*
512 * We set this property to let the guest know that it can use the large
513 * decrementer and its width in bits.
514 */
515 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
516 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
517 pcc->lrg_decr_bits)));
518 }
519
520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
521 {
522 CPUState **rev;
523 CPUState *cs;
524 int n_cpus;
525 int cpus_offset;
526 char *nodename;
527 int i;
528
529 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
530 _FDT(cpus_offset);
531 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
533
534 /*
535 * We walk the CPUs in reverse order to ensure that CPU DT nodes
536 * created by fdt_add_subnode() end up in the right order in FDT
537 * for the guest kernel the enumerate the CPUs correctly.
538 *
539 * The CPU list cannot be traversed in reverse order, so we need
540 * to do extra work.
541 */
542 n_cpus = 0;
543 rev = NULL;
544 CPU_FOREACH(cs) {
545 rev = g_renew(CPUState *, rev, n_cpus + 1);
546 rev[n_cpus++] = cs;
547 }
548
549 for (i = n_cpus - 1; i >= 0; i--) {
550 CPUState *cs = rev[i];
551 PowerPCCPU *cpu = POWERPC_CPU(cs);
552 int index = spapr_get_vcpu_id(cpu);
553 DeviceClass *dc = DEVICE_GET_CLASS(cs);
554 int offset;
555
556 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
557 continue;
558 }
559
560 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
561 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
562 g_free(nodename);
563 _FDT(offset);
564 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
565 }
566
567 g_free(rev);
568 }
569
570 static int spapr_rng_populate_dt(void *fdt)
571 {
572 int node;
573 int ret;
574
575 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
576 if (node <= 0) {
577 return -1;
578 }
579 ret = fdt_setprop_string(fdt, node, "device_type",
580 "ibm,platform-facilities");
581 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
582 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
583
584 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
585 if (node <= 0) {
586 return -1;
587 }
588 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
589
590 return ret ? -1 : 0;
591 }
592
593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
594 {
595 MemoryDeviceInfoList *info;
596
597 for (info = list; info; info = info->next) {
598 MemoryDeviceInfo *value = info->value;
599
600 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
601 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
602
603 if (addr >= pcdimm_info->addr &&
604 addr < (pcdimm_info->addr + pcdimm_info->size)) {
605 return pcdimm_info->node;
606 }
607 }
608 }
609
610 return -1;
611 }
612
613 struct sPAPRDrconfCellV2 {
614 uint32_t seq_lmbs;
615 uint64_t base_addr;
616 uint32_t drc_index;
617 uint32_t aa_index;
618 uint32_t flags;
619 } QEMU_PACKED;
620
621 typedef struct DrconfCellQueue {
622 struct sPAPRDrconfCellV2 cell;
623 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
624 } DrconfCellQueue;
625
626 static DrconfCellQueue *
627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
628 uint32_t drc_index, uint32_t aa_index,
629 uint32_t flags)
630 {
631 DrconfCellQueue *elem;
632
633 elem = g_malloc0(sizeof(*elem));
634 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
635 elem->cell.base_addr = cpu_to_be64(base_addr);
636 elem->cell.drc_index = cpu_to_be32(drc_index);
637 elem->cell.aa_index = cpu_to_be32(aa_index);
638 elem->cell.flags = cpu_to_be32(flags);
639
640 return elem;
641 }
642
643 /* ibm,dynamic-memory-v2 */
644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
645 int offset, MemoryDeviceInfoList *dimms)
646 {
647 MachineState *machine = MACHINE(spapr);
648 uint8_t *int_buf, *cur_index;
649 int ret;
650 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
651 uint64_t addr, cur_addr, size;
652 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
653 uint64_t mem_end = machine->device_memory->base +
654 memory_region_size(&machine->device_memory->mr);
655 uint32_t node, buf_len, nr_entries = 0;
656 SpaprDrc *drc;
657 DrconfCellQueue *elem, *next;
658 MemoryDeviceInfoList *info;
659 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
660 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
661
662 /* Entry to cover RAM and the gap area */
663 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
664 SPAPR_LMB_FLAGS_RESERVED |
665 SPAPR_LMB_FLAGS_DRC_INVALID);
666 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
667 nr_entries++;
668
669 cur_addr = machine->device_memory->base;
670 for (info = dimms; info; info = info->next) {
671 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
672
673 addr = di->addr;
674 size = di->size;
675 node = di->node;
676
677 /* Entry for hot-pluggable area */
678 if (cur_addr < addr) {
679 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
680 g_assert(drc);
681 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
682 cur_addr, spapr_drc_index(drc), -1, 0);
683 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
684 nr_entries++;
685 }
686
687 /* Entry for DIMM */
688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
689 g_assert(drc);
690 elem = spapr_get_drconf_cell(size / lmb_size, addr,
691 spapr_drc_index(drc), node,
692 SPAPR_LMB_FLAGS_ASSIGNED);
693 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
694 nr_entries++;
695 cur_addr = addr + size;
696 }
697
698 /* Entry for remaining hotpluggable area */
699 if (cur_addr < mem_end) {
700 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
701 g_assert(drc);
702 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
703 cur_addr, spapr_drc_index(drc), -1, 0);
704 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
705 nr_entries++;
706 }
707
708 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
709 int_buf = cur_index = g_malloc0(buf_len);
710 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
711 cur_index += sizeof(nr_entries);
712
713 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
714 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
715 cur_index += sizeof(elem->cell);
716 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
717 g_free(elem);
718 }
719
720 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
721 g_free(int_buf);
722 if (ret < 0) {
723 return -1;
724 }
725 return 0;
726 }
727
728 /* ibm,dynamic-memory */
729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
730 int offset, MemoryDeviceInfoList *dimms)
731 {
732 MachineState *machine = MACHINE(spapr);
733 int i, ret;
734 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
735 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
736 uint32_t nr_lmbs = (machine->device_memory->base +
737 memory_region_size(&machine->device_memory->mr)) /
738 lmb_size;
739 uint32_t *int_buf, *cur_index, buf_len;
740
741 /*
742 * Allocate enough buffer size to fit in ibm,dynamic-memory
743 */
744 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
745 cur_index = int_buf = g_malloc0(buf_len);
746 int_buf[0] = cpu_to_be32(nr_lmbs);
747 cur_index++;
748 for (i = 0; i < nr_lmbs; i++) {
749 uint64_t addr = i * lmb_size;
750 uint32_t *dynamic_memory = cur_index;
751
752 if (i >= device_lmb_start) {
753 SpaprDrc *drc;
754
755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
756 g_assert(drc);
757
758 dynamic_memory[0] = cpu_to_be32(addr >> 32);
759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
763 if (memory_region_present(get_system_memory(), addr)) {
764 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
765 } else {
766 dynamic_memory[5] = cpu_to_be32(0);
767 }
768 } else {
769 /*
770 * LMB information for RMA, boot time RAM and gap b/n RAM and
771 * device memory region -- all these are marked as reserved
772 * and as having no valid DRC.
773 */
774 dynamic_memory[0] = cpu_to_be32(addr >> 32);
775 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
776 dynamic_memory[2] = cpu_to_be32(0);
777 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
778 dynamic_memory[4] = cpu_to_be32(-1);
779 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
780 SPAPR_LMB_FLAGS_DRC_INVALID);
781 }
782
783 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
784 }
785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
786 g_free(int_buf);
787 if (ret < 0) {
788 return -1;
789 }
790 return 0;
791 }
792
793 /*
794 * Adds ibm,dynamic-reconfiguration-memory node.
795 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
796 * of this device tree node.
797 */
798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
799 {
800 MachineState *machine = MACHINE(spapr);
801 int nb_numa_nodes = machine->numa_state->num_nodes;
802 int ret, i, offset;
803 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
804 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
805 uint32_t *int_buf, *cur_index, buf_len;
806 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
807 MemoryDeviceInfoList *dimms = NULL;
808
809 /*
810 * Don't create the node if there is no device memory
811 */
812 if (machine->ram_size == machine->maxram_size) {
813 return 0;
814 }
815
816 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
817
818 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
819 sizeof(prop_lmb_size));
820 if (ret < 0) {
821 return ret;
822 }
823
824 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
825 if (ret < 0) {
826 return ret;
827 }
828
829 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
830 if (ret < 0) {
831 return ret;
832 }
833
834 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
835 dimms = qmp_memory_device_list();
836 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
837 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
838 } else {
839 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
840 }
841 qapi_free_MemoryDeviceInfoList(dimms);
842
843 if (ret < 0) {
844 return ret;
845 }
846
847 /* ibm,associativity-lookup-arrays */
848 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
849 cur_index = int_buf = g_malloc0(buf_len);
850 int_buf[0] = cpu_to_be32(nr_nodes);
851 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
852 cur_index += 2;
853 for (i = 0; i < nr_nodes; i++) {
854 uint32_t associativity[] = {
855 cpu_to_be32(0x0),
856 cpu_to_be32(0x0),
857 cpu_to_be32(0x0),
858 cpu_to_be32(i)
859 };
860 memcpy(cur_index, associativity, sizeof(associativity));
861 cur_index += 4;
862 }
863 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
864 (cur_index - int_buf) * sizeof(uint32_t));
865 g_free(int_buf);
866
867 return ret;
868 }
869
870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
871 SpaprOptionVector *ov5_updates)
872 {
873 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
874 int ret = 0, offset;
875
876 /* Generate ibm,dynamic-reconfiguration-memory node if required */
877 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
878 g_assert(smc->dr_lmb_enabled);
879 ret = spapr_populate_drconf_memory(spapr, fdt);
880 if (ret) {
881 return ret;
882 }
883 }
884
885 offset = fdt_path_offset(fdt, "/chosen");
886 if (offset < 0) {
887 offset = fdt_add_subnode(fdt, 0, "chosen");
888 if (offset < 0) {
889 return offset;
890 }
891 }
892 return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
893 "ibm,architecture-vec-5");
894 }
895
896 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
897 {
898 MachineState *ms = MACHINE(spapr);
899 int rtas;
900 GString *hypertas = g_string_sized_new(256);
901 GString *qemu_hypertas = g_string_sized_new(256);
902 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
903 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
904 memory_region_size(&MACHINE(spapr)->device_memory->mr);
905 uint32_t lrdr_capacity[] = {
906 cpu_to_be32(max_device_addr >> 32),
907 cpu_to_be32(max_device_addr & 0xffffffff),
908 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
909 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
910 };
911 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
912 uint32_t maxdomains[] = {
913 cpu_to_be32(4),
914 maxdomain,
915 maxdomain,
916 maxdomain,
917 cpu_to_be32(spapr->gpu_numa_id),
918 };
919
920 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
921
922 /* hypertas */
923 add_str(hypertas, "hcall-pft");
924 add_str(hypertas, "hcall-term");
925 add_str(hypertas, "hcall-dabr");
926 add_str(hypertas, "hcall-interrupt");
927 add_str(hypertas, "hcall-tce");
928 add_str(hypertas, "hcall-vio");
929 add_str(hypertas, "hcall-splpar");
930 add_str(hypertas, "hcall-join");
931 add_str(hypertas, "hcall-bulk");
932 add_str(hypertas, "hcall-set-mode");
933 add_str(hypertas, "hcall-sprg0");
934 add_str(hypertas, "hcall-copy");
935 add_str(hypertas, "hcall-debug");
936 add_str(hypertas, "hcall-vphn");
937 add_str(qemu_hypertas, "hcall-memop1");
938
939 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
940 add_str(hypertas, "hcall-multi-tce");
941 }
942
943 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
944 add_str(hypertas, "hcall-hpt-resize");
945 }
946
947 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
948 hypertas->str, hypertas->len));
949 g_string_free(hypertas, TRUE);
950 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
951 qemu_hypertas->str, qemu_hypertas->len));
952 g_string_free(qemu_hypertas, TRUE);
953
954 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
955 refpoints, sizeof(refpoints)));
956
957 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
958 maxdomains, sizeof(maxdomains)));
959
960 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
961 RTAS_ERROR_LOG_MAX));
962 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
963 RTAS_EVENT_SCAN_RATE));
964
965 g_assert(msi_nonbroken);
966 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
967
968 /*
969 * According to PAPR, rtas ibm,os-term does not guarantee a return
970 * back to the guest cpu.
971 *
972 * While an additional ibm,extended-os-term property indicates
973 * that rtas call return will always occur. Set this property.
974 */
975 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
976
977 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
978 lrdr_capacity, sizeof(lrdr_capacity)));
979
980 spapr_dt_rtas_tokens(fdt, rtas);
981 }
982
983 /*
984 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
985 * and the XIVE features that the guest may request and thus the valid
986 * values for bytes 23..26 of option vector 5:
987 */
988 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
989 int chosen)
990 {
991 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
992
993 char val[2 * 4] = {
994 23, 0x00, /* XICS / XIVE mode */
995 24, 0x00, /* Hash/Radix, filled in below. */
996 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
997 26, 0x40, /* Radix options: GTSE == yes. */
998 };
999
1000 if (spapr->irq->xics && spapr->irq->xive) {
1001 val[1] = SPAPR_OV5_XIVE_BOTH;
1002 } else if (spapr->irq->xive) {
1003 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1004 } else {
1005 assert(spapr->irq->xics);
1006 val[1] = SPAPR_OV5_XIVE_LEGACY;
1007 }
1008
1009 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1010 first_ppc_cpu->compat_pvr)) {
1011 /*
1012 * If we're in a pre POWER9 compat mode then the guest should
1013 * do hash and use the legacy interrupt mode
1014 */
1015 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1016 val[3] = 0x00; /* Hash */
1017 } else if (kvm_enabled()) {
1018 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1019 val[3] = 0x80; /* OV5_MMU_BOTH */
1020 } else if (kvmppc_has_cap_mmu_radix()) {
1021 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1022 } else {
1023 val[3] = 0x00; /* Hash */
1024 }
1025 } else {
1026 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1027 val[3] = 0xC0;
1028 }
1029 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1030 val, sizeof(val)));
1031 }
1032
1033 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1034 {
1035 MachineState *machine = MACHINE(spapr);
1036 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1037 int chosen;
1038 const char *boot_device = machine->boot_order;
1039 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1040 size_t cb = 0;
1041 char *bootlist = get_boot_devices_list(&cb);
1042
1043 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1044
1045 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1046 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1047 machine->kernel_cmdline));
1048 }
1049 if (spapr->initrd_size) {
1050 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1051 spapr->initrd_base));
1052 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1053 spapr->initrd_base + spapr->initrd_size));
1054 }
1055
1056 if (spapr->kernel_size) {
1057 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1058 cpu_to_be64(spapr->kernel_size) };
1059
1060 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1061 &kprop, sizeof(kprop)));
1062 if (spapr->kernel_le) {
1063 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1064 }
1065 }
1066 if (boot_menu) {
1067 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1068 }
1069 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1070 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1071 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1072
1073 if (cb && bootlist) {
1074 int i;
1075
1076 for (i = 0; i < cb; i++) {
1077 if (bootlist[i] == '\n') {
1078 bootlist[i] = ' ';
1079 }
1080 }
1081 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1082 }
1083
1084 if (boot_device && strlen(boot_device)) {
1085 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1086 }
1087
1088 if (!spapr->has_graphics && stdout_path) {
1089 /*
1090 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1091 * kernel. New platforms should only use the "stdout-path" property. Set
1092 * the new property and continue using older property to remain
1093 * compatible with the existing firmware.
1094 */
1095 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1096 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1097 }
1098
1099 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1100 if (smc->linux_pci_probe) {
1101 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1102 }
1103
1104 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1105
1106 g_free(stdout_path);
1107 g_free(bootlist);
1108 }
1109
1110 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1111 {
1112 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1113 * KVM to work under pHyp with some guest co-operation */
1114 int hypervisor;
1115 uint8_t hypercall[16];
1116
1117 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1118 /* indicate KVM hypercall interface */
1119 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1120 if (kvmppc_has_cap_fixup_hcalls()) {
1121 /*
1122 * Older KVM versions with older guest kernels were broken
1123 * with the magic page, don't allow the guest to map it.
1124 */
1125 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1126 sizeof(hypercall))) {
1127 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1128 hypercall, sizeof(hypercall)));
1129 }
1130 }
1131 }
1132
1133 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1134 {
1135 MachineState *machine = MACHINE(spapr);
1136 MachineClass *mc = MACHINE_GET_CLASS(machine);
1137 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1138 int ret;
1139 void *fdt;
1140 SpaprPhbState *phb;
1141 char *buf;
1142
1143 fdt = g_malloc0(space);
1144 _FDT((fdt_create_empty_tree(fdt, space)));
1145
1146 /* Root node */
1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1150
1151 /* Guest UUID & Name*/
1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154 if (qemu_uuid_set) {
1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1156 }
1157 g_free(buf);
1158
1159 if (qemu_get_vm_name()) {
1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161 qemu_get_vm_name()));
1162 }
1163
1164 /* Host Model & Serial Number */
1165 if (spapr->host_model) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169 g_free(buf);
1170 }
1171
1172 if (spapr->host_serial) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176 g_free(buf);
1177 }
1178
1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1181
1182 /* /interrupt controller */
1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1184
1185 ret = spapr_populate_memory(spapr, fdt);
1186 if (ret < 0) {
1187 error_report("couldn't setup memory nodes in fdt");
1188 exit(1);
1189 }
1190
1191 /* /vdevice */
1192 spapr_dt_vdevice(spapr->vio_bus, fdt);
1193
1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195 ret = spapr_rng_populate_dt(fdt);
1196 if (ret < 0) {
1197 error_report("could not set up rng device in the fdt");
1198 exit(1);
1199 }
1200 }
1201
1202 QLIST_FOREACH(phb, &spapr->phbs, list) {
1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204 if (ret < 0) {
1205 error_report("couldn't setup PCI devices in fdt");
1206 exit(1);
1207 }
1208 }
1209
1210 /* cpus */
1211 spapr_populate_cpus_dt_node(fdt, spapr);
1212
1213 if (smc->dr_lmb_enabled) {
1214 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1215 }
1216
1217 if (mc->has_hotpluggable_cpus) {
1218 int offset = fdt_path_offset(fdt, "/cpus");
1219 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1220 if (ret < 0) {
1221 error_report("Couldn't set up CPU DR device tree properties");
1222 exit(1);
1223 }
1224 }
1225
1226 /* /event-sources */
1227 spapr_dt_events(spapr, fdt);
1228
1229 /* /rtas */
1230 spapr_dt_rtas(spapr, fdt);
1231
1232 /* /chosen */
1233 if (reset) {
1234 spapr_dt_chosen(spapr, fdt);
1235 }
1236
1237 /* /hypervisor */
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr, fdt);
1240 }
1241
1242 /* Build memory reserve map */
1243 if (reset) {
1244 if (spapr->kernel_size) {
1245 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1246 }
1247 if (spapr->initrd_size) {
1248 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1249 spapr->initrd_size)));
1250 }
1251 }
1252
1253 /* ibm,client-architecture-support updates */
1254 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1255 if (ret < 0) {
1256 error_report("couldn't setup CAS properties fdt");
1257 exit(1);
1258 }
1259
1260 if (smc->dr_phb_enabled) {
1261 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1262 if (ret < 0) {
1263 error_report("Couldn't set up PHB DR device tree properties");
1264 exit(1);
1265 }
1266 }
1267
1268 return fdt;
1269 }
1270
1271 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1272 {
1273 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1274 }
1275
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277 PowerPCCPU *cpu)
1278 {
1279 CPUPPCState *env = &cpu->env;
1280
1281 /* The TCG path should also be holding the BQL at this point */
1282 g_assert(qemu_mutex_iothread_locked());
1283
1284 if (msr_pr) {
1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1286 env->gpr[3] = H_PRIVILEGE;
1287 } else {
1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1289 }
1290 }
1291
1292 struct LPCRSyncState {
1293 target_ulong value;
1294 target_ulong mask;
1295 };
1296
1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1298 {
1299 struct LPCRSyncState *s = arg.host_ptr;
1300 PowerPCCPU *cpu = POWERPC_CPU(cs);
1301 CPUPPCState *env = &cpu->env;
1302 target_ulong lpcr;
1303
1304 cpu_synchronize_state(cs);
1305 lpcr = env->spr[SPR_LPCR];
1306 lpcr &= ~s->mask;
1307 lpcr |= s->value;
1308 ppc_store_lpcr(cpu, lpcr);
1309 }
1310
1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1312 {
1313 CPUState *cs;
1314 struct LPCRSyncState s = {
1315 .value = value,
1316 .mask = mask
1317 };
1318 CPU_FOREACH(cs) {
1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1320 }
1321 }
1322
1323 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1324 {
1325 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1326
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry->dw0 = spapr->patb_entry & PATE0_HR;
1329 entry->dw1 = spapr->patb_entry;
1330 }
1331
1332 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1333 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1334 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1335 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1336 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1337
1338 /*
1339 * Get the fd to access the kernel htab, re-opening it if necessary
1340 */
1341 static int get_htab_fd(SpaprMachineState *spapr)
1342 {
1343 Error *local_err = NULL;
1344
1345 if (spapr->htab_fd >= 0) {
1346 return spapr->htab_fd;
1347 }
1348
1349 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1350 if (spapr->htab_fd < 0) {
1351 error_report_err(local_err);
1352 }
1353
1354 return spapr->htab_fd;
1355 }
1356
1357 void close_htab_fd(SpaprMachineState *spapr)
1358 {
1359 if (spapr->htab_fd >= 0) {
1360 close(spapr->htab_fd);
1361 }
1362 spapr->htab_fd = -1;
1363 }
1364
1365 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1366 {
1367 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1368
1369 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1370 }
1371
1372 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1373 {
1374 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1375
1376 assert(kvm_enabled());
1377
1378 if (!spapr->htab) {
1379 return 0;
1380 }
1381
1382 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1383 }
1384
1385 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1386 hwaddr ptex, int n)
1387 {
1388 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1390
1391 if (!spapr->htab) {
1392 /*
1393 * HTAB is controlled by KVM. Fetch into temporary buffer
1394 */
1395 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1396 kvmppc_read_hptes(hptes, ptex, n);
1397 return hptes;
1398 }
1399
1400 /*
1401 * HTAB is controlled by QEMU. Just point to the internally
1402 * accessible PTEG.
1403 */
1404 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1405 }
1406
1407 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1408 const ppc_hash_pte64_t *hptes,
1409 hwaddr ptex, int n)
1410 {
1411 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1412
1413 if (!spapr->htab) {
1414 g_free((void *)hptes);
1415 }
1416
1417 /* Nothing to do for qemu managed HPT */
1418 }
1419
1420 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1421 uint64_t pte0, uint64_t pte1)
1422 {
1423 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1424 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1425
1426 if (!spapr->htab) {
1427 kvmppc_write_hpte(ptex, pte0, pte1);
1428 } else {
1429 if (pte0 & HPTE64_V_VALID) {
1430 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1431 /*
1432 * When setting valid, we write PTE1 first. This ensures
1433 * proper synchronization with the reading code in
1434 * ppc_hash64_pteg_search()
1435 */
1436 smp_wmb();
1437 stq_p(spapr->htab + offset, pte0);
1438 } else {
1439 stq_p(spapr->htab + offset, pte0);
1440 /*
1441 * When clearing it we set PTE0 first. This ensures proper
1442 * synchronization with the reading code in
1443 * ppc_hash64_pteg_search()
1444 */
1445 smp_wmb();
1446 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1447 }
1448 }
1449 }
1450
1451 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1452 uint64_t pte1)
1453 {
1454 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1455 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1456
1457 if (!spapr->htab) {
1458 /* There should always be a hash table when this is called */
1459 error_report("spapr_hpte_set_c called with no hash table !");
1460 return;
1461 }
1462
1463 /* The HW performs a non-atomic byte update */
1464 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1465 }
1466
1467 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1468 uint64_t pte1)
1469 {
1470 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1471 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472
1473 if (!spapr->htab) {
1474 /* There should always be a hash table when this is called */
1475 error_report("spapr_hpte_set_r called with no hash table !");
1476 return;
1477 }
1478
1479 /* The HW performs a non-atomic byte update */
1480 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1481 }
1482
1483 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1484 {
1485 int shift;
1486
1487 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1488 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1489 * that's much more than is needed for Linux guests */
1490 shift = ctz64(pow2ceil(ramsize)) - 7;
1491 shift = MAX(shift, 18); /* Minimum architected size */
1492 shift = MIN(shift, 46); /* Maximum architected size */
1493 return shift;
1494 }
1495
1496 void spapr_free_hpt(SpaprMachineState *spapr)
1497 {
1498 g_free(spapr->htab);
1499 spapr->htab = NULL;
1500 spapr->htab_shift = 0;
1501 close_htab_fd(spapr);
1502 }
1503
1504 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1505 Error **errp)
1506 {
1507 long rc;
1508
1509 /* Clean up any HPT info from a previous boot */
1510 spapr_free_hpt(spapr);
1511
1512 rc = kvmppc_reset_htab(shift);
1513 if (rc < 0) {
1514 /* kernel-side HPT needed, but couldn't allocate one */
1515 error_setg_errno(errp, errno,
1516 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1517 shift);
1518 /* This is almost certainly fatal, but if the caller really
1519 * wants to carry on with shift == 0, it's welcome to try */
1520 } else if (rc > 0) {
1521 /* kernel-side HPT allocated */
1522 if (rc != shift) {
1523 error_setg(errp,
1524 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1525 shift, rc);
1526 }
1527
1528 spapr->htab_shift = shift;
1529 spapr->htab = NULL;
1530 } else {
1531 /* kernel-side HPT not needed, allocate in userspace instead */
1532 size_t size = 1ULL << shift;
1533 int i;
1534
1535 spapr->htab = qemu_memalign(size, size);
1536 if (!spapr->htab) {
1537 error_setg_errno(errp, errno,
1538 "Could not allocate HPT of order %d", shift);
1539 return;
1540 }
1541
1542 memset(spapr->htab, 0, size);
1543 spapr->htab_shift = shift;
1544
1545 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1546 DIRTY_HPTE(HPTE(spapr->htab, i));
1547 }
1548 }
1549 /* We're setting up a hash table, so that means we're not radix */
1550 spapr->patb_entry = 0;
1551 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1552 }
1553
1554 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1555 {
1556 int hpt_shift;
1557
1558 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1559 || (spapr->cas_reboot
1560 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1561 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1562 } else {
1563 uint64_t current_ram_size;
1564
1565 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1566 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1567 }
1568 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1569
1570 if (spapr->vrma_adjust) {
1571 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1572 spapr->htab_shift);
1573 }
1574 }
1575
1576 static int spapr_reset_drcs(Object *child, void *opaque)
1577 {
1578 SpaprDrc *drc =
1579 (SpaprDrc *) object_dynamic_cast(child,
1580 TYPE_SPAPR_DR_CONNECTOR);
1581
1582 if (drc) {
1583 spapr_drc_reset(drc);
1584 }
1585
1586 return 0;
1587 }
1588
1589 static void spapr_machine_reset(MachineState *machine)
1590 {
1591 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1592 PowerPCCPU *first_ppc_cpu;
1593 hwaddr fdt_addr;
1594 void *fdt;
1595 int rc;
1596
1597 kvmppc_svm_off(&error_fatal);
1598 spapr_caps_apply(spapr);
1599
1600 first_ppc_cpu = POWERPC_CPU(first_cpu);
1601 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1602 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1603 spapr->max_compat_pvr)) {
1604 /*
1605 * If using KVM with radix mode available, VCPUs can be started
1606 * without a HPT because KVM will start them in radix mode.
1607 * Set the GR bit in PATE so that we know there is no HPT.
1608 */
1609 spapr->patb_entry = PATE1_GR;
1610 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1611 } else {
1612 spapr_setup_hpt_and_vrma(spapr);
1613 }
1614
1615 qemu_devices_reset();
1616
1617 /*
1618 * If this reset wasn't generated by CAS, we should reset our
1619 * negotiated options and start from scratch
1620 */
1621 if (!spapr->cas_reboot) {
1622 spapr_ovec_cleanup(spapr->ov5_cas);
1623 spapr->ov5_cas = spapr_ovec_new();
1624
1625 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1626 }
1627
1628 /*
1629 * This is fixing some of the default configuration of the XIVE
1630 * devices. To be called after the reset of the machine devices.
1631 */
1632 spapr_irq_reset(spapr, &error_fatal);
1633
1634 /*
1635 * There is no CAS under qtest. Simulate one to please the code that
1636 * depends on spapr->ov5_cas. This is especially needed to test device
1637 * unplug, so we do that before resetting the DRCs.
1638 */
1639 if (qtest_enabled()) {
1640 spapr_ovec_cleanup(spapr->ov5_cas);
1641 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1642 }
1643
1644 /* DRC reset may cause a device to be unplugged. This will cause troubles
1645 * if this device is used by another device (eg, a running vhost backend
1646 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1647 * situations, we reset DRCs after all devices have been reset.
1648 */
1649 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1650
1651 spapr_clear_pending_events(spapr);
1652
1653 /*
1654 * We place the device tree and RTAS just below either the top of the RMA,
1655 * or just below 2GB, whichever is lower, so that it can be
1656 * processed with 32-bit real mode code if necessary
1657 */
1658 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1659
1660 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1661
1662 rc = fdt_pack(fdt);
1663
1664 /* Should only fail if we've built a corrupted tree */
1665 assert(rc == 0);
1666
1667 /* Load the fdt */
1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670 g_free(spapr->fdt_blob);
1671 spapr->fdt_size = fdt_totalsize(fdt);
1672 spapr->fdt_initial_size = spapr->fdt_size;
1673 spapr->fdt_blob = fdt;
1674
1675 /* Set up the entry state */
1676 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1677 first_ppc_cpu->env.gpr[5] = 0;
1678
1679 spapr->cas_reboot = false;
1680
1681 spapr->mc_status = -1;
1682 spapr->guest_machine_check_addr = -1;
1683
1684 /* Signal all vCPUs waiting on this condition */
1685 qemu_cond_broadcast(&spapr->mc_delivery_cond);
1686 }
1687
1688 static void spapr_create_nvram(SpaprMachineState *spapr)
1689 {
1690 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1691 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1692
1693 if (dinfo) {
1694 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1695 &error_fatal);
1696 }
1697
1698 qdev_init_nofail(dev);
1699
1700 spapr->nvram = (struct SpaprNvram *)dev;
1701 }
1702
1703 static void spapr_rtc_create(SpaprMachineState *spapr)
1704 {
1705 object_initialize_child(OBJECT(spapr), "rtc",
1706 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1707 &error_fatal, NULL);
1708 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1709 &error_fatal);
1710 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1711 "date", &error_fatal);
1712 }
1713
1714 /* Returns whether we want to use VGA or not */
1715 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1716 {
1717 switch (vga_interface_type) {
1718 case VGA_NONE:
1719 return false;
1720 case VGA_DEVICE:
1721 return true;
1722 case VGA_STD:
1723 case VGA_VIRTIO:
1724 case VGA_CIRRUS:
1725 return pci_vga_init(pci_bus) != NULL;
1726 default:
1727 error_setg(errp,
1728 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1729 return false;
1730 }
1731 }
1732
1733 static int spapr_pre_load(void *opaque)
1734 {
1735 int rc;
1736
1737 rc = spapr_caps_pre_load(opaque);
1738 if (rc) {
1739 return rc;
1740 }
1741
1742 return 0;
1743 }
1744
1745 static int spapr_post_load(void *opaque, int version_id)
1746 {
1747 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1748 int err = 0;
1749
1750 err = spapr_caps_post_migration(spapr);
1751 if (err) {
1752 return err;
1753 }
1754
1755 /*
1756 * In earlier versions, there was no separate qdev for the PAPR
1757 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1758 * So when migrating from those versions, poke the incoming offset
1759 * value into the RTC device
1760 */
1761 if (version_id < 3) {
1762 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1763 if (err) {
1764 return err;
1765 }
1766 }
1767
1768 if (kvm_enabled() && spapr->patb_entry) {
1769 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1770 bool radix = !!(spapr->patb_entry & PATE1_GR);
1771 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1772
1773 /*
1774 * Update LPCR:HR and UPRT as they may not be set properly in
1775 * the stream
1776 */
1777 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1778 LPCR_HR | LPCR_UPRT);
1779
1780 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1781 if (err) {
1782 error_report("Process table config unsupported by the host");
1783 return -EINVAL;
1784 }
1785 }
1786
1787 err = spapr_irq_post_load(spapr, version_id);
1788 if (err) {
1789 return err;
1790 }
1791
1792 return err;
1793 }
1794
1795 static int spapr_pre_save(void *opaque)
1796 {
1797 int rc;
1798
1799 rc = spapr_caps_pre_save(opaque);
1800 if (rc) {
1801 return rc;
1802 }
1803
1804 return 0;
1805 }
1806
1807 static bool version_before_3(void *opaque, int version_id)
1808 {
1809 return version_id < 3;
1810 }
1811
1812 static bool spapr_pending_events_needed(void *opaque)
1813 {
1814 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1815 return !QTAILQ_EMPTY(&spapr->pending_events);
1816 }
1817
1818 static const VMStateDescription vmstate_spapr_event_entry = {
1819 .name = "spapr_event_log_entry",
1820 .version_id = 1,
1821 .minimum_version_id = 1,
1822 .fields = (VMStateField[]) {
1823 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1824 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1825 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1826 NULL, extended_length),
1827 VMSTATE_END_OF_LIST()
1828 },
1829 };
1830
1831 static const VMStateDescription vmstate_spapr_pending_events = {
1832 .name = "spapr_pending_events",
1833 .version_id = 1,
1834 .minimum_version_id = 1,
1835 .needed = spapr_pending_events_needed,
1836 .fields = (VMStateField[]) {
1837 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1838 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1839 VMSTATE_END_OF_LIST()
1840 },
1841 };
1842
1843 static bool spapr_ov5_cas_needed(void *opaque)
1844 {
1845 SpaprMachineState *spapr = opaque;
1846 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1847 bool cas_needed;
1848
1849 /* Prior to the introduction of SpaprOptionVector, we had two option
1850 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1851 * Both of these options encode machine topology into the device-tree
1852 * in such a way that the now-booted OS should still be able to interact
1853 * appropriately with QEMU regardless of what options were actually
1854 * negotiatied on the source side.
1855 *
1856 * As such, we can avoid migrating the CAS-negotiated options if these
1857 * are the only options available on the current machine/platform.
1858 * Since these are the only options available for pseries-2.7 and
1859 * earlier, this allows us to maintain old->new/new->old migration
1860 * compatibility.
1861 *
1862 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1863 * via default pseries-2.8 machines and explicit command-line parameters.
1864 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1865 * of the actual CAS-negotiated values to continue working properly. For
1866 * example, availability of memory unplug depends on knowing whether
1867 * OV5_HP_EVT was negotiated via CAS.
1868 *
1869 * Thus, for any cases where the set of available CAS-negotiatable
1870 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1871 * include the CAS-negotiated options in the migration stream, unless
1872 * if they affect boot time behaviour only.
1873 */
1874 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1875 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1876 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1877
1878 /* We need extra information if we have any bits outside the mask
1879 * defined above */
1880 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1881
1882 spapr_ovec_cleanup(ov5_mask);
1883
1884 return cas_needed;
1885 }
1886
1887 static const VMStateDescription vmstate_spapr_ov5_cas = {
1888 .name = "spapr_option_vector_ov5_cas",
1889 .version_id = 1,
1890 .minimum_version_id = 1,
1891 .needed = spapr_ov5_cas_needed,
1892 .fields = (VMStateField[]) {
1893 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1894 vmstate_spapr_ovec, SpaprOptionVector),
1895 VMSTATE_END_OF_LIST()
1896 },
1897 };
1898
1899 static bool spapr_patb_entry_needed(void *opaque)
1900 {
1901 SpaprMachineState *spapr = opaque;
1902
1903 return !!spapr->patb_entry;
1904 }
1905
1906 static const VMStateDescription vmstate_spapr_patb_entry = {
1907 .name = "spapr_patb_entry",
1908 .version_id = 1,
1909 .minimum_version_id = 1,
1910 .needed = spapr_patb_entry_needed,
1911 .fields = (VMStateField[]) {
1912 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1913 VMSTATE_END_OF_LIST()
1914 },
1915 };
1916
1917 static bool spapr_irq_map_needed(void *opaque)
1918 {
1919 SpaprMachineState *spapr = opaque;
1920
1921 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1922 }
1923
1924 static const VMStateDescription vmstate_spapr_irq_map = {
1925 .name = "spapr_irq_map",
1926 .version_id = 1,
1927 .minimum_version_id = 1,
1928 .needed = spapr_irq_map_needed,
1929 .fields = (VMStateField[]) {
1930 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1931 VMSTATE_END_OF_LIST()
1932 },
1933 };
1934
1935 static bool spapr_dtb_needed(void *opaque)
1936 {
1937 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1938
1939 return smc->update_dt_enabled;
1940 }
1941
1942 static int spapr_dtb_pre_load(void *opaque)
1943 {
1944 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1945
1946 g_free(spapr->fdt_blob);
1947 spapr->fdt_blob = NULL;
1948 spapr->fdt_size = 0;
1949
1950 return 0;
1951 }
1952
1953 static const VMStateDescription vmstate_spapr_dtb = {
1954 .name = "spapr_dtb",
1955 .version_id = 1,
1956 .minimum_version_id = 1,
1957 .needed = spapr_dtb_needed,
1958 .pre_load = spapr_dtb_pre_load,
1959 .fields = (VMStateField[]) {
1960 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1961 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1962 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1963 fdt_size),
1964 VMSTATE_END_OF_LIST()
1965 },
1966 };
1967
1968 static const VMStateDescription vmstate_spapr = {
1969 .name = "spapr",
1970 .version_id = 3,
1971 .minimum_version_id = 1,
1972 .pre_load = spapr_pre_load,
1973 .post_load = spapr_post_load,
1974 .pre_save = spapr_pre_save,
1975 .fields = (VMStateField[]) {
1976 /* used to be @next_irq */
1977 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1978
1979 /* RTC offset */
1980 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1981
1982 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1983 VMSTATE_END_OF_LIST()
1984 },
1985 .subsections = (const VMStateDescription*[]) {
1986 &vmstate_spapr_ov5_cas,
1987 &vmstate_spapr_patb_entry,
1988 &vmstate_spapr_pending_events,
1989 &vmstate_spapr_cap_htm,
1990 &vmstate_spapr_cap_vsx,
1991 &vmstate_spapr_cap_dfp,
1992 &vmstate_spapr_cap_cfpc,
1993 &vmstate_spapr_cap_sbbc,
1994 &vmstate_spapr_cap_ibs,
1995 &vmstate_spapr_cap_hpt_maxpagesize,
1996 &vmstate_spapr_irq_map,
1997 &vmstate_spapr_cap_nested_kvm_hv,
1998 &vmstate_spapr_dtb,
1999 &vmstate_spapr_cap_large_decr,
2000 &vmstate_spapr_cap_ccf_assist,
2001 &vmstate_spapr_cap_fwnmi,
2002 NULL
2003 }
2004 };
2005
2006 static int htab_save_setup(QEMUFile *f, void *opaque)
2007 {
2008 SpaprMachineState *spapr = opaque;
2009
2010 /* "Iteration" header */
2011 if (!spapr->htab_shift) {
2012 qemu_put_be32(f, -1);
2013 } else {
2014 qemu_put_be32(f, spapr->htab_shift);
2015 }
2016
2017 if (spapr->htab) {
2018 spapr->htab_save_index = 0;
2019 spapr->htab_first_pass = true;
2020 } else {
2021 if (spapr->htab_shift) {
2022 assert(kvm_enabled());
2023 }
2024 }
2025
2026
2027 return 0;
2028 }
2029
2030 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2031 int chunkstart, int n_valid, int n_invalid)
2032 {
2033 qemu_put_be32(f, chunkstart);
2034 qemu_put_be16(f, n_valid);
2035 qemu_put_be16(f, n_invalid);
2036 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2037 HASH_PTE_SIZE_64 * n_valid);
2038 }
2039
2040 static void htab_save_end_marker(QEMUFile *f)
2041 {
2042 qemu_put_be32(f, 0);
2043 qemu_put_be16(f, 0);
2044 qemu_put_be16(f, 0);
2045 }
2046
2047 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2048 int64_t max_ns)
2049 {
2050 bool has_timeout = max_ns != -1;
2051 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2052 int index = spapr->htab_save_index;
2053 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2054
2055 assert(spapr->htab_first_pass);
2056
2057 do {
2058 int chunkstart;
2059
2060 /* Consume invalid HPTEs */
2061 while ((index < htabslots)
2062 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2063 CLEAN_HPTE(HPTE(spapr->htab, index));
2064 index++;
2065 }
2066
2067 /* Consume valid HPTEs */
2068 chunkstart = index;
2069 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2070 && HPTE_VALID(HPTE(spapr->htab, index))) {
2071 CLEAN_HPTE(HPTE(spapr->htab, index));
2072 index++;
2073 }
2074
2075 if (index > chunkstart) {
2076 int n_valid = index - chunkstart;
2077
2078 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2079
2080 if (has_timeout &&
2081 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2082 break;
2083 }
2084 }
2085 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2086
2087 if (index >= htabslots) {
2088 assert(index == htabslots);
2089 index = 0;
2090 spapr->htab_first_pass = false;
2091 }
2092 spapr->htab_save_index = index;
2093 }
2094
2095 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2096 int64_t max_ns)
2097 {
2098 bool final = max_ns < 0;
2099 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2100 int examined = 0, sent = 0;
2101 int index = spapr->htab_save_index;
2102 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2103
2104 assert(!spapr->htab_first_pass);
2105
2106 do {
2107 int chunkstart, invalidstart;
2108
2109 /* Consume non-dirty HPTEs */
2110 while ((index < htabslots)
2111 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2112 index++;
2113 examined++;
2114 }
2115
2116 chunkstart = index;
2117 /* Consume valid dirty HPTEs */
2118 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2119 && HPTE_DIRTY(HPTE(spapr->htab, index))
2120 && HPTE_VALID(HPTE(spapr->htab, index))) {
2121 CLEAN_HPTE(HPTE(spapr->htab, index));
2122 index++;
2123 examined++;
2124 }
2125
2126 invalidstart = index;
2127 /* Consume invalid dirty HPTEs */
2128 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2129 && HPTE_DIRTY(HPTE(spapr->htab, index))
2130 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2131 CLEAN_HPTE(HPTE(spapr->htab, index));
2132 index++;
2133 examined++;
2134 }
2135
2136 if (index > chunkstart) {
2137 int n_valid = invalidstart - chunkstart;
2138 int n_invalid = index - invalidstart;
2139
2140 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2141 sent += index - chunkstart;
2142
2143 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2144 break;
2145 }
2146 }
2147
2148 if (examined >= htabslots) {
2149 break;
2150 }
2151
2152 if (index >= htabslots) {
2153 assert(index == htabslots);
2154 index = 0;
2155 }
2156 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2157
2158 if (index >= htabslots) {
2159 assert(index == htabslots);
2160 index = 0;
2161 }
2162
2163 spapr->htab_save_index = index;
2164
2165 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2166 }
2167
2168 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2169 #define MAX_KVM_BUF_SIZE 2048
2170
2171 static int htab_save_iterate(QEMUFile *f, void *opaque)
2172 {
2173 SpaprMachineState *spapr = opaque;
2174 int fd;
2175 int rc = 0;
2176
2177 /* Iteration header */
2178 if (!spapr->htab_shift) {
2179 qemu_put_be32(f, -1);
2180 return 1;
2181 } else {
2182 qemu_put_be32(f, 0);
2183 }
2184
2185 if (!spapr->htab) {
2186 assert(kvm_enabled());
2187
2188 fd = get_htab_fd(spapr);
2189 if (fd < 0) {
2190 return fd;
2191 }
2192
2193 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2194 if (rc < 0) {
2195 return rc;
2196 }
2197 } else if (spapr->htab_first_pass) {
2198 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2199 } else {
2200 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2201 }
2202
2203 htab_save_end_marker(f);
2204
2205 return rc;
2206 }
2207
2208 static int htab_save_complete(QEMUFile *f, void *opaque)
2209 {
2210 SpaprMachineState *spapr = opaque;
2211 int fd;
2212
2213 /* Iteration header */
2214 if (!spapr->htab_shift) {
2215 qemu_put_be32(f, -1);
2216 return 0;
2217 } else {
2218 qemu_put_be32(f, 0);
2219 }
2220
2221 if (!spapr->htab) {
2222 int rc;
2223
2224 assert(kvm_enabled());
2225
2226 fd = get_htab_fd(spapr);
2227 if (fd < 0) {
2228 return fd;
2229 }
2230
2231 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2232 if (rc < 0) {
2233 return rc;
2234 }
2235 } else {
2236 if (spapr->htab_first_pass) {
2237 htab_save_first_pass(f, spapr, -1);
2238 }
2239 htab_save_later_pass(f, spapr, -1);
2240 }
2241
2242 /* End marker */
2243 htab_save_end_marker(f);
2244
2245 return 0;
2246 }
2247
2248 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2249 {
2250 SpaprMachineState *spapr = opaque;
2251 uint32_t section_hdr;
2252 int fd = -1;
2253 Error *local_err = NULL;
2254
2255 if (version_id < 1 || version_id > 1) {
2256 error_report("htab_load() bad version");
2257 return -EINVAL;
2258 }
2259
2260 section_hdr = qemu_get_be32(f);
2261
2262 if (section_hdr == -1) {
2263 spapr_free_hpt(spapr);
2264 return 0;
2265 }
2266
2267 if (section_hdr) {
2268 /* First section gives the htab size */
2269 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2270 if (local_err) {
2271 error_report_err(local_err);
2272 return -EINVAL;
2273 }
2274 return 0;
2275 }
2276
2277 if (!spapr->htab) {
2278 assert(kvm_enabled());
2279
2280 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2281 if (fd < 0) {
2282 error_report_err(local_err);
2283 return fd;
2284 }
2285 }
2286
2287 while (true) {
2288 uint32_t index;
2289 uint16_t n_valid, n_invalid;
2290
2291 index = qemu_get_be32(f);
2292 n_valid = qemu_get_be16(f);
2293 n_invalid = qemu_get_be16(f);
2294
2295 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2296 /* End of Stream */
2297 break;
2298 }
2299
2300 if ((index + n_valid + n_invalid) >
2301 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2302 /* Bad index in stream */
2303 error_report(
2304 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2305 index, n_valid, n_invalid, spapr->htab_shift);
2306 return -EINVAL;
2307 }
2308
2309 if (spapr->htab) {
2310 if (n_valid) {
2311 qemu_get_buffer(f, HPTE(spapr->htab, index),
2312 HASH_PTE_SIZE_64 * n_valid);
2313 }
2314 if (n_invalid) {
2315 memset(HPTE(spapr->htab, index + n_valid), 0,
2316 HASH_PTE_SIZE_64 * n_invalid);
2317 }
2318 } else {
2319 int rc;
2320
2321 assert(fd >= 0);
2322
2323 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2324 if (rc < 0) {
2325 return rc;
2326 }
2327 }
2328 }
2329
2330 if (!spapr->htab) {
2331 assert(fd >= 0);
2332 close(fd);
2333 }
2334
2335 return 0;
2336 }
2337
2338 static void htab_save_cleanup(void *opaque)
2339 {
2340 SpaprMachineState *spapr = opaque;
2341
2342 close_htab_fd(spapr);
2343 }
2344
2345 static SaveVMHandlers savevm_htab_handlers = {
2346 .save_setup = htab_save_setup,
2347 .save_live_iterate = htab_save_iterate,
2348 .save_live_complete_precopy = htab_save_complete,
2349 .save_cleanup = htab_save_cleanup,
2350 .load_state = htab_load,
2351 };
2352
2353 static void spapr_boot_set(void *opaque, const char *boot_device,
2354 Error **errp)
2355 {
2356 MachineState *machine = MACHINE(opaque);
2357 machine->boot_order = g_strdup(boot_device);
2358 }
2359
2360 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2361 {
2362 MachineState *machine = MACHINE(spapr);
2363 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2364 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2365 int i;
2366
2367 for (i = 0; i < nr_lmbs; i++) {
2368 uint64_t addr;
2369
2370 addr = i * lmb_size + machine->device_memory->base;
2371 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2372 addr / lmb_size);
2373 }
2374 }
2375
2376 /*
2377 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2378 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2379 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2380 */
2381 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2382 {
2383 int i;
2384
2385 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2386 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2387 " is not aligned to %" PRIu64 " MiB",
2388 machine->ram_size,
2389 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2390 return;
2391 }
2392
2393 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2394 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2395 " is not aligned to %" PRIu64 " MiB",
2396 machine->ram_size,
2397 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2398 return;
2399 }
2400
2401 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2402 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2403 error_setg(errp,
2404 "Node %d memory size 0x%" PRIx64
2405 " is not aligned to %" PRIu64 " MiB",
2406 i, machine->numa_state->nodes[i].node_mem,
2407 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2408 return;
2409 }
2410 }
2411 }
2412
2413 /* find cpu slot in machine->possible_cpus by core_id */
2414 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2415 {
2416 int index = id / ms->smp.threads;
2417
2418 if (index >= ms->possible_cpus->len) {
2419 return NULL;
2420 }
2421 if (idx) {
2422 *idx = index;
2423 }
2424 return &ms->possible_cpus->cpus[index];
2425 }
2426
2427 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2428 {
2429 MachineState *ms = MACHINE(spapr);
2430 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2431 Error *local_err = NULL;
2432 bool vsmt_user = !!spapr->vsmt;
2433 int kvm_smt = kvmppc_smt_threads();
2434 int ret;
2435 unsigned int smp_threads = ms->smp.threads;
2436
2437 if (!kvm_enabled() && (smp_threads > 1)) {
2438 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2439 "on a pseries machine");
2440 goto out;
2441 }
2442 if (!is_power_of_2(smp_threads)) {
2443 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2444 "machine because it must be a power of 2", smp_threads);
2445 goto out;
2446 }
2447
2448 /* Detemine the VSMT mode to use: */
2449 if (vsmt_user) {
2450 if (spapr->vsmt < smp_threads) {
2451 error_setg(&local_err, "Cannot support VSMT mode %d"
2452 " because it must be >= threads/core (%d)",
2453 spapr->vsmt, smp_threads);
2454 goto out;
2455 }
2456 /* In this case, spapr->vsmt has been set by the command line */
2457 } else if (!smc->smp_threads_vsmt) {
2458 /*
2459 * Default VSMT value is tricky, because we need it to be as
2460 * consistent as possible (for migration), but this requires
2461 * changing it for at least some existing cases. We pick 8 as
2462 * the value that we'd get with KVM on POWER8, the
2463 * overwhelmingly common case in production systems.
2464 */
2465 spapr->vsmt = MAX(8, smp_threads);
2466 } else {
2467 spapr->vsmt = smp_threads;
2468 }
2469
2470 /* KVM: If necessary, set the SMT mode: */
2471 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2472 ret = kvmppc_set_smt_threads(spapr->vsmt);
2473 if (ret) {
2474 /* Looks like KVM isn't able to change VSMT mode */
2475 error_setg(&local_err,
2476 "Failed to set KVM's VSMT mode to %d (errno %d)",
2477 spapr->vsmt, ret);
2478 /* We can live with that if the default one is big enough
2479 * for the number of threads, and a submultiple of the one
2480 * we want. In this case we'll waste some vcpu ids, but
2481 * behaviour will be correct */
2482 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2483 warn_report_err(local_err);
2484 local_err = NULL;
2485 goto out;
2486 } else {
2487 if (!vsmt_user) {
2488 error_append_hint(&local_err,
2489 "On PPC, a VM with %d threads/core"
2490 " on a host with %d threads/core"
2491 " requires the use of VSMT mode %d.\n",
2492 smp_threads, kvm_smt, spapr->vsmt);
2493 }
2494 kvmppc_error_append_smt_possible_hint(&local_err);
2495 goto out;
2496 }
2497 }
2498 }
2499 /* else TCG: nothing to do currently */
2500 out:
2501 error_propagate(errp, local_err);
2502 }
2503
2504 static void spapr_init_cpus(SpaprMachineState *spapr)
2505 {
2506 MachineState *machine = MACHINE(spapr);
2507 MachineClass *mc = MACHINE_GET_CLASS(machine);
2508 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2509 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2510 const CPUArchIdList *possible_cpus;
2511 unsigned int smp_cpus = machine->smp.cpus;
2512 unsigned int smp_threads = machine->smp.threads;
2513 unsigned int max_cpus = machine->smp.max_cpus;
2514 int boot_cores_nr = smp_cpus / smp_threads;
2515 int i;
2516
2517 possible_cpus = mc->possible_cpu_arch_ids(machine);
2518 if (mc->has_hotpluggable_cpus) {
2519 if (smp_cpus % smp_threads) {
2520 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2521 smp_cpus, smp_threads);
2522 exit(1);
2523 }
2524 if (max_cpus % smp_threads) {
2525 error_report("max_cpus (%u) must be multiple of threads (%u)",
2526 max_cpus, smp_threads);
2527 exit(1);
2528 }
2529 } else {
2530 if (max_cpus != smp_cpus) {
2531 error_report("This machine version does not support CPU hotplug");
2532 exit(1);
2533 }
2534 boot_cores_nr = possible_cpus->len;
2535 }
2536
2537 if (smc->pre_2_10_has_unused_icps) {
2538 int i;
2539
2540 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2541 /* Dummy entries get deregistered when real ICPState objects
2542 * are registered during CPU core hotplug.
2543 */
2544 pre_2_10_vmstate_register_dummy_icp(i);
2545 }
2546 }
2547
2548 for (i = 0; i < possible_cpus->len; i++) {
2549 int core_id = i * smp_threads;
2550
2551 if (mc->has_hotpluggable_cpus) {
2552 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2553 spapr_vcpu_id(spapr, core_id));
2554 }
2555
2556 if (i < boot_cores_nr) {
2557 Object *core = object_new(type);
2558 int nr_threads = smp_threads;
2559
2560 /* Handle the partially filled core for older machine types */
2561 if ((i + 1) * smp_threads >= smp_cpus) {
2562 nr_threads = smp_cpus - i * smp_threads;
2563 }
2564
2565 object_property_set_int(core, nr_threads, "nr-threads",
2566 &error_fatal);
2567 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2568 &error_fatal);
2569 object_property_set_bool(core, true, "realized", &error_fatal);
2570
2571 object_unref(core);
2572 }
2573 }
2574 }
2575
2576 static PCIHostState *spapr_create_default_phb(void)
2577 {
2578 DeviceState *dev;
2579
2580 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2581 qdev_prop_set_uint32(dev, "index", 0);
2582 qdev_init_nofail(dev);
2583
2584 return PCI_HOST_BRIDGE(dev);
2585 }
2586
2587 /* pSeries LPAR / sPAPR hardware init */
2588 static void spapr_machine_init(MachineState *machine)
2589 {
2590 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2591 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2592 const char *kernel_filename = machine->kernel_filename;
2593 const char *initrd_filename = machine->initrd_filename;
2594 PCIHostState *phb;
2595 int i;
2596 MemoryRegion *sysmem = get_system_memory();
2597 MemoryRegion *ram = g_new(MemoryRegion, 1);
2598 hwaddr node0_size = spapr_node0_size(machine);
2599 long load_limit, fw_size;
2600 char *filename;
2601 Error *resize_hpt_err = NULL;
2602
2603 msi_nonbroken = true;
2604
2605 QLIST_INIT(&spapr->phbs);
2606 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2607
2608 /* Determine capabilities to run with */
2609 spapr_caps_init(spapr);
2610
2611 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2612 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2613 /*
2614 * If the user explicitly requested a mode we should either
2615 * supply it, or fail completely (which we do below). But if
2616 * it's not set explicitly, we reset our mode to something
2617 * that works
2618 */
2619 if (resize_hpt_err) {
2620 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2621 error_free(resize_hpt_err);
2622 resize_hpt_err = NULL;
2623 } else {
2624 spapr->resize_hpt = smc->resize_hpt_default;
2625 }
2626 }
2627
2628 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2629
2630 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2631 /*
2632 * User requested HPT resize, but this host can't supply it. Bail out
2633 */
2634 error_report_err(resize_hpt_err);
2635 exit(1);
2636 }
2637
2638 spapr->rma_size = node0_size;
2639
2640 /* With KVM, we don't actually know whether KVM supports an
2641 * unbounded RMA (PR KVM) or is limited by the hash table size
2642 * (HV KVM using VRMA), so we always assume the latter
2643 *
2644 * In that case, we also limit the initial allocations for RTAS
2645 * etc... to 256M since we have no way to know what the VRMA size
2646 * is going to be as it depends on the size of the hash table
2647 * which isn't determined yet.
2648 */
2649 if (kvm_enabled()) {
2650 spapr->vrma_adjust = 1;
2651 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2652 }
2653
2654 /* Actually we don't support unbounded RMA anymore since we added
2655 * proper emulation of HV mode. The max we can get is 16G which
2656 * also happens to be what we configure for PAPR mode so make sure
2657 * we don't do anything bigger than that
2658 */
2659 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2660
2661 if (spapr->rma_size > node0_size) {
2662 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2663 spapr->rma_size);
2664 exit(1);
2665 }
2666
2667 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2668 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2669
2670 /*
2671 * VSMT must be set in order to be able to compute VCPU ids, ie to
2672 * call spapr_max_server_number() or spapr_vcpu_id().
2673 */
2674 spapr_set_vsmt_mode(spapr, &error_fatal);
2675
2676 /* Set up Interrupt Controller before we create the VCPUs */
2677 spapr_irq_init(spapr, &error_fatal);
2678
2679 /* Set up containers for ibm,client-architecture-support negotiated options
2680 */
2681 spapr->ov5 = spapr_ovec_new();
2682 spapr->ov5_cas = spapr_ovec_new();
2683
2684 if (smc->dr_lmb_enabled) {
2685 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2686 spapr_validate_node_memory(machine, &error_fatal);
2687 }
2688
2689 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2690
2691 /* advertise support for dedicated HP event source to guests */
2692 if (spapr->use_hotplug_event_source) {
2693 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2694 }
2695
2696 /* advertise support for HPT resizing */
2697 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2698 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2699 }
2700
2701 /* advertise support for ibm,dyamic-memory-v2 */
2702 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2703
2704 /* advertise XIVE on POWER9 machines */
2705 if (spapr->irq->xive) {
2706 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2707 }
2708
2709 /* init CPUs */
2710 spapr_init_cpus(spapr);
2711
2712 /*
2713 * check we don't have a memory-less/cpu-less NUMA node
2714 * Firmware relies on the existing memory/cpu topology to provide the
2715 * NUMA topology to the kernel.
2716 * And the linux kernel needs to know the NUMA topology at start
2717 * to be able to hotplug CPUs later.
2718 */
2719 if (machine->numa_state->num_nodes) {
2720 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2721 /* check for memory-less node */
2722 if (machine->numa_state->nodes[i].node_mem == 0) {
2723 CPUState *cs;
2724 int found = 0;
2725 /* check for cpu-less node */
2726 CPU_FOREACH(cs) {
2727 PowerPCCPU *cpu = POWERPC_CPU(cs);
2728 if (cpu->node_id == i) {
2729 found = 1;
2730 break;
2731 }
2732 }
2733 /* memory-less and cpu-less node */
2734 if (!found) {
2735 error_report(
2736 "Memory-less/cpu-less nodes are not supported (node %d)",
2737 i);
2738 exit(1);
2739 }
2740 }
2741 }
2742
2743 }
2744
2745 /*
2746 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2747 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2748 * called from vPHB reset handler so we initialize the counter here.
2749 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2750 * must be equally distant from any other node.
2751 * The final value of spapr->gpu_numa_id is going to be written to
2752 * max-associativity-domains in spapr_build_fdt().
2753 */
2754 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2755
2756 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2757 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2758 spapr->max_compat_pvr)) {
2759 /* KVM and TCG always allow GTSE with radix... */
2760 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2761 }
2762 /* ... but not with hash (currently). */
2763
2764 if (kvm_enabled()) {
2765 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2766 kvmppc_enable_logical_ci_hcalls();
2767 kvmppc_enable_set_mode_hcall();
2768
2769 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2770 kvmppc_enable_clear_ref_mod_hcalls();
2771
2772 /* Enable H_PAGE_INIT */
2773 kvmppc_enable_h_page_init();
2774 }
2775
2776 /* allocate RAM */
2777 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2778 machine->ram_size);
2779 memory_region_add_subregion(sysmem, 0, ram);
2780
2781 /* always allocate the device memory information */
2782 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2783
2784 /* initialize hotplug memory address space */
2785 if (machine->ram_size < machine->maxram_size) {
2786 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2787 /*
2788 * Limit the number of hotpluggable memory slots to half the number
2789 * slots that KVM supports, leaving the other half for PCI and other
2790 * devices. However ensure that number of slots doesn't drop below 32.
2791 */
2792 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2793 SPAPR_MAX_RAM_SLOTS;
2794
2795 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2796 max_memslots = SPAPR_MAX_RAM_SLOTS;
2797 }
2798 if (machine->ram_slots > max_memslots) {
2799 error_report("Specified number of memory slots %"
2800 PRIu64" exceeds max supported %d",
2801 machine->ram_slots, max_memslots);
2802 exit(1);
2803 }
2804
2805 machine->device_memory->base = ROUND_UP(machine->ram_size,
2806 SPAPR_DEVICE_MEM_ALIGN);
2807 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2808 "device-memory", device_mem_size);
2809 memory_region_add_subregion(sysmem, machine->device_memory->base,
2810 &machine->device_memory->mr);
2811 }
2812
2813 if (smc->dr_lmb_enabled) {
2814 spapr_create_lmb_dr_connectors(spapr);
2815 }
2816
2817 /* Set up RTAS event infrastructure */
2818 spapr_events_init(spapr);
2819
2820 /* Set up the RTC RTAS interfaces */
2821 spapr_rtc_create(spapr);
2822
2823 /* Set up VIO bus */
2824 spapr->vio_bus = spapr_vio_bus_init();
2825
2826 for (i = 0; i < serial_max_hds(); i++) {
2827 if (serial_hd(i)) {
2828 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2829 }
2830 }
2831
2832 /* We always have at least the nvram device on VIO */
2833 spapr_create_nvram(spapr);
2834
2835 /*
2836 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2837 * connectors (described in root DT node's "ibm,drc-types" property)
2838 * are pre-initialized here. additional child connectors (such as
2839 * connectors for a PHBs PCI slots) are added as needed during their
2840 * parent's realization.
2841 */
2842 if (smc->dr_phb_enabled) {
2843 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2844 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2845 }
2846 }
2847
2848 /* Set up PCI */
2849 spapr_pci_rtas_init();
2850
2851 phb = spapr_create_default_phb();
2852
2853 for (i = 0; i < nb_nics; i++) {
2854 NICInfo *nd = &nd_table[i];
2855
2856 if (!nd->model) {
2857 nd->model = g_strdup("spapr-vlan");
2858 }
2859
2860 if (g_str_equal(nd->model, "spapr-vlan") ||
2861 g_str_equal(nd->model, "ibmveth")) {
2862 spapr_vlan_create(spapr->vio_bus, nd);
2863 } else {
2864 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2865 }
2866 }
2867
2868 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2869 spapr_vscsi_create(spapr->vio_bus);
2870 }
2871
2872 /* Graphics */
2873 if (spapr_vga_init(phb->bus, &error_fatal)) {
2874 spapr->has_graphics = true;
2875 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2876 }
2877
2878 if (machine->usb) {
2879 if (smc->use_ohci_by_default) {
2880 pci_create_simple(phb->bus, -1, "pci-ohci");
2881 } else {
2882 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2883 }
2884
2885 if (spapr->has_graphics) {
2886 USBBus *usb_bus = usb_bus_find(-1);
2887
2888 usb_create_simple(usb_bus, "usb-kbd");
2889 usb_create_simple(usb_bus, "usb-mouse");
2890 }
2891 }
2892
2893 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2894 error_report(
2895 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2896 MIN_RMA_SLOF);
2897 exit(1);
2898 }
2899
2900 if (kernel_filename) {
2901 uint64_t lowaddr = 0;
2902
2903 spapr->kernel_size = load_elf(kernel_filename, NULL,
2904 translate_kernel_address, NULL,
2905 NULL, &lowaddr, NULL, NULL, 1,
2906 PPC_ELF_MACHINE, 0, 0);
2907 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2908 spapr->kernel_size = load_elf(kernel_filename, NULL,
2909 translate_kernel_address, NULL, NULL,
2910 &lowaddr, NULL, NULL, 0,
2911 PPC_ELF_MACHINE, 0, 0);
2912 spapr->kernel_le = spapr->kernel_size > 0;
2913 }
2914 if (spapr->kernel_size < 0) {
2915 error_report("error loading %s: %s", kernel_filename,
2916 load_elf_strerror(spapr->kernel_size));
2917 exit(1);
2918 }
2919
2920 /* load initrd */
2921 if (initrd_filename) {
2922 /* Try to locate the initrd in the gap between the kernel
2923 * and the firmware. Add a bit of space just in case
2924 */
2925 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2926 + 0x1ffff) & ~0xffff;
2927 spapr->initrd_size = load_image_targphys(initrd_filename,
2928 spapr->initrd_base,
2929 load_limit
2930 - spapr->initrd_base);
2931 if (spapr->initrd_size < 0) {
2932 error_report("could not load initial ram disk '%s'",
2933 initrd_filename);
2934 exit(1);
2935 }
2936 }
2937 }
2938
2939 if (bios_name == NULL) {
2940 bios_name = FW_FILE_NAME;
2941 }
2942 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2943 if (!filename) {
2944 error_report("Could not find LPAR firmware '%s'", bios_name);
2945 exit(1);
2946 }
2947 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2948 if (fw_size <= 0) {
2949 error_report("Could not load LPAR firmware '%s'", filename);
2950 exit(1);
2951 }
2952 g_free(filename);
2953
2954 /* FIXME: Should register things through the MachineState's qdev
2955 * interface, this is a legacy from the sPAPREnvironment structure
2956 * which predated MachineState but had a similar function */
2957 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2958 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2959 &savevm_htab_handlers, spapr);
2960
2961 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
2962 &error_fatal);
2963
2964 qemu_register_boot_set(spapr_boot_set, spapr);
2965
2966 /*
2967 * Nothing needs to be done to resume a suspended guest because
2968 * suspending does not change the machine state, so no need for
2969 * a ->wakeup method.
2970 */
2971 qemu_register_wakeup_support();
2972
2973 if (kvm_enabled()) {
2974 /* to stop and start vmclock */
2975 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2976 &spapr->tb);
2977
2978 kvmppc_spapr_enable_inkernel_multitce();
2979 }
2980
2981 qemu_cond_init(&spapr->mc_delivery_cond);
2982 }
2983
2984 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
2985 {
2986 if (!vm_type) {
2987 return 0;
2988 }
2989
2990 if (!strcmp(vm_type, "HV")) {
2991 return 1;
2992 }
2993
2994 if (!strcmp(vm_type, "PR")) {
2995 return 2;
2996 }
2997
2998 error_report("Unknown kvm-type specified '%s'", vm_type);
2999 exit(1);
3000 }
3001
3002 /*
3003 * Implementation of an interface to adjust firmware path
3004 * for the bootindex property handling.
3005 */
3006 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3007 DeviceState *dev)
3008 {
3009 #define CAST(type, obj, name) \
3010 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3011 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3012 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3013 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3014
3015 if (d) {
3016 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3017 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3018 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3019
3020 if (spapr) {
3021 /*
3022 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3023 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3024 * 0x8000 | (target << 8) | (bus << 5) | lun
3025 * (see the "Logical unit addressing format" table in SAM5)
3026 */
3027 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3028 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3029 (uint64_t)id << 48);
3030 } else if (virtio) {
3031 /*
3032 * We use SRP luns of the form 01000000 | (target << 8) | lun
3033 * in the top 32 bits of the 64-bit LUN
3034 * Note: the quote above is from SLOF and it is wrong,
3035 * the actual binding is:
3036 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3037 */
3038 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3039 if (d->lun >= 256) {
3040 /* Use the LUN "flat space addressing method" */
3041 id |= 0x4000;
3042 }
3043 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3044 (uint64_t)id << 32);
3045 } else if (usb) {
3046 /*
3047 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3048 * in the top 32 bits of the 64-bit LUN
3049 */
3050 unsigned usb_port = atoi(usb->port->path);
3051 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3052 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3053 (uint64_t)id << 32);
3054 }
3055 }
3056
3057 /*
3058 * SLOF probes the USB devices, and if it recognizes that the device is a
3059 * storage device, it changes its name to "storage" instead of "usb-host",
3060 * and additionally adds a child node for the SCSI LUN, so the correct
3061 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3062 */
3063 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3064 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3065 if (usb_host_dev_is_scsi_storage(usbdev)) {
3066 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3067 }
3068 }
3069
3070 if (phb) {
3071 /* Replace "pci" with "pci@800000020000000" */
3072 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3073 }
3074
3075 if (vsc) {
3076 /* Same logic as virtio above */
3077 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3078 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3079 }
3080
3081 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3082 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3083 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3084 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3085 }
3086
3087 return NULL;
3088 }
3089
3090 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3091 {
3092 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3093
3094 return g_strdup(spapr->kvm_type);
3095 }
3096
3097 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3098 {
3099 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3100
3101 g_free(spapr->kvm_type);
3102 spapr->kvm_type = g_strdup(value);
3103 }
3104
3105 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3106 {
3107 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3108
3109 return spapr->use_hotplug_event_source;
3110 }
3111
3112 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3113 Error **errp)
3114 {
3115 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3116
3117 spapr->use_hotplug_event_source = value;
3118 }
3119
3120 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3121 {
3122 return true;
3123 }
3124
3125 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3126 {
3127 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3128
3129 switch (spapr->resize_hpt) {
3130 case SPAPR_RESIZE_HPT_DEFAULT:
3131 return g_strdup("default");
3132 case SPAPR_RESIZE_HPT_DISABLED:
3133 return g_strdup("disabled");
3134 case SPAPR_RESIZE_HPT_ENABLED:
3135 return g_strdup("enabled");
3136 case SPAPR_RESIZE_HPT_REQUIRED:
3137 return g_strdup("required");
3138 }
3139 g_assert_not_reached();
3140 }
3141
3142 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3143 {
3144 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3145
3146 if (strcmp(value, "default") == 0) {
3147 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3148 } else if (strcmp(value, "disabled") == 0) {
3149 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3150 } else if (strcmp(value, "enabled") == 0) {
3151 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3152 } else if (strcmp(value, "required") == 0) {
3153 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3154 } else {
3155 error_setg(errp, "Bad value for \"resize-hpt\" property");
3156 }
3157 }
3158
3159 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3160 void *opaque, Error **errp)
3161 {
3162 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3163 }
3164
3165 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3166 void *opaque, Error **errp)
3167 {
3168 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3169 }
3170
3171 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3172 {
3173 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175 if (spapr->irq == &spapr_irq_xics_legacy) {
3176 return g_strdup("legacy");
3177 } else if (spapr->irq == &spapr_irq_xics) {
3178 return g_strdup("xics");
3179 } else if (spapr->irq == &spapr_irq_xive) {
3180 return g_strdup("xive");
3181 } else if (spapr->irq == &spapr_irq_dual) {
3182 return g_strdup("dual");
3183 }
3184 g_assert_not_reached();
3185 }
3186
3187 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3188 {
3189 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190
3191 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3192 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3193 return;
3194 }
3195
3196 /* The legacy IRQ backend can not be set */
3197 if (strcmp(value, "xics") == 0) {
3198 spapr->irq = &spapr_irq_xics;
3199 } else if (strcmp(value, "xive") == 0) {
3200 spapr->irq = &spapr_irq_xive;
3201 } else if (strcmp(value, "dual") == 0) {
3202 spapr->irq = &spapr_irq_dual;
3203 } else {
3204 error_setg(errp, "Bad value for \"ic-mode\" property");
3205 }
3206 }
3207
3208 static char *spapr_get_host_model(Object *obj, Error **errp)
3209 {
3210 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211
3212 return g_strdup(spapr->host_model);
3213 }
3214
3215 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3216 {
3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218
3219 g_free(spapr->host_model);
3220 spapr->host_model = g_strdup(value);
3221 }
3222
3223 static char *spapr_get_host_serial(Object *obj, Error **errp)
3224 {
3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3226
3227 return g_strdup(spapr->host_serial);
3228 }
3229
3230 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3231 {
3232 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233
3234 g_free(spapr->host_serial);
3235 spapr->host_serial = g_strdup(value);
3236 }
3237
3238 static void spapr_instance_init(Object *obj)
3239 {
3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3241 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3242
3243 spapr->htab_fd = -1;
3244 spapr->use_hotplug_event_source = true;
3245 object_property_add_str(obj, "kvm-type",
3246 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3247 object_property_set_description(obj, "kvm-type",
3248 "Specifies the KVM virtualization mode (HV, PR)",
3249 NULL);
3250 object_property_add_bool(obj, "modern-hotplug-events",
3251 spapr_get_modern_hotplug_events,
3252 spapr_set_modern_hotplug_events,
3253 NULL);
3254 object_property_set_description(obj, "modern-hotplug-events",
3255 "Use dedicated hotplug event mechanism in"
3256 " place of standard EPOW events when possible"
3257 " (required for memory hot-unplug support)",
3258 NULL);
3259 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3260 "Maximum permitted CPU compatibility mode",
3261 &error_fatal);
3262
3263 object_property_add_str(obj, "resize-hpt",
3264 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3265 object_property_set_description(obj, "resize-hpt",
3266 "Resizing of the Hash Page Table (enabled, disabled, required)",
3267 NULL);
3268 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3269 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3270 object_property_set_description(obj, "vsmt",
3271 "Virtual SMT: KVM behaves as if this were"
3272 " the host's SMT mode", &error_abort);
3273 object_property_add_bool(obj, "vfio-no-msix-emulation",
3274 spapr_get_msix_emulation, NULL, NULL);
3275
3276 /* The machine class defines the default interrupt controller mode */
3277 spapr->irq = smc->irq;
3278 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3279 spapr_set_ic_mode, NULL);
3280 object_property_set_description(obj, "ic-mode",
3281 "Specifies the interrupt controller mode (xics, xive, dual)",
3282 NULL);
3283
3284 object_property_add_str(obj, "host-model",
3285 spapr_get_host_model, spapr_set_host_model,
3286 &error_abort);
3287 object_property_set_description(obj, "host-model",
3288 "Host model to advertise in guest device tree", &error_abort);
3289 object_property_add_str(obj, "host-serial",
3290 spapr_get_host_serial, spapr_set_host_serial,
3291 &error_abort);
3292 object_property_set_description(obj, "host-serial",
3293 "Host serial number to advertise in guest device tree", &error_abort);
3294 }
3295
3296 static void spapr_machine_finalizefn(Object *obj)
3297 {
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299
3300 g_free(spapr->kvm_type);
3301 }
3302
3303 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3304 {
3305 cpu_synchronize_state(cs);
3306 ppc_cpu_do_system_reset(cs);
3307 }
3308
3309 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3310 {
3311 CPUState *cs;
3312
3313 CPU_FOREACH(cs) {
3314 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3315 }
3316 }
3317
3318 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3319 void *fdt, int *fdt_start_offset, Error **errp)
3320 {
3321 uint64_t addr;
3322 uint32_t node;
3323
3324 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3325 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3326 &error_abort);
3327 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3328 SPAPR_MEMORY_BLOCK_SIZE);
3329 return 0;
3330 }
3331
3332 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3333 bool dedicated_hp_event_source, Error **errp)
3334 {
3335 SpaprDrc *drc;
3336 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3337 int i;
3338 uint64_t addr = addr_start;
3339 bool hotplugged = spapr_drc_hotplugged(dev);
3340 Error *local_err = NULL;
3341
3342 for (i = 0; i < nr_lmbs; i++) {
3343 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3344 addr / SPAPR_MEMORY_BLOCK_SIZE);
3345 g_assert(drc);
3346
3347 spapr_drc_attach(drc, dev, &local_err);
3348 if (local_err) {
3349 while (addr > addr_start) {
3350 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3351 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3352 addr / SPAPR_MEMORY_BLOCK_SIZE);
3353 spapr_drc_detach(drc);
3354 }
3355 error_propagate(errp, local_err);
3356 return;
3357 }
3358 if (!hotplugged) {
3359 spapr_drc_reset(drc);
3360 }
3361 addr += SPAPR_MEMORY_BLOCK_SIZE;
3362 }
3363 /* send hotplug notification to the
3364 * guest only in case of hotplugged memory
3365 */
3366 if (hotplugged) {
3367 if (dedicated_hp_event_source) {
3368 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3369 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3370 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3371 nr_lmbs,
3372 spapr_drc_index(drc));
3373 } else {
3374 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3375 nr_lmbs);
3376 }
3377 }
3378 }
3379
3380 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3381 Error **errp)
3382 {
3383 Error *local_err = NULL;
3384 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3385 PCDIMMDevice *dimm = PC_DIMM(dev);
3386 uint64_t size, addr;
3387
3388 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3389
3390 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3391 if (local_err) {
3392 goto out;
3393 }
3394
3395 addr = object_property_get_uint(OBJECT(dimm),
3396 PC_DIMM_ADDR_PROP, &local_err);
3397 if (local_err) {
3398 goto out_unplug;
3399 }
3400
3401 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3402 &local_err);
3403 if (local_err) {
3404 goto out_unplug;
3405 }
3406
3407 return;
3408
3409 out_unplug:
3410 pc_dimm_unplug(dimm, MACHINE(ms));
3411 out:
3412 error_propagate(errp, local_err);
3413 }
3414
3415 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3416 Error **errp)
3417 {
3418 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3419 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3420 PCDIMMDevice *dimm = PC_DIMM(dev);
3421 Error *local_err = NULL;
3422 uint64_t size;
3423 Object *memdev;
3424 hwaddr pagesize;
3425
3426 if (!smc->dr_lmb_enabled) {
3427 error_setg(errp, "Memory hotplug not supported for this machine");
3428 return;
3429 }
3430
3431 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3432 if (local_err) {
3433 error_propagate(errp, local_err);
3434 return;
3435 }
3436
3437 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3438 error_setg(errp, "Hotplugged memory size must be a multiple of "
3439 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3440 return;
3441 }
3442
3443 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3444 &error_abort);
3445 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3446 spapr_check_pagesize(spapr, pagesize, &local_err);
3447 if (local_err) {
3448 error_propagate(errp, local_err);
3449 return;
3450 }
3451
3452 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3453 }
3454
3455 struct SpaprDimmState {
3456 PCDIMMDevice *dimm;
3457 uint32_t nr_lmbs;
3458 QTAILQ_ENTRY(SpaprDimmState) next;
3459 };
3460
3461 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3462 PCDIMMDevice *dimm)
3463 {
3464 SpaprDimmState *dimm_state = NULL;
3465
3466 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3467 if (dimm_state->dimm == dimm) {
3468 break;
3469 }
3470 }
3471 return dimm_state;
3472 }
3473
3474 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3475 uint32_t nr_lmbs,
3476 PCDIMMDevice *dimm)
3477 {
3478 SpaprDimmState *ds = NULL;
3479
3480 /*
3481 * If this request is for a DIMM whose removal had failed earlier
3482 * (due to guest's refusal to remove the LMBs), we would have this
3483 * dimm already in the pending_dimm_unplugs list. In that
3484 * case don't add again.
3485 */
3486 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3487 if (!ds) {
3488 ds = g_malloc0(sizeof(SpaprDimmState));
3489 ds->nr_lmbs = nr_lmbs;
3490 ds->dimm = dimm;
3491 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3492 }
3493 return ds;
3494 }
3495
3496 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3497 SpaprDimmState *dimm_state)
3498 {
3499 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3500 g_free(dimm_state);
3501 }
3502
3503 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3504 PCDIMMDevice *dimm)
3505 {
3506 SpaprDrc *drc;
3507 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3508 &error_abort);
3509 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3510 uint32_t avail_lmbs = 0;
3511 uint64_t addr_start, addr;
3512 int i;
3513
3514 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3515 &error_abort);
3516
3517 addr = addr_start;
3518 for (i = 0; i < nr_lmbs; i++) {
3519 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3520 addr / SPAPR_MEMORY_BLOCK_SIZE);
3521 g_assert(drc);
3522 if (drc->dev) {
3523 avail_lmbs++;
3524 }
3525 addr += SPAPR_MEMORY_BLOCK_SIZE;
3526 }
3527
3528 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3529 }
3530
3531 /* Callback to be called during DRC release. */
3532 void spapr_lmb_release(DeviceState *dev)
3533 {
3534 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3535 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3536 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3537
3538 /* This information will get lost if a migration occurs
3539 * during the unplug process. In this case recover it. */
3540 if (ds == NULL) {
3541 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3542 g_assert(ds);
3543 /* The DRC being examined by the caller at least must be counted */
3544 g_assert(ds->nr_lmbs);
3545 }
3546
3547 if (--ds->nr_lmbs) {
3548 return;
3549 }
3550
3551 /*
3552 * Now that all the LMBs have been removed by the guest, call the
3553 * unplug handler chain. This can never fail.
3554 */
3555 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3556 object_unparent(OBJECT(dev));
3557 }
3558
3559 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3560 {
3561 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3562 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3563
3564 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3565 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3566 spapr_pending_dimm_unplugs_remove(spapr, ds);
3567 }
3568
3569 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3570 DeviceState *dev, Error **errp)
3571 {
3572 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3573 Error *local_err = NULL;
3574 PCDIMMDevice *dimm = PC_DIMM(dev);
3575 uint32_t nr_lmbs;
3576 uint64_t size, addr_start, addr;
3577 int i;
3578 SpaprDrc *drc;
3579
3580 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3581 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3582
3583 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3584 &local_err);
3585 if (local_err) {
3586 goto out;
3587 }
3588
3589 /*
3590 * An existing pending dimm state for this DIMM means that there is an
3591 * unplug operation in progress, waiting for the spapr_lmb_release
3592 * callback to complete the job (BQL can't cover that far). In this case,
3593 * bail out to avoid detaching DRCs that were already released.
3594 */
3595 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3596 error_setg(&local_err,
3597 "Memory unplug already in progress for device %s",
3598 dev->id);
3599 goto out;
3600 }
3601
3602 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3603
3604 addr = addr_start;
3605 for (i = 0; i < nr_lmbs; i++) {
3606 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3607 addr / SPAPR_MEMORY_BLOCK_SIZE);
3608 g_assert(drc);
3609
3610 spapr_drc_detach(drc);
3611 addr += SPAPR_MEMORY_BLOCK_SIZE;
3612 }
3613
3614 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3615 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3616 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3617 nr_lmbs, spapr_drc_index(drc));
3618 out:
3619 error_propagate(errp, local_err);
3620 }
3621
3622 /* Callback to be called during DRC release. */
3623 void spapr_core_release(DeviceState *dev)
3624 {
3625 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3626
3627 /* Call the unplug handler chain. This can never fail. */
3628 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3629 object_unparent(OBJECT(dev));
3630 }
3631
3632 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3633 {
3634 MachineState *ms = MACHINE(hotplug_dev);
3635 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3636 CPUCore *cc = CPU_CORE(dev);
3637 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3638
3639 if (smc->pre_2_10_has_unused_icps) {
3640 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3641 int i;
3642
3643 for (i = 0; i < cc->nr_threads; i++) {
3644 CPUState *cs = CPU(sc->threads[i]);
3645
3646 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3647 }
3648 }
3649
3650 assert(core_slot);
3651 core_slot->cpu = NULL;
3652 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3653 }
3654
3655 static
3656 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3657 Error **errp)
3658 {
3659 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3660 int index;
3661 SpaprDrc *drc;
3662 CPUCore *cc = CPU_CORE(dev);
3663
3664 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3665 error_setg(errp, "Unable to find CPU core with core-id: %d",
3666 cc->core_id);
3667 return;
3668 }
3669 if (index == 0) {
3670 error_setg(errp, "Boot CPU core may not be unplugged");
3671 return;
3672 }
3673
3674 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3675 spapr_vcpu_id(spapr, cc->core_id));
3676 g_assert(drc);
3677
3678 if (!spapr_drc_unplug_requested(drc)) {
3679 spapr_drc_detach(drc);
3680 spapr_hotplug_req_remove_by_index(drc);
3681 }
3682 }
3683
3684 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3685 void *fdt, int *fdt_start_offset, Error **errp)
3686 {
3687 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3688 CPUState *cs = CPU(core->threads[0]);
3689 PowerPCCPU *cpu = POWERPC_CPU(cs);
3690 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3691 int id = spapr_get_vcpu_id(cpu);
3692 char *nodename;
3693 int offset;
3694
3695 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3696 offset = fdt_add_subnode(fdt, 0, nodename);
3697 g_free(nodename);
3698
3699 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3700
3701 *fdt_start_offset = offset;
3702 return 0;
3703 }
3704
3705 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3706 Error **errp)
3707 {
3708 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3709 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3710 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3711 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3712 CPUCore *cc = CPU_CORE(dev);
3713 CPUState *cs;
3714 SpaprDrc *drc;
3715 Error *local_err = NULL;
3716 CPUArchId *core_slot;
3717 int index;
3718 bool hotplugged = spapr_drc_hotplugged(dev);
3719 int i;
3720
3721 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3722 if (!core_slot) {
3723 error_setg(errp, "Unable to find CPU core with core-id: %d",
3724 cc->core_id);
3725 return;
3726 }
3727 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3728 spapr_vcpu_id(spapr, cc->core_id));
3729
3730 g_assert(drc || !mc->has_hotpluggable_cpus);
3731
3732 if (drc) {
3733 spapr_drc_attach(drc, dev, &local_err);
3734 if (local_err) {
3735 error_propagate(errp, local_err);
3736 return;
3737 }
3738
3739 if (hotplugged) {
3740 /*
3741 * Send hotplug notification interrupt to the guest only
3742 * in case of hotplugged CPUs.
3743 */
3744 spapr_hotplug_req_add_by_index(drc);
3745 } else {
3746 spapr_drc_reset(drc);
3747 }
3748 }
3749
3750 core_slot->cpu = OBJECT(dev);
3751
3752 if (smc->pre_2_10_has_unused_icps) {
3753 for (i = 0; i < cc->nr_threads; i++) {
3754 cs = CPU(core->threads[i]);
3755 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3756 }
3757 }
3758
3759 /*
3760 * Set compatibility mode to match the boot CPU, which was either set
3761 * by the machine reset code or by CAS.
3762 */
3763 if (hotplugged) {
3764 for (i = 0; i < cc->nr_threads; i++) {
3765 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3766 &local_err);
3767 if (local_err) {
3768 error_propagate(errp, local_err);
3769 return;
3770 }
3771 }
3772 }
3773 }
3774
3775 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3776 Error **errp)
3777 {
3778 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3779 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3780 Error *local_err = NULL;
3781 CPUCore *cc = CPU_CORE(dev);
3782 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3783 const char *type = object_get_typename(OBJECT(dev));
3784 CPUArchId *core_slot;
3785 int index;
3786 unsigned int smp_threads = machine->smp.threads;
3787
3788 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3789 error_setg(&local_err, "CPU hotplug not supported for this machine");
3790 goto out;
3791 }
3792
3793 if (strcmp(base_core_type, type)) {
3794 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3795 goto out;
3796 }
3797
3798 if (cc->core_id % smp_threads) {
3799 error_setg(&local_err, "invalid core id %d", cc->core_id);
3800 goto out;
3801 }
3802
3803 /*
3804 * In general we should have homogeneous threads-per-core, but old
3805 * (pre hotplug support) machine types allow the last core to have
3806 * reduced threads as a compatibility hack for when we allowed
3807 * total vcpus not a multiple of threads-per-core.
3808 */
3809 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3810 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3811 cc->nr_threads, smp_threads);
3812 goto out;
3813 }
3814
3815 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3816 if (!core_slot) {
3817 error_setg(&local_err, "core id %d out of range", cc->core_id);
3818 goto out;
3819 }
3820
3821 if (core_slot->cpu) {
3822 error_setg(&local_err, "core %d already populated", cc->core_id);
3823 goto out;
3824 }
3825
3826 numa_cpu_pre_plug(core_slot, dev, &local_err);
3827
3828 out:
3829 error_propagate(errp, local_err);
3830 }
3831
3832 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3833 void *fdt, int *fdt_start_offset, Error **errp)
3834 {
3835 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3836 int intc_phandle;
3837
3838 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3839 if (intc_phandle <= 0) {
3840 return -1;
3841 }
3842
3843 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3844 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3845 return -1;
3846 }
3847
3848 /* generally SLOF creates these, for hotplug it's up to QEMU */
3849 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3850
3851 return 0;
3852 }
3853
3854 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3855 Error **errp)
3856 {
3857 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3858 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3859 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3860 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3861
3862 if (dev->hotplugged && !smc->dr_phb_enabled) {
3863 error_setg(errp, "PHB hotplug not supported for this machine");
3864 return;
3865 }
3866
3867 if (sphb->index == (uint32_t)-1) {
3868 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3869 return;
3870 }
3871
3872 /*
3873 * This will check that sphb->index doesn't exceed the maximum number of
3874 * PHBs for the current machine type.
3875 */
3876 smc->phb_placement(spapr, sphb->index,
3877 &sphb->buid, &sphb->io_win_addr,
3878 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3879 windows_supported, sphb->dma_liobn,
3880 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3881 errp);
3882 }
3883
3884 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3885 Error **errp)
3886 {
3887 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3888 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3889 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3890 SpaprDrc *drc;
3891 bool hotplugged = spapr_drc_hotplugged(dev);
3892 Error *local_err = NULL;
3893
3894 if (!smc->dr_phb_enabled) {
3895 return;
3896 }
3897
3898 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3899 /* hotplug hooks should check it's enabled before getting this far */
3900 assert(drc);
3901
3902 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3903 if (local_err) {
3904 error_propagate(errp, local_err);
3905 return;
3906 }
3907
3908 if (hotplugged) {
3909 spapr_hotplug_req_add_by_index(drc);
3910 } else {
3911 spapr_drc_reset(drc);
3912 }
3913 }
3914
3915 void spapr_phb_release(DeviceState *dev)
3916 {
3917 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3918
3919 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3920 object_unparent(OBJECT(dev));
3921 }
3922
3923 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3924 {
3925 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3926 }
3927
3928 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3929 DeviceState *dev, Error **errp)
3930 {
3931 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3932 SpaprDrc *drc;
3933
3934 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3935 assert(drc);
3936
3937 if (!spapr_drc_unplug_requested(drc)) {
3938 spapr_drc_detach(drc);
3939 spapr_hotplug_req_remove_by_index(drc);
3940 }
3941 }
3942
3943 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3944 Error **errp)
3945 {
3946 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3947 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3948
3949 if (spapr->tpm_proxy != NULL) {
3950 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3951 return;
3952 }
3953
3954 spapr->tpm_proxy = tpm_proxy;
3955 }
3956
3957 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3958 {
3959 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3960
3961 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3962 object_unparent(OBJECT(dev));
3963 spapr->tpm_proxy = NULL;
3964 }
3965
3966 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3967 DeviceState *dev, Error **errp)
3968 {
3969 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3970 spapr_memory_plug(hotplug_dev, dev, errp);
3971 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3972 spapr_core_plug(hotplug_dev, dev, errp);
3973 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3974 spapr_phb_plug(hotplug_dev, dev, errp);
3975 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3976 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
3977 }
3978 }
3979
3980 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3981 DeviceState *dev, Error **errp)
3982 {
3983 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3984 spapr_memory_unplug(hotplug_dev, dev);
3985 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3986 spapr_core_unplug(hotplug_dev, dev);
3987 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3988 spapr_phb_unplug(hotplug_dev, dev);
3989 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3990 spapr_tpm_proxy_unplug(hotplug_dev, dev);
3991 }
3992 }
3993
3994 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3995 DeviceState *dev, Error **errp)
3996 {
3997 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3998 MachineClass *mc = MACHINE_GET_CLASS(sms);
3999 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4000
4001 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4002 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4003 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4004 } else {
4005 /* NOTE: this means there is a window after guest reset, prior to
4006 * CAS negotiation, where unplug requests will fail due to the
4007 * capability not being detected yet. This is a bit different than
4008 * the case with PCI unplug, where the events will be queued and
4009 * eventually handled by the guest after boot
4010 */
4011 error_setg(errp, "Memory hot unplug not supported for this guest");
4012 }
4013 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4014 if (!mc->has_hotpluggable_cpus) {
4015 error_setg(errp, "CPU hot unplug not supported on this machine");
4016 return;
4017 }
4018 spapr_core_unplug_request(hotplug_dev, dev, errp);
4019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4020 if (!smc->dr_phb_enabled) {
4021 error_setg(errp, "PHB hot unplug not supported on this machine");
4022 return;
4023 }
4024 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4026 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4027 }
4028 }
4029
4030 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4031 DeviceState *dev, Error **errp)
4032 {
4033 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4034 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4035 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4036 spapr_core_pre_plug(hotplug_dev, dev, errp);
4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4038 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4039 }
4040 }
4041
4042 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4043 DeviceState *dev)
4044 {
4045 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4046 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4047 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4048 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4049 return HOTPLUG_HANDLER(machine);
4050 }
4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4052 PCIDevice *pcidev = PCI_DEVICE(dev);
4053 PCIBus *root = pci_device_root_bus(pcidev);
4054 SpaprPhbState *phb =
4055 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4056 TYPE_SPAPR_PCI_HOST_BRIDGE);
4057
4058 if (phb) {
4059 return HOTPLUG_HANDLER(phb);
4060 }
4061 }
4062 return NULL;
4063 }
4064
4065 static CpuInstanceProperties
4066 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4067 {
4068 CPUArchId *core_slot;
4069 MachineClass *mc = MACHINE_GET_CLASS(machine);
4070
4071 /* make sure possible_cpu are intialized */
4072 mc->possible_cpu_arch_ids(machine);
4073 /* get CPU core slot containing thread that matches cpu_index */
4074 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4075 assert(core_slot);
4076 return core_slot->props;
4077 }
4078
4079 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4080 {
4081 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4082 }
4083
4084 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4085 {
4086 int i;
4087 unsigned int smp_threads = machine->smp.threads;
4088 unsigned int smp_cpus = machine->smp.cpus;
4089 const char *core_type;
4090 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4091 MachineClass *mc = MACHINE_GET_CLASS(machine);
4092
4093 if (!mc->has_hotpluggable_cpus) {
4094 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4095 }
4096 if (machine->possible_cpus) {
4097 assert(machine->possible_cpus->len == spapr_max_cores);
4098 return machine->possible_cpus;
4099 }
4100
4101 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4102 if (!core_type) {
4103 error_report("Unable to find sPAPR CPU Core definition");
4104 exit(1);
4105 }
4106
4107 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4108 sizeof(CPUArchId) * spapr_max_cores);
4109 machine->possible_cpus->len = spapr_max_cores;
4110 for (i = 0; i < machine->possible_cpus->len; i++) {
4111 int core_id = i * smp_threads;
4112
4113 machine->possible_cpus->cpus[i].type = core_type;
4114 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4115 machine->possible_cpus->cpus[i].arch_id = core_id;
4116 machine->possible_cpus->cpus[i].props.has_core_id = true;
4117 machine->possible_cpus->cpus[i].props.core_id = core_id;
4118 }
4119 return machine->possible_cpus;
4120 }
4121
4122 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4123 uint64_t *buid, hwaddr *pio,
4124 hwaddr *mmio32, hwaddr *mmio64,
4125 unsigned n_dma, uint32_t *liobns,
4126 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4127 {
4128 /*
4129 * New-style PHB window placement.
4130 *
4131 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4132 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4133 * windows.
4134 *
4135 * Some guest kernels can't work with MMIO windows above 1<<46
4136 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4137 *
4138 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4139 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4140 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4141 * 1TiB 64-bit MMIO windows for each PHB.
4142 */
4143 const uint64_t base_buid = 0x800000020000000ULL;
4144 int i;
4145
4146 /* Sanity check natural alignments */
4147 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4148 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4149 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4150 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4151 /* Sanity check bounds */
4152 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4153 SPAPR_PCI_MEM32_WIN_SIZE);
4154 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4155 SPAPR_PCI_MEM64_WIN_SIZE);
4156
4157 if (index >= SPAPR_MAX_PHBS) {
4158 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4159 SPAPR_MAX_PHBS - 1);
4160 return;
4161 }
4162
4163 *buid = base_buid + index;
4164 for (i = 0; i < n_dma; ++i) {
4165 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4166 }
4167
4168 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4169 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4170 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4171
4172 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4173 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4174 }
4175
4176 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4177 {
4178 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4179
4180 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4181 }
4182
4183 static void spapr_ics_resend(XICSFabric *dev)
4184 {
4185 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4186
4187 ics_resend(spapr->ics);
4188 }
4189
4190 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4191 {
4192 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4193
4194 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4195 }
4196
4197 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4198 Monitor *mon)
4199 {
4200 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4201
4202 spapr_irq_print_info(spapr, mon);
4203 monitor_printf(mon, "irqchip: %s\n",
4204 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4205 }
4206
4207 /*
4208 * This is a XIVE only operation
4209 */
4210 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4211 uint8_t nvt_blk, uint32_t nvt_idx,
4212 bool cam_ignore, uint8_t priority,
4213 uint32_t logic_serv, XiveTCTXMatch *match)
4214 {
4215 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4216 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4217 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4218 int count;
4219
4220 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4221 priority, logic_serv, match);
4222 if (count < 0) {
4223 return count;
4224 }
4225
4226 /*
4227 * When we implement the save and restore of the thread interrupt
4228 * contexts in the enter/exit CPU handlers of the machine and the
4229 * escalations in QEMU, we should be able to handle non dispatched
4230 * vCPUs.
4231 *
4232 * Until this is done, the sPAPR machine should find at least one
4233 * matching context always.
4234 */
4235 if (count == 0) {
4236 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4237 nvt_blk, nvt_idx);
4238 }
4239
4240 return count;
4241 }
4242
4243 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4244 {
4245 return cpu->vcpu_id;
4246 }
4247
4248 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4249 {
4250 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4251 MachineState *ms = MACHINE(spapr);
4252 int vcpu_id;
4253
4254 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4255
4256 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4257 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4258 error_append_hint(errp, "Adjust the number of cpus to %d "
4259 "or try to raise the number of threads per core\n",
4260 vcpu_id * ms->smp.threads / spapr->vsmt);
4261 return;
4262 }
4263
4264 cpu->vcpu_id = vcpu_id;
4265 }
4266
4267 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4268 {
4269 CPUState *cs;
4270
4271 CPU_FOREACH(cs) {
4272 PowerPCCPU *cpu = POWERPC_CPU(cs);
4273
4274 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4275 return cpu;
4276 }
4277 }
4278
4279 return NULL;
4280 }
4281
4282 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4283 {
4284 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4285
4286 /* These are only called by TCG, KVM maintains dispatch state */
4287
4288 spapr_cpu->prod = false;
4289 if (spapr_cpu->vpa_addr) {
4290 CPUState *cs = CPU(cpu);
4291 uint32_t dispatch;
4292
4293 dispatch = ldl_be_phys(cs->as,
4294 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4295 dispatch++;
4296 if ((dispatch & 1) != 0) {
4297 qemu_log_mask(LOG_GUEST_ERROR,
4298 "VPA: incorrect dispatch counter value for "
4299 "dispatched partition %u, correcting.\n", dispatch);
4300 dispatch++;
4301 }
4302 stl_be_phys(cs->as,
4303 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4304 }
4305 }
4306
4307 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4308 {
4309 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4310
4311 if (spapr_cpu->vpa_addr) {
4312 CPUState *cs = CPU(cpu);
4313 uint32_t dispatch;
4314
4315 dispatch = ldl_be_phys(cs->as,
4316 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4317 dispatch++;
4318 if ((dispatch & 1) != 1) {
4319 qemu_log_mask(LOG_GUEST_ERROR,
4320 "VPA: incorrect dispatch counter value for "
4321 "preempted partition %u, correcting.\n", dispatch);
4322 dispatch++;
4323 }
4324 stl_be_phys(cs->as,
4325 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4326 }
4327 }
4328
4329 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4330 {
4331 MachineClass *mc = MACHINE_CLASS(oc);
4332 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4333 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4334 NMIClass *nc = NMI_CLASS(oc);
4335 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4336 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4337 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4338 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4339 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4340
4341 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4342 mc->ignore_boot_device_suffixes = true;
4343
4344 /*
4345 * We set up the default / latest behaviour here. The class_init
4346 * functions for the specific versioned machine types can override
4347 * these details for backwards compatibility
4348 */
4349 mc->init = spapr_machine_init;
4350 mc->reset = spapr_machine_reset;
4351 mc->block_default_type = IF_SCSI;
4352 mc->max_cpus = 1024;
4353 mc->no_parallel = 1;
4354 mc->default_boot_order = "";
4355 mc->default_ram_size = 512 * MiB;
4356 mc->default_display = "std";
4357 mc->kvm_type = spapr_kvm_type;
4358 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4359 mc->pci_allow_0_address = true;
4360 assert(!mc->get_hotplug_handler);
4361 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4362 hc->pre_plug = spapr_machine_device_pre_plug;
4363 hc->plug = spapr_machine_device_plug;
4364 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4365 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4366 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4367 hc->unplug_request = spapr_machine_device_unplug_request;
4368 hc->unplug = spapr_machine_device_unplug;
4369
4370 smc->dr_lmb_enabled = true;
4371 smc->update_dt_enabled = true;
4372 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4373 mc->has_hotpluggable_cpus = true;
4374 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4375 fwc->get_dev_path = spapr_get_fw_dev_path;
4376 nc->nmi_monitor_handler = spapr_nmi;
4377 smc->phb_placement = spapr_phb_placement;
4378 vhc->hypercall = emulate_spapr_hypercall;
4379 vhc->hpt_mask = spapr_hpt_mask;
4380 vhc->map_hptes = spapr_map_hptes;
4381 vhc->unmap_hptes = spapr_unmap_hptes;
4382 vhc->hpte_set_c = spapr_hpte_set_c;
4383 vhc->hpte_set_r = spapr_hpte_set_r;
4384 vhc->get_pate = spapr_get_pate;
4385 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4386 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4387 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4388 xic->ics_get = spapr_ics_get;
4389 xic->ics_resend = spapr_ics_resend;
4390 xic->icp_get = spapr_icp_get;
4391 ispc->print_info = spapr_pic_print_info;
4392 /* Force NUMA node memory size to be a multiple of
4393 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4394 * in which LMBs are represented and hot-added
4395 */
4396 mc->numa_mem_align_shift = 28;
4397 mc->numa_mem_supported = true;
4398 mc->auto_enable_numa = true;
4399
4400 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4401 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4402 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4403 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4404 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4405 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4406 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4407 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4408 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4409 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4410 smc->default_caps.caps[SPAPR_CAP_FWNMI_MCE] = SPAPR_CAP_OFF;
4411 spapr_caps_add_properties(smc, &error_abort);
4412 smc->irq = &spapr_irq_dual;
4413 smc->dr_phb_enabled = true;
4414 smc->linux_pci_probe = true;
4415 smc->smp_threads_vsmt = true;
4416 smc->nr_xirqs = SPAPR_NR_XIRQS;
4417 xfc->match_nvt = spapr_match_nvt;
4418 }
4419
4420 static const TypeInfo spapr_machine_info = {
4421 .name = TYPE_SPAPR_MACHINE,
4422 .parent = TYPE_MACHINE,
4423 .abstract = true,
4424 .instance_size = sizeof(SpaprMachineState),
4425 .instance_init = spapr_instance_init,
4426 .instance_finalize = spapr_machine_finalizefn,
4427 .class_size = sizeof(SpaprMachineClass),
4428 .class_init = spapr_machine_class_init,
4429 .interfaces = (InterfaceInfo[]) {
4430 { TYPE_FW_PATH_PROVIDER },
4431 { TYPE_NMI },
4432 { TYPE_HOTPLUG_HANDLER },
4433 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4434 { TYPE_XICS_FABRIC },
4435 { TYPE_INTERRUPT_STATS_PROVIDER },
4436 { TYPE_XIVE_FABRIC },
4437 { }
4438 },
4439 };
4440
4441 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4442 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4443 void *data) \
4444 { \
4445 MachineClass *mc = MACHINE_CLASS(oc); \
4446 spapr_machine_##suffix##_class_options(mc); \
4447 if (latest) { \
4448 mc->alias = "pseries"; \
4449 mc->is_default = 1; \
4450 } \
4451 } \
4452 static const TypeInfo spapr_machine_##suffix##_info = { \
4453 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4454 .parent = TYPE_SPAPR_MACHINE, \
4455 .class_init = spapr_machine_##suffix##_class_init, \
4456 }; \
4457 static void spapr_machine_register_##suffix(void) \
4458 { \
4459 type_register(&spapr_machine_##suffix##_info); \
4460 } \
4461 type_init(spapr_machine_register_##suffix)
4462
4463 /*
4464 * pseries-5.0
4465 */
4466 static void spapr_machine_5_0_class_options(MachineClass *mc)
4467 {
4468 /* Defaults for the latest behaviour inherited from the base class */
4469 }
4470
4471 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4472
4473 /*
4474 * pseries-4.2
4475 */
4476 static void spapr_machine_4_2_class_options(MachineClass *mc)
4477 {
4478 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4479
4480 spapr_machine_5_0_class_options(mc);
4481 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4482 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4483 }
4484
4485 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4486
4487 /*
4488 * pseries-4.1
4489 */
4490 static void spapr_machine_4_1_class_options(MachineClass *mc)
4491 {
4492 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4493 static GlobalProperty compat[] = {
4494 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4495 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4496 };
4497
4498 spapr_machine_4_2_class_options(mc);
4499 smc->linux_pci_probe = false;
4500 smc->smp_threads_vsmt = false;
4501 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4502 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4503 }
4504
4505 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4506
4507 /*
4508 * pseries-4.0
4509 */
4510 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4511 uint64_t *buid, hwaddr *pio,
4512 hwaddr *mmio32, hwaddr *mmio64,
4513 unsigned n_dma, uint32_t *liobns,
4514 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4515 {
4516 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4517 nv2gpa, nv2atsd, errp);
4518 *nv2gpa = 0;
4519 *nv2atsd = 0;
4520 }
4521
4522 static void spapr_machine_4_0_class_options(MachineClass *mc)
4523 {
4524 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4525
4526 spapr_machine_4_1_class_options(mc);
4527 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4528 smc->phb_placement = phb_placement_4_0;
4529 smc->irq = &spapr_irq_xics;
4530 smc->pre_4_1_migration = true;
4531 }
4532
4533 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4534
4535 /*
4536 * pseries-3.1
4537 */
4538 static void spapr_machine_3_1_class_options(MachineClass *mc)
4539 {
4540 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4541
4542 spapr_machine_4_0_class_options(mc);
4543 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4544
4545 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4546 smc->update_dt_enabled = false;
4547 smc->dr_phb_enabled = false;
4548 smc->broken_host_serial_model = true;
4549 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4550 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4551 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4552 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4553 }
4554
4555 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4556
4557 /*
4558 * pseries-3.0
4559 */
4560
4561 static void spapr_machine_3_0_class_options(MachineClass *mc)
4562 {
4563 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4564
4565 spapr_machine_3_1_class_options(mc);
4566 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4567
4568 smc->legacy_irq_allocation = true;
4569 smc->nr_xirqs = 0x400;
4570 smc->irq = &spapr_irq_xics_legacy;
4571 }
4572
4573 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4574
4575 /*
4576 * pseries-2.12
4577 */
4578 static void spapr_machine_2_12_class_options(MachineClass *mc)
4579 {
4580 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4581 static GlobalProperty compat[] = {
4582 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4583 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4584 };
4585
4586 spapr_machine_3_0_class_options(mc);
4587 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4588 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4589
4590 /* We depend on kvm_enabled() to choose a default value for the
4591 * hpt-max-page-size capability. Of course we can't do it here
4592 * because this is too early and the HW accelerator isn't initialzed
4593 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4594 */
4595 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4596 }
4597
4598 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4599
4600 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4601 {
4602 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4603
4604 spapr_machine_2_12_class_options(mc);
4605 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4606 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4607 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4608 }
4609
4610 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4611
4612 /*
4613 * pseries-2.11
4614 */
4615
4616 static void spapr_machine_2_11_class_options(MachineClass *mc)
4617 {
4618 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4619
4620 spapr_machine_2_12_class_options(mc);
4621 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4622 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4623 }
4624
4625 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4626
4627 /*
4628 * pseries-2.10
4629 */
4630
4631 static void spapr_machine_2_10_class_options(MachineClass *mc)
4632 {
4633 spapr_machine_2_11_class_options(mc);
4634 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4635 }
4636
4637 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4638
4639 /*
4640 * pseries-2.9
4641 */
4642
4643 static void spapr_machine_2_9_class_options(MachineClass *mc)
4644 {
4645 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4646 static GlobalProperty compat[] = {
4647 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4648 };
4649
4650 spapr_machine_2_10_class_options(mc);
4651 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4652 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4653 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4654 smc->pre_2_10_has_unused_icps = true;
4655 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4656 }
4657
4658 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4659
4660 /*
4661 * pseries-2.8
4662 */
4663
4664 static void spapr_machine_2_8_class_options(MachineClass *mc)
4665 {
4666 static GlobalProperty compat[] = {
4667 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4668 };
4669
4670 spapr_machine_2_9_class_options(mc);
4671 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4672 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4673 mc->numa_mem_align_shift = 23;
4674 }
4675
4676 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4677
4678 /*
4679 * pseries-2.7
4680 */
4681
4682 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4683 uint64_t *buid, hwaddr *pio,
4684 hwaddr *mmio32, hwaddr *mmio64,
4685 unsigned n_dma, uint32_t *liobns,
4686 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4687 {
4688 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4689 const uint64_t base_buid = 0x800000020000000ULL;
4690 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4691 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4692 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4693 const uint32_t max_index = 255;
4694 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4695
4696 uint64_t ram_top = MACHINE(spapr)->ram_size;
4697 hwaddr phb0_base, phb_base;
4698 int i;
4699
4700 /* Do we have device memory? */
4701 if (MACHINE(spapr)->maxram_size > ram_top) {
4702 /* Can't just use maxram_size, because there may be an
4703 * alignment gap between normal and device memory regions
4704 */
4705 ram_top = MACHINE(spapr)->device_memory->base +
4706 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4707 }
4708
4709 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4710
4711 if (index > max_index) {
4712 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4713 max_index);
4714 return;
4715 }
4716
4717 *buid = base_buid + index;
4718 for (i = 0; i < n_dma; ++i) {
4719 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4720 }
4721
4722 phb_base = phb0_base + index * phb_spacing;
4723 *pio = phb_base + pio_offset;
4724 *mmio32 = phb_base + mmio_offset;
4725 /*
4726 * We don't set the 64-bit MMIO window, relying on the PHB's
4727 * fallback behaviour of automatically splitting a large "32-bit"
4728 * window into contiguous 32-bit and 64-bit windows
4729 */
4730
4731 *nv2gpa = 0;
4732 *nv2atsd = 0;
4733 }
4734
4735 static void spapr_machine_2_7_class_options(MachineClass *mc)
4736 {
4737 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4738 static GlobalProperty compat[] = {
4739 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4740 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4741 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4742 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4743 };
4744
4745 spapr_machine_2_8_class_options(mc);
4746 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4747 mc->default_machine_opts = "modern-hotplug-events=off";
4748 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4749 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4750 smc->phb_placement = phb_placement_2_7;
4751 }
4752
4753 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4754
4755 /*
4756 * pseries-2.6
4757 */
4758
4759 static void spapr_machine_2_6_class_options(MachineClass *mc)
4760 {
4761 static GlobalProperty compat[] = {
4762 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4763 };
4764
4765 spapr_machine_2_7_class_options(mc);
4766 mc->has_hotpluggable_cpus = false;
4767 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4768 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4769 }
4770
4771 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4772
4773 /*
4774 * pseries-2.5
4775 */
4776
4777 static void spapr_machine_2_5_class_options(MachineClass *mc)
4778 {
4779 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4780 static GlobalProperty compat[] = {
4781 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4782 };
4783
4784 spapr_machine_2_6_class_options(mc);
4785 smc->use_ohci_by_default = true;
4786 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4787 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4788 }
4789
4790 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4791
4792 /*
4793 * pseries-2.4
4794 */
4795
4796 static void spapr_machine_2_4_class_options(MachineClass *mc)
4797 {
4798 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4799
4800 spapr_machine_2_5_class_options(mc);
4801 smc->dr_lmb_enabled = false;
4802 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4803 }
4804
4805 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4806
4807 /*
4808 * pseries-2.3
4809 */
4810
4811 static void spapr_machine_2_3_class_options(MachineClass *mc)
4812 {
4813 static GlobalProperty compat[] = {
4814 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4815 };
4816 spapr_machine_2_4_class_options(mc);
4817 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4818 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4819 }
4820 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4821
4822 /*
4823 * pseries-2.2
4824 */
4825
4826 static void spapr_machine_2_2_class_options(MachineClass *mc)
4827 {
4828 static GlobalProperty compat[] = {
4829 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4830 };
4831
4832 spapr_machine_2_3_class_options(mc);
4833 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4834 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4835 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4836 }
4837 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4838
4839 /*
4840 * pseries-2.1
4841 */
4842
4843 static void spapr_machine_2_1_class_options(MachineClass *mc)
4844 {
4845 spapr_machine_2_2_class_options(mc);
4846 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4847 }
4848 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4849
4850 static void spapr_machine_register_types(void)
4851 {
4852 type_register_static(&spapr_machine_info);
4853 }
4854
4855 type_init(spapr_machine_register_types)