]> git.ipfire.org Git - people/ms/u-boot.git/blob - include/dm/device.h
configs: omapl138_lcdk: decrease the loglevel to reduce the size of the SPL
[people/ms/u-boot.git] / include / dm / device.h
1 /*
2 * Copyright (c) 2013 Google, Inc
3 *
4 * (C) Copyright 2012
5 * Pavel Herrmann <morpheus.ibis@gmail.com>
6 * Marek Vasut <marex@denx.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13
14 #include <dm/ofnode.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/compat.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/printk.h>
22
23 struct driver_info;
24
25 /* Driver is active (probed). Cleared when it is removed */
26 #define DM_FLAG_ACTIVATED (1 << 0)
27
28 /* DM is responsible for allocating and freeing platdata */
29 #define DM_FLAG_ALLOC_PDATA (1 << 1)
30
31 /* DM should init this device prior to relocation */
32 #define DM_FLAG_PRE_RELOC (1 << 2)
33
34 /* DM is responsible for allocating and freeing parent_platdata */
35 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
36
37 /* DM is responsible for allocating and freeing uclass_platdata */
38 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
39
40 /* Allocate driver private data on a DMA boundary */
41 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
42
43 /* Device is bound */
44 #define DM_FLAG_BOUND (1 << 6)
45
46 /* Device name is allocated and should be freed on unbind() */
47 #define DM_FLAG_NAME_ALLOCED (1 << 7)
48
49 #define DM_FLAG_OF_PLATDATA (1 << 8)
50
51 /*
52 * Call driver remove function to stop currently active DMA transfers or
53 * give DMA buffers back to the HW / controller. This may be needed for
54 * some drivers to do some final stage cleanup before the OS is called
55 * (U-Boot exit)
56 */
57 #define DM_FLAG_ACTIVE_DMA (1 << 9)
58
59 /*
60 * Call driver remove function to do some final configuration, before
61 * U-Boot exits and the OS is started
62 */
63 #define DM_FLAG_OS_PREPARE (1 << 10)
64
65 /*
66 * One or multiple of these flags are passed to device_remove() so that
67 * a selective device removal as specified by the remove-stage and the
68 * driver flags can be done.
69 */
70 enum {
71 /* Normal remove, remove all devices */
72 DM_REMOVE_NORMAL = 1 << 0,
73
74 /* Remove devices with active DMA */
75 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
76
77 /* Remove devices which need some final OS preparation steps */
78 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
79
80 /* Add more use cases here */
81
82 /* Remove devices with any active flag */
83 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
84 };
85
86 /**
87 * struct udevice - An instance of a driver
88 *
89 * This holds information about a device, which is a driver bound to a
90 * particular port or peripheral (essentially a driver instance).
91 *
92 * A device will come into existence through a 'bind' call, either due to
93 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
94 * in the device tree (in which case of_offset is >= 0). In the latter case
95 * we translate the device tree information into platdata in a function
96 * implemented by the driver ofdata_to_platdata method (called just before the
97 * probe method if the device has a device tree node.
98 *
99 * All three of platdata, priv and uclass_priv can be allocated by the
100 * driver, or you can use the auto_alloc_size members of struct driver and
101 * struct uclass_driver to have driver model do this automatically.
102 *
103 * @driver: The driver used by this device
104 * @name: Name of device, typically the FDT node name
105 * @platdata: Configuration data for this device
106 * @parent_platdata: The parent bus's configuration data for this device
107 * @uclass_platdata: The uclass's configuration data for this device
108 * @node: Reference to device tree node for this device
109 * @driver_data: Driver data word for the entry that matched this device with
110 * its driver
111 * @parent: Parent of this device, or NULL for the top level device
112 * @priv: Private data for this device
113 * @uclass: Pointer to uclass for this device
114 * @uclass_priv: The uclass's private data for this device
115 * @parent_priv: The parent's private data for this device
116 * @uclass_node: Used by uclass to link its devices
117 * @child_head: List of children of this device
118 * @sibling_node: Next device in list of all devices
119 * @flags: Flags for this device DM_FLAG_...
120 * @req_seq: Requested sequence number for this device (-1 = any)
121 * @seq: Allocated sequence number for this device (-1 = none). This is set up
122 * when the device is probed and will be unique within the device's uclass.
123 * @devres_head: List of memory allocations associated with this device.
124 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
125 * add to this list. Memory so-allocated will be freed
126 * automatically when the device is removed / unbound
127 */
128 struct udevice {
129 const struct driver *driver;
130 const char *name;
131 void *platdata;
132 void *parent_platdata;
133 void *uclass_platdata;
134 ofnode node;
135 ulong driver_data;
136 struct udevice *parent;
137 void *priv;
138 struct uclass *uclass;
139 void *uclass_priv;
140 void *parent_priv;
141 struct list_head uclass_node;
142 struct list_head child_head;
143 struct list_head sibling_node;
144 uint32_t flags;
145 int req_seq;
146 int seq;
147 #ifdef CONFIG_DEVRES
148 struct list_head devres_head;
149 #endif
150 };
151
152 /* Maximum sequence number supported */
153 #define DM_MAX_SEQ 999
154
155 /* Returns the operations for a device */
156 #define device_get_ops(dev) (dev->driver->ops)
157
158 /* Returns non-zero if the device is active (probed and not removed) */
159 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
160
161 static inline int dev_of_offset(const struct udevice *dev)
162 {
163 return ofnode_to_offset(dev->node);
164 }
165
166 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
167 {
168 dev->node = offset_to_ofnode(of_offset);
169 }
170
171 static inline bool dev_has_of_node(struct udevice *dev)
172 {
173 return ofnode_valid(dev->node);
174 }
175
176 /**
177 * struct udevice_id - Lists the compatible strings supported by a driver
178 * @compatible: Compatible string
179 * @data: Data for this compatible string
180 */
181 struct udevice_id {
182 const char *compatible;
183 ulong data;
184 };
185
186 #if CONFIG_IS_ENABLED(OF_CONTROL)
187 #define of_match_ptr(_ptr) (_ptr)
188 #else
189 #define of_match_ptr(_ptr) NULL
190 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
191
192 /**
193 * struct driver - A driver for a feature or peripheral
194 *
195 * This holds methods for setting up a new device, and also removing it.
196 * The device needs information to set itself up - this is provided either
197 * by platdata or a device tree node (which we find by looking up
198 * matching compatible strings with of_match).
199 *
200 * Drivers all belong to a uclass, representing a class of devices of the
201 * same type. Common elements of the drivers can be implemented in the uclass,
202 * or the uclass can provide a consistent interface to the drivers within
203 * it.
204 *
205 * @name: Device name
206 * @id: Identiies the uclass we belong to
207 * @of_match: List of compatible strings to match, and any identifying data
208 * for each.
209 * @bind: Called to bind a device to its driver
210 * @probe: Called to probe a device, i.e. activate it
211 * @remove: Called to remove a device, i.e. de-activate it
212 * @unbind: Called to unbind a device from its driver
213 * @ofdata_to_platdata: Called before probe to decode device tree data
214 * @child_post_bind: Called after a new child has been bound
215 * @child_pre_probe: Called before a child device is probed. The device has
216 * memory allocated but it has not yet been probed.
217 * @child_post_remove: Called after a child device is removed. The device
218 * has memory allocated but its device_remove() method has been called.
219 * @priv_auto_alloc_size: If non-zero this is the size of the private data
220 * to be allocated in the device's ->priv pointer. If zero, then the driver
221 * is responsible for allocating any data required.
222 * @platdata_auto_alloc_size: If non-zero this is the size of the
223 * platform data to be allocated in the device's ->platdata pointer.
224 * This is typically only useful for device-tree-aware drivers (those with
225 * an of_match), since drivers which use platdata will have the data
226 * provided in the U_BOOT_DEVICE() instantiation.
227 * @per_child_auto_alloc_size: Each device can hold private data owned by
228 * its parent. If required this will be automatically allocated if this
229 * value is non-zero.
230 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
231 * its children. If non-zero this is the size of this data, to be allocated
232 * in the child's parent_platdata pointer.
233 * @ops: Driver-specific operations. This is typically a list of function
234 * pointers defined by the driver, to implement driver functions required by
235 * the uclass.
236 * @flags: driver flags - see DM_FLAGS_...
237 */
238 struct driver {
239 char *name;
240 enum uclass_id id;
241 const struct udevice_id *of_match;
242 int (*bind)(struct udevice *dev);
243 int (*probe)(struct udevice *dev);
244 int (*remove)(struct udevice *dev);
245 int (*unbind)(struct udevice *dev);
246 int (*ofdata_to_platdata)(struct udevice *dev);
247 int (*child_post_bind)(struct udevice *dev);
248 int (*child_pre_probe)(struct udevice *dev);
249 int (*child_post_remove)(struct udevice *dev);
250 int priv_auto_alloc_size;
251 int platdata_auto_alloc_size;
252 int per_child_auto_alloc_size;
253 int per_child_platdata_auto_alloc_size;
254 const void *ops; /* driver-specific operations */
255 uint32_t flags;
256 };
257
258 /* Declare a new U-Boot driver */
259 #define U_BOOT_DRIVER(__name) \
260 ll_entry_declare(struct driver, __name, driver)
261
262 /* Get a pointer to a given driver */
263 #define DM_GET_DRIVER(__name) \
264 ll_entry_get(struct driver, __name, driver)
265
266 /**
267 * dev_get_platdata() - Get the platform data for a device
268 *
269 * This checks that dev is not NULL, but no other checks for now
270 *
271 * @dev Device to check
272 * @return platform data, or NULL if none
273 */
274 void *dev_get_platdata(struct udevice *dev);
275
276 /**
277 * dev_get_parent_platdata() - Get the parent platform data for a device
278 *
279 * This checks that dev is not NULL, but no other checks for now
280 *
281 * @dev Device to check
282 * @return parent's platform data, or NULL if none
283 */
284 void *dev_get_parent_platdata(struct udevice *dev);
285
286 /**
287 * dev_get_uclass_platdata() - Get the uclass platform data for a device
288 *
289 * This checks that dev is not NULL, but no other checks for now
290 *
291 * @dev Device to check
292 * @return uclass's platform data, or NULL if none
293 */
294 void *dev_get_uclass_platdata(struct udevice *dev);
295
296 /**
297 * dev_get_priv() - Get the private data for a device
298 *
299 * This checks that dev is not NULL, but no other checks for now
300 *
301 * @dev Device to check
302 * @return private data, or NULL if none
303 */
304 void *dev_get_priv(struct udevice *dev);
305
306 /**
307 * dev_get_parent_priv() - Get the parent private data for a device
308 *
309 * The parent private data is data stored in the device but owned by the
310 * parent. For example, a USB device may have parent data which contains
311 * information about how to talk to the device over USB.
312 *
313 * This checks that dev is not NULL, but no other checks for now
314 *
315 * @dev Device to check
316 * @return parent data, or NULL if none
317 */
318 void *dev_get_parent_priv(struct udevice *dev);
319
320 /**
321 * dev_get_uclass_priv() - Get the private uclass data for a device
322 *
323 * This checks that dev is not NULL, but no other checks for now
324 *
325 * @dev Device to check
326 * @return private uclass data for this device, or NULL if none
327 */
328 void *dev_get_uclass_priv(struct udevice *dev);
329
330 /**
331 * struct dev_get_parent() - Get the parent of a device
332 *
333 * @child: Child to check
334 * @return parent of child, or NULL if this is the root device
335 */
336 struct udevice *dev_get_parent(struct udevice *child);
337
338 /**
339 * dev_get_driver_data() - get the driver data used to bind a device
340 *
341 * When a device is bound using a device tree node, it matches a
342 * particular compatible string in struct udevice_id. This function
343 * returns the associated data value for that compatible string. This is
344 * the 'data' field in struct udevice_id.
345 *
346 * As an example, consider this structure:
347 * static const struct udevice_id tegra_i2c_ids[] = {
348 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
349 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
350 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
351 * { }
352 * };
353 *
354 * When driver model finds a driver for this it will store the 'data' value
355 * corresponding to the compatible string it matches. This function returns
356 * that value. This allows the driver to handle several variants of a device.
357 *
358 * For USB devices, this is the driver_info field in struct usb_device_id.
359 *
360 * @dev: Device to check
361 * @return driver data (0 if none is provided)
362 */
363 ulong dev_get_driver_data(struct udevice *dev);
364
365 /**
366 * dev_get_driver_ops() - get the device's driver's operations
367 *
368 * This checks that dev is not NULL, and returns the pointer to device's
369 * driver's operations.
370 *
371 * @dev: Device to check
372 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
373 */
374 const void *dev_get_driver_ops(struct udevice *dev);
375
376 /**
377 * device_get_uclass_id() - return the uclass ID of a device
378 *
379 * @dev: Device to check
380 * @return uclass ID for the device
381 */
382 enum uclass_id device_get_uclass_id(struct udevice *dev);
383
384 /**
385 * dev_get_uclass_name() - return the uclass name of a device
386 *
387 * This checks that dev is not NULL.
388 *
389 * @dev: Device to check
390 * @return pointer to the uclass name for the device
391 */
392 const char *dev_get_uclass_name(struct udevice *dev);
393
394 /**
395 * device_get_child() - Get the child of a device by index
396 *
397 * Returns the numbered child, 0 being the first. This does not use
398 * sequence numbers, only the natural order.
399 *
400 * @dev: Parent device to check
401 * @index: Child index
402 * @devp: Returns pointer to device
403 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
404 * to probe
405 */
406 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
407
408 /**
409 * device_find_child_by_seq() - Find a child device based on a sequence
410 *
411 * This searches for a device with the given seq or req_seq.
412 *
413 * For seq, if an active device has this sequence it will be returned.
414 * If there is no such device then this will return -ENODEV.
415 *
416 * For req_seq, if a device (whether activated or not) has this req_seq
417 * value, that device will be returned. This is a strong indication that
418 * the device will receive that sequence when activated.
419 *
420 * @parent: Parent device
421 * @seq_or_req_seq: Sequence number to find (0=first)
422 * @find_req_seq: true to find req_seq, false to find seq
423 * @devp: Returns pointer to device (there is only one per for each seq).
424 * Set to NULL if none is found
425 * @return 0 if OK, -ve on error
426 */
427 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
428 bool find_req_seq, struct udevice **devp);
429
430 /**
431 * device_get_child_by_seq() - Get a child device based on a sequence
432 *
433 * If an active device has this sequence it will be returned. If there is no
434 * such device then this will check for a device that is requesting this
435 * sequence.
436 *
437 * The device is probed to activate it ready for use.
438 *
439 * @parent: Parent device
440 * @seq: Sequence number to find (0=first)
441 * @devp: Returns pointer to device (there is only one per for each seq)
442 * Set to NULL if none is found
443 * @return 0 if OK, -ve on error
444 */
445 int device_get_child_by_seq(struct udevice *parent, int seq,
446 struct udevice **devp);
447
448 /**
449 * device_find_child_by_of_offset() - Find a child device based on FDT offset
450 *
451 * Locates a child device by its device tree offset.
452 *
453 * @parent: Parent device
454 * @of_offset: Device tree offset to find
455 * @devp: Returns pointer to device if found, otherwise this is set to NULL
456 * @return 0 if OK, -ve on error
457 */
458 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
459 struct udevice **devp);
460
461 /**
462 * device_get_child_by_of_offset() - Get a child device based on FDT offset
463 *
464 * Locates a child device by its device tree offset.
465 *
466 * The device is probed to activate it ready for use.
467 *
468 * @parent: Parent device
469 * @of_offset: Device tree offset to find
470 * @devp: Returns pointer to device if found, otherwise this is set to NULL
471 * @return 0 if OK, -ve on error
472 */
473 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
474 struct udevice **devp);
475
476 /**
477 * device_get_global_by_of_offset() - Get a device based on FDT offset
478 *
479 * Locates a device by its device tree offset, searching globally throughout
480 * the all driver model devices.
481 *
482 * The device is probed to activate it ready for use.
483 *
484 * @of_offset: Device tree offset to find
485 * @devp: Returns pointer to device if found, otherwise this is set to NULL
486 * @return 0 if OK, -ve on error
487 */
488 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
489
490 /**
491 * device_find_first_child() - Find the first child of a device
492 *
493 * @parent: Parent device to search
494 * @devp: Returns first child device, or NULL if none
495 * @return 0
496 */
497 int device_find_first_child(struct udevice *parent, struct udevice **devp);
498
499 /**
500 * device_find_next_child() - Find the next child of a device
501 *
502 * @devp: Pointer to previous child device on entry. Returns pointer to next
503 * child device, or NULL if none
504 * @return 0
505 */
506 int device_find_next_child(struct udevice **devp);
507
508 /**
509 * device_has_children() - check if a device has any children
510 *
511 * @dev: Device to check
512 * @return true if the device has one or more children
513 */
514 bool device_has_children(struct udevice *dev);
515
516 /**
517 * device_has_active_children() - check if a device has any active children
518 *
519 * @dev: Device to check
520 * @return true if the device has one or more children and at least one of
521 * them is active (probed).
522 */
523 bool device_has_active_children(struct udevice *dev);
524
525 /**
526 * device_is_last_sibling() - check if a device is the last sibling
527 *
528 * This function can be useful for display purposes, when special action needs
529 * to be taken when displaying the last sibling. This can happen when a tree
530 * view of devices is being displayed.
531 *
532 * @dev: Device to check
533 * @return true if there are no more siblings after this one - i.e. is it
534 * last in the list.
535 */
536 bool device_is_last_sibling(struct udevice *dev);
537
538 /**
539 * device_set_name() - set the name of a device
540 *
541 * This must be called in the device's bind() method and no later. Normally
542 * this is unnecessary but for probed devices which don't get a useful name
543 * this function can be helpful.
544 *
545 * The name is allocated and will be freed automatically when the device is
546 * unbound.
547 *
548 * @dev: Device to update
549 * @name: New name (this string is allocated new memory and attached to
550 * the device)
551 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
552 * string
553 */
554 int device_set_name(struct udevice *dev, const char *name);
555
556 /**
557 * device_set_name_alloced() - note that a device name is allocated
558 *
559 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
560 * unbound the name will be freed. This avoids memory leaks.
561 *
562 * @dev: Device to update
563 */
564 void device_set_name_alloced(struct udevice *dev);
565
566 /**
567 * device_is_compatible() - check if the device is compatible with the compat
568 *
569 * This allows to check whether the device is comaptible with the compat.
570 *
571 * @dev: udevice pointer for which compatible needs to be verified.
572 * @compat: Compatible string which needs to verified in the given
573 * device
574 * @return true if OK, false if the compatible is not found
575 */
576 bool device_is_compatible(struct udevice *dev, const char *compat);
577
578 /**
579 * of_machine_is_compatible() - check if the machine is compatible with
580 * the compat
581 *
582 * This allows to check whether the machine is comaptible with the compat.
583 *
584 * @compat: Compatible string which needs to verified
585 * @return true if OK, false if the compatible is not found
586 */
587 bool of_machine_is_compatible(const char *compat);
588
589 /**
590 * device_is_on_pci_bus - Test if a device is on a PCI bus
591 *
592 * @dev: device to test
593 * @return: true if it is on a PCI bus, false otherwise
594 */
595 static inline bool device_is_on_pci_bus(struct udevice *dev)
596 {
597 return device_get_uclass_id(dev->parent) == UCLASS_PCI;
598 }
599
600 /**
601 * device_foreach_child_safe() - iterate through child devices safely
602 *
603 * This allows the @pos child to be removed in the loop if required.
604 *
605 * @pos: struct udevice * for the current device
606 * @next: struct udevice * for the next device
607 * @parent: parent device to scan
608 */
609 #define device_foreach_child_safe(pos, next, parent) \
610 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
611
612 /**
613 * dm_scan_fdt_dev() - Bind child device in a the device tree
614 *
615 * This handles device which have sub-nodes in the device tree. It scans all
616 * sub-nodes and binds drivers for each node where a driver can be found.
617 *
618 * If this is called prior to relocation, only pre-relocation devices will be
619 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
620 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
621 * be bound.
622 *
623 * @dev: Device to scan
624 * @return 0 if OK, -ve on error
625 */
626 int dm_scan_fdt_dev(struct udevice *dev);
627
628 /* device resource management */
629 typedef void (*dr_release_t)(struct udevice *dev, void *res);
630 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
631
632 #ifdef CONFIG_DEVRES
633
634 #ifdef CONFIG_DEBUG_DEVRES
635 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
636 const char *name);
637 #define _devres_alloc(release, size, gfp) \
638 __devres_alloc(release, size, gfp, #release)
639 #else
640 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
641 #endif
642
643 /**
644 * devres_alloc() - Allocate device resource data
645 * @release: Release function devres will be associated with
646 * @size: Allocation size
647 * @gfp: Allocation flags
648 *
649 * Allocate devres of @size bytes. The allocated area is associated
650 * with @release. The returned pointer can be passed to
651 * other devres_*() functions.
652 *
653 * RETURNS:
654 * Pointer to allocated devres on success, NULL on failure.
655 */
656 #define devres_alloc(release, size, gfp) \
657 _devres_alloc(release, size, gfp | __GFP_ZERO)
658
659 /**
660 * devres_free() - Free device resource data
661 * @res: Pointer to devres data to free
662 *
663 * Free devres created with devres_alloc().
664 */
665 void devres_free(void *res);
666
667 /**
668 * devres_add() - Register device resource
669 * @dev: Device to add resource to
670 * @res: Resource to register
671 *
672 * Register devres @res to @dev. @res should have been allocated
673 * using devres_alloc(). On driver detach, the associated release
674 * function will be invoked and devres will be freed automatically.
675 */
676 void devres_add(struct udevice *dev, void *res);
677
678 /**
679 * devres_find() - Find device resource
680 * @dev: Device to lookup resource from
681 * @release: Look for resources associated with this release function
682 * @match: Match function (optional)
683 * @match_data: Data for the match function
684 *
685 * Find the latest devres of @dev which is associated with @release
686 * and for which @match returns 1. If @match is NULL, it's considered
687 * to match all.
688 *
689 * @return pointer to found devres, NULL if not found.
690 */
691 void *devres_find(struct udevice *dev, dr_release_t release,
692 dr_match_t match, void *match_data);
693
694 /**
695 * devres_get() - Find devres, if non-existent, add one atomically
696 * @dev: Device to lookup or add devres for
697 * @new_res: Pointer to new initialized devres to add if not found
698 * @match: Match function (optional)
699 * @match_data: Data for the match function
700 *
701 * Find the latest devres of @dev which has the same release function
702 * as @new_res and for which @match return 1. If found, @new_res is
703 * freed; otherwise, @new_res is added atomically.
704 *
705 * @return ointer to found or added devres.
706 */
707 void *devres_get(struct udevice *dev, void *new_res,
708 dr_match_t match, void *match_data);
709
710 /**
711 * devres_remove() - Find a device resource and remove it
712 * @dev: Device to find resource from
713 * @release: Look for resources associated with this release function
714 * @match: Match function (optional)
715 * @match_data: Data for the match function
716 *
717 * Find the latest devres of @dev associated with @release and for
718 * which @match returns 1. If @match is NULL, it's considered to
719 * match all. If found, the resource is removed atomically and
720 * returned.
721 *
722 * @return ointer to removed devres on success, NULL if not found.
723 */
724 void *devres_remove(struct udevice *dev, dr_release_t release,
725 dr_match_t match, void *match_data);
726
727 /**
728 * devres_destroy() - Find a device resource and destroy it
729 * @dev: Device to find resource from
730 * @release: Look for resources associated with this release function
731 * @match: Match function (optional)
732 * @match_data: Data for the match function
733 *
734 * Find the latest devres of @dev associated with @release and for
735 * which @match returns 1. If @match is NULL, it's considered to
736 * match all. If found, the resource is removed atomically and freed.
737 *
738 * Note that the release function for the resource will not be called,
739 * only the devres-allocated data will be freed. The caller becomes
740 * responsible for freeing any other data.
741 *
742 * @return 0 if devres is found and freed, -ENOENT if not found.
743 */
744 int devres_destroy(struct udevice *dev, dr_release_t release,
745 dr_match_t match, void *match_data);
746
747 /**
748 * devres_release() - Find a device resource and destroy it, calling release
749 * @dev: Device to find resource from
750 * @release: Look for resources associated with this release function
751 * @match: Match function (optional)
752 * @match_data: Data for the match function
753 *
754 * Find the latest devres of @dev associated with @release and for
755 * which @match returns 1. If @match is NULL, it's considered to
756 * match all. If found, the resource is removed atomically, the
757 * release function called and the resource freed.
758 *
759 * @return 0 if devres is found and freed, -ENOENT if not found.
760 */
761 int devres_release(struct udevice *dev, dr_release_t release,
762 dr_match_t match, void *match_data);
763
764 /* managed devm_k.alloc/kfree for device drivers */
765 /**
766 * devm_kmalloc() - Resource-managed kmalloc
767 * @dev: Device to allocate memory for
768 * @size: Allocation size
769 * @gfp: Allocation gfp flags
770 *
771 * Managed kmalloc. Memory allocated with this function is
772 * automatically freed on driver detach. Like all other devres
773 * resources, guaranteed alignment is unsigned long long.
774 *
775 * @return pointer to allocated memory on success, NULL on failure.
776 */
777 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
778 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
779 {
780 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
781 }
782 static inline void *devm_kmalloc_array(struct udevice *dev,
783 size_t n, size_t size, gfp_t flags)
784 {
785 if (size != 0 && n > SIZE_MAX / size)
786 return NULL;
787 return devm_kmalloc(dev, n * size, flags);
788 }
789 static inline void *devm_kcalloc(struct udevice *dev,
790 size_t n, size_t size, gfp_t flags)
791 {
792 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
793 }
794
795 /**
796 * devm_kfree() - Resource-managed kfree
797 * @dev: Device this memory belongs to
798 * @ptr: Memory to free
799 *
800 * Free memory allocated with devm_kmalloc().
801 */
802 void devm_kfree(struct udevice *dev, void *ptr);
803
804 #else /* ! CONFIG_DEVRES */
805
806 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
807 {
808 return kzalloc(size, gfp);
809 }
810
811 static inline void devres_free(void *res)
812 {
813 kfree(res);
814 }
815
816 static inline void devres_add(struct udevice *dev, void *res)
817 {
818 }
819
820 static inline void *devres_find(struct udevice *dev, dr_release_t release,
821 dr_match_t match, void *match_data)
822 {
823 return NULL;
824 }
825
826 static inline void *devres_get(struct udevice *dev, void *new_res,
827 dr_match_t match, void *match_data)
828 {
829 return NULL;
830 }
831
832 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
833 dr_match_t match, void *match_data)
834 {
835 return NULL;
836 }
837
838 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
839 dr_match_t match, void *match_data)
840 {
841 return 0;
842 }
843
844 static inline int devres_release(struct udevice *dev, dr_release_t release,
845 dr_match_t match, void *match_data)
846 {
847 return 0;
848 }
849
850 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
851 {
852 return kmalloc(size, gfp);
853 }
854
855 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
856 {
857 return kzalloc(size, gfp);
858 }
859
860 static inline void *devm_kmaloc_array(struct udevice *dev,
861 size_t n, size_t size, gfp_t flags)
862 {
863 /* TODO: add kmalloc_array() to linux/compat.h */
864 if (size != 0 && n > SIZE_MAX / size)
865 return NULL;
866 return kmalloc(n * size, flags);
867 }
868
869 static inline void *devm_kcalloc(struct udevice *dev,
870 size_t n, size_t size, gfp_t flags)
871 {
872 /* TODO: add kcalloc() to linux/compat.h */
873 return kmalloc(n * size, flags | __GFP_ZERO);
874 }
875
876 static inline void devm_kfree(struct udevice *dev, void *ptr)
877 {
878 kfree(ptr);
879 }
880
881 #endif /* ! CONFIG_DEVRES */
882
883 /*
884 * REVISIT:
885 * remove the following after resolving conflicts with <linux/compat.h>
886 */
887 #ifdef dev_dbg
888 #undef dev_dbg
889 #endif
890 #ifdef dev_vdbg
891 #undef dev_vdbg
892 #endif
893 #ifdef dev_info
894 #undef dev_info
895 #endif
896 #ifdef dev_err
897 #undef dev_err
898 #endif
899 #ifdef dev_warn
900 #undef dev_warn
901 #endif
902
903 /*
904 * REVISIT:
905 * print device name like Linux
906 */
907 #define dev_printk(dev, fmt, ...) \
908 ({ \
909 printk(fmt, ##__VA_ARGS__); \
910 })
911
912 #define __dev_printk(level, dev, fmt, ...) \
913 ({ \
914 if (level < CONFIG_VAL(LOGLEVEL)) \
915 dev_printk(dev, fmt, ##__VA_ARGS__); \
916 })
917
918 #define dev_emerg(dev, fmt, ...) \
919 __dev_printk(0, dev, fmt, ##__VA_ARGS__)
920 #define dev_alert(dev, fmt, ...) \
921 __dev_printk(1, dev, fmt, ##__VA_ARGS__)
922 #define dev_crit(dev, fmt, ...) \
923 __dev_printk(2, dev, fmt, ##__VA_ARGS__)
924 #define dev_err(dev, fmt, ...) \
925 __dev_printk(3, dev, fmt, ##__VA_ARGS__)
926 #define dev_warn(dev, fmt, ...) \
927 __dev_printk(4, dev, fmt, ##__VA_ARGS__)
928 #define dev_notice(dev, fmt, ...) \
929 __dev_printk(5, dev, fmt, ##__VA_ARGS__)
930 #define dev_info(dev, fmt, ...) \
931 __dev_printk(6, dev, fmt, ##__VA_ARGS__)
932
933 #ifdef DEBUG
934 #define dev_dbg(dev, fmt, ...) \
935 __dev_printk(7, dev, fmt, ##__VA_ARGS__)
936 #else
937 #define dev_dbg(dev, fmt, ...) \
938 ({ \
939 if (0) \
940 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
941 })
942 #endif
943
944 #ifdef VERBOSE_DEBUG
945 #define dev_vdbg dev_dbg
946 #else
947 #define dev_vdbg(dev, fmt, ...) \
948 ({ \
949 if (0) \
950 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
951 })
952 #endif
953
954 #endif