]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/ppc/spapr_pci.c
spapr_pci: Warn when RAM page size is not enabled in IOMMU page mask
[thirdparty/qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52
53 #include "hw/vfio/vfio.h"
54
55 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
56 #define RTAS_QUERY_FN 0
57 #define RTAS_CHANGE_FN 1
58 #define RTAS_RESET_FN 2
59 #define RTAS_CHANGE_MSI_FN 3
60 #define RTAS_CHANGE_MSIX_FN 4
61
62 /* Interrupt types to return on RTAS_CHANGE_* */
63 #define RTAS_TYPE_MSI 1
64 #define RTAS_TYPE_MSIX 2
65
66 #define FDT_NAME_MAX 128
67
68 #define _FDT(exp) \
69 do { \
70 int ret = (exp); \
71 if (ret < 0) { \
72 return ret; \
73 } \
74 } while (0)
75
76 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
77 {
78 sPAPRPHBState *sphb;
79
80 QLIST_FOREACH(sphb, &spapr->phbs, list) {
81 if (sphb->buid != buid) {
82 continue;
83 }
84 return sphb;
85 }
86
87 return NULL;
88 }
89
90 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
91 uint32_t config_addr)
92 {
93 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
94 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
95 int bus_num = (config_addr >> 16) & 0xFF;
96 int devfn = (config_addr >> 8) & 0xFF;
97
98 if (!phb) {
99 return NULL;
100 }
101
102 return pci_find_device(phb->bus, bus_num, devfn);
103 }
104
105 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
106 {
107 /* This handles the encoding of extended config space addresses */
108 return ((arg >> 20) & 0xf00) | (arg & 0xff);
109 }
110
111 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
112 uint32_t addr, uint32_t size,
113 target_ulong rets)
114 {
115 PCIDevice *pci_dev;
116 uint32_t val;
117
118 if ((size != 1) && (size != 2) && (size != 4)) {
119 /* access must be 1, 2 or 4 bytes */
120 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121 return;
122 }
123
124 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
125 addr = rtas_pci_cfgaddr(addr);
126
127 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
128 /* Access must be to a valid device, within bounds and
129 * naturally aligned */
130 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
131 return;
132 }
133
134 val = pci_host_config_read_common(pci_dev, addr,
135 pci_config_size(pci_dev), size);
136
137 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
138 rtas_st(rets, 1, val);
139 }
140
141 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
142 uint32_t token, uint32_t nargs,
143 target_ulong args,
144 uint32_t nret, target_ulong rets)
145 {
146 uint64_t buid;
147 uint32_t size, addr;
148
149 if ((nargs != 4) || (nret != 2)) {
150 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
151 return;
152 }
153
154 buid = rtas_ldq(args, 1);
155 size = rtas_ld(args, 3);
156 addr = rtas_ld(args, 0);
157
158 finish_read_pci_config(spapr, buid, addr, size, rets);
159 }
160
161 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
162 uint32_t token, uint32_t nargs,
163 target_ulong args,
164 uint32_t nret, target_ulong rets)
165 {
166 uint32_t size, addr;
167
168 if ((nargs != 2) || (nret != 2)) {
169 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
170 return;
171 }
172
173 size = rtas_ld(args, 1);
174 addr = rtas_ld(args, 0);
175
176 finish_read_pci_config(spapr, 0, addr, size, rets);
177 }
178
179 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
180 uint32_t addr, uint32_t size,
181 uint32_t val, target_ulong rets)
182 {
183 PCIDevice *pci_dev;
184
185 if ((size != 1) && (size != 2) && (size != 4)) {
186 /* access must be 1, 2 or 4 bytes */
187 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188 return;
189 }
190
191 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
192 addr = rtas_pci_cfgaddr(addr);
193
194 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
195 /* Access must be to a valid device, within bounds and
196 * naturally aligned */
197 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
198 return;
199 }
200
201 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
202 val, size);
203
204 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
205 }
206
207 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
208 uint32_t token, uint32_t nargs,
209 target_ulong args,
210 uint32_t nret, target_ulong rets)
211 {
212 uint64_t buid;
213 uint32_t val, size, addr;
214
215 if ((nargs != 5) || (nret != 1)) {
216 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
217 return;
218 }
219
220 buid = rtas_ldq(args, 1);
221 val = rtas_ld(args, 4);
222 size = rtas_ld(args, 3);
223 addr = rtas_ld(args, 0);
224
225 finish_write_pci_config(spapr, buid, addr, size, val, rets);
226 }
227
228 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
229 uint32_t token, uint32_t nargs,
230 target_ulong args,
231 uint32_t nret, target_ulong rets)
232 {
233 uint32_t val, size, addr;
234
235 if ((nargs != 3) || (nret != 1)) {
236 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
237 return;
238 }
239
240
241 val = rtas_ld(args, 2);
242 size = rtas_ld(args, 1);
243 addr = rtas_ld(args, 0);
244
245 finish_write_pci_config(spapr, 0, addr, size, val, rets);
246 }
247
248 /*
249 * Set MSI/MSIX message data.
250 * This is required for msi_notify()/msix_notify() which
251 * will write at the addresses via spapr_msi_write().
252 *
253 * If hwaddr == 0, all entries will have .data == first_irq i.e.
254 * table will be reset.
255 */
256 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
257 unsigned first_irq, unsigned req_num)
258 {
259 unsigned i;
260 MSIMessage msg = { .address = addr, .data = first_irq };
261
262 if (!msix) {
263 msi_set_message(pdev, msg);
264 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
265 return;
266 }
267
268 for (i = 0; i < req_num; ++i) {
269 msix_set_message(pdev, i, msg);
270 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
271 if (addr) {
272 ++msg.data;
273 }
274 }
275 }
276
277 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
278 uint32_t token, uint32_t nargs,
279 target_ulong args, uint32_t nret,
280 target_ulong rets)
281 {
282 uint32_t config_addr = rtas_ld(args, 0);
283 uint64_t buid = rtas_ldq(args, 1);
284 unsigned int func = rtas_ld(args, 3);
285 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
286 unsigned int seq_num = rtas_ld(args, 5);
287 unsigned int ret_intr_type;
288 unsigned int irq, max_irqs = 0;
289 sPAPRPHBState *phb = NULL;
290 PCIDevice *pdev = NULL;
291 spapr_pci_msi *msi;
292 int *config_addr_key;
293 Error *err = NULL;
294
295 switch (func) {
296 case RTAS_CHANGE_MSI_FN:
297 case RTAS_CHANGE_FN:
298 ret_intr_type = RTAS_TYPE_MSI;
299 break;
300 case RTAS_CHANGE_MSIX_FN:
301 ret_intr_type = RTAS_TYPE_MSIX;
302 break;
303 default:
304 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306 return;
307 }
308
309 /* Fins sPAPRPHBState */
310 phb = spapr_pci_find_phb(spapr, buid);
311 if (phb) {
312 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
313 }
314 if (!phb || !pdev) {
315 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
316 return;
317 }
318
319 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
320
321 /* Releasing MSIs */
322 if (!req_num) {
323 if (!msi) {
324 trace_spapr_pci_msi("Releasing wrong config", config_addr);
325 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
326 return;
327 }
328
329 spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
330 if (msi_present(pdev)) {
331 spapr_msi_setmsg(pdev, 0, false, 0, 0);
332 }
333 if (msix_present(pdev)) {
334 spapr_msi_setmsg(pdev, 0, true, 0, 0);
335 }
336 g_hash_table_remove(phb->msi, &config_addr);
337
338 trace_spapr_pci_msi("Released MSIs", config_addr);
339 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
340 rtas_st(rets, 1, 0);
341 return;
342 }
343
344 /* Enabling MSI */
345
346 /* Check if the device supports as many IRQs as requested */
347 if (ret_intr_type == RTAS_TYPE_MSI) {
348 max_irqs = msi_nr_vectors_allocated(pdev);
349 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
350 max_irqs = pdev->msix_entries_nr;
351 }
352 if (!max_irqs) {
353 error_report("Requested interrupt type %d is not enabled for device %x",
354 ret_intr_type, config_addr);
355 rtas_st(rets, 0, -1); /* Hardware error */
356 return;
357 }
358 /* Correct the number if the guest asked for too many */
359 if (req_num > max_irqs) {
360 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
361 req_num = max_irqs;
362 irq = 0; /* to avoid misleading trace */
363 goto out;
364 }
365
366 /* Allocate MSIs */
367 irq = spapr_ics_alloc_block(spapr->ics, req_num, false,
368 ret_intr_type == RTAS_TYPE_MSI, &err);
369 if (err) {
370 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
371 config_addr);
372 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
373 return;
374 }
375
376 /* Release previous MSIs */
377 if (msi) {
378 spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
379 g_hash_table_remove(phb->msi, &config_addr);
380 }
381
382 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
383 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
384 irq, req_num);
385
386 /* Add MSI device to cache */
387 msi = g_new(spapr_pci_msi, 1);
388 msi->first_irq = irq;
389 msi->num = req_num;
390 config_addr_key = g_new(int, 1);
391 *config_addr_key = config_addr;
392 g_hash_table_insert(phb->msi, config_addr_key, msi);
393
394 out:
395 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
396 rtas_st(rets, 1, req_num);
397 rtas_st(rets, 2, ++seq_num);
398 if (nret > 3) {
399 rtas_st(rets, 3, ret_intr_type);
400 }
401
402 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
403 }
404
405 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
406 sPAPRMachineState *spapr,
407 uint32_t token,
408 uint32_t nargs,
409 target_ulong args,
410 uint32_t nret,
411 target_ulong rets)
412 {
413 uint32_t config_addr = rtas_ld(args, 0);
414 uint64_t buid = rtas_ldq(args, 1);
415 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
416 sPAPRPHBState *phb = NULL;
417 PCIDevice *pdev = NULL;
418 spapr_pci_msi *msi;
419
420 /* Find sPAPRPHBState */
421 phb = spapr_pci_find_phb(spapr, buid);
422 if (phb) {
423 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
424 }
425 if (!phb || !pdev) {
426 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
427 return;
428 }
429
430 /* Find device descriptor and start IRQ */
431 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
432 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
433 trace_spapr_pci_msi("Failed to return vector", config_addr);
434 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
435 return;
436 }
437 intr_src_num = msi->first_irq + ioa_intr_num;
438 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
439 intr_src_num);
440
441 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
442 rtas_st(rets, 1, intr_src_num);
443 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
444 }
445
446 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
447 sPAPRMachineState *spapr,
448 uint32_t token, uint32_t nargs,
449 target_ulong args, uint32_t nret,
450 target_ulong rets)
451 {
452 sPAPRPHBState *sphb;
453 uint32_t addr, option;
454 uint64_t buid;
455 int ret;
456
457 if ((nargs != 4) || (nret != 1)) {
458 goto param_error_exit;
459 }
460
461 buid = rtas_ldq(args, 1);
462 addr = rtas_ld(args, 0);
463 option = rtas_ld(args, 3);
464
465 sphb = spapr_pci_find_phb(spapr, buid);
466 if (!sphb) {
467 goto param_error_exit;
468 }
469
470 if (!spapr_phb_eeh_available(sphb)) {
471 goto param_error_exit;
472 }
473
474 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
475 rtas_st(rets, 0, ret);
476 return;
477
478 param_error_exit:
479 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
480 }
481
482 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
483 sPAPRMachineState *spapr,
484 uint32_t token, uint32_t nargs,
485 target_ulong args, uint32_t nret,
486 target_ulong rets)
487 {
488 sPAPRPHBState *sphb;
489 PCIDevice *pdev;
490 uint32_t addr, option;
491 uint64_t buid;
492
493 if ((nargs != 4) || (nret != 2)) {
494 goto param_error_exit;
495 }
496
497 buid = rtas_ldq(args, 1);
498 sphb = spapr_pci_find_phb(spapr, buid);
499 if (!sphb) {
500 goto param_error_exit;
501 }
502
503 if (!spapr_phb_eeh_available(sphb)) {
504 goto param_error_exit;
505 }
506
507 /*
508 * We always have PE address of form "00BB0001". "BB"
509 * represents the bus number of PE's primary bus.
510 */
511 option = rtas_ld(args, 3);
512 switch (option) {
513 case RTAS_GET_PE_ADDR:
514 addr = rtas_ld(args, 0);
515 pdev = spapr_pci_find_dev(spapr, buid, addr);
516 if (!pdev) {
517 goto param_error_exit;
518 }
519
520 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
521 break;
522 case RTAS_GET_PE_MODE:
523 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
524 break;
525 default:
526 goto param_error_exit;
527 }
528
529 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
530 return;
531
532 param_error_exit:
533 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
534 }
535
536 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
537 sPAPRMachineState *spapr,
538 uint32_t token, uint32_t nargs,
539 target_ulong args, uint32_t nret,
540 target_ulong rets)
541 {
542 sPAPRPHBState *sphb;
543 uint64_t buid;
544 int state, ret;
545
546 if ((nargs != 3) || (nret != 4 && nret != 5)) {
547 goto param_error_exit;
548 }
549
550 buid = rtas_ldq(args, 1);
551 sphb = spapr_pci_find_phb(spapr, buid);
552 if (!sphb) {
553 goto param_error_exit;
554 }
555
556 if (!spapr_phb_eeh_available(sphb)) {
557 goto param_error_exit;
558 }
559
560 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
561 rtas_st(rets, 0, ret);
562 if (ret != RTAS_OUT_SUCCESS) {
563 return;
564 }
565
566 rtas_st(rets, 1, state);
567 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
568 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
569 if (nret >= 5) {
570 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
571 }
572 return;
573
574 param_error_exit:
575 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
576 }
577
578 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
579 sPAPRMachineState *spapr,
580 uint32_t token, uint32_t nargs,
581 target_ulong args, uint32_t nret,
582 target_ulong rets)
583 {
584 sPAPRPHBState *sphb;
585 uint32_t option;
586 uint64_t buid;
587 int ret;
588
589 if ((nargs != 4) || (nret != 1)) {
590 goto param_error_exit;
591 }
592
593 buid = rtas_ldq(args, 1);
594 option = rtas_ld(args, 3);
595 sphb = spapr_pci_find_phb(spapr, buid);
596 if (!sphb) {
597 goto param_error_exit;
598 }
599
600 if (!spapr_phb_eeh_available(sphb)) {
601 goto param_error_exit;
602 }
603
604 ret = spapr_phb_vfio_eeh_reset(sphb, option);
605 rtas_st(rets, 0, ret);
606 return;
607
608 param_error_exit:
609 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
610 }
611
612 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
613 sPAPRMachineState *spapr,
614 uint32_t token, uint32_t nargs,
615 target_ulong args, uint32_t nret,
616 target_ulong rets)
617 {
618 sPAPRPHBState *sphb;
619 uint64_t buid;
620 int ret;
621
622 if ((nargs != 3) || (nret != 1)) {
623 goto param_error_exit;
624 }
625
626 buid = rtas_ldq(args, 1);
627 sphb = spapr_pci_find_phb(spapr, buid);
628 if (!sphb) {
629 goto param_error_exit;
630 }
631
632 if (!spapr_phb_eeh_available(sphb)) {
633 goto param_error_exit;
634 }
635
636 ret = spapr_phb_vfio_eeh_configure(sphb);
637 rtas_st(rets, 0, ret);
638 return;
639
640 param_error_exit:
641 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
642 }
643
644 /* To support it later */
645 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
646 sPAPRMachineState *spapr,
647 uint32_t token, uint32_t nargs,
648 target_ulong args, uint32_t nret,
649 target_ulong rets)
650 {
651 sPAPRPHBState *sphb;
652 int option;
653 uint64_t buid;
654
655 if ((nargs != 8) || (nret != 1)) {
656 goto param_error_exit;
657 }
658
659 buid = rtas_ldq(args, 1);
660 sphb = spapr_pci_find_phb(spapr, buid);
661 if (!sphb) {
662 goto param_error_exit;
663 }
664
665 if (!spapr_phb_eeh_available(sphb)) {
666 goto param_error_exit;
667 }
668
669 option = rtas_ld(args, 7);
670 switch (option) {
671 case RTAS_SLOT_TEMP_ERR_LOG:
672 case RTAS_SLOT_PERM_ERR_LOG:
673 break;
674 default:
675 goto param_error_exit;
676 }
677
678 /* We don't have error log yet */
679 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
680 return;
681
682 param_error_exit:
683 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
684 }
685
686 static int pci_spapr_swizzle(int slot, int pin)
687 {
688 return (slot + pin) % PCI_NUM_PINS;
689 }
690
691 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
692 {
693 /*
694 * Here we need to convert pci_dev + irq_num to some unique value
695 * which is less than number of IRQs on the specific bus (4). We
696 * use standard PCI swizzling, that is (slot number + pin number)
697 * % 4.
698 */
699 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
700 }
701
702 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
703 {
704 /*
705 * Here we use the number returned by pci_spapr_map_irq to find a
706 * corresponding qemu_irq.
707 */
708 sPAPRPHBState *phb = opaque;
709
710 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
711 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
712 }
713
714 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
715 {
716 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
717 PCIINTxRoute route;
718
719 route.mode = PCI_INTX_ENABLED;
720 route.irq = sphb->lsi_table[pin].irq;
721
722 return route;
723 }
724
725 /*
726 * MSI/MSIX memory region implementation.
727 * The handler handles both MSI and MSIX.
728 * For MSI-X, the vector number is encoded as a part of the address,
729 * data is set to 0.
730 * For MSI, the vector number is encoded in least bits in data.
731 */
732 static void spapr_msi_write(void *opaque, hwaddr addr,
733 uint64_t data, unsigned size)
734 {
735 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
736 uint32_t irq = data;
737
738 trace_spapr_pci_msi_write(addr, data, irq);
739
740 qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq));
741 }
742
743 static const MemoryRegionOps spapr_msi_ops = {
744 /* There is no .read as the read result is undefined by PCI spec */
745 .read = NULL,
746 .write = spapr_msi_write,
747 .endianness = DEVICE_LITTLE_ENDIAN
748 };
749
750 /*
751 * PHB PCI device
752 */
753 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
754 {
755 sPAPRPHBState *phb = opaque;
756
757 return &phb->iommu_as;
758 }
759
760 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
761 {
762 char *path = NULL, *buf = NULL, *host = NULL;
763
764 /* Get the PCI VFIO host id */
765 host = object_property_get_str(OBJECT(pdev), "host", NULL);
766 if (!host) {
767 goto err_out;
768 }
769
770 /* Construct the path of the file that will give us the DT location */
771 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
772 g_free(host);
773 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
774 goto err_out;
775 }
776 g_free(path);
777
778 /* Construct and read from host device tree the loc-code */
779 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
780 g_free(buf);
781 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
782 goto err_out;
783 }
784 return buf;
785
786 err_out:
787 g_free(path);
788 return NULL;
789 }
790
791 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
792 {
793 char *buf;
794 const char *devtype = "qemu";
795 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
796
797 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
798 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
799 if (buf) {
800 return buf;
801 }
802 devtype = "vfio";
803 }
804 /*
805 * For emulated devices and VFIO-failure case, make up
806 * the loc-code.
807 */
808 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
809 devtype, pdev->name, sphb->index, busnr,
810 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
811 return buf;
812 }
813
814 /* Macros to operate with address in OF binding to PCI */
815 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
816 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
817 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
818 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
819 #define b_ss(x) b_x((x), 24, 2) /* the space code */
820 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
821 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
822 #define b_fff(x) b_x((x), 8, 3) /* function number */
823 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
824
825 /* for 'reg'/'assigned-addresses' OF properties */
826 #define RESOURCE_CELLS_SIZE 2
827 #define RESOURCE_CELLS_ADDRESS 3
828
829 typedef struct ResourceFields {
830 uint32_t phys_hi;
831 uint32_t phys_mid;
832 uint32_t phys_lo;
833 uint32_t size_hi;
834 uint32_t size_lo;
835 } QEMU_PACKED ResourceFields;
836
837 typedef struct ResourceProps {
838 ResourceFields reg[8];
839 ResourceFields assigned[7];
840 uint32_t reg_len;
841 uint32_t assigned_len;
842 } ResourceProps;
843
844 /* fill in the 'reg'/'assigned-resources' OF properties for
845 * a PCI device. 'reg' describes resource requirements for a
846 * device's IO/MEM regions, 'assigned-addresses' describes the
847 * actual resource assignments.
848 *
849 * the properties are arrays of ('phys-addr', 'size') pairs describing
850 * the addressable regions of the PCI device, where 'phys-addr' is a
851 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
852 * (phys.hi, phys.mid, phys.lo), and 'size' is a
853 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
854 *
855 * phys.hi = 0xYYXXXXZZ, where:
856 * 0xYY = npt000ss
857 * ||| |
858 * ||| +-- space code
859 * ||| |
860 * ||| + 00 if configuration space
861 * ||| + 01 if IO region,
862 * ||| + 10 if 32-bit MEM region
863 * ||| + 11 if 64-bit MEM region
864 * |||
865 * ||+------ for non-relocatable IO: 1 if aliased
866 * || for relocatable IO: 1 if below 64KB
867 * || for MEM: 1 if below 1MB
868 * |+------- 1 if region is prefetchable
869 * +-------- 1 if region is non-relocatable
870 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
871 * bits respectively
872 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
873 * to the region
874 *
875 * phys.mid and phys.lo correspond respectively to the hi/lo portions
876 * of the actual address of the region.
877 *
878 * how the phys-addr/size values are used differ slightly between
879 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
880 * an additional description for the config space region of the
881 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
882 * to describe the region as relocatable, with an address-mapping
883 * that corresponds directly to the PHB's address space for the
884 * resource. 'assigned-addresses' always has n=1 set with an absolute
885 * address assigned for the resource. in general, 'assigned-addresses'
886 * won't be populated, since addresses for PCI devices are generally
887 * unmapped initially and left to the guest to assign.
888 *
889 * note also that addresses defined in these properties are, at least
890 * for PAPR guests, relative to the PHBs IO/MEM windows, and
891 * correspond directly to the addresses in the BARs.
892 *
893 * in accordance with PCI Bus Binding to Open Firmware,
894 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
895 * Appendix C.
896 */
897 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
898 {
899 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
900 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
901 b_ddddd(PCI_SLOT(d->devfn)) |
902 b_fff(PCI_FUNC(d->devfn)));
903 ResourceFields *reg, *assigned;
904 int i, reg_idx = 0, assigned_idx = 0;
905
906 /* config space region */
907 reg = &rp->reg[reg_idx++];
908 reg->phys_hi = cpu_to_be32(dev_id);
909 reg->phys_mid = 0;
910 reg->phys_lo = 0;
911 reg->size_hi = 0;
912 reg->size_lo = 0;
913
914 for (i = 0; i < PCI_NUM_REGIONS; i++) {
915 if (!d->io_regions[i].size) {
916 continue;
917 }
918
919 reg = &rp->reg[reg_idx++];
920
921 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
922 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
923 reg->phys_hi |= cpu_to_be32(b_ss(1));
924 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
925 reg->phys_hi |= cpu_to_be32(b_ss(3));
926 } else {
927 reg->phys_hi |= cpu_to_be32(b_ss(2));
928 }
929 reg->phys_mid = 0;
930 reg->phys_lo = 0;
931 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
932 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
933
934 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
935 continue;
936 }
937
938 assigned = &rp->assigned[assigned_idx++];
939 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
940 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
941 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
942 assigned->size_hi = reg->size_hi;
943 assigned->size_lo = reg->size_lo;
944 }
945
946 rp->reg_len = reg_idx * sizeof(ResourceFields);
947 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
948 }
949
950 typedef struct PCIClass PCIClass;
951 typedef struct PCISubClass PCISubClass;
952 typedef struct PCIIFace PCIIFace;
953
954 struct PCIIFace {
955 int iface;
956 const char *name;
957 };
958
959 struct PCISubClass {
960 int subclass;
961 const char *name;
962 const PCIIFace *iface;
963 };
964
965 struct PCIClass {
966 const char *name;
967 const PCISubClass *subc;
968 };
969
970 static const PCISubClass undef_subclass[] = {
971 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
972 { 0xFF, NULL, NULL },
973 };
974
975 static const PCISubClass mass_subclass[] = {
976 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
977 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
978 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
979 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
980 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
981 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
982 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
983 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
984 { 0xFF, NULL, NULL },
985 };
986
987 static const PCISubClass net_subclass[] = {
988 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
989 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
990 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
991 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
992 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
993 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
994 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
995 { 0xFF, NULL, NULL },
996 };
997
998 static const PCISubClass displ_subclass[] = {
999 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1000 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1001 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1002 { 0xFF, NULL, NULL },
1003 };
1004
1005 static const PCISubClass media_subclass[] = {
1006 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1007 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1008 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1009 { 0xFF, NULL, NULL },
1010 };
1011
1012 static const PCISubClass mem_subclass[] = {
1013 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1014 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1015 { 0xFF, NULL, NULL },
1016 };
1017
1018 static const PCISubClass bridg_subclass[] = {
1019 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1020 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1021 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1022 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1023 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1024 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1025 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1026 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1027 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1028 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1029 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1030 { 0xFF, NULL, NULL },
1031 };
1032
1033 static const PCISubClass comm_subclass[] = {
1034 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1035 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1036 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1037 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1038 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1039 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1040 { 0xFF, NULL, NULL, },
1041 };
1042
1043 static const PCIIFace pic_iface[] = {
1044 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1045 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1046 { 0xFF, NULL },
1047 };
1048
1049 static const PCISubClass sys_subclass[] = {
1050 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1051 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1052 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1053 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1054 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1055 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1056 { 0xFF, NULL, NULL },
1057 };
1058
1059 static const PCISubClass inp_subclass[] = {
1060 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1061 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1062 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1063 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1064 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1065 { 0xFF, NULL, NULL },
1066 };
1067
1068 static const PCISubClass dock_subclass[] = {
1069 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1070 { 0xFF, NULL, NULL },
1071 };
1072
1073 static const PCISubClass cpu_subclass[] = {
1074 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1075 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1076 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1077 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1078 { 0xFF, NULL, NULL },
1079 };
1080
1081 static const PCIIFace usb_iface[] = {
1082 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1083 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1084 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1085 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1086 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1087 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1088 { 0xFF, NULL },
1089 };
1090
1091 static const PCISubClass ser_subclass[] = {
1092 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1093 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1094 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1095 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1096 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1097 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1098 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1099 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1100 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1101 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1102 { 0xFF, NULL, NULL },
1103 };
1104
1105 static const PCISubClass wrl_subclass[] = {
1106 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1107 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1108 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1109 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1110 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1111 { 0xFF, NULL, NULL },
1112 };
1113
1114 static const PCISubClass sat_subclass[] = {
1115 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1116 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1117 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1118 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1119 { 0xFF, NULL, NULL },
1120 };
1121
1122 static const PCISubClass crypt_subclass[] = {
1123 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1124 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1125 "entertainment-encryption", NULL },
1126 { 0xFF, NULL, NULL },
1127 };
1128
1129 static const PCISubClass spc_subclass[] = {
1130 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1131 { PCI_CLASS_SP_PERF, "counter", NULL },
1132 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1133 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1134 { 0xFF, NULL, NULL },
1135 };
1136
1137 static const PCIClass pci_classes[] = {
1138 { "legacy-device", undef_subclass },
1139 { "mass-storage", mass_subclass },
1140 { "network", net_subclass },
1141 { "display", displ_subclass, },
1142 { "multimedia-device", media_subclass },
1143 { "memory-controller", mem_subclass },
1144 { "unknown-bridge", bridg_subclass },
1145 { "communication-controller", comm_subclass},
1146 { "system-peripheral", sys_subclass },
1147 { "input-controller", inp_subclass },
1148 { "docking-station", dock_subclass },
1149 { "cpu", cpu_subclass },
1150 { "serial-bus", ser_subclass },
1151 { "wireless-controller", wrl_subclass },
1152 { "intelligent-io", NULL },
1153 { "satellite-device", sat_subclass },
1154 { "encryption", crypt_subclass },
1155 { "data-processing-controller", spc_subclass },
1156 };
1157
1158 static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1159 uint8_t iface)
1160 {
1161 const PCIClass *pclass;
1162 const PCISubClass *psubclass;
1163 const PCIIFace *piface;
1164 const char *name;
1165
1166 if (class >= ARRAY_SIZE(pci_classes)) {
1167 return "pci";
1168 }
1169
1170 pclass = pci_classes + class;
1171 name = pclass->name;
1172
1173 if (pclass->subc == NULL) {
1174 return name;
1175 }
1176
1177 psubclass = pclass->subc;
1178 while ((psubclass->subclass & 0xff) != 0xff) {
1179 if ((psubclass->subclass & 0xff) == subclass) {
1180 name = psubclass->name;
1181 break;
1182 }
1183 psubclass++;
1184 }
1185
1186 piface = psubclass->iface;
1187 if (piface == NULL) {
1188 return name;
1189 }
1190 while ((piface->iface & 0xff) != 0xff) {
1191 if ((piface->iface & 0xff) == iface) {
1192 name = piface->name;
1193 break;
1194 }
1195 piface++;
1196 }
1197
1198 return name;
1199 }
1200
1201 static void pci_get_node_name(char *nodename, int len, PCIDevice *dev)
1202 {
1203 int slot = PCI_SLOT(dev->devfn);
1204 int func = PCI_FUNC(dev->devfn);
1205 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1206 const char *name;
1207
1208 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1209 ccode & 0xff);
1210
1211 if (func != 0) {
1212 snprintf(nodename, len, "%s@%x,%x", name, slot, func);
1213 } else {
1214 snprintf(nodename, len, "%s@%x", name, slot);
1215 }
1216 }
1217
1218 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1219 PCIDevice *pdev);
1220
1221 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1222 sPAPRPHBState *sphb)
1223 {
1224 ResourceProps rp;
1225 bool is_bridge = false;
1226 int pci_status, err;
1227 char *buf = NULL;
1228 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1229 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1230 uint32_t max_msi, max_msix;
1231
1232 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1233 PCI_HEADER_TYPE_BRIDGE) {
1234 is_bridge = true;
1235 }
1236
1237 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1238 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1239 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1240 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1241 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1242 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1243 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1244 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1245 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1246 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1247 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1248 }
1249
1250 if (!is_bridge) {
1251 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1252 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1253 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1254 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1255 }
1256
1257 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1258 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1259 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1260 }
1261
1262 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1263 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1264 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1265 }
1266
1267 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1268 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1269
1270 /* the following fdt cells are masked off the pci status register */
1271 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1272 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1273 PCI_STATUS_DEVSEL_MASK & pci_status));
1274
1275 if (pci_status & PCI_STATUS_FAST_BACK) {
1276 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1277 }
1278 if (pci_status & PCI_STATUS_66MHZ) {
1279 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1280 }
1281 if (pci_status & PCI_STATUS_UDF) {
1282 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1283 }
1284
1285 _FDT(fdt_setprop_string(fdt, offset, "name",
1286 pci_find_device_name((ccode >> 16) & 0xff,
1287 (ccode >> 8) & 0xff,
1288 ccode & 0xff)));
1289 buf = spapr_phb_get_loc_code(sphb, dev);
1290 if (!buf) {
1291 error_report("Failed setting the ibm,loc-code");
1292 return -1;
1293 }
1294
1295 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1296 g_free(buf);
1297 if (err < 0) {
1298 return err;
1299 }
1300
1301 if (drc_index) {
1302 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1303 }
1304
1305 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1306 RESOURCE_CELLS_ADDRESS));
1307 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1308 RESOURCE_CELLS_SIZE));
1309
1310 max_msi = msi_nr_vectors_allocated(dev);
1311 if (max_msi) {
1312 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1313 }
1314 max_msix = dev->msix_entries_nr;
1315 if (max_msix) {
1316 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1317 }
1318
1319 populate_resource_props(dev, &rp);
1320 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1321 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1322 (uint8_t *)rp.assigned, rp.assigned_len));
1323
1324 if (sphb->pcie_ecs && pci_is_express(dev)) {
1325 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1326 }
1327
1328 return 0;
1329 }
1330
1331 /* create OF node for pci device and required OF DT properties */
1332 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1333 void *fdt, int node_offset)
1334 {
1335 int offset, ret;
1336 char nodename[FDT_NAME_MAX];
1337
1338 pci_get_node_name(nodename, FDT_NAME_MAX, dev);
1339 offset = fdt_add_subnode(fdt, node_offset, nodename);
1340 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1341
1342 g_assert(!ret);
1343 if (ret) {
1344 return 0;
1345 }
1346 return offset;
1347 }
1348
1349 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1350 sPAPRPHBState *phb,
1351 PCIDevice *pdev,
1352 Error **errp)
1353 {
1354 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1355 DeviceState *dev = DEVICE(pdev);
1356 void *fdt = NULL;
1357 int fdt_start_offset = 0, fdt_size;
1358
1359 fdt = create_device_tree(&fdt_size);
1360 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1361 if (!fdt_start_offset) {
1362 error_setg(errp, "Failed to create pci child device tree node");
1363 goto out;
1364 }
1365
1366 drck->attach(drc, DEVICE(pdev),
1367 fdt, fdt_start_offset, !dev->hotplugged, errp);
1368 out:
1369 if (*errp) {
1370 g_free(fdt);
1371 }
1372 }
1373
1374 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1375 {
1376 /* some version guests do not wait for completion of a device
1377 * cleanup (generally done asynchronously by the kernel) before
1378 * signaling to QEMU that the device is safe, but instead sleep
1379 * for some 'safe' period of time. unfortunately on a busy host
1380 * this sleep isn't guaranteed to be long enough, resulting in
1381 * bad things like IRQ lines being left asserted during final
1382 * device removal. to deal with this we call reset just prior
1383 * to finalizing the device, which will put the device back into
1384 * an 'idle' state, as the device cleanup code expects.
1385 */
1386 pci_device_reset(PCI_DEVICE(dev));
1387 object_unparent(OBJECT(dev));
1388 }
1389
1390 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1391 sPAPRPHBState *phb,
1392 PCIDevice *pdev,
1393 Error **errp)
1394 {
1395 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1396
1397 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1398 }
1399
1400 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1401 uint32_t busnr,
1402 int32_t devfn)
1403 {
1404 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1405 (phb->index << 16) |
1406 (busnr << 8) |
1407 devfn);
1408 }
1409
1410 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1411 PCIDevice *pdev)
1412 {
1413 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1414 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1415 }
1416
1417 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1418 PCIDevice *pdev)
1419 {
1420 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1421 sPAPRDRConnectorClass *drck;
1422
1423 if (!drc) {
1424 return 0;
1425 }
1426
1427 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1428 return drck->get_index(drc);
1429 }
1430
1431 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1432 DeviceState *plugged_dev, Error **errp)
1433 {
1434 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1435 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1436 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1437 Error *local_err = NULL;
1438 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1439 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1440
1441 /* if DR is disabled we don't need to do anything in the case of
1442 * hotplug or coldplug callbacks
1443 */
1444 if (!phb->dr_enabled) {
1445 /* if this is a hotplug operation initiated by the user
1446 * we need to let them know it's not enabled
1447 */
1448 if (plugged_dev->hotplugged) {
1449 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1450 object_get_typename(OBJECT(phb)));
1451 }
1452 return;
1453 }
1454
1455 g_assert(drc);
1456
1457 /* Following the QEMU convention used for PCIe multifunction
1458 * hotplug, we do not allow functions to be hotplugged to a
1459 * slot that already has function 0 present
1460 */
1461 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1462 PCI_FUNC(pdev->devfn) != 0) {
1463 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1464 " additional functions can no longer be exposed to guest.",
1465 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1466 return;
1467 }
1468
1469 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1470 if (local_err) {
1471 error_propagate(errp, local_err);
1472 return;
1473 }
1474
1475 /* If this is function 0, signal hotplug for all the device functions.
1476 * Otherwise defer sending the hotplug event.
1477 */
1478 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1479 int i;
1480
1481 for (i = 0; i < 8; i++) {
1482 sPAPRDRConnector *func_drc;
1483 sPAPRDRConnectorClass *func_drck;
1484 sPAPRDREntitySense state;
1485
1486 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1487 PCI_DEVFN(slotnr, i));
1488 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1489 func_drck->entity_sense(func_drc, &state);
1490
1491 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1492 spapr_hotplug_req_add_by_index(func_drc);
1493 }
1494 }
1495 }
1496 }
1497
1498 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1499 DeviceState *plugged_dev, Error **errp)
1500 {
1501 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1502 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1503 sPAPRDRConnectorClass *drck;
1504 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1505 Error *local_err = NULL;
1506
1507 if (!phb->dr_enabled) {
1508 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1509 object_get_typename(OBJECT(phb)));
1510 return;
1511 }
1512
1513 g_assert(drc);
1514
1515 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1516 if (!drck->release_pending(drc)) {
1517 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1518 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1519 sPAPRDRConnector *func_drc;
1520 sPAPRDRConnectorClass *func_drck;
1521 sPAPRDREntitySense state;
1522 int i;
1523
1524 /* ensure any other present functions are pending unplug */
1525 if (PCI_FUNC(pdev->devfn) == 0) {
1526 for (i = 1; i < 8; i++) {
1527 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1528 PCI_DEVFN(slotnr, i));
1529 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1530 func_drck->entity_sense(func_drc, &state);
1531 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1532 && !func_drck->release_pending(func_drc)) {
1533 error_setg(errp,
1534 "PCI: slot %d, function %d still present. "
1535 "Must unplug all non-0 functions first.",
1536 slotnr, i);
1537 return;
1538 }
1539 }
1540 }
1541
1542 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1543 if (local_err) {
1544 error_propagate(errp, local_err);
1545 return;
1546 }
1547
1548 /* if this isn't func 0, defer unplug event. otherwise signal removal
1549 * for all present functions
1550 */
1551 if (PCI_FUNC(pdev->devfn) == 0) {
1552 for (i = 7; i >= 0; i--) {
1553 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1554 PCI_DEVFN(slotnr, i));
1555 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1556 func_drck->entity_sense(func_drc, &state);
1557 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1558 spapr_hotplug_req_remove_by_index(func_drc);
1559 }
1560 }
1561 }
1562 }
1563 }
1564
1565 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1566 {
1567 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1568 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1569 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1570 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1571 char *namebuf;
1572 int i;
1573 PCIBus *bus;
1574 uint64_t msi_window_size = 4096;
1575 sPAPRTCETable *tcet;
1576 const unsigned windows_supported =
1577 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1578
1579 if (sphb->index != (uint32_t)-1) {
1580 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1581 Error *local_err = NULL;
1582
1583 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1)
1584 || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2)
1585 || (sphb->mem_win_addr != (hwaddr)-1)
1586 || (sphb->mem64_win_addr != (hwaddr)-1)
1587 || (sphb->io_win_addr != (hwaddr)-1)) {
1588 error_setg(errp, "Either \"index\" or other parameters must"
1589 " be specified for PAPR PHB, not both");
1590 return;
1591 }
1592
1593 smc->phb_placement(spapr, sphb->index,
1594 &sphb->buid, &sphb->io_win_addr,
1595 &sphb->mem_win_addr, &sphb->mem64_win_addr,
1596 windows_supported, sphb->dma_liobn, &local_err);
1597 if (local_err) {
1598 error_propagate(errp, local_err);
1599 return;
1600 }
1601 }
1602
1603 if (sphb->buid == (uint64_t)-1) {
1604 error_setg(errp, "BUID not specified for PHB");
1605 return;
1606 }
1607
1608 if ((sphb->dma_liobn[0] == (uint32_t)-1) ||
1609 ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) {
1610 error_setg(errp, "LIOBN(s) not specified for PHB");
1611 return;
1612 }
1613
1614 if (sphb->mem_win_addr == (hwaddr)-1) {
1615 error_setg(errp, "Memory window address not specified for PHB");
1616 return;
1617 }
1618
1619 if (sphb->io_win_addr == (hwaddr)-1) {
1620 error_setg(errp, "IO window address not specified for PHB");
1621 return;
1622 }
1623
1624 if (sphb->mem64_win_size != 0) {
1625 if (sphb->mem64_win_addr == (hwaddr)-1) {
1626 error_setg(errp,
1627 "64-bit memory window address not specified for PHB");
1628 return;
1629 }
1630
1631 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1632 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1633 " (max 2 GiB)", sphb->mem_win_size);
1634 return;
1635 }
1636
1637 if (sphb->mem64_win_pciaddr == (hwaddr)-1) {
1638 /* 64-bit window defaults to identity mapping */
1639 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1640 }
1641 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1642 /*
1643 * For compatibility with old configuration, if no 64-bit MMIO
1644 * window is specified, but the ordinary (32-bit) memory
1645 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1646 * window, with a 64-bit MMIO window following on immediately
1647 * afterwards
1648 */
1649 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1650 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1651 sphb->mem64_win_pciaddr =
1652 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1653 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1654 }
1655
1656 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1657 error_setg(errp, "PCI host bridges must have unique BUIDs");
1658 return;
1659 }
1660
1661 if (sphb->numa_node != -1 &&
1662 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1663 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1664 return;
1665 }
1666
1667 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1668
1669 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1670
1671 /* Initialize memory regions */
1672 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1673 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1674
1675 sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname);
1676 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1677 namebuf, &sphb->memspace,
1678 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1679 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1680 &sphb->mem32window);
1681
1682 sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname);
1683 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1684 namebuf, &sphb->memspace,
1685 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1686 memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr,
1687 &sphb->mem64window);
1688
1689 /* Initialize IO regions */
1690 sprintf(namebuf, "%s.io", sphb->dtbusname);
1691 memory_region_init(&sphb->iospace, OBJECT(sphb),
1692 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1693
1694 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1695 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1696 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1697 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1698 &sphb->iowindow);
1699
1700 bus = pci_register_bus(dev, NULL,
1701 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1702 &sphb->memspace, &sphb->iospace,
1703 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1704 phb->bus = bus;
1705 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1706
1707 /*
1708 * Initialize PHB address space.
1709 * By default there will be at least one subregion for default
1710 * 32bit DMA window.
1711 * Later the guest might want to create another DMA window
1712 * which will become another memory subregion.
1713 */
1714 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1715
1716 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1717 namebuf, UINT64_MAX);
1718 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1719 sphb->dtbusname);
1720
1721 /*
1722 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1723 * we need to allocate some memory to catch those writes coming
1724 * from msi_notify()/msix_notify().
1725 * As MSIMessage:addr is going to be the same and MSIMessage:data
1726 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1727 * be used.
1728 *
1729 * For KVM we want to ensure that this memory is a full page so that
1730 * our memory slot is of page size granularity.
1731 */
1732 #ifdef CONFIG_KVM
1733 if (kvm_enabled()) {
1734 msi_window_size = getpagesize();
1735 }
1736 #endif
1737
1738 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1739 "msi", msi_window_size);
1740 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1741 &sphb->msiwindow);
1742
1743 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1744
1745 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1746
1747 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1748
1749 /* Initialize the LSI table */
1750 for (i = 0; i < PCI_NUM_PINS; i++) {
1751 uint32_t irq;
1752 Error *local_err = NULL;
1753
1754 irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err);
1755 if (local_err) {
1756 error_propagate(errp, local_err);
1757 error_prepend(errp, "can't allocate LSIs: ");
1758 return;
1759 }
1760
1761 sphb->lsi_table[i].irq = irq;
1762 }
1763
1764 /* allocate connectors for child PCI devices */
1765 if (sphb->dr_enabled) {
1766 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1767 spapr_dr_connector_new(OBJECT(phb),
1768 SPAPR_DR_CONNECTOR_TYPE_PCI,
1769 (sphb->index << 16) | i);
1770 }
1771 }
1772
1773 /* DMA setup */
1774 if ((sphb->page_size_mask & qemu_getrampagesize()) == 0) {
1775 error_report("System page size 0x%lx is not enabled in page_size_mask "
1776 "(0x%"PRIx64"). Performance may be slow",
1777 qemu_getrampagesize(), sphb->page_size_mask);
1778 }
1779
1780 for (i = 0; i < windows_supported; ++i) {
1781 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1782 if (!tcet) {
1783 error_setg(errp, "Creating window#%d failed for %s",
1784 i, sphb->dtbusname);
1785 return;
1786 }
1787 memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1788 spapr_tce_get_iommu(tcet), 0);
1789 }
1790
1791 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1792 }
1793
1794 static int spapr_phb_children_reset(Object *child, void *opaque)
1795 {
1796 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1797
1798 if (dev) {
1799 device_reset(dev);
1800 }
1801
1802 return 0;
1803 }
1804
1805 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1806 {
1807 int i;
1808 sPAPRTCETable *tcet;
1809
1810 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1811 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1812
1813 if (tcet && tcet->nb_table) {
1814 spapr_tce_table_disable(tcet);
1815 }
1816 }
1817
1818 /* Register default 32bit DMA window */
1819 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1820 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1821 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1822 }
1823
1824 static void spapr_phb_reset(DeviceState *qdev)
1825 {
1826 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1827
1828 spapr_phb_dma_reset(sphb);
1829
1830 /* Reset the IOMMU state */
1831 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1832
1833 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1834 spapr_phb_vfio_reset(qdev);
1835 }
1836 }
1837
1838 static Property spapr_phb_properties[] = {
1839 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1840 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1841 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1),
1842 DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1),
1843 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1844 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1845 SPAPR_PCI_MEM32_WIN_SIZE),
1846 DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1),
1847 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1848 SPAPR_PCI_MEM64_WIN_SIZE),
1849 DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr,
1850 -1),
1851 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1852 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1853 SPAPR_PCI_IO_WIN_SIZE),
1854 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1855 true),
1856 /* Default DMA window is 0..1GB */
1857 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1858 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1859 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1860 0x800000000000000ULL),
1861 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1862 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1863 (1ULL << 12) | (1ULL << 16)),
1864 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1865 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1866 pre_2_8_migration, false),
1867 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1868 pcie_ecs, true),
1869 DEFINE_PROP_END_OF_LIST(),
1870 };
1871
1872 static const VMStateDescription vmstate_spapr_pci_lsi = {
1873 .name = "spapr_pci/lsi",
1874 .version_id = 1,
1875 .minimum_version_id = 1,
1876 .fields = (VMStateField[]) {
1877 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1878
1879 VMSTATE_END_OF_LIST()
1880 },
1881 };
1882
1883 static const VMStateDescription vmstate_spapr_pci_msi = {
1884 .name = "spapr_pci/msi",
1885 .version_id = 1,
1886 .minimum_version_id = 1,
1887 .fields = (VMStateField []) {
1888 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1889 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1890 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1891 VMSTATE_END_OF_LIST()
1892 },
1893 };
1894
1895 static void spapr_pci_pre_save(void *opaque)
1896 {
1897 sPAPRPHBState *sphb = opaque;
1898 GHashTableIter iter;
1899 gpointer key, value;
1900 int i;
1901
1902 g_free(sphb->msi_devs);
1903 sphb->msi_devs = NULL;
1904 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1905 if (!sphb->msi_devs_num) {
1906 return;
1907 }
1908 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1909
1910 g_hash_table_iter_init(&iter, sphb->msi);
1911 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1912 sphb->msi_devs[i].key = *(uint32_t *) key;
1913 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1914 }
1915
1916 if (sphb->pre_2_8_migration) {
1917 sphb->mig_liobn = sphb->dma_liobn[0];
1918 sphb->mig_mem_win_addr = sphb->mem_win_addr;
1919 sphb->mig_mem_win_size = sphb->mem_win_size;
1920 sphb->mig_io_win_addr = sphb->io_win_addr;
1921 sphb->mig_io_win_size = sphb->io_win_size;
1922
1923 if ((sphb->mem64_win_size != 0)
1924 && (sphb->mem64_win_addr
1925 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1926 sphb->mig_mem_win_size += sphb->mem64_win_size;
1927 }
1928 }
1929 }
1930
1931 static int spapr_pci_post_load(void *opaque, int version_id)
1932 {
1933 sPAPRPHBState *sphb = opaque;
1934 gpointer key, value;
1935 int i;
1936
1937 for (i = 0; i < sphb->msi_devs_num; ++i) {
1938 key = g_memdup(&sphb->msi_devs[i].key,
1939 sizeof(sphb->msi_devs[i].key));
1940 value = g_memdup(&sphb->msi_devs[i].value,
1941 sizeof(sphb->msi_devs[i].value));
1942 g_hash_table_insert(sphb->msi, key, value);
1943 }
1944 g_free(sphb->msi_devs);
1945 sphb->msi_devs = NULL;
1946 sphb->msi_devs_num = 0;
1947
1948 return 0;
1949 }
1950
1951 static bool pre_2_8_migration(void *opaque, int version_id)
1952 {
1953 sPAPRPHBState *sphb = opaque;
1954
1955 return sphb->pre_2_8_migration;
1956 }
1957
1958 static const VMStateDescription vmstate_spapr_pci = {
1959 .name = "spapr_pci",
1960 .version_id = 2,
1961 .minimum_version_id = 2,
1962 .pre_save = spapr_pci_pre_save,
1963 .post_load = spapr_pci_post_load,
1964 .fields = (VMStateField[]) {
1965 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1966 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1967 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1968 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1969 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1970 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1971 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1972 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1973 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1974 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1975 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1976 VMSTATE_END_OF_LIST()
1977 },
1978 };
1979
1980 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1981 PCIBus *rootbus)
1982 {
1983 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1984
1985 return sphb->dtbusname;
1986 }
1987
1988 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1989 {
1990 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1991 DeviceClass *dc = DEVICE_CLASS(klass);
1992 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1993
1994 hc->root_bus_path = spapr_phb_root_bus_path;
1995 dc->realize = spapr_phb_realize;
1996 dc->props = spapr_phb_properties;
1997 dc->reset = spapr_phb_reset;
1998 dc->vmsd = &vmstate_spapr_pci;
1999 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2000 hp->plug = spapr_phb_hot_plug_child;
2001 hp->unplug = spapr_phb_hot_unplug_child;
2002 }
2003
2004 static const TypeInfo spapr_phb_info = {
2005 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2006 .parent = TYPE_PCI_HOST_BRIDGE,
2007 .instance_size = sizeof(sPAPRPHBState),
2008 .class_init = spapr_phb_class_init,
2009 .interfaces = (InterfaceInfo[]) {
2010 { TYPE_HOTPLUG_HANDLER },
2011 { }
2012 }
2013 };
2014
2015 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
2016 {
2017 DeviceState *dev;
2018
2019 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2020 qdev_prop_set_uint32(dev, "index", index);
2021 qdev_init_nofail(dev);
2022
2023 return PCI_HOST_BRIDGE(dev);
2024 }
2025
2026 typedef struct sPAPRFDT {
2027 void *fdt;
2028 int node_off;
2029 sPAPRPHBState *sphb;
2030 } sPAPRFDT;
2031
2032 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
2033 void *opaque)
2034 {
2035 PCIBus *sec_bus;
2036 sPAPRFDT *p = opaque;
2037 int offset;
2038 sPAPRFDT s_fdt;
2039
2040 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
2041 if (!offset) {
2042 error_report("Failed to create pci child device tree node");
2043 return;
2044 }
2045
2046 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2047 PCI_HEADER_TYPE_BRIDGE)) {
2048 return;
2049 }
2050
2051 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2052 if (!sec_bus) {
2053 return;
2054 }
2055
2056 s_fdt.fdt = p->fdt;
2057 s_fdt.node_off = offset;
2058 s_fdt.sphb = p->sphb;
2059 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2060 spapr_populate_pci_devices_dt,
2061 &s_fdt);
2062 }
2063
2064 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2065 void *opaque)
2066 {
2067 unsigned int *bus_no = opaque;
2068 unsigned int primary = *bus_no;
2069 unsigned int subordinate = 0xff;
2070 PCIBus *sec_bus = NULL;
2071
2072 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2073 PCI_HEADER_TYPE_BRIDGE)) {
2074 return;
2075 }
2076
2077 (*bus_no)++;
2078 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2079 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2080 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2081
2082 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2083 if (!sec_bus) {
2084 return;
2085 }
2086
2087 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2088 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2089 spapr_phb_pci_enumerate_bridge, bus_no);
2090 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2091 }
2092
2093 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2094 {
2095 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2096 unsigned int bus_no = 0;
2097
2098 pci_for_each_device(bus, pci_bus_num(bus),
2099 spapr_phb_pci_enumerate_bridge,
2100 &bus_no);
2101
2102 }
2103
2104 int spapr_populate_pci_dt(sPAPRPHBState *phb,
2105 uint32_t xics_phandle,
2106 void *fdt)
2107 {
2108 int bus_off, i, j, ret;
2109 char nodename[FDT_NAME_MAX];
2110 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2111 struct {
2112 uint32_t hi;
2113 uint64_t child;
2114 uint64_t parent;
2115 uint64_t size;
2116 } QEMU_PACKED ranges[] = {
2117 {
2118 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2119 cpu_to_be64(phb->io_win_addr),
2120 cpu_to_be64(memory_region_size(&phb->iospace)),
2121 },
2122 {
2123 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2124 cpu_to_be64(phb->mem_win_addr),
2125 cpu_to_be64(phb->mem_win_size),
2126 },
2127 {
2128 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2129 cpu_to_be64(phb->mem64_win_addr),
2130 cpu_to_be64(phb->mem64_win_size),
2131 },
2132 };
2133 const unsigned sizeof_ranges =
2134 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2135 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2136 uint32_t interrupt_map_mask[] = {
2137 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2138 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2139 uint32_t ddw_applicable[] = {
2140 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2141 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2142 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2143 };
2144 uint32_t ddw_extensions[] = {
2145 cpu_to_be32(1),
2146 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2147 };
2148 uint32_t associativity[] = {cpu_to_be32(0x4),
2149 cpu_to_be32(0x0),
2150 cpu_to_be32(0x0),
2151 cpu_to_be32(0x0),
2152 cpu_to_be32(phb->numa_node)};
2153 sPAPRTCETable *tcet;
2154 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2155 sPAPRFDT s_fdt;
2156
2157 /* Start populating the FDT */
2158 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
2159 bus_off = fdt_add_subnode(fdt, 0, nodename);
2160 if (bus_off < 0) {
2161 return bus_off;
2162 }
2163
2164 /* Write PHB properties */
2165 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2166 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2167 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2168 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2169 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2170 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2171 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2172 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2173 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2174 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2175 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2176
2177 /* Dynamic DMA window */
2178 if (phb->ddw_enabled) {
2179 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2180 sizeof(ddw_applicable)));
2181 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2182 &ddw_extensions, sizeof(ddw_extensions)));
2183 }
2184
2185 /* Advertise NUMA via ibm,associativity */
2186 if (phb->numa_node != -1) {
2187 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2188 sizeof(associativity)));
2189 }
2190
2191 /* Build the interrupt-map, this must matches what is done
2192 * in pci_spapr_map_irq
2193 */
2194 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2195 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2196 for (i = 0; i < PCI_SLOT_MAX; i++) {
2197 for (j = 0; j < PCI_NUM_PINS; j++) {
2198 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2199 int lsi_num = pci_spapr_swizzle(i, j);
2200
2201 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2202 irqmap[1] = 0;
2203 irqmap[2] = 0;
2204 irqmap[3] = cpu_to_be32(j+1);
2205 irqmap[4] = cpu_to_be32(xics_phandle);
2206 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
2207 irqmap[6] = cpu_to_be32(0x8);
2208 }
2209 }
2210 /* Write interrupt map */
2211 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2212 sizeof(interrupt_map)));
2213
2214 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2215 if (!tcet) {
2216 return -1;
2217 }
2218 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2219 tcet->liobn, tcet->bus_offset,
2220 tcet->nb_table << tcet->page_shift);
2221
2222 /* Walk the bridges and program the bus numbers*/
2223 spapr_phb_pci_enumerate(phb);
2224 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2225
2226 /* Populate tree nodes with PCI devices attached */
2227 s_fdt.fdt = fdt;
2228 s_fdt.node_off = bus_off;
2229 s_fdt.sphb = phb;
2230 pci_for_each_device_reverse(bus, pci_bus_num(bus),
2231 spapr_populate_pci_devices_dt,
2232 &s_fdt);
2233
2234 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2235 SPAPR_DR_CONNECTOR_TYPE_PCI);
2236 if (ret) {
2237 return ret;
2238 }
2239
2240 return 0;
2241 }
2242
2243 void spapr_pci_rtas_init(void)
2244 {
2245 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2246 rtas_read_pci_config);
2247 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2248 rtas_write_pci_config);
2249 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2250 rtas_ibm_read_pci_config);
2251 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2252 rtas_ibm_write_pci_config);
2253 if (msi_nonbroken) {
2254 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2255 "ibm,query-interrupt-source-number",
2256 rtas_ibm_query_interrupt_source_number);
2257 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2258 rtas_ibm_change_msi);
2259 }
2260
2261 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2262 "ibm,set-eeh-option",
2263 rtas_ibm_set_eeh_option);
2264 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2265 "ibm,get-config-addr-info2",
2266 rtas_ibm_get_config_addr_info2);
2267 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2268 "ibm,read-slot-reset-state2",
2269 rtas_ibm_read_slot_reset_state2);
2270 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2271 "ibm,set-slot-reset",
2272 rtas_ibm_set_slot_reset);
2273 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2274 "ibm,configure-pe",
2275 rtas_ibm_configure_pe);
2276 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2277 "ibm,slot-error-detail",
2278 rtas_ibm_slot_error_detail);
2279 }
2280
2281 static void spapr_pci_register_types(void)
2282 {
2283 type_register_static(&spapr_phb_info);
2284 }
2285
2286 type_init(spapr_pci_register_types)
2287
2288 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2289 {
2290 bool be = *(bool *)opaque;
2291
2292 if (object_dynamic_cast(OBJECT(dev), "VGA")
2293 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2294 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2295 &error_abort);
2296 }
2297 return 0;
2298 }
2299
2300 void spapr_pci_switch_vga(bool big_endian)
2301 {
2302 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2303 sPAPRPHBState *sphb;
2304
2305 /*
2306 * For backward compatibility with existing guests, we switch
2307 * the endianness of the VGA controller when changing the guest
2308 * interrupt mode
2309 */
2310 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2311 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2312 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2313 &big_endian);
2314 }
2315 }