]> git.ipfire.org Git - thirdparty/qemu.git/blob - hw/xtensa/xtfpga.c
include/qemu/osdep.h: Don't include qapi/error.h
[thirdparty/qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "sysemu/sysemu.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "elf.h"
34 #include "exec/memory.h"
35 #include "exec/address-spaces.h"
36 #include "hw/char/serial.h"
37 #include "net/net.h"
38 #include "hw/sysbus.h"
39 #include "hw/block/flash.h"
40 #include "sysemu/block-backend.h"
41 #include "sysemu/char.h"
42 #include "sysemu/device_tree.h"
43 #include "qemu/error-report.h"
44 #include "bootparam.h"
45
46 typedef struct LxBoardDesc {
47 hwaddr flash_base;
48 size_t flash_size;
49 size_t flash_boot_base;
50 size_t flash_sector_size;
51 size_t sram_size;
52 } LxBoardDesc;
53
54 typedef struct Lx60FpgaState {
55 MemoryRegion iomem;
56 uint32_t leds;
57 uint32_t switches;
58 } Lx60FpgaState;
59
60 static void lx60_fpga_reset(void *opaque)
61 {
62 Lx60FpgaState *s = opaque;
63
64 s->leds = 0;
65 s->switches = 0;
66 }
67
68 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
69 unsigned size)
70 {
71 Lx60FpgaState *s = opaque;
72
73 switch (addr) {
74 case 0x0: /*build date code*/
75 return 0x09272011;
76
77 case 0x4: /*processor clock frequency, Hz*/
78 return 10000000;
79
80 case 0x8: /*LEDs (off = 0, on = 1)*/
81 return s->leds;
82
83 case 0xc: /*DIP switches (off = 0, on = 1)*/
84 return s->switches;
85 }
86 return 0;
87 }
88
89 static void lx60_fpga_write(void *opaque, hwaddr addr,
90 uint64_t val, unsigned size)
91 {
92 Lx60FpgaState *s = opaque;
93
94 switch (addr) {
95 case 0x8: /*LEDs (off = 0, on = 1)*/
96 s->leds = val;
97 break;
98
99 case 0x10: /*board reset*/
100 if (val == 0xdead) {
101 qemu_system_reset_request();
102 }
103 break;
104 }
105 }
106
107 static const MemoryRegionOps lx60_fpga_ops = {
108 .read = lx60_fpga_read,
109 .write = lx60_fpga_write,
110 .endianness = DEVICE_NATIVE_ENDIAN,
111 };
112
113 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
114 hwaddr base)
115 {
116 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
117
118 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
119 "lx60.fpga", 0x10000);
120 memory_region_add_subregion(address_space, base, &s->iomem);
121 lx60_fpga_reset(s);
122 qemu_register_reset(lx60_fpga_reset, s);
123 return s;
124 }
125
126 static void lx60_net_init(MemoryRegion *address_space,
127 hwaddr base,
128 hwaddr descriptors,
129 hwaddr buffers,
130 qemu_irq irq, NICInfo *nd)
131 {
132 DeviceState *dev;
133 SysBusDevice *s;
134 MemoryRegion *ram;
135
136 dev = qdev_create(NULL, "open_eth");
137 qdev_set_nic_properties(dev, nd);
138 qdev_init_nofail(dev);
139
140 s = SYS_BUS_DEVICE(dev);
141 sysbus_connect_irq(s, 0, irq);
142 memory_region_add_subregion(address_space, base,
143 sysbus_mmio_get_region(s, 0));
144 memory_region_add_subregion(address_space, descriptors,
145 sysbus_mmio_get_region(s, 1));
146
147 ram = g_malloc(sizeof(*ram));
148 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
149 &error_fatal);
150 vmstate_register_ram_global(ram);
151 memory_region_add_subregion(address_space, buffers, ram);
152 }
153
154 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
155 const LxBoardDesc *board,
156 DriveInfo *dinfo, int be)
157 {
158 SysBusDevice *s;
159 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
160
161 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
162 &error_abort);
163 qdev_prop_set_uint32(dev, "num-blocks",
164 board->flash_size / board->flash_sector_size);
165 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
166 qdev_prop_set_uint8(dev, "width", 4);
167 qdev_prop_set_bit(dev, "big-endian", be);
168 qdev_prop_set_string(dev, "name", "lx60.io.flash");
169 qdev_init_nofail(dev);
170 s = SYS_BUS_DEVICE(dev);
171 memory_region_add_subregion(address_space, board->flash_base,
172 sysbus_mmio_get_region(s, 0));
173 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
174 }
175
176 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
177 {
178 XtensaCPU *cpu = opaque;
179
180 return cpu_get_phys_page_debug(CPU(cpu), addr);
181 }
182
183 static void lx60_reset(void *opaque)
184 {
185 XtensaCPU *cpu = opaque;
186
187 cpu_reset(CPU(cpu));
188 }
189
190 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
191 unsigned size)
192 {
193 return 0;
194 }
195
196 static void lx60_io_write(void *opaque, hwaddr addr,
197 uint64_t val, unsigned size)
198 {
199 }
200
201 static const MemoryRegionOps lx60_io_ops = {
202 .read = lx60_io_read,
203 .write = lx60_io_write,
204 .endianness = DEVICE_NATIVE_ENDIAN,
205 };
206
207 static void lx_init(const LxBoardDesc *board, MachineState *machine)
208 {
209 #ifdef TARGET_WORDS_BIGENDIAN
210 int be = 1;
211 #else
212 int be = 0;
213 #endif
214 MemoryRegion *system_memory = get_system_memory();
215 XtensaCPU *cpu = NULL;
216 CPUXtensaState *env = NULL;
217 MemoryRegion *ram, *rom, *system_io;
218 DriveInfo *dinfo;
219 pflash_t *flash = NULL;
220 QemuOpts *machine_opts = qemu_get_machine_opts();
221 const char *cpu_model = machine->cpu_model;
222 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
223 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
224 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
225 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
226 int n;
227
228 if (!cpu_model) {
229 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
230 }
231
232 for (n = 0; n < smp_cpus; n++) {
233 cpu = cpu_xtensa_init(cpu_model);
234 if (cpu == NULL) {
235 error_report("unable to find CPU definition '%s'",
236 cpu_model);
237 exit(EXIT_FAILURE);
238 }
239 env = &cpu->env;
240
241 env->sregs[PRID] = n;
242 qemu_register_reset(lx60_reset, cpu);
243 /* Need MMU initialized prior to ELF loading,
244 * so that ELF gets loaded into virtual addresses
245 */
246 cpu_reset(CPU(cpu));
247 }
248
249 ram = g_malloc(sizeof(*ram));
250 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
251 &error_fatal);
252 vmstate_register_ram_global(ram);
253 memory_region_add_subregion(system_memory, 0, ram);
254
255 system_io = g_malloc(sizeof(*system_io));
256 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
257 224 * 1024 * 1024);
258 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
259 lx60_fpga_init(system_io, 0x0d020000);
260 if (nd_table[0].used) {
261 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
262 xtensa_get_extint(env, 1), nd_table);
263 }
264
265 if (!serial_hds[0]) {
266 serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
267 }
268
269 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
270 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
271
272 dinfo = drive_get(IF_PFLASH, 0, 0);
273 if (dinfo) {
274 flash = xtfpga_flash_init(system_io, board, dinfo, be);
275 }
276
277 /* Use presence of kernel file name as 'boot from SRAM' switch. */
278 if (kernel_filename) {
279 uint32_t entry_point = env->pc;
280 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
281 uint32_t tagptr = 0xfe000000 + board->sram_size;
282 uint32_t cur_tagptr;
283 BpMemInfo memory_location = {
284 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
285 .start = tswap32(0),
286 .end = tswap32(machine->ram_size),
287 };
288 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
289 machine->ram_size : 0x08000000;
290 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
291
292 rom = g_malloc(sizeof(*rom));
293 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
294 &error_fatal);
295 vmstate_register_ram_global(rom);
296 memory_region_add_subregion(system_memory, 0xfe000000, rom);
297
298 if (kernel_cmdline) {
299 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
300 }
301 if (dtb_filename) {
302 bp_size += get_tag_size(sizeof(uint32_t));
303 }
304 if (initrd_filename) {
305 bp_size += get_tag_size(sizeof(BpMemInfo));
306 }
307
308 /* Put kernel bootparameters to the end of that SRAM */
309 tagptr = (tagptr - bp_size) & ~0xff;
310 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
311 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
312 sizeof(memory_location), &memory_location);
313
314 if (kernel_cmdline) {
315 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
316 strlen(kernel_cmdline) + 1, kernel_cmdline);
317 }
318 if (dtb_filename) {
319 int fdt_size;
320 void *fdt = load_device_tree(dtb_filename, &fdt_size);
321 uint32_t dtb_addr = tswap32(cur_lowmem);
322
323 if (!fdt) {
324 error_report("could not load DTB '%s'", dtb_filename);
325 exit(EXIT_FAILURE);
326 }
327
328 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
329 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
330 sizeof(dtb_addr), &dtb_addr);
331 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
332 }
333 if (initrd_filename) {
334 BpMemInfo initrd_location = { 0 };
335 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
336 lowmem_end - cur_lowmem);
337
338 if (initrd_size < 0) {
339 initrd_size = load_image_targphys(initrd_filename,
340 cur_lowmem,
341 lowmem_end - cur_lowmem);
342 }
343 if (initrd_size < 0) {
344 error_report("could not load initrd '%s'", initrd_filename);
345 exit(EXIT_FAILURE);
346 }
347 initrd_location.start = tswap32(cur_lowmem);
348 initrd_location.end = tswap32(cur_lowmem + initrd_size);
349 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
350 sizeof(initrd_location), &initrd_location);
351 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
352 }
353 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
354 env->regs[2] = tagptr;
355
356 uint64_t elf_entry;
357 uint64_t elf_lowaddr;
358 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
359 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
360 if (success > 0) {
361 entry_point = elf_entry;
362 } else {
363 hwaddr ep;
364 int is_linux;
365 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
366 translate_phys_addr, cpu);
367 if (success > 0 && is_linux) {
368 entry_point = ep;
369 } else {
370 error_report("could not load kernel '%s'",
371 kernel_filename);
372 exit(EXIT_FAILURE);
373 }
374 }
375 if (entry_point != env->pc) {
376 static const uint8_t jx_a0[] = {
377 #ifdef TARGET_WORDS_BIGENDIAN
378 0x0a, 0, 0,
379 #else
380 0xa0, 0, 0,
381 #endif
382 };
383 env->regs[0] = entry_point;
384 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
385 }
386 } else {
387 if (flash) {
388 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
389 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
390
391 memory_region_init_alias(flash_io, NULL, "lx60.flash",
392 flash_mr, board->flash_boot_base,
393 board->flash_size - board->flash_boot_base < 0x02000000 ?
394 board->flash_size - board->flash_boot_base : 0x02000000);
395 memory_region_add_subregion(system_memory, 0xfe000000,
396 flash_io);
397 }
398 }
399 }
400
401 static void xtensa_lx60_init(MachineState *machine)
402 {
403 static const LxBoardDesc lx60_board = {
404 .flash_base = 0x08000000,
405 .flash_size = 0x00400000,
406 .flash_sector_size = 0x10000,
407 .sram_size = 0x20000,
408 };
409 lx_init(&lx60_board, machine);
410 }
411
412 static void xtensa_lx200_init(MachineState *machine)
413 {
414 static const LxBoardDesc lx200_board = {
415 .flash_base = 0x08000000,
416 .flash_size = 0x01000000,
417 .flash_sector_size = 0x20000,
418 .sram_size = 0x2000000,
419 };
420 lx_init(&lx200_board, machine);
421 }
422
423 static void xtensa_ml605_init(MachineState *machine)
424 {
425 static const LxBoardDesc ml605_board = {
426 .flash_base = 0x08000000,
427 .flash_size = 0x01000000,
428 .flash_sector_size = 0x20000,
429 .sram_size = 0x2000000,
430 };
431 lx_init(&ml605_board, machine);
432 }
433
434 static void xtensa_kc705_init(MachineState *machine)
435 {
436 static const LxBoardDesc kc705_board = {
437 .flash_base = 0x00000000,
438 .flash_size = 0x08000000,
439 .flash_boot_base = 0x06000000,
440 .flash_sector_size = 0x20000,
441 .sram_size = 0x2000000,
442 };
443 lx_init(&kc705_board, machine);
444 }
445
446 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
447 {
448 MachineClass *mc = MACHINE_CLASS(oc);
449
450 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
451 mc->init = xtensa_lx60_init;
452 mc->max_cpus = 4;
453 }
454
455 static const TypeInfo xtensa_lx60_type = {
456 .name = MACHINE_TYPE_NAME("lx60"),
457 .parent = TYPE_MACHINE,
458 .class_init = xtensa_lx60_class_init,
459 };
460
461 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
462 {
463 MachineClass *mc = MACHINE_CLASS(oc);
464
465 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
466 mc->init = xtensa_lx200_init;
467 mc->max_cpus = 4;
468 }
469
470 static const TypeInfo xtensa_lx200_type = {
471 .name = MACHINE_TYPE_NAME("lx200"),
472 .parent = TYPE_MACHINE,
473 .class_init = xtensa_lx200_class_init,
474 };
475
476 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
477 {
478 MachineClass *mc = MACHINE_CLASS(oc);
479
480 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
481 mc->init = xtensa_ml605_init;
482 mc->max_cpus = 4;
483 }
484
485 static const TypeInfo xtensa_ml605_type = {
486 .name = MACHINE_TYPE_NAME("ml605"),
487 .parent = TYPE_MACHINE,
488 .class_init = xtensa_ml605_class_init,
489 };
490
491 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
492 {
493 MachineClass *mc = MACHINE_CLASS(oc);
494
495 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
496 mc->init = xtensa_kc705_init;
497 mc->max_cpus = 4;
498 }
499
500 static const TypeInfo xtensa_kc705_type = {
501 .name = MACHINE_TYPE_NAME("kc705"),
502 .parent = TYPE_MACHINE,
503 .class_init = xtensa_kc705_class_init,
504 };
505
506 static void xtensa_lx_machines_init(void)
507 {
508 type_register_static(&xtensa_lx60_type);
509 type_register_static(&xtensa_lx200_type);
510 type_register_static(&xtensa_ml605_type);
511 type_register_static(&xtensa_kc705_type);
512 }
513
514 type_init(xtensa_lx_machines_init)