]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/spapr.c
6d65c0797b7667a6e2b15296c7ec827bbe32cef0
[thirdparty/qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84
85 #include "monitor/monitor.h"
86
87 #include <libfdt.h>
88
89 /* SLOF memory layout:
90 *
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
93 *
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
96 *
97 * We load our kernel at 4M, leaving space for SLOF initial image
98 */
99 #define FDT_MAX_SIZE 0x100000
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105
106 #define MIN_RMA_SLOF (128 * MiB)
107
108 #define PHANDLE_INTC 0x00001111
109
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
113 */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
118
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
125 {
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
135 */
136 return false;
137 }
138
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
149 },
150 };
151
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
156 }
157
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166 MachineState *ms = MACHINE(spapr);
167
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
174 {
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
179
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
184 }
185 }
186
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
193 }
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
198 }
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
201
202 return ret;
203 }
204
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207 int index = spapr_get_vcpu_id(cpu);
208 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(cpu->node_id),
213 cpu_to_be32(index)};
214
215 /* Advertise NUMA via ibm,associativity */
216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217 sizeof(associativity));
218 }
219
220 static void spapr_dt_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
223 {
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 };
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
258
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
262 }
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
266 }
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
270 }
271 if (!pa_features) {
272 return;
273 }
274
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 /*
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
282 */
283 pa_features[3] |= 0x20;
284 }
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
287 }
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293 }
294
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
306 }
307 }
308 }
309 return machine->ram_size;
310 }
311
312 static void add_str(GString *s, const gchar *s1)
313 {
314 g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316
317 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
319 {
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 };
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
328
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
331
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
341 }
342
343 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 {
345 MemoryDeviceInfoList *info;
346
347 for (info = list; info; info = info->next) {
348 MemoryDeviceInfo *value = info->value;
349
350 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
351 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352
353 if (addr >= pcdimm_info->addr &&
354 addr < (pcdimm_info->addr + pcdimm_info->size)) {
355 return pcdimm_info->node;
356 }
357 }
358 }
359
360 return -1;
361 }
362
363 struct sPAPRDrconfCellV2 {
364 uint32_t seq_lmbs;
365 uint64_t base_addr;
366 uint32_t drc_index;
367 uint32_t aa_index;
368 uint32_t flags;
369 } QEMU_PACKED;
370
371 typedef struct DrconfCellQueue {
372 struct sPAPRDrconfCellV2 cell;
373 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
374 } DrconfCellQueue;
375
376 static DrconfCellQueue *
377 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
378 uint32_t drc_index, uint32_t aa_index,
379 uint32_t flags)
380 {
381 DrconfCellQueue *elem;
382
383 elem = g_malloc0(sizeof(*elem));
384 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
385 elem->cell.base_addr = cpu_to_be64(base_addr);
386 elem->cell.drc_index = cpu_to_be32(drc_index);
387 elem->cell.aa_index = cpu_to_be32(aa_index);
388 elem->cell.flags = cpu_to_be32(flags);
389
390 return elem;
391 }
392
393 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
394 int offset, MemoryDeviceInfoList *dimms)
395 {
396 MachineState *machine = MACHINE(spapr);
397 uint8_t *int_buf, *cur_index;
398 int ret;
399 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
400 uint64_t addr, cur_addr, size;
401 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
402 uint64_t mem_end = machine->device_memory->base +
403 memory_region_size(&machine->device_memory->mr);
404 uint32_t node, buf_len, nr_entries = 0;
405 SpaprDrc *drc;
406 DrconfCellQueue *elem, *next;
407 MemoryDeviceInfoList *info;
408 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
409 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410
411 /* Entry to cover RAM and the gap area */
412 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
413 SPAPR_LMB_FLAGS_RESERVED |
414 SPAPR_LMB_FLAGS_DRC_INVALID);
415 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
416 nr_entries++;
417
418 cur_addr = machine->device_memory->base;
419 for (info = dimms; info; info = info->next) {
420 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421
422 addr = di->addr;
423 size = di->size;
424 node = di->node;
425
426 /*
427 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
428 * area is marked hotpluggable in the next iteration for the bigger
429 * chunk including the NVDIMM occupied area.
430 */
431 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
432 continue;
433
434 /* Entry for hot-pluggable area */
435 if (cur_addr < addr) {
436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
437 g_assert(drc);
438 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
439 cur_addr, spapr_drc_index(drc), -1, 0);
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441 nr_entries++;
442 }
443
444 /* Entry for DIMM */
445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
446 g_assert(drc);
447 elem = spapr_get_drconf_cell(size / lmb_size, addr,
448 spapr_drc_index(drc), node,
449 SPAPR_LMB_FLAGS_ASSIGNED);
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
452 cur_addr = addr + size;
453 }
454
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr < mem_end) {
457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458 g_assert(drc);
459 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460 cur_addr, spapr_drc_index(drc), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462 nr_entries++;
463 }
464
465 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466 int_buf = cur_index = g_malloc0(buf_len);
467 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468 cur_index += sizeof(nr_entries);
469
470 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472 cur_index += sizeof(elem->cell);
473 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474 g_free(elem);
475 }
476
477 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478 g_free(int_buf);
479 if (ret < 0) {
480 return -1;
481 }
482 return 0;
483 }
484
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486 int offset, MemoryDeviceInfoList *dimms)
487 {
488 MachineState *machine = MACHINE(spapr);
489 int i, ret;
490 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492 uint32_t nr_lmbs = (machine->device_memory->base +
493 memory_region_size(&machine->device_memory->mr)) /
494 lmb_size;
495 uint32_t *int_buf, *cur_index, buf_len;
496
497 /*
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
499 */
500 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501 cur_index = int_buf = g_malloc0(buf_len);
502 int_buf[0] = cpu_to_be32(nr_lmbs);
503 cur_index++;
504 for (i = 0; i < nr_lmbs; i++) {
505 uint64_t addr = i * lmb_size;
506 uint32_t *dynamic_memory = cur_index;
507
508 if (i >= device_lmb_start) {
509 SpaprDrc *drc;
510
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512 g_assert(drc);
513
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519 if (memory_region_present(get_system_memory(), addr)) {
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521 } else {
522 dynamic_memory[5] = cpu_to_be32(0);
523 }
524 } else {
525 /*
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
529 */
530 dynamic_memory[0] = cpu_to_be32(addr >> 32);
531 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532 dynamic_memory[2] = cpu_to_be32(0);
533 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory[4] = cpu_to_be32(-1);
535 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536 SPAPR_LMB_FLAGS_DRC_INVALID);
537 }
538
539 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
540 }
541 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542 g_free(int_buf);
543 if (ret < 0) {
544 return -1;
545 }
546 return 0;
547 }
548
549 /*
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
553 */
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555 void *fdt)
556 {
557 MachineState *machine = MACHINE(spapr);
558 int nb_numa_nodes = machine->numa_state->num_nodes;
559 int ret, i, offset;
560 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
562 uint32_t *int_buf, *cur_index, buf_len;
563 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
564 MemoryDeviceInfoList *dimms = NULL;
565
566 /*
567 * Don't create the node if there is no device memory
568 */
569 if (machine->ram_size == machine->maxram_size) {
570 return 0;
571 }
572
573 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
574
575 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
576 sizeof(prop_lmb_size));
577 if (ret < 0) {
578 return ret;
579 }
580
581 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
587 if (ret < 0) {
588 return ret;
589 }
590
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms = qmp_memory_device_list();
593 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
594 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
595 } else {
596 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
597 }
598 qapi_free_MemoryDeviceInfoList(dimms);
599
600 if (ret < 0) {
601 return ret;
602 }
603
604 /* ibm,associativity-lookup-arrays */
605 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
606 cur_index = int_buf = g_malloc0(buf_len);
607 int_buf[0] = cpu_to_be32(nr_nodes);
608 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
609 cur_index += 2;
610 for (i = 0; i < nr_nodes; i++) {
611 uint32_t associativity[] = {
612 cpu_to_be32(0x0),
613 cpu_to_be32(0x0),
614 cpu_to_be32(0x0),
615 cpu_to_be32(i)
616 };
617 memcpy(cur_index, associativity, sizeof(associativity));
618 cur_index += 4;
619 }
620 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
621 (cur_index - int_buf) * sizeof(uint32_t));
622 g_free(int_buf);
623
624 return ret;
625 }
626
627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
628 {
629 MachineState *machine = MACHINE(spapr);
630 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
631 hwaddr mem_start, node_size;
632 int i, nb_nodes = machine->numa_state->num_nodes;
633 NodeInfo *nodes = machine->numa_state->nodes;
634
635 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
636 if (!nodes[i].node_mem) {
637 continue;
638 }
639 if (mem_start >= machine->ram_size) {
640 node_size = 0;
641 } else {
642 node_size = nodes[i].node_mem;
643 if (node_size > machine->ram_size - mem_start) {
644 node_size = machine->ram_size - mem_start;
645 }
646 }
647 if (!mem_start) {
648 /* spapr_machine_init() checks for rma_size <= node0_size
649 * already */
650 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
651 mem_start += spapr->rma_size;
652 node_size -= spapr->rma_size;
653 }
654 for ( ; node_size; ) {
655 hwaddr sizetmp = pow2floor(node_size);
656
657 /* mem_start != 0 here */
658 if (ctzl(mem_start) < ctzl(sizetmp)) {
659 sizetmp = 1ULL << ctzl(mem_start);
660 }
661
662 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
663 node_size -= sizetmp;
664 mem_start += sizetmp;
665 }
666 }
667
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
670 int ret;
671
672 g_assert(smc->dr_lmb_enabled);
673 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
674 if (ret) {
675 return ret;
676 }
677 }
678
679 return 0;
680 }
681
682 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
683 SpaprMachineState *spapr)
684 {
685 MachineState *ms = MACHINE(spapr);
686 PowerPCCPU *cpu = POWERPC_CPU(cs);
687 CPUPPCState *env = &cpu->env;
688 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
689 int index = spapr_get_vcpu_id(cpu);
690 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ;
694 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop[64];
696 size_t page_sizes_prop_size;
697 unsigned int smp_threads = ms->smp.threads;
698 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
699 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
700 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
701 SpaprDrc *drc;
702 int drc_index;
703 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
704 int i;
705
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
707 if (drc) {
708 drc_index = spapr_drc_index(drc);
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
710 }
711
712 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
713 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
714
715 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
716 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
717 env->dcache_line_size)));
718 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
719 env->dcache_line_size)));
720 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
721 env->icache_line_size)));
722 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
723 env->icache_line_size)));
724
725 if (pcc->l1_dcache_size) {
726 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
727 pcc->l1_dcache_size)));
728 } else {
729 warn_report("Unknown L1 dcache size for cpu");
730 }
731 if (pcc->l1_icache_size) {
732 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
733 pcc->l1_icache_size)));
734 } else {
735 warn_report("Unknown L1 icache size for cpu");
736 }
737
738 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
739 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
740 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
742 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
743 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
744
745 if (env->spr_cb[SPR_PURR].oea_read) {
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
747 }
748 if (env->spr_cb[SPR_SPURR].oea_read) {
749 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
750 }
751
752 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
753 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
754 segs, sizeof(segs))));
755 }
756
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
759 * 2 == VSX available
760 *
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
765 } else {
766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
767 }
768
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
773 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
774 }
775
776 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
777 sizeof(page_sizes_prop));
778 if (page_sizes_prop_size) {
779 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
780 page_sizes_prop, page_sizes_prop_size)));
781 }
782
783 spapr_dt_pa_features(spapr, cpu, fdt, offset);
784
785 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
786 cs->cpu_index / vcpus_per_socket)));
787
788 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
789 pft_size_prop, sizeof(pft_size_prop))));
790
791 if (ms->numa_state->num_nodes > 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
793 }
794
795 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
796
797 if (pcc->radix_page_info) {
798 for (i = 0; i < pcc->radix_page_info->count; i++) {
799 radix_AP_encodings[i] =
800 cpu_to_be32(pcc->radix_page_info->entries[i]);
801 }
802 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
803 radix_AP_encodings,
804 pcc->radix_page_info->count *
805 sizeof(radix_AP_encodings[0]))));
806 }
807
808 /*
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
811 */
812 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
813 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
814 pcc->lrg_decr_bits)));
815 }
816
817 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
818 {
819 CPUState **rev;
820 CPUState *cs;
821 int n_cpus;
822 int cpus_offset;
823 char *nodename;
824 int i;
825
826 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
827 _FDT(cpus_offset);
828 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
830
831 /*
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
835 *
836 * The CPU list cannot be traversed in reverse order, so we need
837 * to do extra work.
838 */
839 n_cpus = 0;
840 rev = NULL;
841 CPU_FOREACH(cs) {
842 rev = g_renew(CPUState *, rev, n_cpus + 1);
843 rev[n_cpus++] = cs;
844 }
845
846 for (i = n_cpus - 1; i >= 0; i--) {
847 CPUState *cs = rev[i];
848 PowerPCCPU *cpu = POWERPC_CPU(cs);
849 int index = spapr_get_vcpu_id(cpu);
850 DeviceClass *dc = DEVICE_GET_CLASS(cs);
851 int offset;
852
853 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
854 continue;
855 }
856
857 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
858 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
859 g_free(nodename);
860 _FDT(offset);
861 spapr_dt_cpu(cs, fdt, offset, spapr);
862 }
863
864 g_free(rev);
865 }
866
867 static int spapr_dt_rng(void *fdt)
868 {
869 int node;
870 int ret;
871
872 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
873 if (node <= 0) {
874 return -1;
875 }
876 ret = fdt_setprop_string(fdt, node, "device_type",
877 "ibm,platform-facilities");
878 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
879 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
880
881 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
882 if (node <= 0) {
883 return -1;
884 }
885 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
886
887 return ret ? -1 : 0;
888 }
889
890 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
891 {
892 MachineState *ms = MACHINE(spapr);
893 int rtas;
894 GString *hypertas = g_string_sized_new(256);
895 GString *qemu_hypertas = g_string_sized_new(256);
896 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
898 memory_region_size(&MACHINE(spapr)->device_memory->mr);
899 uint32_t lrdr_capacity[] = {
900 cpu_to_be32(max_device_addr >> 32),
901 cpu_to_be32(max_device_addr & 0xffffffff),
902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
904 };
905 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
906 uint32_t maxdomains[] = {
907 cpu_to_be32(4),
908 maxdomain,
909 maxdomain,
910 maxdomain,
911 cpu_to_be32(spapr->gpu_numa_id),
912 };
913
914 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
915
916 /* hypertas */
917 add_str(hypertas, "hcall-pft");
918 add_str(hypertas, "hcall-term");
919 add_str(hypertas, "hcall-dabr");
920 add_str(hypertas, "hcall-interrupt");
921 add_str(hypertas, "hcall-tce");
922 add_str(hypertas, "hcall-vio");
923 add_str(hypertas, "hcall-splpar");
924 add_str(hypertas, "hcall-join");
925 add_str(hypertas, "hcall-bulk");
926 add_str(hypertas, "hcall-set-mode");
927 add_str(hypertas, "hcall-sprg0");
928 add_str(hypertas, "hcall-copy");
929 add_str(hypertas, "hcall-debug");
930 add_str(hypertas, "hcall-vphn");
931 add_str(qemu_hypertas, "hcall-memop1");
932
933 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
934 add_str(hypertas, "hcall-multi-tce");
935 }
936
937 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
938 add_str(hypertas, "hcall-hpt-resize");
939 }
940
941 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
942 hypertas->str, hypertas->len));
943 g_string_free(hypertas, TRUE);
944 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
945 qemu_hypertas->str, qemu_hypertas->len));
946 g_string_free(qemu_hypertas, TRUE);
947
948 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
949 refpoints, sizeof(refpoints)));
950
951 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
952 maxdomains, sizeof(maxdomains)));
953
954 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_SIZE));
955 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
956 RTAS_ERROR_LOG_MAX));
957 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
958 RTAS_EVENT_SCAN_RATE));
959
960 g_assert(msi_nonbroken);
961 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
962
963 /*
964 * According to PAPR, rtas ibm,os-term does not guarantee a return
965 * back to the guest cpu.
966 *
967 * While an additional ibm,extended-os-term property indicates
968 * that rtas call return will always occur. Set this property.
969 */
970 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
971
972 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
973 lrdr_capacity, sizeof(lrdr_capacity)));
974
975 spapr_dt_rtas_tokens(fdt, rtas);
976 }
977
978 /*
979 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
980 * and the XIVE features that the guest may request and thus the valid
981 * values for bytes 23..26 of option vector 5:
982 */
983 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
984 int chosen)
985 {
986 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
987
988 char val[2 * 4] = {
989 23, 0x00, /* XICS / XIVE mode */
990 24, 0x00, /* Hash/Radix, filled in below. */
991 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
992 26, 0x40, /* Radix options: GTSE == yes. */
993 };
994
995 if (spapr->irq->xics && spapr->irq->xive) {
996 val[1] = SPAPR_OV5_XIVE_BOTH;
997 } else if (spapr->irq->xive) {
998 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
999 } else {
1000 assert(spapr->irq->xics);
1001 val[1] = SPAPR_OV5_XIVE_LEGACY;
1002 }
1003
1004 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1005 first_ppc_cpu->compat_pvr)) {
1006 /*
1007 * If we're in a pre POWER9 compat mode then the guest should
1008 * do hash and use the legacy interrupt mode
1009 */
1010 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1011 val[3] = 0x00; /* Hash */
1012 } else if (kvm_enabled()) {
1013 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1014 val[3] = 0x80; /* OV5_MMU_BOTH */
1015 } else if (kvmppc_has_cap_mmu_radix()) {
1016 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1017 } else {
1018 val[3] = 0x00; /* Hash */
1019 }
1020 } else {
1021 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1022 val[3] = 0xC0;
1023 }
1024 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1025 val, sizeof(val)));
1026 }
1027
1028 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1029 {
1030 MachineState *machine = MACHINE(spapr);
1031 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1032 int chosen;
1033
1034 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1035
1036 if (reset) {
1037 const char *boot_device = machine->boot_order;
1038 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1039 size_t cb = 0;
1040 char *bootlist = get_boot_devices_list(&cb);
1041
1042 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1043 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1044 machine->kernel_cmdline));
1045 }
1046
1047 if (spapr->initrd_size) {
1048 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1049 spapr->initrd_base));
1050 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1051 spapr->initrd_base + spapr->initrd_size));
1052 }
1053
1054 if (spapr->kernel_size) {
1055 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1056 cpu_to_be64(spapr->kernel_size) };
1057
1058 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1059 &kprop, sizeof(kprop)));
1060 if (spapr->kernel_le) {
1061 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1062 }
1063 }
1064 if (boot_menu) {
1065 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1066 }
1067 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1068 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1069 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1070
1071 if (cb && bootlist) {
1072 int i;
1073
1074 for (i = 0; i < cb; i++) {
1075 if (bootlist[i] == '\n') {
1076 bootlist[i] = ' ';
1077 }
1078 }
1079 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1080 }
1081
1082 if (boot_device && strlen(boot_device)) {
1083 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1084 }
1085
1086 if (!spapr->has_graphics && stdout_path) {
1087 /*
1088 * "linux,stdout-path" and "stdout" properties are
1089 * deprecated by linux kernel. New platforms should only
1090 * use the "stdout-path" property. Set the new property
1091 * and continue using older property to remain compatible
1092 * with the existing firmware.
1093 */
1094 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1095 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1096 }
1097
1098 /*
1099 * We can deal with BAR reallocation just fine, advertise it
1100 * to the guest
1101 */
1102 if (smc->linux_pci_probe) {
1103 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1104 }
1105
1106 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1107
1108 g_free(stdout_path);
1109 g_free(bootlist);
1110 }
1111
1112 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1113 }
1114
1115 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1116 {
1117 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1118 * KVM to work under pHyp with some guest co-operation */
1119 int hypervisor;
1120 uint8_t hypercall[16];
1121
1122 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1123 /* indicate KVM hypercall interface */
1124 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1125 if (kvmppc_has_cap_fixup_hcalls()) {
1126 /*
1127 * Older KVM versions with older guest kernels were broken
1128 * with the magic page, don't allow the guest to map it.
1129 */
1130 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1131 sizeof(hypercall))) {
1132 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1133 hypercall, sizeof(hypercall)));
1134 }
1135 }
1136 }
1137
1138 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1139 {
1140 MachineState *machine = MACHINE(spapr);
1141 MachineClass *mc = MACHINE_GET_CLASS(machine);
1142 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1143 int ret;
1144 void *fdt;
1145 SpaprPhbState *phb;
1146 char *buf;
1147
1148 fdt = g_malloc0(space);
1149 _FDT((fdt_create_empty_tree(fdt, space)));
1150
1151 /* Root node */
1152 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1153 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1154 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1155
1156 /* Guest UUID & Name*/
1157 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1158 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1159 if (qemu_uuid_set) {
1160 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1161 }
1162 g_free(buf);
1163
1164 if (qemu_get_vm_name()) {
1165 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1166 qemu_get_vm_name()));
1167 }
1168
1169 /* Host Model & Serial Number */
1170 if (spapr->host_model) {
1171 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1172 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1174 g_free(buf);
1175 }
1176
1177 if (spapr->host_serial) {
1178 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1179 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1180 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1181 g_free(buf);
1182 }
1183
1184 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1185 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1186
1187 /* /interrupt controller */
1188 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1189
1190 ret = spapr_dt_memory(spapr, fdt);
1191 if (ret < 0) {
1192 error_report("couldn't setup memory nodes in fdt");
1193 exit(1);
1194 }
1195
1196 /* /vdevice */
1197 spapr_dt_vdevice(spapr->vio_bus, fdt);
1198
1199 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1200 ret = spapr_dt_rng(fdt);
1201 if (ret < 0) {
1202 error_report("could not set up rng device in the fdt");
1203 exit(1);
1204 }
1205 }
1206
1207 QLIST_FOREACH(phb, &spapr->phbs, list) {
1208 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1209 if (ret < 0) {
1210 error_report("couldn't setup PCI devices in fdt");
1211 exit(1);
1212 }
1213 }
1214
1215 spapr_dt_cpus(fdt, spapr);
1216
1217 if (smc->dr_lmb_enabled) {
1218 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1219 }
1220
1221 if (mc->has_hotpluggable_cpus) {
1222 int offset = fdt_path_offset(fdt, "/cpus");
1223 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1224 if (ret < 0) {
1225 error_report("Couldn't set up CPU DR device tree properties");
1226 exit(1);
1227 }
1228 }
1229
1230 /* /event-sources */
1231 spapr_dt_events(spapr, fdt);
1232
1233 /* /rtas */
1234 spapr_dt_rtas(spapr, fdt);
1235
1236 /* /chosen */
1237 spapr_dt_chosen(spapr, fdt, reset);
1238
1239 /* /hypervisor */
1240 if (kvm_enabled()) {
1241 spapr_dt_hypervisor(spapr, fdt);
1242 }
1243
1244 /* Build memory reserve map */
1245 if (reset) {
1246 if (spapr->kernel_size) {
1247 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1248 spapr->kernel_size)));
1249 }
1250 if (spapr->initrd_size) {
1251 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1252 spapr->initrd_size)));
1253 }
1254 }
1255
1256 if (smc->dr_phb_enabled) {
1257 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1258 if (ret < 0) {
1259 error_report("Couldn't set up PHB DR device tree properties");
1260 exit(1);
1261 }
1262 }
1263
1264 /* NVDIMM devices */
1265 if (mc->nvdimm_supported) {
1266 spapr_dt_persistent_memory(fdt);
1267 }
1268
1269 return fdt;
1270 }
1271
1272 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1273 {
1274 SpaprMachineState *spapr = opaque;
1275
1276 return (addr & 0x0fffffff) + spapr->kernel_addr;
1277 }
1278
1279 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1280 PowerPCCPU *cpu)
1281 {
1282 CPUPPCState *env = &cpu->env;
1283
1284 /* The TCG path should also be holding the BQL at this point */
1285 g_assert(qemu_mutex_iothread_locked());
1286
1287 if (msr_pr) {
1288 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1289 env->gpr[3] = H_PRIVILEGE;
1290 } else {
1291 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1292 }
1293 }
1294
1295 struct LPCRSyncState {
1296 target_ulong value;
1297 target_ulong mask;
1298 };
1299
1300 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1301 {
1302 struct LPCRSyncState *s = arg.host_ptr;
1303 PowerPCCPU *cpu = POWERPC_CPU(cs);
1304 CPUPPCState *env = &cpu->env;
1305 target_ulong lpcr;
1306
1307 cpu_synchronize_state(cs);
1308 lpcr = env->spr[SPR_LPCR];
1309 lpcr &= ~s->mask;
1310 lpcr |= s->value;
1311 ppc_store_lpcr(cpu, lpcr);
1312 }
1313
1314 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1315 {
1316 CPUState *cs;
1317 struct LPCRSyncState s = {
1318 .value = value,
1319 .mask = mask
1320 };
1321 CPU_FOREACH(cs) {
1322 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1323 }
1324 }
1325
1326 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1327 {
1328 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1329
1330 /* Copy PATE1:GR into PATE0:HR */
1331 entry->dw0 = spapr->patb_entry & PATE0_HR;
1332 entry->dw1 = spapr->patb_entry;
1333 }
1334
1335 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1336 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1337 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1338 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1339 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1340
1341 /*
1342 * Get the fd to access the kernel htab, re-opening it if necessary
1343 */
1344 static int get_htab_fd(SpaprMachineState *spapr)
1345 {
1346 Error *local_err = NULL;
1347
1348 if (spapr->htab_fd >= 0) {
1349 return spapr->htab_fd;
1350 }
1351
1352 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1353 if (spapr->htab_fd < 0) {
1354 error_report_err(local_err);
1355 }
1356
1357 return spapr->htab_fd;
1358 }
1359
1360 void close_htab_fd(SpaprMachineState *spapr)
1361 {
1362 if (spapr->htab_fd >= 0) {
1363 close(spapr->htab_fd);
1364 }
1365 spapr->htab_fd = -1;
1366 }
1367
1368 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1369 {
1370 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371
1372 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1373 }
1374
1375 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1376 {
1377 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1378
1379 assert(kvm_enabled());
1380
1381 if (!spapr->htab) {
1382 return 0;
1383 }
1384
1385 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1386 }
1387
1388 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1389 hwaddr ptex, int n)
1390 {
1391 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1393
1394 if (!spapr->htab) {
1395 /*
1396 * HTAB is controlled by KVM. Fetch into temporary buffer
1397 */
1398 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1399 kvmppc_read_hptes(hptes, ptex, n);
1400 return hptes;
1401 }
1402
1403 /*
1404 * HTAB is controlled by QEMU. Just point to the internally
1405 * accessible PTEG.
1406 */
1407 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1408 }
1409
1410 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1411 const ppc_hash_pte64_t *hptes,
1412 hwaddr ptex, int n)
1413 {
1414 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1415
1416 if (!spapr->htab) {
1417 g_free((void *)hptes);
1418 }
1419
1420 /* Nothing to do for qemu managed HPT */
1421 }
1422
1423 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1424 uint64_t pte0, uint64_t pte1)
1425 {
1426 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1427 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1428
1429 if (!spapr->htab) {
1430 kvmppc_write_hpte(ptex, pte0, pte1);
1431 } else {
1432 if (pte0 & HPTE64_V_VALID) {
1433 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1434 /*
1435 * When setting valid, we write PTE1 first. This ensures
1436 * proper synchronization with the reading code in
1437 * ppc_hash64_pteg_search()
1438 */
1439 smp_wmb();
1440 stq_p(spapr->htab + offset, pte0);
1441 } else {
1442 stq_p(spapr->htab + offset, pte0);
1443 /*
1444 * When clearing it we set PTE0 first. This ensures proper
1445 * synchronization with the reading code in
1446 * ppc_hash64_pteg_search()
1447 */
1448 smp_wmb();
1449 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1450 }
1451 }
1452 }
1453
1454 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455 uint64_t pte1)
1456 {
1457 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459
1460 if (!spapr->htab) {
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_c called with no hash table !");
1463 return;
1464 }
1465
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1468 }
1469
1470 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1471 uint64_t pte1)
1472 {
1473 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1474 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475
1476 if (!spapr->htab) {
1477 /* There should always be a hash table when this is called */
1478 error_report("spapr_hpte_set_r called with no hash table !");
1479 return;
1480 }
1481
1482 /* The HW performs a non-atomic byte update */
1483 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1484 }
1485
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488 int shift;
1489
1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1492 * that's much more than is needed for Linux guests */
1493 shift = ctz64(pow2ceil(ramsize)) - 7;
1494 shift = MAX(shift, 18); /* Minimum architected size */
1495 shift = MIN(shift, 46); /* Maximum architected size */
1496 return shift;
1497 }
1498
1499 void spapr_free_hpt(SpaprMachineState *spapr)
1500 {
1501 g_free(spapr->htab);
1502 spapr->htab = NULL;
1503 spapr->htab_shift = 0;
1504 close_htab_fd(spapr);
1505 }
1506
1507 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1508 Error **errp)
1509 {
1510 long rc;
1511
1512 /* Clean up any HPT info from a previous boot */
1513 spapr_free_hpt(spapr);
1514
1515 rc = kvmppc_reset_htab(shift);
1516 if (rc < 0) {
1517 /* kernel-side HPT needed, but couldn't allocate one */
1518 error_setg_errno(errp, errno,
1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520 shift);
1521 /* This is almost certainly fatal, but if the caller really
1522 * wants to carry on with shift == 0, it's welcome to try */
1523 } else if (rc > 0) {
1524 /* kernel-side HPT allocated */
1525 if (rc != shift) {
1526 error_setg(errp,
1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528 shift, rc);
1529 }
1530
1531 spapr->htab_shift = shift;
1532 spapr->htab = NULL;
1533 } else {
1534 /* kernel-side HPT not needed, allocate in userspace instead */
1535 size_t size = 1ULL << shift;
1536 int i;
1537
1538 spapr->htab = qemu_memalign(size, size);
1539 if (!spapr->htab) {
1540 error_setg_errno(errp, errno,
1541 "Could not allocate HPT of order %d", shift);
1542 return;
1543 }
1544
1545 memset(spapr->htab, 0, size);
1546 spapr->htab_shift = shift;
1547
1548 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549 DIRTY_HPTE(HPTE(spapr->htab, i));
1550 }
1551 }
1552 /* We're setting up a hash table, so that means we're not radix */
1553 spapr->patb_entry = 0;
1554 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1555 }
1556
1557 void spapr_setup_hpt(SpaprMachineState *spapr)
1558 {
1559 int hpt_shift;
1560
1561 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1562 || (spapr->cas_reboot
1563 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1564 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1565 } else {
1566 uint64_t current_ram_size;
1567
1568 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1569 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1570 }
1571 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1572
1573 if (kvm_enabled()) {
1574 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1575
1576 /* Check our RMA fits in the possible VRMA */
1577 if (vrma_limit < spapr->rma_size) {
1578 error_report("Unable to create %" HWADDR_PRIu
1579 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1580 spapr->rma_size / MiB, vrma_limit / MiB);
1581 exit(EXIT_FAILURE);
1582 }
1583 }
1584 }
1585
1586 static int spapr_reset_drcs(Object *child, void *opaque)
1587 {
1588 SpaprDrc *drc =
1589 (SpaprDrc *) object_dynamic_cast(child,
1590 TYPE_SPAPR_DR_CONNECTOR);
1591
1592 if (drc) {
1593 spapr_drc_reset(drc);
1594 }
1595
1596 return 0;
1597 }
1598
1599 static void spapr_machine_reset(MachineState *machine)
1600 {
1601 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1602 PowerPCCPU *first_ppc_cpu;
1603 hwaddr fdt_addr;
1604 void *fdt;
1605 int rc;
1606
1607 kvmppc_svm_off(&error_fatal);
1608 spapr_caps_apply(spapr);
1609
1610 first_ppc_cpu = POWERPC_CPU(first_cpu);
1611 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1612 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1613 spapr->max_compat_pvr)) {
1614 /*
1615 * If using KVM with radix mode available, VCPUs can be started
1616 * without a HPT because KVM will start them in radix mode.
1617 * Set the GR bit in PATE so that we know there is no HPT.
1618 */
1619 spapr->patb_entry = PATE1_GR;
1620 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1621 } else {
1622 spapr_setup_hpt(spapr);
1623 }
1624
1625 qemu_devices_reset();
1626
1627 /*
1628 * If this reset wasn't generated by CAS, we should reset our
1629 * negotiated options and start from scratch
1630 */
1631 if (!spapr->cas_reboot) {
1632 spapr_ovec_cleanup(spapr->ov5_cas);
1633 spapr->ov5_cas = spapr_ovec_new();
1634
1635 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1636 }
1637
1638 /*
1639 * This is fixing some of the default configuration of the XIVE
1640 * devices. To be called after the reset of the machine devices.
1641 */
1642 spapr_irq_reset(spapr, &error_fatal);
1643
1644 /*
1645 * There is no CAS under qtest. Simulate one to please the code that
1646 * depends on spapr->ov5_cas. This is especially needed to test device
1647 * unplug, so we do that before resetting the DRCs.
1648 */
1649 if (qtest_enabled()) {
1650 spapr_ovec_cleanup(spapr->ov5_cas);
1651 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1652 }
1653
1654 /* DRC reset may cause a device to be unplugged. This will cause troubles
1655 * if this device is used by another device (eg, a running vhost backend
1656 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1657 * situations, we reset DRCs after all devices have been reset.
1658 */
1659 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1660
1661 spapr_clear_pending_events(spapr);
1662
1663 /*
1664 * We place the device tree and RTAS just below either the top of the RMA,
1665 * or just below 2GB, whichever is lower, so that it can be
1666 * processed with 32-bit real mode code if necessary
1667 */
1668 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1669
1670 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1671
1672 rc = fdt_pack(fdt);
1673
1674 /* Should only fail if we've built a corrupted tree */
1675 assert(rc == 0);
1676
1677 /* Load the fdt */
1678 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1679 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1680 g_free(spapr->fdt_blob);
1681 spapr->fdt_size = fdt_totalsize(fdt);
1682 spapr->fdt_initial_size = spapr->fdt_size;
1683 spapr->fdt_blob = fdt;
1684
1685 /* Set up the entry state */
1686 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1687 first_ppc_cpu->env.gpr[5] = 0;
1688
1689 spapr->cas_reboot = false;
1690
1691 spapr->fwnmi_system_reset_addr = -1;
1692 spapr->fwnmi_machine_check_addr = -1;
1693 spapr->fwnmi_machine_check_interlock = -1;
1694
1695 /* Signal all vCPUs waiting on this condition */
1696 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1697
1698 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1699 }
1700
1701 static void spapr_create_nvram(SpaprMachineState *spapr)
1702 {
1703 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1704 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1705
1706 if (dinfo) {
1707 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1708 &error_fatal);
1709 }
1710
1711 qdev_init_nofail(dev);
1712
1713 spapr->nvram = (struct SpaprNvram *)dev;
1714 }
1715
1716 static void spapr_rtc_create(SpaprMachineState *spapr)
1717 {
1718 object_initialize_child(OBJECT(spapr), "rtc",
1719 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1720 &error_fatal, NULL);
1721 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1722 &error_fatal);
1723 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1724 "date", &error_fatal);
1725 }
1726
1727 /* Returns whether we want to use VGA or not */
1728 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1729 {
1730 switch (vga_interface_type) {
1731 case VGA_NONE:
1732 return false;
1733 case VGA_DEVICE:
1734 return true;
1735 case VGA_STD:
1736 case VGA_VIRTIO:
1737 case VGA_CIRRUS:
1738 return pci_vga_init(pci_bus) != NULL;
1739 default:
1740 error_setg(errp,
1741 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1742 return false;
1743 }
1744 }
1745
1746 static int spapr_pre_load(void *opaque)
1747 {
1748 int rc;
1749
1750 rc = spapr_caps_pre_load(opaque);
1751 if (rc) {
1752 return rc;
1753 }
1754
1755 return 0;
1756 }
1757
1758 static int spapr_post_load(void *opaque, int version_id)
1759 {
1760 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1761 int err = 0;
1762
1763 err = spapr_caps_post_migration(spapr);
1764 if (err) {
1765 return err;
1766 }
1767
1768 /*
1769 * In earlier versions, there was no separate qdev for the PAPR
1770 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1771 * So when migrating from those versions, poke the incoming offset
1772 * value into the RTC device
1773 */
1774 if (version_id < 3) {
1775 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1776 if (err) {
1777 return err;
1778 }
1779 }
1780
1781 if (kvm_enabled() && spapr->patb_entry) {
1782 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1783 bool radix = !!(spapr->patb_entry & PATE1_GR);
1784 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1785
1786 /*
1787 * Update LPCR:HR and UPRT as they may not be set properly in
1788 * the stream
1789 */
1790 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1791 LPCR_HR | LPCR_UPRT);
1792
1793 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1794 if (err) {
1795 error_report("Process table config unsupported by the host");
1796 return -EINVAL;
1797 }
1798 }
1799
1800 err = spapr_irq_post_load(spapr, version_id);
1801 if (err) {
1802 return err;
1803 }
1804
1805 return err;
1806 }
1807
1808 static int spapr_pre_save(void *opaque)
1809 {
1810 int rc;
1811
1812 rc = spapr_caps_pre_save(opaque);
1813 if (rc) {
1814 return rc;
1815 }
1816
1817 return 0;
1818 }
1819
1820 static bool version_before_3(void *opaque, int version_id)
1821 {
1822 return version_id < 3;
1823 }
1824
1825 static bool spapr_pending_events_needed(void *opaque)
1826 {
1827 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1828 return !QTAILQ_EMPTY(&spapr->pending_events);
1829 }
1830
1831 static const VMStateDescription vmstate_spapr_event_entry = {
1832 .name = "spapr_event_log_entry",
1833 .version_id = 1,
1834 .minimum_version_id = 1,
1835 .fields = (VMStateField[]) {
1836 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1837 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1838 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1839 NULL, extended_length),
1840 VMSTATE_END_OF_LIST()
1841 },
1842 };
1843
1844 static const VMStateDescription vmstate_spapr_pending_events = {
1845 .name = "spapr_pending_events",
1846 .version_id = 1,
1847 .minimum_version_id = 1,
1848 .needed = spapr_pending_events_needed,
1849 .fields = (VMStateField[]) {
1850 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1851 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1852 VMSTATE_END_OF_LIST()
1853 },
1854 };
1855
1856 static bool spapr_ov5_cas_needed(void *opaque)
1857 {
1858 SpaprMachineState *spapr = opaque;
1859 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1860 bool cas_needed;
1861
1862 /* Prior to the introduction of SpaprOptionVector, we had two option
1863 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1864 * Both of these options encode machine topology into the device-tree
1865 * in such a way that the now-booted OS should still be able to interact
1866 * appropriately with QEMU regardless of what options were actually
1867 * negotiatied on the source side.
1868 *
1869 * As such, we can avoid migrating the CAS-negotiated options if these
1870 * are the only options available on the current machine/platform.
1871 * Since these are the only options available for pseries-2.7 and
1872 * earlier, this allows us to maintain old->new/new->old migration
1873 * compatibility.
1874 *
1875 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1876 * via default pseries-2.8 machines and explicit command-line parameters.
1877 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1878 * of the actual CAS-negotiated values to continue working properly. For
1879 * example, availability of memory unplug depends on knowing whether
1880 * OV5_HP_EVT was negotiated via CAS.
1881 *
1882 * Thus, for any cases where the set of available CAS-negotiatable
1883 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1884 * include the CAS-negotiated options in the migration stream, unless
1885 * if they affect boot time behaviour only.
1886 */
1887 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1888 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1889 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1890
1891 /* We need extra information if we have any bits outside the mask
1892 * defined above */
1893 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1894
1895 spapr_ovec_cleanup(ov5_mask);
1896
1897 return cas_needed;
1898 }
1899
1900 static const VMStateDescription vmstate_spapr_ov5_cas = {
1901 .name = "spapr_option_vector_ov5_cas",
1902 .version_id = 1,
1903 .minimum_version_id = 1,
1904 .needed = spapr_ov5_cas_needed,
1905 .fields = (VMStateField[]) {
1906 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1907 vmstate_spapr_ovec, SpaprOptionVector),
1908 VMSTATE_END_OF_LIST()
1909 },
1910 };
1911
1912 static bool spapr_patb_entry_needed(void *opaque)
1913 {
1914 SpaprMachineState *spapr = opaque;
1915
1916 return !!spapr->patb_entry;
1917 }
1918
1919 static const VMStateDescription vmstate_spapr_patb_entry = {
1920 .name = "spapr_patb_entry",
1921 .version_id = 1,
1922 .minimum_version_id = 1,
1923 .needed = spapr_patb_entry_needed,
1924 .fields = (VMStateField[]) {
1925 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1926 VMSTATE_END_OF_LIST()
1927 },
1928 };
1929
1930 static bool spapr_irq_map_needed(void *opaque)
1931 {
1932 SpaprMachineState *spapr = opaque;
1933
1934 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1935 }
1936
1937 static const VMStateDescription vmstate_spapr_irq_map = {
1938 .name = "spapr_irq_map",
1939 .version_id = 1,
1940 .minimum_version_id = 1,
1941 .needed = spapr_irq_map_needed,
1942 .fields = (VMStateField[]) {
1943 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1944 VMSTATE_END_OF_LIST()
1945 },
1946 };
1947
1948 static bool spapr_dtb_needed(void *opaque)
1949 {
1950 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1951
1952 return smc->update_dt_enabled;
1953 }
1954
1955 static int spapr_dtb_pre_load(void *opaque)
1956 {
1957 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958
1959 g_free(spapr->fdt_blob);
1960 spapr->fdt_blob = NULL;
1961 spapr->fdt_size = 0;
1962
1963 return 0;
1964 }
1965
1966 static const VMStateDescription vmstate_spapr_dtb = {
1967 .name = "spapr_dtb",
1968 .version_id = 1,
1969 .minimum_version_id = 1,
1970 .needed = spapr_dtb_needed,
1971 .pre_load = spapr_dtb_pre_load,
1972 .fields = (VMStateField[]) {
1973 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1974 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1975 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1976 fdt_size),
1977 VMSTATE_END_OF_LIST()
1978 },
1979 };
1980
1981 static bool spapr_fwnmi_needed(void *opaque)
1982 {
1983 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1984
1985 return spapr->fwnmi_machine_check_addr != -1;
1986 }
1987
1988 static int spapr_fwnmi_pre_save(void *opaque)
1989 {
1990 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1991
1992 /*
1993 * Check if machine check handling is in progress and print a
1994 * warning message.
1995 */
1996 if (spapr->fwnmi_machine_check_interlock != -1) {
1997 warn_report("A machine check is being handled during migration. The"
1998 "handler may run and log hardware error on the destination");
1999 }
2000
2001 return 0;
2002 }
2003
2004 static const VMStateDescription vmstate_spapr_fwnmi = {
2005 .name = "spapr_fwnmi",
2006 .version_id = 1,
2007 .minimum_version_id = 1,
2008 .needed = spapr_fwnmi_needed,
2009 .pre_save = spapr_fwnmi_pre_save,
2010 .fields = (VMStateField[]) {
2011 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2012 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2013 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2014 VMSTATE_END_OF_LIST()
2015 },
2016 };
2017
2018 static const VMStateDescription vmstate_spapr = {
2019 .name = "spapr",
2020 .version_id = 3,
2021 .minimum_version_id = 1,
2022 .pre_load = spapr_pre_load,
2023 .post_load = spapr_post_load,
2024 .pre_save = spapr_pre_save,
2025 .fields = (VMStateField[]) {
2026 /* used to be @next_irq */
2027 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2028
2029 /* RTC offset */
2030 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2031
2032 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2033 VMSTATE_END_OF_LIST()
2034 },
2035 .subsections = (const VMStateDescription*[]) {
2036 &vmstate_spapr_ov5_cas,
2037 &vmstate_spapr_patb_entry,
2038 &vmstate_spapr_pending_events,
2039 &vmstate_spapr_cap_htm,
2040 &vmstate_spapr_cap_vsx,
2041 &vmstate_spapr_cap_dfp,
2042 &vmstate_spapr_cap_cfpc,
2043 &vmstate_spapr_cap_sbbc,
2044 &vmstate_spapr_cap_ibs,
2045 &vmstate_spapr_cap_hpt_maxpagesize,
2046 &vmstate_spapr_irq_map,
2047 &vmstate_spapr_cap_nested_kvm_hv,
2048 &vmstate_spapr_dtb,
2049 &vmstate_spapr_cap_large_decr,
2050 &vmstate_spapr_cap_ccf_assist,
2051 &vmstate_spapr_cap_fwnmi,
2052 &vmstate_spapr_fwnmi,
2053 NULL
2054 }
2055 };
2056
2057 static int htab_save_setup(QEMUFile *f, void *opaque)
2058 {
2059 SpaprMachineState *spapr = opaque;
2060
2061 /* "Iteration" header */
2062 if (!spapr->htab_shift) {
2063 qemu_put_be32(f, -1);
2064 } else {
2065 qemu_put_be32(f, spapr->htab_shift);
2066 }
2067
2068 if (spapr->htab) {
2069 spapr->htab_save_index = 0;
2070 spapr->htab_first_pass = true;
2071 } else {
2072 if (spapr->htab_shift) {
2073 assert(kvm_enabled());
2074 }
2075 }
2076
2077
2078 return 0;
2079 }
2080
2081 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2082 int chunkstart, int n_valid, int n_invalid)
2083 {
2084 qemu_put_be32(f, chunkstart);
2085 qemu_put_be16(f, n_valid);
2086 qemu_put_be16(f, n_invalid);
2087 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2088 HASH_PTE_SIZE_64 * n_valid);
2089 }
2090
2091 static void htab_save_end_marker(QEMUFile *f)
2092 {
2093 qemu_put_be32(f, 0);
2094 qemu_put_be16(f, 0);
2095 qemu_put_be16(f, 0);
2096 }
2097
2098 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2099 int64_t max_ns)
2100 {
2101 bool has_timeout = max_ns != -1;
2102 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2103 int index = spapr->htab_save_index;
2104 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2105
2106 assert(spapr->htab_first_pass);
2107
2108 do {
2109 int chunkstart;
2110
2111 /* Consume invalid HPTEs */
2112 while ((index < htabslots)
2113 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2114 CLEAN_HPTE(HPTE(spapr->htab, index));
2115 index++;
2116 }
2117
2118 /* Consume valid HPTEs */
2119 chunkstart = index;
2120 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2121 && HPTE_VALID(HPTE(spapr->htab, index))) {
2122 CLEAN_HPTE(HPTE(spapr->htab, index));
2123 index++;
2124 }
2125
2126 if (index > chunkstart) {
2127 int n_valid = index - chunkstart;
2128
2129 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2130
2131 if (has_timeout &&
2132 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2133 break;
2134 }
2135 }
2136 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2137
2138 if (index >= htabslots) {
2139 assert(index == htabslots);
2140 index = 0;
2141 spapr->htab_first_pass = false;
2142 }
2143 spapr->htab_save_index = index;
2144 }
2145
2146 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2147 int64_t max_ns)
2148 {
2149 bool final = max_ns < 0;
2150 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2151 int examined = 0, sent = 0;
2152 int index = spapr->htab_save_index;
2153 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2154
2155 assert(!spapr->htab_first_pass);
2156
2157 do {
2158 int chunkstart, invalidstart;
2159
2160 /* Consume non-dirty HPTEs */
2161 while ((index < htabslots)
2162 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2163 index++;
2164 examined++;
2165 }
2166
2167 chunkstart = index;
2168 /* Consume valid dirty HPTEs */
2169 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2170 && HPTE_DIRTY(HPTE(spapr->htab, index))
2171 && HPTE_VALID(HPTE(spapr->htab, index))) {
2172 CLEAN_HPTE(HPTE(spapr->htab, index));
2173 index++;
2174 examined++;
2175 }
2176
2177 invalidstart = index;
2178 /* Consume invalid dirty HPTEs */
2179 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2180 && HPTE_DIRTY(HPTE(spapr->htab, index))
2181 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2182 CLEAN_HPTE(HPTE(spapr->htab, index));
2183 index++;
2184 examined++;
2185 }
2186
2187 if (index > chunkstart) {
2188 int n_valid = invalidstart - chunkstart;
2189 int n_invalid = index - invalidstart;
2190
2191 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2192 sent += index - chunkstart;
2193
2194 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2195 break;
2196 }
2197 }
2198
2199 if (examined >= htabslots) {
2200 break;
2201 }
2202
2203 if (index >= htabslots) {
2204 assert(index == htabslots);
2205 index = 0;
2206 }
2207 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2208
2209 if (index >= htabslots) {
2210 assert(index == htabslots);
2211 index = 0;
2212 }
2213
2214 spapr->htab_save_index = index;
2215
2216 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2217 }
2218
2219 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2220 #define MAX_KVM_BUF_SIZE 2048
2221
2222 static int htab_save_iterate(QEMUFile *f, void *opaque)
2223 {
2224 SpaprMachineState *spapr = opaque;
2225 int fd;
2226 int rc = 0;
2227
2228 /* Iteration header */
2229 if (!spapr->htab_shift) {
2230 qemu_put_be32(f, -1);
2231 return 1;
2232 } else {
2233 qemu_put_be32(f, 0);
2234 }
2235
2236 if (!spapr->htab) {
2237 assert(kvm_enabled());
2238
2239 fd = get_htab_fd(spapr);
2240 if (fd < 0) {
2241 return fd;
2242 }
2243
2244 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2245 if (rc < 0) {
2246 return rc;
2247 }
2248 } else if (spapr->htab_first_pass) {
2249 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2250 } else {
2251 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2252 }
2253
2254 htab_save_end_marker(f);
2255
2256 return rc;
2257 }
2258
2259 static int htab_save_complete(QEMUFile *f, void *opaque)
2260 {
2261 SpaprMachineState *spapr = opaque;
2262 int fd;
2263
2264 /* Iteration header */
2265 if (!spapr->htab_shift) {
2266 qemu_put_be32(f, -1);
2267 return 0;
2268 } else {
2269 qemu_put_be32(f, 0);
2270 }
2271
2272 if (!spapr->htab) {
2273 int rc;
2274
2275 assert(kvm_enabled());
2276
2277 fd = get_htab_fd(spapr);
2278 if (fd < 0) {
2279 return fd;
2280 }
2281
2282 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2283 if (rc < 0) {
2284 return rc;
2285 }
2286 } else {
2287 if (spapr->htab_first_pass) {
2288 htab_save_first_pass(f, spapr, -1);
2289 }
2290 htab_save_later_pass(f, spapr, -1);
2291 }
2292
2293 /* End marker */
2294 htab_save_end_marker(f);
2295
2296 return 0;
2297 }
2298
2299 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2300 {
2301 SpaprMachineState *spapr = opaque;
2302 uint32_t section_hdr;
2303 int fd = -1;
2304 Error *local_err = NULL;
2305
2306 if (version_id < 1 || version_id > 1) {
2307 error_report("htab_load() bad version");
2308 return -EINVAL;
2309 }
2310
2311 section_hdr = qemu_get_be32(f);
2312
2313 if (section_hdr == -1) {
2314 spapr_free_hpt(spapr);
2315 return 0;
2316 }
2317
2318 if (section_hdr) {
2319 /* First section gives the htab size */
2320 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2321 if (local_err) {
2322 error_report_err(local_err);
2323 return -EINVAL;
2324 }
2325 return 0;
2326 }
2327
2328 if (!spapr->htab) {
2329 assert(kvm_enabled());
2330
2331 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2332 if (fd < 0) {
2333 error_report_err(local_err);
2334 return fd;
2335 }
2336 }
2337
2338 while (true) {
2339 uint32_t index;
2340 uint16_t n_valid, n_invalid;
2341
2342 index = qemu_get_be32(f);
2343 n_valid = qemu_get_be16(f);
2344 n_invalid = qemu_get_be16(f);
2345
2346 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2347 /* End of Stream */
2348 break;
2349 }
2350
2351 if ((index + n_valid + n_invalid) >
2352 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2353 /* Bad index in stream */
2354 error_report(
2355 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2356 index, n_valid, n_invalid, spapr->htab_shift);
2357 return -EINVAL;
2358 }
2359
2360 if (spapr->htab) {
2361 if (n_valid) {
2362 qemu_get_buffer(f, HPTE(spapr->htab, index),
2363 HASH_PTE_SIZE_64 * n_valid);
2364 }
2365 if (n_invalid) {
2366 memset(HPTE(spapr->htab, index + n_valid), 0,
2367 HASH_PTE_SIZE_64 * n_invalid);
2368 }
2369 } else {
2370 int rc;
2371
2372 assert(fd >= 0);
2373
2374 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2375 if (rc < 0) {
2376 return rc;
2377 }
2378 }
2379 }
2380
2381 if (!spapr->htab) {
2382 assert(fd >= 0);
2383 close(fd);
2384 }
2385
2386 return 0;
2387 }
2388
2389 static void htab_save_cleanup(void *opaque)
2390 {
2391 SpaprMachineState *spapr = opaque;
2392
2393 close_htab_fd(spapr);
2394 }
2395
2396 static SaveVMHandlers savevm_htab_handlers = {
2397 .save_setup = htab_save_setup,
2398 .save_live_iterate = htab_save_iterate,
2399 .save_live_complete_precopy = htab_save_complete,
2400 .save_cleanup = htab_save_cleanup,
2401 .load_state = htab_load,
2402 };
2403
2404 static void spapr_boot_set(void *opaque, const char *boot_device,
2405 Error **errp)
2406 {
2407 MachineState *machine = MACHINE(opaque);
2408 machine->boot_order = g_strdup(boot_device);
2409 }
2410
2411 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2412 {
2413 MachineState *machine = MACHINE(spapr);
2414 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2415 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2416 int i;
2417
2418 for (i = 0; i < nr_lmbs; i++) {
2419 uint64_t addr;
2420
2421 addr = i * lmb_size + machine->device_memory->base;
2422 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2423 addr / lmb_size);
2424 }
2425 }
2426
2427 /*
2428 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2429 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2430 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2431 */
2432 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2433 {
2434 int i;
2435
2436 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2437 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2438 " is not aligned to %" PRIu64 " MiB",
2439 machine->ram_size,
2440 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2441 return;
2442 }
2443
2444 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2445 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2446 " is not aligned to %" PRIu64 " MiB",
2447 machine->ram_size,
2448 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2449 return;
2450 }
2451
2452 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2453 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2454 error_setg(errp,
2455 "Node %d memory size 0x%" PRIx64
2456 " is not aligned to %" PRIu64 " MiB",
2457 i, machine->numa_state->nodes[i].node_mem,
2458 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2459 return;
2460 }
2461 }
2462 }
2463
2464 /* find cpu slot in machine->possible_cpus by core_id */
2465 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2466 {
2467 int index = id / ms->smp.threads;
2468
2469 if (index >= ms->possible_cpus->len) {
2470 return NULL;
2471 }
2472 if (idx) {
2473 *idx = index;
2474 }
2475 return &ms->possible_cpus->cpus[index];
2476 }
2477
2478 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2479 {
2480 MachineState *ms = MACHINE(spapr);
2481 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2482 Error *local_err = NULL;
2483 bool vsmt_user = !!spapr->vsmt;
2484 int kvm_smt = kvmppc_smt_threads();
2485 int ret;
2486 unsigned int smp_threads = ms->smp.threads;
2487
2488 if (!kvm_enabled() && (smp_threads > 1)) {
2489 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2490 "on a pseries machine");
2491 goto out;
2492 }
2493 if (!is_power_of_2(smp_threads)) {
2494 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2495 "machine because it must be a power of 2", smp_threads);
2496 goto out;
2497 }
2498
2499 /* Detemine the VSMT mode to use: */
2500 if (vsmt_user) {
2501 if (spapr->vsmt < smp_threads) {
2502 error_setg(&local_err, "Cannot support VSMT mode %d"
2503 " because it must be >= threads/core (%d)",
2504 spapr->vsmt, smp_threads);
2505 goto out;
2506 }
2507 /* In this case, spapr->vsmt has been set by the command line */
2508 } else if (!smc->smp_threads_vsmt) {
2509 /*
2510 * Default VSMT value is tricky, because we need it to be as
2511 * consistent as possible (for migration), but this requires
2512 * changing it for at least some existing cases. We pick 8 as
2513 * the value that we'd get with KVM on POWER8, the
2514 * overwhelmingly common case in production systems.
2515 */
2516 spapr->vsmt = MAX(8, smp_threads);
2517 } else {
2518 spapr->vsmt = smp_threads;
2519 }
2520
2521 /* KVM: If necessary, set the SMT mode: */
2522 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2523 ret = kvmppc_set_smt_threads(spapr->vsmt);
2524 if (ret) {
2525 /* Looks like KVM isn't able to change VSMT mode */
2526 error_setg(&local_err,
2527 "Failed to set KVM's VSMT mode to %d (errno %d)",
2528 spapr->vsmt, ret);
2529 /* We can live with that if the default one is big enough
2530 * for the number of threads, and a submultiple of the one
2531 * we want. In this case we'll waste some vcpu ids, but
2532 * behaviour will be correct */
2533 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2534 warn_report_err(local_err);
2535 local_err = NULL;
2536 goto out;
2537 } else {
2538 if (!vsmt_user) {
2539 error_append_hint(&local_err,
2540 "On PPC, a VM with %d threads/core"
2541 " on a host with %d threads/core"
2542 " requires the use of VSMT mode %d.\n",
2543 smp_threads, kvm_smt, spapr->vsmt);
2544 }
2545 kvmppc_error_append_smt_possible_hint(&local_err);
2546 goto out;
2547 }
2548 }
2549 }
2550 /* else TCG: nothing to do currently */
2551 out:
2552 error_propagate(errp, local_err);
2553 }
2554
2555 static void spapr_init_cpus(SpaprMachineState *spapr)
2556 {
2557 MachineState *machine = MACHINE(spapr);
2558 MachineClass *mc = MACHINE_GET_CLASS(machine);
2559 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2560 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2561 const CPUArchIdList *possible_cpus;
2562 unsigned int smp_cpus = machine->smp.cpus;
2563 unsigned int smp_threads = machine->smp.threads;
2564 unsigned int max_cpus = machine->smp.max_cpus;
2565 int boot_cores_nr = smp_cpus / smp_threads;
2566 int i;
2567
2568 possible_cpus = mc->possible_cpu_arch_ids(machine);
2569 if (mc->has_hotpluggable_cpus) {
2570 if (smp_cpus % smp_threads) {
2571 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2572 smp_cpus, smp_threads);
2573 exit(1);
2574 }
2575 if (max_cpus % smp_threads) {
2576 error_report("max_cpus (%u) must be multiple of threads (%u)",
2577 max_cpus, smp_threads);
2578 exit(1);
2579 }
2580 } else {
2581 if (max_cpus != smp_cpus) {
2582 error_report("This machine version does not support CPU hotplug");
2583 exit(1);
2584 }
2585 boot_cores_nr = possible_cpus->len;
2586 }
2587
2588 if (smc->pre_2_10_has_unused_icps) {
2589 int i;
2590
2591 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2592 /* Dummy entries get deregistered when real ICPState objects
2593 * are registered during CPU core hotplug.
2594 */
2595 pre_2_10_vmstate_register_dummy_icp(i);
2596 }
2597 }
2598
2599 for (i = 0; i < possible_cpus->len; i++) {
2600 int core_id = i * smp_threads;
2601
2602 if (mc->has_hotpluggable_cpus) {
2603 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2604 spapr_vcpu_id(spapr, core_id));
2605 }
2606
2607 if (i < boot_cores_nr) {
2608 Object *core = object_new(type);
2609 int nr_threads = smp_threads;
2610
2611 /* Handle the partially filled core for older machine types */
2612 if ((i + 1) * smp_threads >= smp_cpus) {
2613 nr_threads = smp_cpus - i * smp_threads;
2614 }
2615
2616 object_property_set_int(core, nr_threads, "nr-threads",
2617 &error_fatal);
2618 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2619 &error_fatal);
2620 object_property_set_bool(core, true, "realized", &error_fatal);
2621
2622 object_unref(core);
2623 }
2624 }
2625 }
2626
2627 static PCIHostState *spapr_create_default_phb(void)
2628 {
2629 DeviceState *dev;
2630
2631 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2632 qdev_prop_set_uint32(dev, "index", 0);
2633 qdev_init_nofail(dev);
2634
2635 return PCI_HOST_BRIDGE(dev);
2636 }
2637
2638 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2639 {
2640 MachineState *machine = MACHINE(spapr);
2641 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2642 hwaddr rma_size = machine->ram_size;
2643 hwaddr node0_size = spapr_node0_size(machine);
2644
2645 /* RMA has to fit in the first NUMA node */
2646 rma_size = MIN(rma_size, node0_size);
2647
2648 /*
2649 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2650 * never exceed that
2651 */
2652 rma_size = MIN(rma_size, 1 * TiB);
2653
2654 /*
2655 * Clamp the RMA size based on machine type. This is for
2656 * migration compatibility with older qemu versions, which limited
2657 * the RMA size for complicated and mostly bad reasons.
2658 */
2659 if (smc->rma_limit) {
2660 rma_size = MIN(rma_size, smc->rma_limit);
2661 }
2662
2663 if (rma_size < MIN_RMA_SLOF) {
2664 error_setg(errp,
2665 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2666 "ldMiB guest RMA (Real Mode Area memory)",
2667 MIN_RMA_SLOF / MiB);
2668 return 0;
2669 }
2670
2671 return rma_size;
2672 }
2673
2674 /* pSeries LPAR / sPAPR hardware init */
2675 static void spapr_machine_init(MachineState *machine)
2676 {
2677 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2678 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2679 MachineClass *mc = MACHINE_GET_CLASS(machine);
2680 const char *kernel_filename = machine->kernel_filename;
2681 const char *initrd_filename = machine->initrd_filename;
2682 PCIHostState *phb;
2683 int i;
2684 MemoryRegion *sysmem = get_system_memory();
2685 long load_limit, fw_size;
2686 char *filename;
2687 Error *resize_hpt_err = NULL;
2688
2689 msi_nonbroken = true;
2690
2691 QLIST_INIT(&spapr->phbs);
2692 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2693
2694 /* Determine capabilities to run with */
2695 spapr_caps_init(spapr);
2696
2697 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2698 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2699 /*
2700 * If the user explicitly requested a mode we should either
2701 * supply it, or fail completely (which we do below). But if
2702 * it's not set explicitly, we reset our mode to something
2703 * that works
2704 */
2705 if (resize_hpt_err) {
2706 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2707 error_free(resize_hpt_err);
2708 resize_hpt_err = NULL;
2709 } else {
2710 spapr->resize_hpt = smc->resize_hpt_default;
2711 }
2712 }
2713
2714 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2715
2716 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2717 /*
2718 * User requested HPT resize, but this host can't supply it. Bail out
2719 */
2720 error_report_err(resize_hpt_err);
2721 exit(1);
2722 }
2723
2724 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2725
2726 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2727 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2728
2729 /*
2730 * VSMT must be set in order to be able to compute VCPU ids, ie to
2731 * call spapr_max_server_number() or spapr_vcpu_id().
2732 */
2733 spapr_set_vsmt_mode(spapr, &error_fatal);
2734
2735 /* Set up Interrupt Controller before we create the VCPUs */
2736 spapr_irq_init(spapr, &error_fatal);
2737
2738 /* Set up containers for ibm,client-architecture-support negotiated options
2739 */
2740 spapr->ov5 = spapr_ovec_new();
2741 spapr->ov5_cas = spapr_ovec_new();
2742
2743 if (smc->dr_lmb_enabled) {
2744 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2745 spapr_validate_node_memory(machine, &error_fatal);
2746 }
2747
2748 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2749
2750 /* advertise support for dedicated HP event source to guests */
2751 if (spapr->use_hotplug_event_source) {
2752 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2753 }
2754
2755 /* advertise support for HPT resizing */
2756 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2757 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2758 }
2759
2760 /* advertise support for ibm,dyamic-memory-v2 */
2761 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2762
2763 /* advertise XIVE on POWER9 machines */
2764 if (spapr->irq->xive) {
2765 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2766 }
2767
2768 /* init CPUs */
2769 spapr_init_cpus(spapr);
2770
2771 /*
2772 * check we don't have a memory-less/cpu-less NUMA node
2773 * Firmware relies on the existing memory/cpu topology to provide the
2774 * NUMA topology to the kernel.
2775 * And the linux kernel needs to know the NUMA topology at start
2776 * to be able to hotplug CPUs later.
2777 */
2778 if (machine->numa_state->num_nodes) {
2779 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2780 /* check for memory-less node */
2781 if (machine->numa_state->nodes[i].node_mem == 0) {
2782 CPUState *cs;
2783 int found = 0;
2784 /* check for cpu-less node */
2785 CPU_FOREACH(cs) {
2786 PowerPCCPU *cpu = POWERPC_CPU(cs);
2787 if (cpu->node_id == i) {
2788 found = 1;
2789 break;
2790 }
2791 }
2792 /* memory-less and cpu-less node */
2793 if (!found) {
2794 error_report(
2795 "Memory-less/cpu-less nodes are not supported (node %d)",
2796 i);
2797 exit(1);
2798 }
2799 }
2800 }
2801
2802 }
2803
2804 /*
2805 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2806 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2807 * called from vPHB reset handler so we initialize the counter here.
2808 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2809 * must be equally distant from any other node.
2810 * The final value of spapr->gpu_numa_id is going to be written to
2811 * max-associativity-domains in spapr_build_fdt().
2812 */
2813 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2814
2815 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2816 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2817 spapr->max_compat_pvr)) {
2818 /* KVM and TCG always allow GTSE with radix... */
2819 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2820 }
2821 /* ... but not with hash (currently). */
2822
2823 if (kvm_enabled()) {
2824 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2825 kvmppc_enable_logical_ci_hcalls();
2826 kvmppc_enable_set_mode_hcall();
2827
2828 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2829 kvmppc_enable_clear_ref_mod_hcalls();
2830
2831 /* Enable H_PAGE_INIT */
2832 kvmppc_enable_h_page_init();
2833 }
2834
2835 /* map RAM */
2836 memory_region_add_subregion(sysmem, 0, machine->ram);
2837
2838 /* always allocate the device memory information */
2839 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2840
2841 /* initialize hotplug memory address space */
2842 if (machine->ram_size < machine->maxram_size) {
2843 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2844 /*
2845 * Limit the number of hotpluggable memory slots to half the number
2846 * slots that KVM supports, leaving the other half for PCI and other
2847 * devices. However ensure that number of slots doesn't drop below 32.
2848 */
2849 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2850 SPAPR_MAX_RAM_SLOTS;
2851
2852 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2853 max_memslots = SPAPR_MAX_RAM_SLOTS;
2854 }
2855 if (machine->ram_slots > max_memslots) {
2856 error_report("Specified number of memory slots %"
2857 PRIu64" exceeds max supported %d",
2858 machine->ram_slots, max_memslots);
2859 exit(1);
2860 }
2861
2862 machine->device_memory->base = ROUND_UP(machine->ram_size,
2863 SPAPR_DEVICE_MEM_ALIGN);
2864 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2865 "device-memory", device_mem_size);
2866 memory_region_add_subregion(sysmem, machine->device_memory->base,
2867 &machine->device_memory->mr);
2868 }
2869
2870 if (smc->dr_lmb_enabled) {
2871 spapr_create_lmb_dr_connectors(spapr);
2872 }
2873
2874 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2875 /* Create the error string for live migration blocker */
2876 error_setg(&spapr->fwnmi_migration_blocker,
2877 "A machine check is being handled during migration. The handler"
2878 "may run and log hardware error on the destination");
2879 }
2880
2881 if (mc->nvdimm_supported) {
2882 spapr_create_nvdimm_dr_connectors(spapr);
2883 }
2884
2885 /* Set up RTAS event infrastructure */
2886 spapr_events_init(spapr);
2887
2888 /* Set up the RTC RTAS interfaces */
2889 spapr_rtc_create(spapr);
2890
2891 /* Set up VIO bus */
2892 spapr->vio_bus = spapr_vio_bus_init();
2893
2894 for (i = 0; i < serial_max_hds(); i++) {
2895 if (serial_hd(i)) {
2896 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2897 }
2898 }
2899
2900 /* We always have at least the nvram device on VIO */
2901 spapr_create_nvram(spapr);
2902
2903 /*
2904 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2905 * connectors (described in root DT node's "ibm,drc-types" property)
2906 * are pre-initialized here. additional child connectors (such as
2907 * connectors for a PHBs PCI slots) are added as needed during their
2908 * parent's realization.
2909 */
2910 if (smc->dr_phb_enabled) {
2911 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2912 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2913 }
2914 }
2915
2916 /* Set up PCI */
2917 spapr_pci_rtas_init();
2918
2919 phb = spapr_create_default_phb();
2920
2921 for (i = 0; i < nb_nics; i++) {
2922 NICInfo *nd = &nd_table[i];
2923
2924 if (!nd->model) {
2925 nd->model = g_strdup("spapr-vlan");
2926 }
2927
2928 if (g_str_equal(nd->model, "spapr-vlan") ||
2929 g_str_equal(nd->model, "ibmveth")) {
2930 spapr_vlan_create(spapr->vio_bus, nd);
2931 } else {
2932 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2933 }
2934 }
2935
2936 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2937 spapr_vscsi_create(spapr->vio_bus);
2938 }
2939
2940 /* Graphics */
2941 if (spapr_vga_init(phb->bus, &error_fatal)) {
2942 spapr->has_graphics = true;
2943 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2944 }
2945
2946 if (machine->usb) {
2947 if (smc->use_ohci_by_default) {
2948 pci_create_simple(phb->bus, -1, "pci-ohci");
2949 } else {
2950 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2951 }
2952
2953 if (spapr->has_graphics) {
2954 USBBus *usb_bus = usb_bus_find(-1);
2955
2956 usb_create_simple(usb_bus, "usb-kbd");
2957 usb_create_simple(usb_bus, "usb-mouse");
2958 }
2959 }
2960
2961 if (kernel_filename) {
2962 uint64_t lowaddr = 0;
2963
2964 spapr->kernel_size = load_elf(kernel_filename, NULL,
2965 translate_kernel_address, spapr,
2966 NULL, &lowaddr, NULL, NULL, 1,
2967 PPC_ELF_MACHINE, 0, 0);
2968 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2969 spapr->kernel_size = load_elf(kernel_filename, NULL,
2970 translate_kernel_address, spapr, NULL,
2971 &lowaddr, NULL, NULL, 0,
2972 PPC_ELF_MACHINE,
2973 0, 0);
2974 spapr->kernel_le = spapr->kernel_size > 0;
2975 }
2976 if (spapr->kernel_size < 0) {
2977 error_report("error loading %s: %s", kernel_filename,
2978 load_elf_strerror(spapr->kernel_size));
2979 exit(1);
2980 }
2981
2982 /* load initrd */
2983 if (initrd_filename) {
2984 /* Try to locate the initrd in the gap between the kernel
2985 * and the firmware. Add a bit of space just in case
2986 */
2987 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2988 + 0x1ffff) & ~0xffff;
2989 spapr->initrd_size = load_image_targphys(initrd_filename,
2990 spapr->initrd_base,
2991 load_limit
2992 - spapr->initrd_base);
2993 if (spapr->initrd_size < 0) {
2994 error_report("could not load initial ram disk '%s'",
2995 initrd_filename);
2996 exit(1);
2997 }
2998 }
2999 }
3000
3001 if (bios_name == NULL) {
3002 bios_name = FW_FILE_NAME;
3003 }
3004 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3005 if (!filename) {
3006 error_report("Could not find LPAR firmware '%s'", bios_name);
3007 exit(1);
3008 }
3009 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3010 if (fw_size <= 0) {
3011 error_report("Could not load LPAR firmware '%s'", filename);
3012 exit(1);
3013 }
3014 g_free(filename);
3015
3016 /* FIXME: Should register things through the MachineState's qdev
3017 * interface, this is a legacy from the sPAPREnvironment structure
3018 * which predated MachineState but had a similar function */
3019 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3020 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3021 &savevm_htab_handlers, spapr);
3022
3023 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3024 &error_fatal);
3025
3026 qemu_register_boot_set(spapr_boot_set, spapr);
3027
3028 /*
3029 * Nothing needs to be done to resume a suspended guest because
3030 * suspending does not change the machine state, so no need for
3031 * a ->wakeup method.
3032 */
3033 qemu_register_wakeup_support();
3034
3035 if (kvm_enabled()) {
3036 /* to stop and start vmclock */
3037 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3038 &spapr->tb);
3039
3040 kvmppc_spapr_enable_inkernel_multitce();
3041 }
3042
3043 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3044 }
3045
3046 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3047 {
3048 if (!vm_type) {
3049 return 0;
3050 }
3051
3052 if (!strcmp(vm_type, "HV")) {
3053 return 1;
3054 }
3055
3056 if (!strcmp(vm_type, "PR")) {
3057 return 2;
3058 }
3059
3060 error_report("Unknown kvm-type specified '%s'", vm_type);
3061 exit(1);
3062 }
3063
3064 /*
3065 * Implementation of an interface to adjust firmware path
3066 * for the bootindex property handling.
3067 */
3068 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3069 DeviceState *dev)
3070 {
3071 #define CAST(type, obj, name) \
3072 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3073 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3074 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3075 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3076
3077 if (d) {
3078 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3079 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3080 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3081
3082 if (spapr) {
3083 /*
3084 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3085 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3086 * 0x8000 | (target << 8) | (bus << 5) | lun
3087 * (see the "Logical unit addressing format" table in SAM5)
3088 */
3089 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091 (uint64_t)id << 48);
3092 } else if (virtio) {
3093 /*
3094 * We use SRP luns of the form 01000000 | (target << 8) | lun
3095 * in the top 32 bits of the 64-bit LUN
3096 * Note: the quote above is from SLOF and it is wrong,
3097 * the actual binding is:
3098 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3099 */
3100 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3101 if (d->lun >= 256) {
3102 /* Use the LUN "flat space addressing method" */
3103 id |= 0x4000;
3104 }
3105 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3106 (uint64_t)id << 32);
3107 } else if (usb) {
3108 /*
3109 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3110 * in the top 32 bits of the 64-bit LUN
3111 */
3112 unsigned usb_port = atoi(usb->port->path);
3113 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3114 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3115 (uint64_t)id << 32);
3116 }
3117 }
3118
3119 /*
3120 * SLOF probes the USB devices, and if it recognizes that the device is a
3121 * storage device, it changes its name to "storage" instead of "usb-host",
3122 * and additionally adds a child node for the SCSI LUN, so the correct
3123 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3124 */
3125 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3126 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3127 if (usb_host_dev_is_scsi_storage(usbdev)) {
3128 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3129 }
3130 }
3131
3132 if (phb) {
3133 /* Replace "pci" with "pci@800000020000000" */
3134 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3135 }
3136
3137 if (vsc) {
3138 /* Same logic as virtio above */
3139 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3140 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3141 }
3142
3143 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3144 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3145 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3146 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3147 }
3148
3149 return NULL;
3150 }
3151
3152 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3153 {
3154 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3155
3156 return g_strdup(spapr->kvm_type);
3157 }
3158
3159 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3160 {
3161 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162
3163 g_free(spapr->kvm_type);
3164 spapr->kvm_type = g_strdup(value);
3165 }
3166
3167 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3168 {
3169 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3170
3171 return spapr->use_hotplug_event_source;
3172 }
3173
3174 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3175 Error **errp)
3176 {
3177 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3178
3179 spapr->use_hotplug_event_source = value;
3180 }
3181
3182 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3183 {
3184 return true;
3185 }
3186
3187 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3188 {
3189 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190
3191 switch (spapr->resize_hpt) {
3192 case SPAPR_RESIZE_HPT_DEFAULT:
3193 return g_strdup("default");
3194 case SPAPR_RESIZE_HPT_DISABLED:
3195 return g_strdup("disabled");
3196 case SPAPR_RESIZE_HPT_ENABLED:
3197 return g_strdup("enabled");
3198 case SPAPR_RESIZE_HPT_REQUIRED:
3199 return g_strdup("required");
3200 }
3201 g_assert_not_reached();
3202 }
3203
3204 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3205 {
3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207
3208 if (strcmp(value, "default") == 0) {
3209 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3210 } else if (strcmp(value, "disabled") == 0) {
3211 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3212 } else if (strcmp(value, "enabled") == 0) {
3213 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3214 } else if (strcmp(value, "required") == 0) {
3215 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3216 } else {
3217 error_setg(errp, "Bad value for \"resize-hpt\" property");
3218 }
3219 }
3220
3221 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3222 void *opaque, Error **errp)
3223 {
3224 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3225 }
3226
3227 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3228 void *opaque, Error **errp)
3229 {
3230 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3231 }
3232
3233 static void spapr_get_kernel_addr(Object *obj, Visitor *v, const char *name,
3234 void *opaque, Error **errp)
3235 {
3236 visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3237 }
3238
3239 static void spapr_set_kernel_addr(Object *obj, Visitor *v, const char *name,
3240 void *opaque, Error **errp)
3241 {
3242 visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3243 }
3244
3245 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3246 {
3247 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248
3249 if (spapr->irq == &spapr_irq_xics_legacy) {
3250 return g_strdup("legacy");
3251 } else if (spapr->irq == &spapr_irq_xics) {
3252 return g_strdup("xics");
3253 } else if (spapr->irq == &spapr_irq_xive) {
3254 return g_strdup("xive");
3255 } else if (spapr->irq == &spapr_irq_dual) {
3256 return g_strdup("dual");
3257 }
3258 g_assert_not_reached();
3259 }
3260
3261 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3262 {
3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3266 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3267 return;
3268 }
3269
3270 /* The legacy IRQ backend can not be set */
3271 if (strcmp(value, "xics") == 0) {
3272 spapr->irq = &spapr_irq_xics;
3273 } else if (strcmp(value, "xive") == 0) {
3274 spapr->irq = &spapr_irq_xive;
3275 } else if (strcmp(value, "dual") == 0) {
3276 spapr->irq = &spapr_irq_dual;
3277 } else {
3278 error_setg(errp, "Bad value for \"ic-mode\" property");
3279 }
3280 }
3281
3282 static char *spapr_get_host_model(Object *obj, Error **errp)
3283 {
3284 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285
3286 return g_strdup(spapr->host_model);
3287 }
3288
3289 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3290 {
3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292
3293 g_free(spapr->host_model);
3294 spapr->host_model = g_strdup(value);
3295 }
3296
3297 static char *spapr_get_host_serial(Object *obj, Error **errp)
3298 {
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300
3301 return g_strdup(spapr->host_serial);
3302 }
3303
3304 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3305 {
3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307
3308 g_free(spapr->host_serial);
3309 spapr->host_serial = g_strdup(value);
3310 }
3311
3312 static void spapr_instance_init(Object *obj)
3313 {
3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3316
3317 spapr->htab_fd = -1;
3318 spapr->use_hotplug_event_source = true;
3319 object_property_add_str(obj, "kvm-type",
3320 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3321 object_property_set_description(obj, "kvm-type",
3322 "Specifies the KVM virtualization mode (HV, PR)",
3323 NULL);
3324 object_property_add_bool(obj, "modern-hotplug-events",
3325 spapr_get_modern_hotplug_events,
3326 spapr_set_modern_hotplug_events,
3327 NULL);
3328 object_property_set_description(obj, "modern-hotplug-events",
3329 "Use dedicated hotplug event mechanism in"
3330 " place of standard EPOW events when possible"
3331 " (required for memory hot-unplug support)",
3332 NULL);
3333 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3334 "Maximum permitted CPU compatibility mode",
3335 &error_fatal);
3336
3337 object_property_add_str(obj, "resize-hpt",
3338 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3339 object_property_set_description(obj, "resize-hpt",
3340 "Resizing of the Hash Page Table (enabled, disabled, required)",
3341 NULL);
3342 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3343 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3344 object_property_set_description(obj, "vsmt",
3345 "Virtual SMT: KVM behaves as if this were"
3346 " the host's SMT mode", &error_abort);
3347 object_property_add_bool(obj, "vfio-no-msix-emulation",
3348 spapr_get_msix_emulation, NULL, NULL);
3349
3350 object_property_add(obj, "kernel-addr", "uint64", spapr_get_kernel_addr,
3351 spapr_set_kernel_addr, NULL, &spapr->kernel_addr,
3352 &error_abort);
3353 object_property_set_description(obj, "kernel-addr",
3354 stringify(KERNEL_LOAD_ADDR)
3355 " for -kernel is the default",
3356 NULL);
3357 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3358 /* The machine class defines the default interrupt controller mode */
3359 spapr->irq = smc->irq;
3360 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3361 spapr_set_ic_mode, NULL);
3362 object_property_set_description(obj, "ic-mode",
3363 "Specifies the interrupt controller mode (xics, xive, dual)",
3364 NULL);
3365
3366 object_property_add_str(obj, "host-model",
3367 spapr_get_host_model, spapr_set_host_model,
3368 &error_abort);
3369 object_property_set_description(obj, "host-model",
3370 "Host model to advertise in guest device tree", &error_abort);
3371 object_property_add_str(obj, "host-serial",
3372 spapr_get_host_serial, spapr_set_host_serial,
3373 &error_abort);
3374 object_property_set_description(obj, "host-serial",
3375 "Host serial number to advertise in guest device tree", &error_abort);
3376 }
3377
3378 static void spapr_machine_finalizefn(Object *obj)
3379 {
3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381
3382 g_free(spapr->kvm_type);
3383 }
3384
3385 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3386 {
3387 cpu_synchronize_state(cs);
3388 ppc_cpu_do_system_reset(cs, -1);
3389 }
3390
3391 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3392 {
3393 CPUState *cs;
3394
3395 CPU_FOREACH(cs) {
3396 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3397 }
3398 }
3399
3400 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3401 void *fdt, int *fdt_start_offset, Error **errp)
3402 {
3403 uint64_t addr;
3404 uint32_t node;
3405
3406 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3407 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3408 &error_abort);
3409 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3410 SPAPR_MEMORY_BLOCK_SIZE);
3411 return 0;
3412 }
3413
3414 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3415 bool dedicated_hp_event_source, Error **errp)
3416 {
3417 SpaprDrc *drc;
3418 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3419 int i;
3420 uint64_t addr = addr_start;
3421 bool hotplugged = spapr_drc_hotplugged(dev);
3422 Error *local_err = NULL;
3423
3424 for (i = 0; i < nr_lmbs; i++) {
3425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3426 addr / SPAPR_MEMORY_BLOCK_SIZE);
3427 g_assert(drc);
3428
3429 spapr_drc_attach(drc, dev, &local_err);
3430 if (local_err) {
3431 while (addr > addr_start) {
3432 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3433 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3434 addr / SPAPR_MEMORY_BLOCK_SIZE);
3435 spapr_drc_detach(drc);
3436 }
3437 error_propagate(errp, local_err);
3438 return;
3439 }
3440 if (!hotplugged) {
3441 spapr_drc_reset(drc);
3442 }
3443 addr += SPAPR_MEMORY_BLOCK_SIZE;
3444 }
3445 /* send hotplug notification to the
3446 * guest only in case of hotplugged memory
3447 */
3448 if (hotplugged) {
3449 if (dedicated_hp_event_source) {
3450 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3451 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3452 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3453 nr_lmbs,
3454 spapr_drc_index(drc));
3455 } else {
3456 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3457 nr_lmbs);
3458 }
3459 }
3460 }
3461
3462 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3463 Error **errp)
3464 {
3465 Error *local_err = NULL;
3466 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3467 PCDIMMDevice *dimm = PC_DIMM(dev);
3468 uint64_t size, addr, slot;
3469 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3470
3471 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3472
3473 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3474 if (local_err) {
3475 goto out;
3476 }
3477
3478 if (!is_nvdimm) {
3479 addr = object_property_get_uint(OBJECT(dimm),
3480 PC_DIMM_ADDR_PROP, &local_err);
3481 if (local_err) {
3482 goto out_unplug;
3483 }
3484 spapr_add_lmbs(dev, addr, size,
3485 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3486 &local_err);
3487 } else {
3488 slot = object_property_get_uint(OBJECT(dimm),
3489 PC_DIMM_SLOT_PROP, &local_err);
3490 if (local_err) {
3491 goto out_unplug;
3492 }
3493 spapr_add_nvdimm(dev, slot, &local_err);
3494 }
3495
3496 if (local_err) {
3497 goto out_unplug;
3498 }
3499
3500 return;
3501
3502 out_unplug:
3503 pc_dimm_unplug(dimm, MACHINE(ms));
3504 out:
3505 error_propagate(errp, local_err);
3506 }
3507
3508 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3509 Error **errp)
3510 {
3511 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3512 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3513 const MachineClass *mc = MACHINE_CLASS(smc);
3514 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3515 PCDIMMDevice *dimm = PC_DIMM(dev);
3516 Error *local_err = NULL;
3517 uint64_t size;
3518 Object *memdev;
3519 hwaddr pagesize;
3520
3521 if (!smc->dr_lmb_enabled) {
3522 error_setg(errp, "Memory hotplug not supported for this machine");
3523 return;
3524 }
3525
3526 if (is_nvdimm && !mc->nvdimm_supported) {
3527 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3528 return;
3529 }
3530
3531 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3532 if (local_err) {
3533 error_propagate(errp, local_err);
3534 return;
3535 }
3536
3537 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3538 error_setg(errp, "Hotplugged memory size must be a multiple of "
3539 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3540 return;
3541 } else if (is_nvdimm) {
3542 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3543 if (local_err) {
3544 error_propagate(errp, local_err);
3545 return;
3546 }
3547 }
3548
3549 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3550 &error_abort);
3551 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3552 spapr_check_pagesize(spapr, pagesize, &local_err);
3553 if (local_err) {
3554 error_propagate(errp, local_err);
3555 return;
3556 }
3557
3558 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3559 }
3560
3561 struct SpaprDimmState {
3562 PCDIMMDevice *dimm;
3563 uint32_t nr_lmbs;
3564 QTAILQ_ENTRY(SpaprDimmState) next;
3565 };
3566
3567 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3568 PCDIMMDevice *dimm)
3569 {
3570 SpaprDimmState *dimm_state = NULL;
3571
3572 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3573 if (dimm_state->dimm == dimm) {
3574 break;
3575 }
3576 }
3577 return dimm_state;
3578 }
3579
3580 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3581 uint32_t nr_lmbs,
3582 PCDIMMDevice *dimm)
3583 {
3584 SpaprDimmState *ds = NULL;
3585
3586 /*
3587 * If this request is for a DIMM whose removal had failed earlier
3588 * (due to guest's refusal to remove the LMBs), we would have this
3589 * dimm already in the pending_dimm_unplugs list. In that
3590 * case don't add again.
3591 */
3592 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3593 if (!ds) {
3594 ds = g_malloc0(sizeof(SpaprDimmState));
3595 ds->nr_lmbs = nr_lmbs;
3596 ds->dimm = dimm;
3597 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3598 }
3599 return ds;
3600 }
3601
3602 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3603 SpaprDimmState *dimm_state)
3604 {
3605 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3606 g_free(dimm_state);
3607 }
3608
3609 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3610 PCDIMMDevice *dimm)
3611 {
3612 SpaprDrc *drc;
3613 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3614 &error_abort);
3615 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3616 uint32_t avail_lmbs = 0;
3617 uint64_t addr_start, addr;
3618 int i;
3619
3620 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3621 &error_abort);
3622
3623 addr = addr_start;
3624 for (i = 0; i < nr_lmbs; i++) {
3625 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3626 addr / SPAPR_MEMORY_BLOCK_SIZE);
3627 g_assert(drc);
3628 if (drc->dev) {
3629 avail_lmbs++;
3630 }
3631 addr += SPAPR_MEMORY_BLOCK_SIZE;
3632 }
3633
3634 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3635 }
3636
3637 /* Callback to be called during DRC release. */
3638 void spapr_lmb_release(DeviceState *dev)
3639 {
3640 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3641 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3642 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3643
3644 /* This information will get lost if a migration occurs
3645 * during the unplug process. In this case recover it. */
3646 if (ds == NULL) {
3647 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3648 g_assert(ds);
3649 /* The DRC being examined by the caller at least must be counted */
3650 g_assert(ds->nr_lmbs);
3651 }
3652
3653 if (--ds->nr_lmbs) {
3654 return;
3655 }
3656
3657 /*
3658 * Now that all the LMBs have been removed by the guest, call the
3659 * unplug handler chain. This can never fail.
3660 */
3661 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3662 object_unparent(OBJECT(dev));
3663 }
3664
3665 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3666 {
3667 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3668 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3669
3670 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3671 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3672 spapr_pending_dimm_unplugs_remove(spapr, ds);
3673 }
3674
3675 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3676 DeviceState *dev, Error **errp)
3677 {
3678 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3679 Error *local_err = NULL;
3680 PCDIMMDevice *dimm = PC_DIMM(dev);
3681 uint32_t nr_lmbs;
3682 uint64_t size, addr_start, addr;
3683 int i;
3684 SpaprDrc *drc;
3685
3686 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3687 error_setg(&local_err,
3688 "nvdimm device hot unplug is not supported yet.");
3689 goto out;
3690 }
3691
3692 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3693 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3694
3695 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3696 &local_err);
3697 if (local_err) {
3698 goto out;
3699 }
3700
3701 /*
3702 * An existing pending dimm state for this DIMM means that there is an
3703 * unplug operation in progress, waiting for the spapr_lmb_release
3704 * callback to complete the job (BQL can't cover that far). In this case,
3705 * bail out to avoid detaching DRCs that were already released.
3706 */
3707 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3708 error_setg(&local_err,
3709 "Memory unplug already in progress for device %s",
3710 dev->id);
3711 goto out;
3712 }
3713
3714 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3715
3716 addr = addr_start;
3717 for (i = 0; i < nr_lmbs; i++) {
3718 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3719 addr / SPAPR_MEMORY_BLOCK_SIZE);
3720 g_assert(drc);
3721
3722 spapr_drc_detach(drc);
3723 addr += SPAPR_MEMORY_BLOCK_SIZE;
3724 }
3725
3726 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3727 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3728 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3729 nr_lmbs, spapr_drc_index(drc));
3730 out:
3731 error_propagate(errp, local_err);
3732 }
3733
3734 /* Callback to be called during DRC release. */
3735 void spapr_core_release(DeviceState *dev)
3736 {
3737 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3738
3739 /* Call the unplug handler chain. This can never fail. */
3740 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3741 object_unparent(OBJECT(dev));
3742 }
3743
3744 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3745 {
3746 MachineState *ms = MACHINE(hotplug_dev);
3747 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3748 CPUCore *cc = CPU_CORE(dev);
3749 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3750
3751 if (smc->pre_2_10_has_unused_icps) {
3752 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3753 int i;
3754
3755 for (i = 0; i < cc->nr_threads; i++) {
3756 CPUState *cs = CPU(sc->threads[i]);
3757
3758 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3759 }
3760 }
3761
3762 assert(core_slot);
3763 core_slot->cpu = NULL;
3764 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3765 }
3766
3767 static
3768 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3769 Error **errp)
3770 {
3771 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3772 int index;
3773 SpaprDrc *drc;
3774 CPUCore *cc = CPU_CORE(dev);
3775
3776 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3777 error_setg(errp, "Unable to find CPU core with core-id: %d",
3778 cc->core_id);
3779 return;
3780 }
3781 if (index == 0) {
3782 error_setg(errp, "Boot CPU core may not be unplugged");
3783 return;
3784 }
3785
3786 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3787 spapr_vcpu_id(spapr, cc->core_id));
3788 g_assert(drc);
3789
3790 if (!spapr_drc_unplug_requested(drc)) {
3791 spapr_drc_detach(drc);
3792 spapr_hotplug_req_remove_by_index(drc);
3793 }
3794 }
3795
3796 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3797 void *fdt, int *fdt_start_offset, Error **errp)
3798 {
3799 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3800 CPUState *cs = CPU(core->threads[0]);
3801 PowerPCCPU *cpu = POWERPC_CPU(cs);
3802 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3803 int id = spapr_get_vcpu_id(cpu);
3804 char *nodename;
3805 int offset;
3806
3807 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3808 offset = fdt_add_subnode(fdt, 0, nodename);
3809 g_free(nodename);
3810
3811 spapr_dt_cpu(cs, fdt, offset, spapr);
3812
3813 *fdt_start_offset = offset;
3814 return 0;
3815 }
3816
3817 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3818 Error **errp)
3819 {
3820 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3821 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3822 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3823 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3824 CPUCore *cc = CPU_CORE(dev);
3825 CPUState *cs;
3826 SpaprDrc *drc;
3827 Error *local_err = NULL;
3828 CPUArchId *core_slot;
3829 int index;
3830 bool hotplugged = spapr_drc_hotplugged(dev);
3831 int i;
3832
3833 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3834 if (!core_slot) {
3835 error_setg(errp, "Unable to find CPU core with core-id: %d",
3836 cc->core_id);
3837 return;
3838 }
3839 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3840 spapr_vcpu_id(spapr, cc->core_id));
3841
3842 g_assert(drc || !mc->has_hotpluggable_cpus);
3843
3844 if (drc) {
3845 spapr_drc_attach(drc, dev, &local_err);
3846 if (local_err) {
3847 error_propagate(errp, local_err);
3848 return;
3849 }
3850
3851 if (hotplugged) {
3852 /*
3853 * Send hotplug notification interrupt to the guest only
3854 * in case of hotplugged CPUs.
3855 */
3856 spapr_hotplug_req_add_by_index(drc);
3857 } else {
3858 spapr_drc_reset(drc);
3859 }
3860 }
3861
3862 core_slot->cpu = OBJECT(dev);
3863
3864 if (smc->pre_2_10_has_unused_icps) {
3865 for (i = 0; i < cc->nr_threads; i++) {
3866 cs = CPU(core->threads[i]);
3867 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3868 }
3869 }
3870
3871 /*
3872 * Set compatibility mode to match the boot CPU, which was either set
3873 * by the machine reset code or by CAS.
3874 */
3875 if (hotplugged) {
3876 for (i = 0; i < cc->nr_threads; i++) {
3877 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3878 &local_err);
3879 if (local_err) {
3880 error_propagate(errp, local_err);
3881 return;
3882 }
3883 }
3884 }
3885 }
3886
3887 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3888 Error **errp)
3889 {
3890 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3891 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3892 Error *local_err = NULL;
3893 CPUCore *cc = CPU_CORE(dev);
3894 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3895 const char *type = object_get_typename(OBJECT(dev));
3896 CPUArchId *core_slot;
3897 int index;
3898 unsigned int smp_threads = machine->smp.threads;
3899
3900 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3901 error_setg(&local_err, "CPU hotplug not supported for this machine");
3902 goto out;
3903 }
3904
3905 if (strcmp(base_core_type, type)) {
3906 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3907 goto out;
3908 }
3909
3910 if (cc->core_id % smp_threads) {
3911 error_setg(&local_err, "invalid core id %d", cc->core_id);
3912 goto out;
3913 }
3914
3915 /*
3916 * In general we should have homogeneous threads-per-core, but old
3917 * (pre hotplug support) machine types allow the last core to have
3918 * reduced threads as a compatibility hack for when we allowed
3919 * total vcpus not a multiple of threads-per-core.
3920 */
3921 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3922 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3923 cc->nr_threads, smp_threads);
3924 goto out;
3925 }
3926
3927 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3928 if (!core_slot) {
3929 error_setg(&local_err, "core id %d out of range", cc->core_id);
3930 goto out;
3931 }
3932
3933 if (core_slot->cpu) {
3934 error_setg(&local_err, "core %d already populated", cc->core_id);
3935 goto out;
3936 }
3937
3938 numa_cpu_pre_plug(core_slot, dev, &local_err);
3939
3940 out:
3941 error_propagate(errp, local_err);
3942 }
3943
3944 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3945 void *fdt, int *fdt_start_offset, Error **errp)
3946 {
3947 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3948 int intc_phandle;
3949
3950 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3951 if (intc_phandle <= 0) {
3952 return -1;
3953 }
3954
3955 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3956 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3957 return -1;
3958 }
3959
3960 /* generally SLOF creates these, for hotplug it's up to QEMU */
3961 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3962
3963 return 0;
3964 }
3965
3966 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3967 Error **errp)
3968 {
3969 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3970 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3971 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3972 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3973
3974 if (dev->hotplugged && !smc->dr_phb_enabled) {
3975 error_setg(errp, "PHB hotplug not supported for this machine");
3976 return;
3977 }
3978
3979 if (sphb->index == (uint32_t)-1) {
3980 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3981 return;
3982 }
3983
3984 /*
3985 * This will check that sphb->index doesn't exceed the maximum number of
3986 * PHBs for the current machine type.
3987 */
3988 smc->phb_placement(spapr, sphb->index,
3989 &sphb->buid, &sphb->io_win_addr,
3990 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3991 windows_supported, sphb->dma_liobn,
3992 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3993 errp);
3994 }
3995
3996 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3997 Error **errp)
3998 {
3999 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4001 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4002 SpaprDrc *drc;
4003 bool hotplugged = spapr_drc_hotplugged(dev);
4004 Error *local_err = NULL;
4005
4006 if (!smc->dr_phb_enabled) {
4007 return;
4008 }
4009
4010 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4011 /* hotplug hooks should check it's enabled before getting this far */
4012 assert(drc);
4013
4014 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4015 if (local_err) {
4016 error_propagate(errp, local_err);
4017 return;
4018 }
4019
4020 if (hotplugged) {
4021 spapr_hotplug_req_add_by_index(drc);
4022 } else {
4023 spapr_drc_reset(drc);
4024 }
4025 }
4026
4027 void spapr_phb_release(DeviceState *dev)
4028 {
4029 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4030
4031 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4032 object_unparent(OBJECT(dev));
4033 }
4034
4035 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4036 {
4037 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4038 }
4039
4040 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4041 DeviceState *dev, Error **errp)
4042 {
4043 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4044 SpaprDrc *drc;
4045
4046 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4047 assert(drc);
4048
4049 if (!spapr_drc_unplug_requested(drc)) {
4050 spapr_drc_detach(drc);
4051 spapr_hotplug_req_remove_by_index(drc);
4052 }
4053 }
4054
4055 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4056 Error **errp)
4057 {
4058 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4059 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4060
4061 if (spapr->tpm_proxy != NULL) {
4062 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4063 return;
4064 }
4065
4066 spapr->tpm_proxy = tpm_proxy;
4067 }
4068
4069 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4070 {
4071 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4072
4073 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4074 object_unparent(OBJECT(dev));
4075 spapr->tpm_proxy = NULL;
4076 }
4077
4078 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4079 DeviceState *dev, Error **errp)
4080 {
4081 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4082 spapr_memory_plug(hotplug_dev, dev, errp);
4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4084 spapr_core_plug(hotplug_dev, dev, errp);
4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086 spapr_phb_plug(hotplug_dev, dev, errp);
4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4088 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4089 }
4090 }
4091
4092 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4093 DeviceState *dev, Error **errp)
4094 {
4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096 spapr_memory_unplug(hotplug_dev, dev);
4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098 spapr_core_unplug(hotplug_dev, dev);
4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100 spapr_phb_unplug(hotplug_dev, dev);
4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4102 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4103 }
4104 }
4105
4106 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4107 DeviceState *dev, Error **errp)
4108 {
4109 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110 MachineClass *mc = MACHINE_GET_CLASS(sms);
4111 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4112
4113 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4114 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4115 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4116 } else {
4117 /* NOTE: this means there is a window after guest reset, prior to
4118 * CAS negotiation, where unplug requests will fail due to the
4119 * capability not being detected yet. This is a bit different than
4120 * the case with PCI unplug, where the events will be queued and
4121 * eventually handled by the guest after boot
4122 */
4123 error_setg(errp, "Memory hot unplug not supported for this guest");
4124 }
4125 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4126 if (!mc->has_hotpluggable_cpus) {
4127 error_setg(errp, "CPU hot unplug not supported on this machine");
4128 return;
4129 }
4130 spapr_core_unplug_request(hotplug_dev, dev, errp);
4131 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4132 if (!smc->dr_phb_enabled) {
4133 error_setg(errp, "PHB hot unplug not supported on this machine");
4134 return;
4135 }
4136 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4137 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4138 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4139 }
4140 }
4141
4142 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4143 DeviceState *dev, Error **errp)
4144 {
4145 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4146 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4147 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4148 spapr_core_pre_plug(hotplug_dev, dev, errp);
4149 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4150 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4151 }
4152 }
4153
4154 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4155 DeviceState *dev)
4156 {
4157 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4158 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4159 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4160 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4161 return HOTPLUG_HANDLER(machine);
4162 }
4163 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4164 PCIDevice *pcidev = PCI_DEVICE(dev);
4165 PCIBus *root = pci_device_root_bus(pcidev);
4166 SpaprPhbState *phb =
4167 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4168 TYPE_SPAPR_PCI_HOST_BRIDGE);
4169
4170 if (phb) {
4171 return HOTPLUG_HANDLER(phb);
4172 }
4173 }
4174 return NULL;
4175 }
4176
4177 static CpuInstanceProperties
4178 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4179 {
4180 CPUArchId *core_slot;
4181 MachineClass *mc = MACHINE_GET_CLASS(machine);
4182
4183 /* make sure possible_cpu are intialized */
4184 mc->possible_cpu_arch_ids(machine);
4185 /* get CPU core slot containing thread that matches cpu_index */
4186 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4187 assert(core_slot);
4188 return core_slot->props;
4189 }
4190
4191 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4192 {
4193 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4194 }
4195
4196 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4197 {
4198 int i;
4199 unsigned int smp_threads = machine->smp.threads;
4200 unsigned int smp_cpus = machine->smp.cpus;
4201 const char *core_type;
4202 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4203 MachineClass *mc = MACHINE_GET_CLASS(machine);
4204
4205 if (!mc->has_hotpluggable_cpus) {
4206 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4207 }
4208 if (machine->possible_cpus) {
4209 assert(machine->possible_cpus->len == spapr_max_cores);
4210 return machine->possible_cpus;
4211 }
4212
4213 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4214 if (!core_type) {
4215 error_report("Unable to find sPAPR CPU Core definition");
4216 exit(1);
4217 }
4218
4219 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4220 sizeof(CPUArchId) * spapr_max_cores);
4221 machine->possible_cpus->len = spapr_max_cores;
4222 for (i = 0; i < machine->possible_cpus->len; i++) {
4223 int core_id = i * smp_threads;
4224
4225 machine->possible_cpus->cpus[i].type = core_type;
4226 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4227 machine->possible_cpus->cpus[i].arch_id = core_id;
4228 machine->possible_cpus->cpus[i].props.has_core_id = true;
4229 machine->possible_cpus->cpus[i].props.core_id = core_id;
4230 }
4231 return machine->possible_cpus;
4232 }
4233
4234 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4235 uint64_t *buid, hwaddr *pio,
4236 hwaddr *mmio32, hwaddr *mmio64,
4237 unsigned n_dma, uint32_t *liobns,
4238 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4239 {
4240 /*
4241 * New-style PHB window placement.
4242 *
4243 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4244 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4245 * windows.
4246 *
4247 * Some guest kernels can't work with MMIO windows above 1<<46
4248 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4249 *
4250 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4251 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4252 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4253 * 1TiB 64-bit MMIO windows for each PHB.
4254 */
4255 const uint64_t base_buid = 0x800000020000000ULL;
4256 int i;
4257
4258 /* Sanity check natural alignments */
4259 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4260 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4261 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4263 /* Sanity check bounds */
4264 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4265 SPAPR_PCI_MEM32_WIN_SIZE);
4266 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4267 SPAPR_PCI_MEM64_WIN_SIZE);
4268
4269 if (index >= SPAPR_MAX_PHBS) {
4270 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4271 SPAPR_MAX_PHBS - 1);
4272 return;
4273 }
4274
4275 *buid = base_buid + index;
4276 for (i = 0; i < n_dma; ++i) {
4277 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4278 }
4279
4280 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4281 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4282 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4283
4284 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4285 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4286 }
4287
4288 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4289 {
4290 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4291
4292 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4293 }
4294
4295 static void spapr_ics_resend(XICSFabric *dev)
4296 {
4297 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4298
4299 ics_resend(spapr->ics);
4300 }
4301
4302 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4303 {
4304 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4305
4306 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4307 }
4308
4309 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4310 Monitor *mon)
4311 {
4312 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4313
4314 spapr_irq_print_info(spapr, mon);
4315 monitor_printf(mon, "irqchip: %s\n",
4316 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4317 }
4318
4319 /*
4320 * This is a XIVE only operation
4321 */
4322 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4323 uint8_t nvt_blk, uint32_t nvt_idx,
4324 bool cam_ignore, uint8_t priority,
4325 uint32_t logic_serv, XiveTCTXMatch *match)
4326 {
4327 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4328 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4329 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4330 int count;
4331
4332 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4333 priority, logic_serv, match);
4334 if (count < 0) {
4335 return count;
4336 }
4337
4338 /*
4339 * When we implement the save and restore of the thread interrupt
4340 * contexts in the enter/exit CPU handlers of the machine and the
4341 * escalations in QEMU, we should be able to handle non dispatched
4342 * vCPUs.
4343 *
4344 * Until this is done, the sPAPR machine should find at least one
4345 * matching context always.
4346 */
4347 if (count == 0) {
4348 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4349 nvt_blk, nvt_idx);
4350 }
4351
4352 return count;
4353 }
4354
4355 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4356 {
4357 return cpu->vcpu_id;
4358 }
4359
4360 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4361 {
4362 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4363 MachineState *ms = MACHINE(spapr);
4364 int vcpu_id;
4365
4366 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4367
4368 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4369 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4370 error_append_hint(errp, "Adjust the number of cpus to %d "
4371 "or try to raise the number of threads per core\n",
4372 vcpu_id * ms->smp.threads / spapr->vsmt);
4373 return;
4374 }
4375
4376 cpu->vcpu_id = vcpu_id;
4377 }
4378
4379 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4380 {
4381 CPUState *cs;
4382
4383 CPU_FOREACH(cs) {
4384 PowerPCCPU *cpu = POWERPC_CPU(cs);
4385
4386 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4387 return cpu;
4388 }
4389 }
4390
4391 return NULL;
4392 }
4393
4394 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4395 {
4396 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4397
4398 /* These are only called by TCG, KVM maintains dispatch state */
4399
4400 spapr_cpu->prod = false;
4401 if (spapr_cpu->vpa_addr) {
4402 CPUState *cs = CPU(cpu);
4403 uint32_t dispatch;
4404
4405 dispatch = ldl_be_phys(cs->as,
4406 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4407 dispatch++;
4408 if ((dispatch & 1) != 0) {
4409 qemu_log_mask(LOG_GUEST_ERROR,
4410 "VPA: incorrect dispatch counter value for "
4411 "dispatched partition %u, correcting.\n", dispatch);
4412 dispatch++;
4413 }
4414 stl_be_phys(cs->as,
4415 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4416 }
4417 }
4418
4419 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4420 {
4421 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4422
4423 if (spapr_cpu->vpa_addr) {
4424 CPUState *cs = CPU(cpu);
4425 uint32_t dispatch;
4426
4427 dispatch = ldl_be_phys(cs->as,
4428 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4429 dispatch++;
4430 if ((dispatch & 1) != 1) {
4431 qemu_log_mask(LOG_GUEST_ERROR,
4432 "VPA: incorrect dispatch counter value for "
4433 "preempted partition %u, correcting.\n", dispatch);
4434 dispatch++;
4435 }
4436 stl_be_phys(cs->as,
4437 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4438 }
4439 }
4440
4441 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4442 {
4443 MachineClass *mc = MACHINE_CLASS(oc);
4444 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4445 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4446 NMIClass *nc = NMI_CLASS(oc);
4447 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4448 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4449 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4450 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4451 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4452
4453 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4454 mc->ignore_boot_device_suffixes = true;
4455
4456 /*
4457 * We set up the default / latest behaviour here. The class_init
4458 * functions for the specific versioned machine types can override
4459 * these details for backwards compatibility
4460 */
4461 mc->init = spapr_machine_init;
4462 mc->reset = spapr_machine_reset;
4463 mc->block_default_type = IF_SCSI;
4464 mc->max_cpus = 1024;
4465 mc->no_parallel = 1;
4466 mc->default_boot_order = "";
4467 mc->default_ram_size = 512 * MiB;
4468 mc->default_ram_id = "ppc_spapr.ram";
4469 mc->default_display = "std";
4470 mc->kvm_type = spapr_kvm_type;
4471 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4472 mc->pci_allow_0_address = true;
4473 assert(!mc->get_hotplug_handler);
4474 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4475 hc->pre_plug = spapr_machine_device_pre_plug;
4476 hc->plug = spapr_machine_device_plug;
4477 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4478 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4479 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4480 hc->unplug_request = spapr_machine_device_unplug_request;
4481 hc->unplug = spapr_machine_device_unplug;
4482
4483 smc->dr_lmb_enabled = true;
4484 smc->update_dt_enabled = true;
4485 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4486 mc->has_hotpluggable_cpus = true;
4487 mc->nvdimm_supported = true;
4488 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4489 fwc->get_dev_path = spapr_get_fw_dev_path;
4490 nc->nmi_monitor_handler = spapr_nmi;
4491 smc->phb_placement = spapr_phb_placement;
4492 vhc->hypercall = emulate_spapr_hypercall;
4493 vhc->hpt_mask = spapr_hpt_mask;
4494 vhc->map_hptes = spapr_map_hptes;
4495 vhc->unmap_hptes = spapr_unmap_hptes;
4496 vhc->hpte_set_c = spapr_hpte_set_c;
4497 vhc->hpte_set_r = spapr_hpte_set_r;
4498 vhc->get_pate = spapr_get_pate;
4499 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4500 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4501 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4502 xic->ics_get = spapr_ics_get;
4503 xic->ics_resend = spapr_ics_resend;
4504 xic->icp_get = spapr_icp_get;
4505 ispc->print_info = spapr_pic_print_info;
4506 /* Force NUMA node memory size to be a multiple of
4507 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4508 * in which LMBs are represented and hot-added
4509 */
4510 mc->numa_mem_align_shift = 28;
4511 mc->numa_mem_supported = true;
4512 mc->auto_enable_numa = true;
4513
4514 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4515 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4516 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4517 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4518 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4519 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4520 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4521 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4522 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4523 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4524 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4525 spapr_caps_add_properties(smc, &error_abort);
4526 smc->irq = &spapr_irq_dual;
4527 smc->dr_phb_enabled = true;
4528 smc->linux_pci_probe = true;
4529 smc->smp_threads_vsmt = true;
4530 smc->nr_xirqs = SPAPR_NR_XIRQS;
4531 xfc->match_nvt = spapr_match_nvt;
4532 }
4533
4534 static const TypeInfo spapr_machine_info = {
4535 .name = TYPE_SPAPR_MACHINE,
4536 .parent = TYPE_MACHINE,
4537 .abstract = true,
4538 .instance_size = sizeof(SpaprMachineState),
4539 .instance_init = spapr_instance_init,
4540 .instance_finalize = spapr_machine_finalizefn,
4541 .class_size = sizeof(SpaprMachineClass),
4542 .class_init = spapr_machine_class_init,
4543 .interfaces = (InterfaceInfo[]) {
4544 { TYPE_FW_PATH_PROVIDER },
4545 { TYPE_NMI },
4546 { TYPE_HOTPLUG_HANDLER },
4547 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4548 { TYPE_XICS_FABRIC },
4549 { TYPE_INTERRUPT_STATS_PROVIDER },
4550 { TYPE_XIVE_FABRIC },
4551 { }
4552 },
4553 };
4554
4555 static void spapr_machine_latest_class_options(MachineClass *mc)
4556 {
4557 mc->alias = "pseries";
4558 mc->is_default = true;
4559 }
4560
4561 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4562 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4563 void *data) \
4564 { \
4565 MachineClass *mc = MACHINE_CLASS(oc); \
4566 spapr_machine_##suffix##_class_options(mc); \
4567 if (latest) { \
4568 spapr_machine_latest_class_options(mc); \
4569 } \
4570 } \
4571 static const TypeInfo spapr_machine_##suffix##_info = { \
4572 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4573 .parent = TYPE_SPAPR_MACHINE, \
4574 .class_init = spapr_machine_##suffix##_class_init, \
4575 }; \
4576 static void spapr_machine_register_##suffix(void) \
4577 { \
4578 type_register(&spapr_machine_##suffix##_info); \
4579 } \
4580 type_init(spapr_machine_register_##suffix)
4581
4582 /*
4583 * pseries-5.0
4584 */
4585 static void spapr_machine_5_0_class_options(MachineClass *mc)
4586 {
4587 /* Defaults for the latest behaviour inherited from the base class */
4588 }
4589
4590 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4591
4592 /*
4593 * pseries-4.2
4594 */
4595 static void spapr_machine_4_2_class_options(MachineClass *mc)
4596 {
4597 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4598
4599 spapr_machine_5_0_class_options(mc);
4600 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4601 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4602 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4603 smc->rma_limit = 16 * GiB;
4604 mc->nvdimm_supported = false;
4605 }
4606
4607 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4608
4609 /*
4610 * pseries-4.1
4611 */
4612 static void spapr_machine_4_1_class_options(MachineClass *mc)
4613 {
4614 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4615 static GlobalProperty compat[] = {
4616 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4617 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4618 };
4619
4620 spapr_machine_4_2_class_options(mc);
4621 smc->linux_pci_probe = false;
4622 smc->smp_threads_vsmt = false;
4623 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4624 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4625 }
4626
4627 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4628
4629 /*
4630 * pseries-4.0
4631 */
4632 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4633 uint64_t *buid, hwaddr *pio,
4634 hwaddr *mmio32, hwaddr *mmio64,
4635 unsigned n_dma, uint32_t *liobns,
4636 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4637 {
4638 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4639 nv2gpa, nv2atsd, errp);
4640 *nv2gpa = 0;
4641 *nv2atsd = 0;
4642 }
4643
4644 static void spapr_machine_4_0_class_options(MachineClass *mc)
4645 {
4646 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4647
4648 spapr_machine_4_1_class_options(mc);
4649 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4650 smc->phb_placement = phb_placement_4_0;
4651 smc->irq = &spapr_irq_xics;
4652 smc->pre_4_1_migration = true;
4653 }
4654
4655 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4656
4657 /*
4658 * pseries-3.1
4659 */
4660 static void spapr_machine_3_1_class_options(MachineClass *mc)
4661 {
4662 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4663
4664 spapr_machine_4_0_class_options(mc);
4665 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4666
4667 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4668 smc->update_dt_enabled = false;
4669 smc->dr_phb_enabled = false;
4670 smc->broken_host_serial_model = true;
4671 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4672 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4673 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4674 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4675 }
4676
4677 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4678
4679 /*
4680 * pseries-3.0
4681 */
4682
4683 static void spapr_machine_3_0_class_options(MachineClass *mc)
4684 {
4685 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4686
4687 spapr_machine_3_1_class_options(mc);
4688 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4689
4690 smc->legacy_irq_allocation = true;
4691 smc->nr_xirqs = 0x400;
4692 smc->irq = &spapr_irq_xics_legacy;
4693 }
4694
4695 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4696
4697 /*
4698 * pseries-2.12
4699 */
4700 static void spapr_machine_2_12_class_options(MachineClass *mc)
4701 {
4702 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4703 static GlobalProperty compat[] = {
4704 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4705 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4706 };
4707
4708 spapr_machine_3_0_class_options(mc);
4709 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4710 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4711
4712 /* We depend on kvm_enabled() to choose a default value for the
4713 * hpt-max-page-size capability. Of course we can't do it here
4714 * because this is too early and the HW accelerator isn't initialzed
4715 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4716 */
4717 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4718 }
4719
4720 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4721
4722 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4723 {
4724 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4725
4726 spapr_machine_2_12_class_options(mc);
4727 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4728 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4729 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4730 }
4731
4732 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4733
4734 /*
4735 * pseries-2.11
4736 */
4737
4738 static void spapr_machine_2_11_class_options(MachineClass *mc)
4739 {
4740 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4741
4742 spapr_machine_2_12_class_options(mc);
4743 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4744 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4745 }
4746
4747 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4748
4749 /*
4750 * pseries-2.10
4751 */
4752
4753 static void spapr_machine_2_10_class_options(MachineClass *mc)
4754 {
4755 spapr_machine_2_11_class_options(mc);
4756 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4757 }
4758
4759 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4760
4761 /*
4762 * pseries-2.9
4763 */
4764
4765 static void spapr_machine_2_9_class_options(MachineClass *mc)
4766 {
4767 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4768 static GlobalProperty compat[] = {
4769 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4770 };
4771
4772 spapr_machine_2_10_class_options(mc);
4773 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4774 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4775 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4776 smc->pre_2_10_has_unused_icps = true;
4777 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4778 }
4779
4780 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4781
4782 /*
4783 * pseries-2.8
4784 */
4785
4786 static void spapr_machine_2_8_class_options(MachineClass *mc)
4787 {
4788 static GlobalProperty compat[] = {
4789 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4790 };
4791
4792 spapr_machine_2_9_class_options(mc);
4793 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4794 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795 mc->numa_mem_align_shift = 23;
4796 }
4797
4798 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4799
4800 /*
4801 * pseries-2.7
4802 */
4803
4804 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4805 uint64_t *buid, hwaddr *pio,
4806 hwaddr *mmio32, hwaddr *mmio64,
4807 unsigned n_dma, uint32_t *liobns,
4808 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4809 {
4810 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4811 const uint64_t base_buid = 0x800000020000000ULL;
4812 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4813 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4814 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4815 const uint32_t max_index = 255;
4816 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4817
4818 uint64_t ram_top = MACHINE(spapr)->ram_size;
4819 hwaddr phb0_base, phb_base;
4820 int i;
4821
4822 /* Do we have device memory? */
4823 if (MACHINE(spapr)->maxram_size > ram_top) {
4824 /* Can't just use maxram_size, because there may be an
4825 * alignment gap between normal and device memory regions
4826 */
4827 ram_top = MACHINE(spapr)->device_memory->base +
4828 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4829 }
4830
4831 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4832
4833 if (index > max_index) {
4834 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4835 max_index);
4836 return;
4837 }
4838
4839 *buid = base_buid + index;
4840 for (i = 0; i < n_dma; ++i) {
4841 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4842 }
4843
4844 phb_base = phb0_base + index * phb_spacing;
4845 *pio = phb_base + pio_offset;
4846 *mmio32 = phb_base + mmio_offset;
4847 /*
4848 * We don't set the 64-bit MMIO window, relying on the PHB's
4849 * fallback behaviour of automatically splitting a large "32-bit"
4850 * window into contiguous 32-bit and 64-bit windows
4851 */
4852
4853 *nv2gpa = 0;
4854 *nv2atsd = 0;
4855 }
4856
4857 static void spapr_machine_2_7_class_options(MachineClass *mc)
4858 {
4859 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4860 static GlobalProperty compat[] = {
4861 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4862 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4863 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4864 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4865 };
4866
4867 spapr_machine_2_8_class_options(mc);
4868 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4869 mc->default_machine_opts = "modern-hotplug-events=off";
4870 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4871 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4872 smc->phb_placement = phb_placement_2_7;
4873 }
4874
4875 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4876
4877 /*
4878 * pseries-2.6
4879 */
4880
4881 static void spapr_machine_2_6_class_options(MachineClass *mc)
4882 {
4883 static GlobalProperty compat[] = {
4884 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4885 };
4886
4887 spapr_machine_2_7_class_options(mc);
4888 mc->has_hotpluggable_cpus = false;
4889 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4890 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4891 }
4892
4893 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4894
4895 /*
4896 * pseries-2.5
4897 */
4898
4899 static void spapr_machine_2_5_class_options(MachineClass *mc)
4900 {
4901 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4902 static GlobalProperty compat[] = {
4903 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4904 };
4905
4906 spapr_machine_2_6_class_options(mc);
4907 smc->use_ohci_by_default = true;
4908 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4909 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4910 }
4911
4912 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4913
4914 /*
4915 * pseries-2.4
4916 */
4917
4918 static void spapr_machine_2_4_class_options(MachineClass *mc)
4919 {
4920 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4921
4922 spapr_machine_2_5_class_options(mc);
4923 smc->dr_lmb_enabled = false;
4924 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4925 }
4926
4927 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4928
4929 /*
4930 * pseries-2.3
4931 */
4932
4933 static void spapr_machine_2_3_class_options(MachineClass *mc)
4934 {
4935 static GlobalProperty compat[] = {
4936 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4937 };
4938 spapr_machine_2_4_class_options(mc);
4939 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4940 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4941 }
4942 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4943
4944 /*
4945 * pseries-2.2
4946 */
4947
4948 static void spapr_machine_2_2_class_options(MachineClass *mc)
4949 {
4950 static GlobalProperty compat[] = {
4951 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4952 };
4953
4954 spapr_machine_2_3_class_options(mc);
4955 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4956 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4957 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4958 }
4959 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4960
4961 /*
4962 * pseries-2.1
4963 */
4964
4965 static void spapr_machine_2_1_class_options(MachineClass *mc)
4966 {
4967 spapr_machine_2_2_class_options(mc);
4968 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4969 }
4970 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4971
4972 static void spapr_machine_register_types(void)
4973 {
4974 type_register_static(&spapr_machine_info);
4975 }
4976
4977 type_init(spapr_machine_register_types)