]> git.ipfire.org Git - thirdparty/u-boot.git/blob - include/ec_commands.h
Merge branch 'master' of git://git.denx.de/u-boot-i2c
[thirdparty/u-boot.git] / include / ec_commands.h
1 /* Copyright (c) 2018 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 */
5
6 /* Host communication command constants for Chrome EC */
7
8 #ifndef __CROS_EC_COMMANDS_H
9 #define __CROS_EC_COMMANDS_H
10
11 /*
12 * Protocol overview
13 *
14 * request: CMD [ P0 P1 P2 ... Pn S ]
15 * response: ERR [ P0 P1 P2 ... Pn S ]
16 *
17 * where the bytes are defined as follow :
18 * - CMD is the command code. (defined by EC_CMD_ constants)
19 * - ERR is the error code. (defined by EC_RES_ constants)
20 * - Px is the optional payload.
21 * it is not sent if the error code is not success.
22 * (defined by ec_params_ and ec_response_ structures)
23 * - S is the checksum which is the sum of all payload bytes.
24 *
25 * On LPC, CMD and ERR are sent/received at EC_LPC_ADDR_KERNEL|USER_CMD
26 * and the payloads are sent/received at EC_LPC_ADDR_KERNEL|USER_PARAM.
27 * On I2C, all bytes are sent serially in the same message.
28 */
29
30 /*
31 * Current version of this protocol
32 *
33 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
34 * determined in other ways. Remove this once the kernel code no longer
35 * depends on it.
36 */
37 #define EC_PROTO_VERSION 0x00000002
38
39 /* Command version mask */
40 #define EC_VER_MASK(version) (1UL << (version))
41
42 /* I/O addresses for ACPI commands */
43 #define EC_LPC_ADDR_ACPI_DATA 0x62
44 #define EC_LPC_ADDR_ACPI_CMD 0x66
45
46 /* I/O addresses for host command */
47 #define EC_LPC_ADDR_HOST_DATA 0x200
48 #define EC_LPC_ADDR_HOST_CMD 0x204
49
50 /* I/O addresses for host command args and params */
51 /* Protocol version 2 */
52 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
53 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
54 * EC_PROTO2_MAX_PARAM_SIZE */
55 /* Protocol version 3 */
56 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
57 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
58
59 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
60 * and they tell the kernel that so we have to think of it as two parts. */
61 #define EC_HOST_CMD_REGION0 0x800
62 #define EC_HOST_CMD_REGION1 0x880
63 #define EC_HOST_CMD_REGION_SIZE 0x80
64
65 /* EC command register bit functions */
66 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
67 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
68 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
69 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
70 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
71 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
72 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
73
74 #define EC_LPC_ADDR_MEMMAP 0x900
75 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
76 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
77
78 /* The offset address of each type of data in mapped memory. */
79 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
80 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
81 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
82 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
83 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
84 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
85 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
86 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
87 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
88 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
89 /* Unused 0x28 - 0x2f */
90 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
91 /* Unused 0x31 - 0x33 */
92 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */
93 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
94 /* Battery values are all 32 bits */
95 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
96 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
97 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
98 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
99 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
100 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
101 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
102 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
103 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
105 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
106 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
107 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
108 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
109 /* Unused 0x84 - 0x8f */
110 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
111 /* Unused 0x91 */
112 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */
113 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114 /* 0x94 - 0x99: 1st Accelerometer */
115 /* 0x9a - 0x9f: 2nd Accelerometer */
116 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117 /* Unused 0xa6 - 0xdf */
118
119 /*
120 * ACPI is unable to access memory mapped data at or above this offset due to
121 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122 * which might be needed by ACPI.
123 */
124 #define EC_MEMMAP_NO_ACPI 0xe0
125
126 /* Define the format of the accelerometer mapped memory status byte. */
127 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
128 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4)
129 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7)
130
131 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132 #define EC_TEMP_SENSOR_ENTRIES 16
133 /*
134 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135 *
136 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137 */
138 #define EC_TEMP_SENSOR_B_ENTRIES 8
139
140 /* Special values for mapped temperature sensors */
141 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff
142 #define EC_TEMP_SENSOR_ERROR 0xfe
143 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd
144 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145 /*
146 * The offset of temperature value stored in mapped memory. This allows
147 * reporting a temperature range of 200K to 454K = -73C to 181C.
148 */
149 #define EC_TEMP_SENSOR_OFFSET 200
150
151 /*
152 * Number of ALS readings at EC_MEMMAP_ALS
153 */
154 #define EC_ALS_ENTRIES 2
155
156 /*
157 * The default value a temperature sensor will return when it is present but
158 * has not been read this boot. This is a reasonable number to avoid
159 * triggering alarms on the host.
160 */
161 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
162
163 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
164 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
165 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
166
167 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168 #define EC_BATT_FLAG_AC_PRESENT 0x01
169 #define EC_BATT_FLAG_BATT_PRESENT 0x02
170 #define EC_BATT_FLAG_DISCHARGING 0x04
171 #define EC_BATT_FLAG_CHARGING 0x08
172 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173
174 /* Switch flags at EC_MEMMAP_SWITCHES */
175 #define EC_SWITCH_LID_OPEN 0x01
176 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
177 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
178 /* Was recovery requested via keyboard; now unused. */
179 #define EC_SWITCH_IGNORE1 0x08
180 /* Recovery requested via dedicated signal (from servo board) */
181 #define EC_SWITCH_DEDICATED_RECOVERY 0x10
182 /* Was fake developer mode switch; now unused. Remove in next refactor. */
183 #define EC_SWITCH_IGNORE0 0x20
184
185 /* Host command interface flags */
186 /* Host command interface supports LPC args (LPC interface only) */
187 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
188 /* Host command interface supports version 3 protocol */
189 #define EC_HOST_CMD_FLAG_VERSION_3 0x02
190
191 /* Wireless switch flags */
192 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
193 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
194 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
195 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
196 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
197
198 /*****************************************************************************/
199 /*
200 * ACPI commands
201 *
202 * These are valid ONLY on the ACPI command/data port.
203 */
204
205 /*
206 * ACPI Read Embedded Controller
207 *
208 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
209 *
210 * Use the following sequence:
211 *
212 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
213 * - Wait for EC_LPC_CMDR_PENDING bit to clear
214 * - Write address to EC_LPC_ADDR_ACPI_DATA
215 * - Wait for EC_LPC_CMDR_DATA bit to set
216 * - Read value from EC_LPC_ADDR_ACPI_DATA
217 */
218 #define EC_CMD_ACPI_READ 0x0080
219
220 /*
221 * ACPI Write Embedded Controller
222 *
223 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
224 *
225 * Use the following sequence:
226 *
227 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
228 * - Wait for EC_LPC_CMDR_PENDING bit to clear
229 * - Write address to EC_LPC_ADDR_ACPI_DATA
230 * - Wait for EC_LPC_CMDR_PENDING bit to clear
231 * - Write value to EC_LPC_ADDR_ACPI_DATA
232 */
233 #define EC_CMD_ACPI_WRITE 0x0081
234
235 /*
236 * ACPI Burst Enable Embedded Controller
237 *
238 * This enables burst mode on the EC to allow the host to issue several
239 * commands back-to-back. While in this mode, writes to mapped multi-byte
240 * data are locked out to ensure data consistency.
241 */
242 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
243
244 /*
245 * ACPI Burst Disable Embedded Controller
246 *
247 * This disables burst mode on the EC and stops preventing EC writes to mapped
248 * multi-byte data.
249 */
250 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
251
252 /*
253 * ACPI Query Embedded Controller
254 *
255 * This clears the lowest-order bit in the currently pending host events, and
256 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
257 * event 0x80000000 = 32), or 0 if no event was pending.
258 */
259 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
260
261 /* Valid addresses in ACPI memory space, for read/write commands */
262
263 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
264 #define EC_ACPI_MEM_VERSION 0x00
265 /*
266 * Test location; writing value here updates test compliment byte to (0xff -
267 * value).
268 */
269 #define EC_ACPI_MEM_TEST 0x01
270 /* Test compliment; writes here are ignored. */
271 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
272
273 /* Keyboard backlight brightness percent (0 - 100) */
274 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
275 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
276 #define EC_ACPI_MEM_FAN_DUTY 0x04
277
278 /*
279 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
280 * independent thresholds attached to them. The current value of the ID
281 * register determines which sensor is affected by the THRESHOLD and COMMIT
282 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
283 * as the memory-mapped sensors. The COMMIT register applies those settings.
284 *
285 * The spec does not mandate any way to read back the threshold settings
286 * themselves, but when a threshold is crossed the AP needs a way to determine
287 * which sensor(s) are responsible. Each reading of the ID register clears and
288 * returns one sensor ID that has crossed one of its threshold (in either
289 * direction) since the last read. A value of 0xFF means "no new thresholds
290 * have tripped". Setting or enabling the thresholds for a sensor will clear
291 * the unread event count for that sensor.
292 */
293 #define EC_ACPI_MEM_TEMP_ID 0x05
294 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
295 #define EC_ACPI_MEM_TEMP_COMMIT 0x07
296 /*
297 * Here are the bits for the COMMIT register:
298 * bit 0 selects the threshold index for the chosen sensor (0/1)
299 * bit 1 enables/disables the selected threshold (0 = off, 1 = on)
300 * Each write to the commit register affects one threshold.
301 */
302 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
303 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
304 /*
305 * Example:
306 *
307 * Set the thresholds for sensor 2 to 50 C and 60 C:
308 * write 2 to [0x05] -- select temp sensor 2
309 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
310 * write 0x2 to [0x07] -- enable threshold 0 with this value
311 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
312 * write 0x3 to [0x07] -- enable threshold 1 with this value
313 *
314 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
315 * write 2 to [0x05] -- select temp sensor 2
316 * write 0x1 to [0x07] -- disable threshold 1
317 */
318
319 /* DPTF battery charging current limit */
320 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08
321
322 /* Charging limit is specified in 64 mA steps */
323 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
324 /* Value to disable DPTF battery charging limit */
325 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
326
327 /*
328 * Report device orientation
329 * bit 0 device is tablet mode
330 */
331 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
332 #define EC_ACPI_MEM_DEVICE_TABLET_MODE 0x01
333
334 /*
335 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data
336 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2.
337 */
338 #define EC_ACPI_MEM_MAPPED_BEGIN 0x20
339 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0
340
341 /* Current version of ACPI memory address space */
342 #define EC_ACPI_MEM_VERSION_CURRENT 2
343
344
345 /*
346 * This header file is used in coreboot both in C and ACPI code. The ACPI code
347 * is pre-processed to handle constants but the ASL compiler is unable to
348 * handle actual C code so keep it separate.
349 */
350 #ifndef __ACPI__
351
352 /*
353 * Define __packed if someone hasn't beat us to it. Linux kernel style
354 * checking prefers __packed over __attribute__((packed)).
355 */
356 #ifndef __packed
357 #define __packed __attribute__((packed))
358 #endif
359
360 #ifndef __aligned
361 #define __aligned(x) __attribute__((aligned(x)))
362 #endif
363
364 /*
365 * Attributes for EC request and response packets. Just defining __packed
366 * results in inefficient assembly code on ARM, if the structure is actually
367 * 32-bit aligned, as it should be for all buffers.
368 *
369 * Be very careful when adding these to existing structures. They will round
370 * up the structure size to the specified boundary.
371 *
372 * Also be very careful to make that if a structure is included in some other
373 * parent structure that the alignment will still be true given the packing of
374 * the parent structure. This is particularly important if the sub-structure
375 * will be passed as a pointer to another function, since that function will
376 * not know about the misaligment caused by the parent structure's packing.
377 *
378 * Also be very careful using __packed - particularly when nesting non-packed
379 * structures inside packed ones. In fact, DO NOT use __packed directly;
380 * always use one of these attributes.
381 *
382 * Once everything is annotated properly, the following search strings should
383 * not return ANY matches in this file other than right here:
384 *
385 * "__packed" - generates inefficient code; all sub-structs must also be packed
386 *
387 * "struct [^_]" - all structs should be annotated, except for structs that are
388 * members of other structs/unions (and their original declarations should be
389 * annotated).
390 */
391 #ifdef CONFIG_HOSTCMD_ALIGNED
392
393 /*
394 * Packed structures where offset and size are always aligned to 1, 2, or 4
395 * byte boundary.
396 */
397 #define __ec_align1 __packed
398 #define __ec_align2 __packed __aligned(2)
399 #define __ec_align4 __packed __aligned(4)
400
401 /*
402 * Packed structure which must be under-aligned, because its size is not a
403 * 4-byte multiple. This is sub-optimal because it forces byte-wise access
404 * of all multi-byte fields in it, even though they are themselves aligned.
405 *
406 * In theory, we could duplicate the structure with __aligned(4) for accessing
407 * its members, but use the __packed version for sizeof().
408 */
409 #define __ec_align_size1 __packed
410
411 /*
412 * Packed structure which must be under-aligned, because its offset inside a
413 * parent structure is not a 4-byte multiple.
414 */
415 #define __ec_align_offset1 __packed
416 #define __ec_align_offset2 __packed __aligned(2)
417
418 /*
419 * Structures which are complicated enough that I'm skipping them on the first
420 * pass. They are effectively unchanged from their previous definitions.
421 *
422 * TODO(rspangler): Figure out what to do with these. It's likely necessary
423 * to work out the size and offset of each member and add explicit padding to
424 * maintain those.
425 */
426 #define __ec_todo_packed __packed
427 #define __ec_todo_unpacked
428
429 #else /* !CONFIG_HOSTCMD_ALIGNED */
430
431 /*
432 * Packed structures make no assumption about alignment, so they do inefficient
433 * byte-wise reads.
434 */
435 #define __ec_align1 __packed
436 #define __ec_align2 __packed
437 #define __ec_align4 __packed
438 #define __ec_align_size1 __packed
439 #define __ec_align_offset1 __packed
440 #define __ec_align_offset2 __packed
441 #define __ec_todo_packed __packed
442 #define __ec_todo_unpacked
443
444 #endif /* !CONFIG_HOSTCMD_ALIGNED */
445
446 /* LPC command status byte masks */
447 /* EC has written a byte in the data register and host hasn't read it yet */
448 #define EC_LPC_STATUS_TO_HOST 0x01
449 /* Host has written a command/data byte and the EC hasn't read it yet */
450 #define EC_LPC_STATUS_FROM_HOST 0x02
451 /* EC is processing a command */
452 #define EC_LPC_STATUS_PROCESSING 0x04
453 /* Last write to EC was a command, not data */
454 #define EC_LPC_STATUS_LAST_CMD 0x08
455 /* EC is in burst mode */
456 #define EC_LPC_STATUS_BURST_MODE 0x10
457 /* SCI event is pending (requesting SCI query) */
458 #define EC_LPC_STATUS_SCI_PENDING 0x20
459 /* SMI event is pending (requesting SMI query) */
460 #define EC_LPC_STATUS_SMI_PENDING 0x40
461 /* (reserved) */
462 #define EC_LPC_STATUS_RESERVED 0x80
463
464 /*
465 * EC is busy. This covers both the EC processing a command, and the host has
466 * written a new command but the EC hasn't picked it up yet.
467 */
468 #define EC_LPC_STATUS_BUSY_MASK \
469 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
470
471 /* Host command response codes (16-bit). Note that response codes should be
472 * stored in a uint16_t rather than directly in a value of this type.
473 */
474 enum ec_status {
475 EC_RES_SUCCESS = 0,
476 EC_RES_INVALID_COMMAND = 1,
477 EC_RES_ERROR = 2,
478 EC_RES_INVALID_PARAM = 3,
479 EC_RES_ACCESS_DENIED = 4,
480 EC_RES_INVALID_RESPONSE = 5,
481 EC_RES_INVALID_VERSION = 6,
482 EC_RES_INVALID_CHECKSUM = 7,
483 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
484 EC_RES_UNAVAILABLE = 9, /* No response available */
485 EC_RES_TIMEOUT = 10, /* We got a timeout */
486 EC_RES_OVERFLOW = 11, /* Table / data overflow */
487 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
488 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
489 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */
490 EC_RES_BUS_ERROR = 15, /* Communications bus error */
491 EC_RES_BUSY = 16 /* Up but too busy. Should retry */
492 };
493
494 /*
495 * Host event codes. Note these are 1-based, not 0-based, because ACPI query
496 * EC command uses code 0 to mean "no event pending". We explicitly specify
497 * each value in the enum listing so they won't change if we delete/insert an
498 * item or rearrange the list (it needs to be stable across platforms, not
499 * just within a single compiled instance).
500 */
501 enum host_event_code {
502 EC_HOST_EVENT_LID_CLOSED = 1,
503 EC_HOST_EVENT_LID_OPEN = 2,
504 EC_HOST_EVENT_POWER_BUTTON = 3,
505 EC_HOST_EVENT_AC_CONNECTED = 4,
506 EC_HOST_EVENT_AC_DISCONNECTED = 5,
507 EC_HOST_EVENT_BATTERY_LOW = 6,
508 EC_HOST_EVENT_BATTERY_CRITICAL = 7,
509 EC_HOST_EVENT_BATTERY = 8,
510 EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
511 /* Event generated by a device attached to the EC */
512 EC_HOST_EVENT_DEVICE = 10,
513 EC_HOST_EVENT_THERMAL = 11,
514 EC_HOST_EVENT_USB_CHARGER = 12,
515 EC_HOST_EVENT_KEY_PRESSED = 13,
516 /*
517 * EC has finished initializing the host interface. The host can check
518 * for this event following sending a EC_CMD_REBOOT_EC command to
519 * determine when the EC is ready to accept subsequent commands.
520 */
521 EC_HOST_EVENT_INTERFACE_READY = 14,
522 /* Keyboard recovery combo has been pressed */
523 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
524
525 /* Shutdown due to thermal overload */
526 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
527 /* Shutdown due to battery level too low */
528 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
529
530 /* Suggest that the AP throttle itself */
531 EC_HOST_EVENT_THROTTLE_START = 18,
532 /* Suggest that the AP resume normal speed */
533 EC_HOST_EVENT_THROTTLE_STOP = 19,
534
535 /* Hang detect logic detected a hang and host event timeout expired */
536 EC_HOST_EVENT_HANG_DETECT = 20,
537 /* Hang detect logic detected a hang and warm rebooted the AP */
538 EC_HOST_EVENT_HANG_REBOOT = 21,
539
540 /* PD MCU triggering host event */
541 EC_HOST_EVENT_PD_MCU = 22,
542
543 /* Battery Status flags have changed */
544 EC_HOST_EVENT_BATTERY_STATUS = 23,
545
546 /* EC encountered a panic, triggering a reset */
547 EC_HOST_EVENT_PANIC = 24,
548
549 /* Keyboard fastboot combo has been pressed */
550 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
551
552 /* EC RTC event occurred */
553 EC_HOST_EVENT_RTC = 26,
554
555 /* Emulate MKBP event */
556 EC_HOST_EVENT_MKBP = 27,
557
558 /* EC desires to change state of host-controlled USB mux */
559 EC_HOST_EVENT_USB_MUX = 28,
560
561 /* TABLET/LAPTOP mode event*/
562 EC_HOST_EVENT_MODE_CHANGE = 29,
563
564 /* Keyboard recovery combo with hardware reinitialization */
565 EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
566
567 /*
568 * Reserve this last bit to indicate that at least one bit in a
569 * secondary host event word is set. See crbug.com/633646.
570 */
571 EC_HOST_EVENT_EXTENDED = 31,
572
573 /*
574 * The high bit of the event mask is not used as a host event code. If
575 * it reads back as set, then the entire event mask should be
576 * considered invalid by the host. This can happen when reading the
577 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
578 * not initialized on the EC, or improperly configured on the host.
579 */
580 EC_HOST_EVENT_INVALID = 32
581 };
582 /* Host event mask */
583 #define EC_HOST_EVENT_MASK(event_code) (1ULL << ((event_code) - 1))
584
585 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
586 struct __ec_align4 ec_lpc_host_args {
587 uint8_t flags;
588 uint8_t command_version;
589 uint8_t data_size;
590 /*
591 * Checksum; sum of command + flags + command_version + data_size +
592 * all params/response data bytes.
593 */
594 uint8_t checksum;
595 };
596
597 /* Flags for ec_lpc_host_args.flags */
598 /*
599 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
600 * params.
601 *
602 * If EC gets a command and this flag is not set, this is an old-style command.
603 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
604 * unknown length. EC must respond with an old-style response (that is,
605 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
606 */
607 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
608 /*
609 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
610 *
611 * If EC responds to a command and this flag is not set, this is an old-style
612 * response. Command version is 0 and response data from EC is at
613 * EC_LPC_ADDR_OLD_PARAM with unknown length.
614 */
615 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02
616
617 /*****************************************************************************/
618 /*
619 * Byte codes returned by EC over SPI interface.
620 *
621 * These can be used by the AP to debug the EC interface, and to determine
622 * when the EC is not in a state where it will ever get around to responding
623 * to the AP.
624 *
625 * Example of sequence of bytes read from EC for a current good transfer:
626 * 1. - - AP asserts chip select (CS#)
627 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
628 * 3. - - EC starts handling CS# interrupt
629 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
630 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
631 * bytes looking for EC_SPI_FRAME_START
632 * 6. - - EC finishes processing and sets up response
633 * 7. EC_SPI_FRAME_START - AP reads frame byte
634 * 8. (response packet) - AP reads response packet
635 * 9. EC_SPI_PAST_END - Any additional bytes read by AP
636 * 10 - - AP deasserts chip select
637 * 11 - - EC processes CS# interrupt and sets up DMA for
638 * next request
639 *
640 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
641 * the following byte values:
642 * EC_SPI_OLD_READY
643 * EC_SPI_RX_READY
644 * EC_SPI_RECEIVING
645 * EC_SPI_PROCESSING
646 *
647 * Then the EC found an error in the request, or was not ready for the request
648 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
649 * because the EC is unable to tell when the AP is done sending its request.
650 */
651
652 /*
653 * Framing byte which precedes a response packet from the EC. After sending a
654 * request, the AP will clock in bytes until it sees the framing byte, then
655 * clock in the response packet.
656 */
657 #define EC_SPI_FRAME_START 0xec
658
659 /*
660 * Padding bytes which are clocked out after the end of a response packet.
661 */
662 #define EC_SPI_PAST_END 0xed
663
664 /*
665 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
666 * that the AP will send a valid packet header (starting with
667 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
668 */
669 #define EC_SPI_RX_READY 0xf8
670
671 /*
672 * EC has started receiving the request from the AP, but hasn't started
673 * processing it yet.
674 */
675 #define EC_SPI_RECEIVING 0xf9
676
677 /* EC has received the entire request from the AP and is processing it. */
678 #define EC_SPI_PROCESSING 0xfa
679
680 /*
681 * EC received bad data from the AP, such as a packet header with an invalid
682 * length. EC will ignore all data until chip select deasserts.
683 */
684 #define EC_SPI_RX_BAD_DATA 0xfb
685
686 /*
687 * EC received data from the AP before it was ready. That is, the AP asserted
688 * chip select and started clocking data before the EC was ready to receive it.
689 * EC will ignore all data until chip select deasserts.
690 */
691 #define EC_SPI_NOT_READY 0xfc
692
693 /*
694 * EC was ready to receive a request from the AP. EC has treated the byte sent
695 * by the AP as part of a request packet, or (for old-style ECs) is processing
696 * a fully received packet but is not ready to respond yet.
697 */
698 #define EC_SPI_OLD_READY 0xfd
699
700 /*****************************************************************************/
701
702 /*
703 * Protocol version 2 for I2C and SPI send a request this way:
704 *
705 * 0 EC_CMD_VERSION0 + (command version)
706 * 1 Command number
707 * 2 Length of params = N
708 * 3..N+2 Params, if any
709 * N+3 8-bit checksum of bytes 0..N+2
710 *
711 * The corresponding response is:
712 *
713 * 0 Result code (EC_RES_*)
714 * 1 Length of params = M
715 * 2..M+1 Params, if any
716 * M+2 8-bit checksum of bytes 0..M+1
717 */
718 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
719 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
720 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
721 EC_PROTO2_REQUEST_TRAILER_BYTES)
722
723 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
724 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
725 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
726 EC_PROTO2_RESPONSE_TRAILER_BYTES)
727
728 /* Parameter length was limited by the LPC interface */
729 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
730
731 /* Maximum request and response packet sizes for protocol version 2 */
732 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
733 EC_PROTO2_MAX_PARAM_SIZE)
734 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
735 EC_PROTO2_MAX_PARAM_SIZE)
736
737 /*****************************************************************************/
738
739 /*
740 * Value written to legacy command port / prefix byte to indicate protocol
741 * 3+ structs are being used. Usage is bus-dependent.
742 */
743 #define EC_COMMAND_PROTOCOL_3 0xda
744
745 #define EC_HOST_REQUEST_VERSION 3
746
747 /* Version 3 request from host */
748 struct __ec_align4 ec_host_request {
749 /* Structure version (=3)
750 *
751 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
752 * version it doesn't know how to parse.
753 */
754 uint8_t struct_version;
755
756 /*
757 * Checksum of request and data; sum of all bytes including checksum
758 * should total to 0.
759 */
760 uint8_t checksum;
761
762 /* Command code */
763 uint16_t command;
764
765 /* Command version */
766 uint8_t command_version;
767
768 /* Unused byte in current protocol version; set to 0 */
769 uint8_t reserved;
770
771 /* Length of data which follows this header */
772 uint16_t data_len;
773 };
774
775 #define EC_HOST_RESPONSE_VERSION 3
776
777 /* Version 3 response from EC */
778 struct __ec_align4 ec_host_response {
779 /* Structure version (=3) */
780 uint8_t struct_version;
781
782 /*
783 * Checksum of response and data; sum of all bytes including checksum
784 * should total to 0.
785 */
786 uint8_t checksum;
787
788 /* Result code (EC_RES_*) */
789 uint16_t result;
790
791 /* Length of data which follows this header */
792 uint16_t data_len;
793
794 /* Unused bytes in current protocol version; set to 0 */
795 uint16_t reserved;
796 };
797
798 /*****************************************************************************/
799 /*
800 * Notes on commands:
801 *
802 * Each command is an 16-bit command value. Commands which take params or
803 * return response data specify structures for that data. If no structure is
804 * specified, the command does not input or output data, respectively.
805 * Parameter/response length is implicit in the structs. Some underlying
806 * communication protocols (I2C, SPI) may add length or checksum headers, but
807 * those are implementation-dependent and not defined here.
808 *
809 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
810 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
811 */
812
813 /*****************************************************************************/
814 /* General / test commands */
815
816 /*
817 * Get protocol version, used to deal with non-backward compatible protocol
818 * changes.
819 */
820 #define EC_CMD_PROTO_VERSION 0x0000
821
822 struct __ec_align4 ec_response_proto_version {
823 uint32_t version;
824 };
825
826 /*
827 * Hello. This is a simple command to test the EC is responsive to
828 * commands.
829 */
830 #define EC_CMD_HELLO 0x0001
831
832 struct __ec_align4 ec_params_hello {
833 uint32_t in_data; /* Pass anything here */
834 };
835
836 struct __ec_align4 ec_response_hello {
837 uint32_t out_data; /* Output will be in_data + 0x01020304 */
838 };
839
840 /* Get version number */
841 #define EC_CMD_GET_VERSION 0x0002
842
843 enum ec_current_image {
844 EC_IMAGE_UNKNOWN = 0,
845 EC_IMAGE_RO,
846 EC_IMAGE_RW
847 };
848
849 struct __ec_align4 ec_response_get_version {
850 /* Null-terminated version strings for RO, RW */
851 char version_string_ro[32];
852 char version_string_rw[32];
853 char reserved[32]; /* Was previously RW-B string */
854 uint32_t current_image; /* One of ec_current_image */
855 };
856
857 /* Read test */
858 #define EC_CMD_READ_TEST 0x0003
859
860 struct __ec_align4 ec_params_read_test {
861 uint32_t offset; /* Starting value for read buffer */
862 uint32_t size; /* Size to read in bytes */
863 };
864
865 struct __ec_align4 ec_response_read_test {
866 uint32_t data[32];
867 };
868
869 /*
870 * Get build information
871 *
872 * Response is null-terminated string.
873 */
874 #define EC_CMD_GET_BUILD_INFO 0x0004
875
876 /* Get chip info */
877 #define EC_CMD_GET_CHIP_INFO 0x0005
878
879 struct __ec_align4 ec_response_get_chip_info {
880 /* Null-terminated strings */
881 char vendor[32];
882 char name[32];
883 char revision[32]; /* Mask version */
884 };
885
886 /* Get board HW version */
887 #define EC_CMD_GET_BOARD_VERSION 0x0006
888
889 struct __ec_align2 ec_response_board_version {
890 uint16_t board_version; /* A monotonously incrementing number. */
891 };
892
893 /*
894 * Read memory-mapped data.
895 *
896 * This is an alternate interface to memory-mapped data for bus protocols
897 * which don't support direct-mapped memory - I2C, SPI, etc.
898 *
899 * Response is params.size bytes of data.
900 */
901 #define EC_CMD_READ_MEMMAP 0x0007
902
903 struct __ec_align1 ec_params_read_memmap {
904 uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
905 uint8_t size; /* Size to read in bytes */
906 };
907
908 /* Read versions supported for a command */
909 #define EC_CMD_GET_CMD_VERSIONS 0x0008
910
911 struct __ec_align1 ec_params_get_cmd_versions {
912 uint8_t cmd; /* Command to check */
913 };
914
915 struct __ec_align2 ec_params_get_cmd_versions_v1 {
916 uint16_t cmd; /* Command to check */
917 };
918
919 struct __ec_align4 ec_response_get_cmd_versions {
920 /*
921 * Mask of supported versions; use EC_VER_MASK() to compare with a
922 * desired version.
923 */
924 uint32_t version_mask;
925 };
926
927 /*
928 * Check EC communications status (busy). This is needed on i2c/spi but not
929 * on lpc since it has its own out-of-band busy indicator.
930 *
931 * lpc must read the status from the command register. Attempting this on
932 * lpc will overwrite the args/parameter space and corrupt its data.
933 */
934 #define EC_CMD_GET_COMMS_STATUS 0x0009
935
936 /* Avoid using ec_status which is for return values */
937 enum ec_comms_status {
938 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
939 };
940
941 struct __ec_align4 ec_response_get_comms_status {
942 uint32_t flags; /* Mask of enum ec_comms_status */
943 };
944
945 /* Fake a variety of responses, purely for testing purposes. */
946 #define EC_CMD_TEST_PROTOCOL 0x000A
947
948 /* Tell the EC what to send back to us. */
949 struct __ec_align4 ec_params_test_protocol {
950 uint32_t ec_result;
951 uint32_t ret_len;
952 uint8_t buf[32];
953 };
954
955 /* Here it comes... */
956 struct __ec_align4 ec_response_test_protocol {
957 uint8_t buf[32];
958 };
959
960 /* Get protocol information */
961 #define EC_CMD_GET_PROTOCOL_INFO 0x000B
962
963 /* Flags for ec_response_get_protocol_info.flags */
964 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
965 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
966
967 struct __ec_align4 ec_response_get_protocol_info {
968 /* Fields which exist if at least protocol version 3 supported */
969
970 /* Bitmask of protocol versions supported (1 << n means version n)*/
971 uint32_t protocol_versions;
972
973 /* Maximum request packet size, in bytes */
974 uint16_t max_request_packet_size;
975
976 /* Maximum response packet size, in bytes */
977 uint16_t max_response_packet_size;
978
979 /* Flags; see EC_PROTOCOL_INFO_* */
980 uint32_t flags;
981 };
982
983
984 /*****************************************************************************/
985 /* Get/Set miscellaneous values */
986
987 /* The upper byte of .flags tells what to do (nothing means "get") */
988 #define EC_GSV_SET 0x80000000
989
990 /* The lower three bytes of .flags identifies the parameter, if that has
991 meaning for an individual command. */
992 #define EC_GSV_PARAM_MASK 0x00ffffff
993
994 struct __ec_align4 ec_params_get_set_value {
995 uint32_t flags;
996 uint32_t value;
997 };
998
999 struct __ec_align4 ec_response_get_set_value {
1000 uint32_t flags;
1001 uint32_t value;
1002 };
1003
1004 /* More than one command can use these structs to get/set parameters. */
1005 #define EC_CMD_GSV_PAUSE_IN_S5 0x000C
1006
1007 /*****************************************************************************/
1008 /* List the features supported by the firmware */
1009 #define EC_CMD_GET_FEATURES 0x000D
1010
1011 /* Supported features */
1012 enum ec_feature_code {
1013 /*
1014 * This image contains a limited set of features. Another image
1015 * in RW partition may support more features.
1016 */
1017 EC_FEATURE_LIMITED = 0,
1018 /*
1019 * Commands for probing/reading/writing/erasing the flash in the
1020 * EC are present.
1021 */
1022 EC_FEATURE_FLASH = 1,
1023 /*
1024 * Can control the fan speed directly.
1025 */
1026 EC_FEATURE_PWM_FAN = 2,
1027 /*
1028 * Can control the intensity of the keyboard backlight.
1029 */
1030 EC_FEATURE_PWM_KEYB = 3,
1031 /*
1032 * Support Google lightbar, introduced on Pixel.
1033 */
1034 EC_FEATURE_LIGHTBAR = 4,
1035 /* Control of LEDs */
1036 EC_FEATURE_LED = 5,
1037 /* Exposes an interface to control gyro and sensors.
1038 * The host goes through the EC to access these sensors.
1039 * In addition, the EC may provide composite sensors, like lid angle.
1040 */
1041 EC_FEATURE_MOTION_SENSE = 6,
1042 /* The keyboard is controlled by the EC */
1043 EC_FEATURE_KEYB = 7,
1044 /* The AP can use part of the EC flash as persistent storage. */
1045 EC_FEATURE_PSTORE = 8,
1046 /* The EC monitors BIOS port 80h, and can return POST codes. */
1047 EC_FEATURE_PORT80 = 9,
1048 /*
1049 * Thermal management: include TMP specific commands.
1050 * Higher level than direct fan control.
1051 */
1052 EC_FEATURE_THERMAL = 10,
1053 /* Can switch the screen backlight on/off */
1054 EC_FEATURE_BKLIGHT_SWITCH = 11,
1055 /* Can switch the wifi module on/off */
1056 EC_FEATURE_WIFI_SWITCH = 12,
1057 /* Monitor host events, through for example SMI or SCI */
1058 EC_FEATURE_HOST_EVENTS = 13,
1059 /* The EC exposes GPIO commands to control/monitor connected devices. */
1060 EC_FEATURE_GPIO = 14,
1061 /* The EC can send i2c messages to downstream devices. */
1062 EC_FEATURE_I2C = 15,
1063 /* Command to control charger are included */
1064 EC_FEATURE_CHARGER = 16,
1065 /* Simple battery support. */
1066 EC_FEATURE_BATTERY = 17,
1067 /*
1068 * Support Smart battery protocol
1069 * (Common Smart Battery System Interface Specification)
1070 */
1071 EC_FEATURE_SMART_BATTERY = 18,
1072 /* EC can detect when the host hangs. */
1073 EC_FEATURE_HANG_DETECT = 19,
1074 /* Report power information, for pit only */
1075 EC_FEATURE_PMU = 20,
1076 /* Another Cros EC device is present downstream of this one */
1077 EC_FEATURE_SUB_MCU = 21,
1078 /* Support USB Power delivery (PD) commands */
1079 EC_FEATURE_USB_PD = 22,
1080 /* Control USB multiplexer, for audio through USB port for instance. */
1081 EC_FEATURE_USB_MUX = 23,
1082 /* Motion Sensor code has an internal software FIFO */
1083 EC_FEATURE_MOTION_SENSE_FIFO = 24,
1084 /* Support temporary secure vstore */
1085 EC_FEATURE_VSTORE = 25,
1086 /* EC decides on USB-C SS mux state, muxes configured by host */
1087 EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1088 /* EC has RTC feature that can be controlled by host commands */
1089 EC_FEATURE_RTC = 27,
1090 /* The MCU exposes a Fingerprint sensor */
1091 EC_FEATURE_FINGERPRINT = 28,
1092 /* The MCU exposes a Touchpad */
1093 EC_FEATURE_TOUCHPAD = 29,
1094 /* The MCU has RWSIG task enabled */
1095 EC_FEATURE_RWSIG = 30,
1096 /* EC has device events support */
1097 EC_FEATURE_DEVICE_EVENT = 31,
1098 /* EC supports the unified wake masks for LPC/eSPI systems */
1099 EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1100 };
1101
1102 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
1103 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
1104 struct __ec_align4 ec_response_get_features {
1105 uint32_t flags[2];
1106 };
1107
1108 /*****************************************************************************/
1109 /* Get the board's SKU ID from EC */
1110 #define EC_CMD_GET_SKU_ID 0x000E
1111
1112 /* Set SKU ID from AP */
1113 #define EC_CMD_SET_SKU_ID 0x000F
1114
1115 struct __ec_align4 ec_sku_id_info {
1116 uint32_t sku_id;
1117 };
1118
1119 /*****************************************************************************/
1120 /* Flash commands */
1121
1122 /* Get flash info */
1123 #define EC_CMD_FLASH_INFO 0x0010
1124 #define EC_VER_FLASH_INFO 2
1125
1126 /* Version 0 returns these fields */
1127 struct __ec_align4 ec_response_flash_info {
1128 /* Usable flash size, in bytes */
1129 uint32_t flash_size;
1130 /*
1131 * Write block size. Write offset and size must be a multiple
1132 * of this.
1133 */
1134 uint32_t write_block_size;
1135 /*
1136 * Erase block size. Erase offset and size must be a multiple
1137 * of this.
1138 */
1139 uint32_t erase_block_size;
1140 /*
1141 * Protection block size. Protection offset and size must be a
1142 * multiple of this.
1143 */
1144 uint32_t protect_block_size;
1145 };
1146
1147 /* Flags for version 1+ flash info command */
1148 /* EC flash erases bits to 0 instead of 1 */
1149 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
1150
1151 /* Flash must be selected for read/write/erase operations to succeed. This may
1152 * be necessary on a chip where write/erase can be corrupted by other board
1153 * activity, or where the chip needs to enable some sort of programming voltage,
1154 * or where the read/write/erase operations require cleanly suspending other
1155 * chip functionality. */
1156 #define EC_FLASH_INFO_SELECT_REQUIRED (1 << 1)
1157
1158 /*
1159 * Version 1 returns the same initial fields as version 0, with additional
1160 * fields following.
1161 *
1162 * gcc anonymous structs don't seem to get along with the __packed directive;
1163 * if they did we'd define the version 0 structure as a sub-structure of this
1164 * one.
1165 *
1166 * Version 2 supports flash banks of different sizes:
1167 * The caller specified the number of banks it has preallocated
1168 * (num_banks_desc)
1169 * The EC returns the number of banks describing the flash memory.
1170 * It adds banks descriptions up to num_banks_desc.
1171 */
1172 struct __ec_align4 ec_response_flash_info_1 {
1173 /* Version 0 fields; see above for description */
1174 uint32_t flash_size;
1175 uint32_t write_block_size;
1176 uint32_t erase_block_size;
1177 uint32_t protect_block_size;
1178
1179 /* Version 1 adds these fields: */
1180 /*
1181 * Ideal write size in bytes. Writes will be fastest if size is
1182 * exactly this and offset is a multiple of this. For example, an EC
1183 * may have a write buffer which can do half-page operations if data is
1184 * aligned, and a slower word-at-a-time write mode.
1185 */
1186 uint32_t write_ideal_size;
1187
1188 /* Flags; see EC_FLASH_INFO_* */
1189 uint32_t flags;
1190 };
1191
1192 struct __ec_align4 ec_params_flash_info_2 {
1193 /* Number of banks to describe */
1194 uint16_t num_banks_desc;
1195 /* Reserved; set 0; ignore on read */
1196 uint8_t reserved[2];
1197 };
1198
1199 struct ec_flash_bank {
1200 /* Number of sector is in this bank. */
1201 uint16_t count;
1202 /* Size in power of 2 of each sector (8 --> 256 bytes) */
1203 uint8_t size_exp;
1204 /* Minimal write size for the sectors in this bank */
1205 uint8_t write_size_exp;
1206 /* Erase size for the sectors in this bank */
1207 uint8_t erase_size_exp;
1208 /* Size for write protection, usually identical to erase size. */
1209 uint8_t protect_size_exp;
1210 /* Reserved; set 0; ignore on read */
1211 uint8_t reserved[2];
1212 };
1213
1214 struct __ec_align4 ec_response_flash_info_2 {
1215 /* Total flash in the EC. */
1216 uint32_t flash_size;
1217 /* Flags; see EC_FLASH_INFO_* */
1218 uint32_t flags;
1219 /* Maximum size to use to send data to write to the EC. */
1220 uint32_t write_ideal_size;
1221 /* Number of banks present in the EC. */
1222 uint16_t num_banks_total;
1223 /* Number of banks described in banks array. */
1224 uint16_t num_banks_desc;
1225 struct ec_flash_bank banks[0];
1226 };
1227
1228 /*
1229 * Read flash
1230 *
1231 * Response is params.size bytes of data.
1232 */
1233 #define EC_CMD_FLASH_READ 0x0011
1234
1235 struct __ec_align4 ec_params_flash_read {
1236 uint32_t offset; /* Byte offset to read */
1237 uint32_t size; /* Size to read in bytes */
1238 };
1239
1240 /* Write flash */
1241 #define EC_CMD_FLASH_WRITE 0x0012
1242 #define EC_VER_FLASH_WRITE 1
1243
1244 /* Version 0 of the flash command supported only 64 bytes of data */
1245 #define EC_FLASH_WRITE_VER0_SIZE 64
1246
1247 struct __ec_align4 ec_params_flash_write {
1248 uint32_t offset; /* Byte offset to write */
1249 uint32_t size; /* Size to write in bytes */
1250 /* Followed by data to write */
1251 };
1252
1253 /* Erase flash */
1254 #define EC_CMD_FLASH_ERASE 0x0013
1255
1256 /* v0 */
1257 struct __ec_align4 ec_params_flash_erase {
1258 uint32_t offset; /* Byte offset to erase */
1259 uint32_t size; /* Size to erase in bytes */
1260 };
1261
1262
1263 #define EC_VER_FLASH_WRITE 1
1264 /* v1 add async erase:
1265 * subcommands can returns:
1266 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1267 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1268 * EC_RES_ERROR : other errors.
1269 * EC_RES_BUSY : an existing erase operation is in progress.
1270 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1271 *
1272 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1273 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1274 * the proper result.
1275 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1276 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1277 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1278 * permitted while erasing. (For instance, STM32F4).
1279 */
1280 enum ec_flash_erase_cmd {
1281 FLASH_ERASE_SECTOR, /* Erase and wait for result */
1282 FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */
1283 FLASH_ERASE_GET_RESULT, /* Ask for last erase result */
1284 };
1285
1286 struct __ec_align4 ec_params_flash_erase_v1 {
1287 /* One of ec_flash_erase_cmd. */
1288 uint8_t cmd;
1289 /* Pad byte; currently always contains 0 */
1290 uint8_t reserved;
1291 /* No flags defined yet; set to 0 */
1292 uint16_t flag;
1293 /* Same as v0 parameters. */
1294 struct ec_params_flash_erase params;
1295 };
1296
1297 /*
1298 * Get/set flash protection.
1299 *
1300 * If mask!=0, sets/clear the requested bits of flags. Depending on the
1301 * firmware write protect GPIO, not all flags will take effect immediately;
1302 * some flags require a subsequent hard reset to take effect. Check the
1303 * returned flags bits to see what actually happened.
1304 *
1305 * If mask=0, simply returns the current flags state.
1306 */
1307 #define EC_CMD_FLASH_PROTECT 0x0015
1308 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
1309
1310 /* Flags for flash protection */
1311 /* RO flash code protected when the EC boots */
1312 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
1313 /*
1314 * RO flash code protected now. If this bit is set, at-boot status cannot
1315 * be changed.
1316 */
1317 #define EC_FLASH_PROTECT_RO_NOW (1 << 1)
1318 /* Entire flash code protected now, until reboot. */
1319 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
1320 /* Flash write protect GPIO is asserted now */
1321 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
1322 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1323 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
1324 /*
1325 * Error - flash protection is in inconsistent state. At least one bank of
1326 * flash which should be protected is not protected. Usually fixed by
1327 * re-requesting the desired flags, or by a hard reset if that fails.
1328 */
1329 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
1330 /* Entire flash code protected when the EC boots */
1331 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
1332 /* RW flash code protected when the EC boots */
1333 #define EC_FLASH_PROTECT_RW_AT_BOOT (1 << 7)
1334 /* RW flash code protected now. */
1335 #define EC_FLASH_PROTECT_RW_NOW (1 << 8)
1336 /* Rollback information flash region protected when the EC boots */
1337 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT (1 << 9)
1338 /* Rollback information flash region protected now */
1339 #define EC_FLASH_PROTECT_ROLLBACK_NOW (1 << 10)
1340
1341 struct __ec_align4 ec_params_flash_protect {
1342 uint32_t mask; /* Bits in flags to apply */
1343 uint32_t flags; /* New flags to apply */
1344 };
1345
1346 struct __ec_align4 ec_response_flash_protect {
1347 /* Current value of flash protect flags */
1348 uint32_t flags;
1349 /*
1350 * Flags which are valid on this platform. This allows the caller
1351 * to distinguish between flags which aren't set vs. flags which can't
1352 * be set on this platform.
1353 */
1354 uint32_t valid_flags;
1355 /* Flags which can be changed given the current protection state */
1356 uint32_t writable_flags;
1357 };
1358
1359 /*
1360 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1361 * write protect. These commands may be reused with version > 0.
1362 */
1363
1364 /* Get the region offset/size */
1365 #define EC_CMD_FLASH_REGION_INFO 0x0016
1366 #define EC_VER_FLASH_REGION_INFO 1
1367
1368 enum ec_flash_region {
1369 /* Region which holds read-only EC image */
1370 EC_FLASH_REGION_RO = 0,
1371 /* Region which holds active rewritable EC image */
1372 EC_FLASH_REGION_ACTIVE,
1373 /*
1374 * Region which should be write-protected in the factory (a superset of
1375 * EC_FLASH_REGION_RO)
1376 */
1377 EC_FLASH_REGION_WP_RO,
1378 /* Region which holds updatable image */
1379 EC_FLASH_REGION_UPDATE,
1380 /* Number of regions */
1381 EC_FLASH_REGION_COUNT,
1382 };
1383
1384 struct __ec_align4 ec_params_flash_region_info {
1385 uint32_t region; /* enum ec_flash_region */
1386 };
1387
1388 struct __ec_align4 ec_response_flash_region_info {
1389 uint32_t offset;
1390 uint32_t size;
1391 };
1392
1393 /* Read/write VbNvContext */
1394 #define EC_CMD_VBNV_CONTEXT 0x0017
1395 #define EC_VER_VBNV_CONTEXT 1
1396 #define EC_VBNV_BLOCK_SIZE 16
1397 #define EC_VBNV_BLOCK_SIZE_V2 64
1398
1399 enum ec_vbnvcontext_op {
1400 EC_VBNV_CONTEXT_OP_READ,
1401 EC_VBNV_CONTEXT_OP_WRITE,
1402 };
1403
1404 struct __ec_align4 ec_params_vbnvcontext {
1405 uint32_t op;
1406 uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1407 };
1408
1409 struct __ec_align4 ec_response_vbnvcontext {
1410 uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1411 };
1412
1413
1414 /* Get SPI flash information */
1415 #define EC_CMD_FLASH_SPI_INFO 0x0018
1416
1417 struct __ec_align1 ec_response_flash_spi_info {
1418 /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1419 uint8_t jedec[3];
1420
1421 /* Pad byte; currently always contains 0 */
1422 uint8_t reserved0;
1423
1424 /* Manufacturer / device ID from command 0x90 */
1425 uint8_t mfr_dev_id[2];
1426
1427 /* Status registers from command 0x05 and 0x35 */
1428 uint8_t sr1, sr2;
1429 };
1430
1431
1432 /* Select flash during flash operations */
1433 #define EC_CMD_FLASH_SELECT 0x0019
1434
1435 struct __ec_align4 ec_params_flash_select {
1436 /* 1 to select flash, 0 to deselect flash */
1437 uint8_t select;
1438 };
1439
1440 /*****************************************************************************/
1441 /* PWM commands */
1442
1443 /* Get fan target RPM */
1444 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1445
1446 struct __ec_align4 ec_response_pwm_get_fan_rpm {
1447 uint32_t rpm;
1448 };
1449
1450 /* Set target fan RPM */
1451 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1452
1453 /* Version 0 of input params */
1454 struct __ec_align4 ec_params_pwm_set_fan_target_rpm_v0 {
1455 uint32_t rpm;
1456 };
1457
1458 /* Version 1 of input params */
1459 struct __ec_align_size1 ec_params_pwm_set_fan_target_rpm_v1 {
1460 uint32_t rpm;
1461 uint8_t fan_idx;
1462 };
1463
1464 /* Get keyboard backlight */
1465 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1466 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1467
1468 struct __ec_align1 ec_response_pwm_get_keyboard_backlight {
1469 uint8_t percent;
1470 uint8_t enabled;
1471 };
1472
1473 /* Set keyboard backlight */
1474 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1475 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1476
1477 struct __ec_align1 ec_params_pwm_set_keyboard_backlight {
1478 uint8_t percent;
1479 };
1480
1481 /* Set target fan PWM duty cycle */
1482 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1483
1484 /* Version 0 of input params */
1485 struct __ec_align4 ec_params_pwm_set_fan_duty_v0 {
1486 uint32_t percent;
1487 };
1488
1489 /* Version 1 of input params */
1490 struct __ec_align_size1 ec_params_pwm_set_fan_duty_v1 {
1491 uint32_t percent;
1492 uint8_t fan_idx;
1493 };
1494
1495 #define EC_CMD_PWM_SET_DUTY 0x0025
1496 /* 16 bit duty cycle, 0xffff = 100% */
1497 #define EC_PWM_MAX_DUTY 0xffff
1498
1499 enum ec_pwm_type {
1500 /* All types, indexed by board-specific enum pwm_channel */
1501 EC_PWM_TYPE_GENERIC = 0,
1502 /* Keyboard backlight */
1503 EC_PWM_TYPE_KB_LIGHT,
1504 /* Display backlight */
1505 EC_PWM_TYPE_DISPLAY_LIGHT,
1506 EC_PWM_TYPE_COUNT,
1507 };
1508
1509 struct __ec_align4 ec_params_pwm_set_duty {
1510 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1511 uint8_t pwm_type; /* ec_pwm_type */
1512 uint8_t index; /* Type-specific index, or 0 if unique */
1513 };
1514
1515 #define EC_CMD_PWM_GET_DUTY 0x0026
1516
1517 struct __ec_align1 ec_params_pwm_get_duty {
1518 uint8_t pwm_type; /* ec_pwm_type */
1519 uint8_t index; /* Type-specific index, or 0 if unique */
1520 };
1521
1522 struct __ec_align2 ec_response_pwm_get_duty {
1523 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1524 };
1525
1526 /*****************************************************************************/
1527 /*
1528 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1529 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1530 * into a subcommand. We'll make separate structs for subcommands with
1531 * different input args, so that we know how much to expect.
1532 */
1533 #define EC_CMD_LIGHTBAR_CMD 0x0028
1534
1535 struct __ec_todo_unpacked rgb_s {
1536 uint8_t r, g, b;
1537 };
1538
1539 #define LB_BATTERY_LEVELS 4
1540 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1541 * host command, but the alignment is the same regardless. Keep it that way.
1542 */
1543 struct __ec_todo_packed lightbar_params_v0 {
1544 /* Timing */
1545 int32_t google_ramp_up;
1546 int32_t google_ramp_down;
1547 int32_t s3s0_ramp_up;
1548 int32_t s0_tick_delay[2]; /* AC=0/1 */
1549 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1550 int32_t s0s3_ramp_down;
1551 int32_t s3_sleep_for;
1552 int32_t s3_ramp_up;
1553 int32_t s3_ramp_down;
1554
1555 /* Oscillation */
1556 uint8_t new_s0;
1557 uint8_t osc_min[2]; /* AC=0/1 */
1558 uint8_t osc_max[2]; /* AC=0/1 */
1559 uint8_t w_ofs[2]; /* AC=0/1 */
1560
1561 /* Brightness limits based on the backlight and AC. */
1562 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1563 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1564 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1565
1566 /* Battery level thresholds */
1567 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1568
1569 /* Map [AC][battery_level] to color index */
1570 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1571 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1572
1573 /* Color palette */
1574 struct rgb_s color[8]; /* 0-3 are Google colors */
1575 };
1576
1577 struct __ec_todo_packed lightbar_params_v1 {
1578 /* Timing */
1579 int32_t google_ramp_up;
1580 int32_t google_ramp_down;
1581 int32_t s3s0_ramp_up;
1582 int32_t s0_tick_delay[2]; /* AC=0/1 */
1583 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1584 int32_t s0s3_ramp_down;
1585 int32_t s3_sleep_for;
1586 int32_t s3_ramp_up;
1587 int32_t s3_ramp_down;
1588 int32_t s5_ramp_up;
1589 int32_t s5_ramp_down;
1590 int32_t tap_tick_delay;
1591 int32_t tap_gate_delay;
1592 int32_t tap_display_time;
1593
1594 /* Tap-for-battery params */
1595 uint8_t tap_pct_red;
1596 uint8_t tap_pct_green;
1597 uint8_t tap_seg_min_on;
1598 uint8_t tap_seg_max_on;
1599 uint8_t tap_seg_osc;
1600 uint8_t tap_idx[3];
1601
1602 /* Oscillation */
1603 uint8_t osc_min[2]; /* AC=0/1 */
1604 uint8_t osc_max[2]; /* AC=0/1 */
1605 uint8_t w_ofs[2]; /* AC=0/1 */
1606
1607 /* Brightness limits based on the backlight and AC. */
1608 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1609 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1610 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1611
1612 /* Battery level thresholds */
1613 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1614
1615 /* Map [AC][battery_level] to color index */
1616 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1617 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1618
1619 /* s5: single color pulse on inhibited power-up */
1620 uint8_t s5_idx;
1621
1622 /* Color palette */
1623 struct rgb_s color[8]; /* 0-3 are Google colors */
1624 };
1625
1626 /* Lightbar command params v2
1627 * crbug.com/467716
1628 *
1629 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1630 * logical groups to make it more manageable ( < 120 bytes).
1631 *
1632 * NOTE: Each of these groups must be less than 120 bytes.
1633 */
1634
1635 struct __ec_todo_packed lightbar_params_v2_timing {
1636 /* Timing */
1637 int32_t google_ramp_up;
1638 int32_t google_ramp_down;
1639 int32_t s3s0_ramp_up;
1640 int32_t s0_tick_delay[2]; /* AC=0/1 */
1641 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1642 int32_t s0s3_ramp_down;
1643 int32_t s3_sleep_for;
1644 int32_t s3_ramp_up;
1645 int32_t s3_ramp_down;
1646 int32_t s5_ramp_up;
1647 int32_t s5_ramp_down;
1648 int32_t tap_tick_delay;
1649 int32_t tap_gate_delay;
1650 int32_t tap_display_time;
1651 };
1652
1653 struct __ec_todo_packed lightbar_params_v2_tap {
1654 /* Tap-for-battery params */
1655 uint8_t tap_pct_red;
1656 uint8_t tap_pct_green;
1657 uint8_t tap_seg_min_on;
1658 uint8_t tap_seg_max_on;
1659 uint8_t tap_seg_osc;
1660 uint8_t tap_idx[3];
1661 };
1662
1663 struct __ec_todo_packed lightbar_params_v2_oscillation {
1664 /* Oscillation */
1665 uint8_t osc_min[2]; /* AC=0/1 */
1666 uint8_t osc_max[2]; /* AC=0/1 */
1667 uint8_t w_ofs[2]; /* AC=0/1 */
1668 };
1669
1670 struct __ec_todo_packed lightbar_params_v2_brightness {
1671 /* Brightness limits based on the backlight and AC. */
1672 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1673 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1674 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1675 };
1676
1677 struct __ec_todo_packed lightbar_params_v2_thresholds {
1678 /* Battery level thresholds */
1679 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1680 };
1681
1682 struct __ec_todo_packed lightbar_params_v2_colors {
1683 /* Map [AC][battery_level] to color index */
1684 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1685 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1686
1687 /* s5: single color pulse on inhibited power-up */
1688 uint8_t s5_idx;
1689
1690 /* Color palette */
1691 struct rgb_s color[8]; /* 0-3 are Google colors */
1692 };
1693
1694 /* Lightbyte program. */
1695 #define EC_LB_PROG_LEN 192
1696 struct __ec_todo_unpacked lightbar_program {
1697 uint8_t size;
1698 uint8_t data[EC_LB_PROG_LEN];
1699 };
1700
1701 struct __ec_todo_packed ec_params_lightbar {
1702 uint8_t cmd; /* Command (see enum lightbar_command) */
1703 union {
1704 struct __ec_todo_unpacked {
1705 /* no args */
1706 } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1707 version, get_brightness, get_demo, suspend, resume,
1708 get_params_v2_timing, get_params_v2_tap,
1709 get_params_v2_osc, get_params_v2_bright,
1710 get_params_v2_thlds, get_params_v2_colors;
1711
1712 struct __ec_todo_unpacked {
1713 uint8_t num;
1714 } set_brightness, seq, demo;
1715
1716 struct __ec_todo_unpacked {
1717 uint8_t ctrl, reg, value;
1718 } reg;
1719
1720 struct __ec_todo_unpacked {
1721 uint8_t led, red, green, blue;
1722 } set_rgb;
1723
1724 struct __ec_todo_unpacked {
1725 uint8_t led;
1726 } get_rgb;
1727
1728 struct __ec_todo_unpacked {
1729 uint8_t enable;
1730 } manual_suspend_ctrl;
1731
1732 struct lightbar_params_v0 set_params_v0;
1733 struct lightbar_params_v1 set_params_v1;
1734
1735 struct lightbar_params_v2_timing set_v2par_timing;
1736 struct lightbar_params_v2_tap set_v2par_tap;
1737 struct lightbar_params_v2_oscillation set_v2par_osc;
1738 struct lightbar_params_v2_brightness set_v2par_bright;
1739 struct lightbar_params_v2_thresholds set_v2par_thlds;
1740 struct lightbar_params_v2_colors set_v2par_colors;
1741
1742 struct lightbar_program set_program;
1743 };
1744 };
1745
1746 struct __ec_todo_packed ec_response_lightbar {
1747 union {
1748 struct __ec_todo_unpacked {
1749 struct __ec_todo_unpacked {
1750 uint8_t reg;
1751 uint8_t ic0;
1752 uint8_t ic1;
1753 } vals[23];
1754 } dump;
1755
1756 struct __ec_todo_unpacked {
1757 uint8_t num;
1758 } get_seq, get_brightness, get_demo;
1759
1760 struct lightbar_params_v0 get_params_v0;
1761 struct lightbar_params_v1 get_params_v1;
1762
1763
1764 struct lightbar_params_v2_timing get_params_v2_timing;
1765 struct lightbar_params_v2_tap get_params_v2_tap;
1766 struct lightbar_params_v2_oscillation get_params_v2_osc;
1767 struct lightbar_params_v2_brightness get_params_v2_bright;
1768 struct lightbar_params_v2_thresholds get_params_v2_thlds;
1769 struct lightbar_params_v2_colors get_params_v2_colors;
1770
1771 struct __ec_todo_unpacked {
1772 uint32_t num;
1773 uint32_t flags;
1774 } version;
1775
1776 struct __ec_todo_unpacked {
1777 uint8_t red, green, blue;
1778 } get_rgb;
1779
1780 struct __ec_todo_unpacked {
1781 /* no return params */
1782 } off, on, init, set_brightness, seq, reg, set_rgb,
1783 demo, set_params_v0, set_params_v1,
1784 set_program, manual_suspend_ctrl, suspend, resume,
1785 set_v2par_timing, set_v2par_tap,
1786 set_v2par_osc, set_v2par_bright, set_v2par_thlds,
1787 set_v2par_colors;
1788 };
1789 };
1790
1791 /* Lightbar commands */
1792 enum lightbar_command {
1793 LIGHTBAR_CMD_DUMP = 0,
1794 LIGHTBAR_CMD_OFF = 1,
1795 LIGHTBAR_CMD_ON = 2,
1796 LIGHTBAR_CMD_INIT = 3,
1797 LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1798 LIGHTBAR_CMD_SEQ = 5,
1799 LIGHTBAR_CMD_REG = 6,
1800 LIGHTBAR_CMD_SET_RGB = 7,
1801 LIGHTBAR_CMD_GET_SEQ = 8,
1802 LIGHTBAR_CMD_DEMO = 9,
1803 LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1804 LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1805 LIGHTBAR_CMD_VERSION = 12,
1806 LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1807 LIGHTBAR_CMD_GET_RGB = 14,
1808 LIGHTBAR_CMD_GET_DEMO = 15,
1809 LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1810 LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1811 LIGHTBAR_CMD_SET_PROGRAM = 18,
1812 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1813 LIGHTBAR_CMD_SUSPEND = 20,
1814 LIGHTBAR_CMD_RESUME = 21,
1815 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
1816 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
1817 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
1818 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
1819 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
1820 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
1821 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
1822 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
1823 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
1824 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
1825 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
1826 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
1827 LIGHTBAR_NUM_CMDS
1828 };
1829
1830 /*****************************************************************************/
1831 /* LED control commands */
1832
1833 #define EC_CMD_LED_CONTROL 0x0029
1834
1835 enum ec_led_id {
1836 /* LED to indicate battery state of charge */
1837 EC_LED_ID_BATTERY_LED = 0,
1838 /*
1839 * LED to indicate system power state (on or in suspend).
1840 * May be on power button or on C-panel.
1841 */
1842 EC_LED_ID_POWER_LED,
1843 /* LED on power adapter or its plug */
1844 EC_LED_ID_ADAPTER_LED,
1845 /* LED to indicate left side */
1846 EC_LED_ID_LEFT_LED,
1847 /* LED to indicate right side */
1848 EC_LED_ID_RIGHT_LED,
1849 /* LED to indicate recovery mode with HW_REINIT */
1850 EC_LED_ID_RECOVERY_HW_REINIT_LED,
1851 /* LED to indicate sysrq debug mode. */
1852 EC_LED_ID_SYSRQ_DEBUG_LED,
1853
1854 EC_LED_ID_COUNT
1855 };
1856
1857 /* LED control flags */
1858 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1859 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
1860
1861 enum ec_led_colors {
1862 EC_LED_COLOR_RED = 0,
1863 EC_LED_COLOR_GREEN,
1864 EC_LED_COLOR_BLUE,
1865 EC_LED_COLOR_YELLOW,
1866 EC_LED_COLOR_WHITE,
1867 EC_LED_COLOR_AMBER,
1868
1869 EC_LED_COLOR_COUNT
1870 };
1871
1872 struct __ec_align1 ec_params_led_control {
1873 uint8_t led_id; /* Which LED to control */
1874 uint8_t flags; /* Control flags */
1875
1876 uint8_t brightness[EC_LED_COLOR_COUNT];
1877 };
1878
1879 struct __ec_align1 ec_response_led_control {
1880 /*
1881 * Available brightness value range.
1882 *
1883 * Range 0 means color channel not present.
1884 * Range 1 means on/off control.
1885 * Other values means the LED is control by PWM.
1886 */
1887 uint8_t brightness_range[EC_LED_COLOR_COUNT];
1888 };
1889
1890 /*****************************************************************************/
1891 /* Verified boot commands */
1892
1893 /*
1894 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1895 * reused for other purposes with version > 0.
1896 */
1897
1898 /* Verified boot hash command */
1899 #define EC_CMD_VBOOT_HASH 0x002A
1900
1901 struct __ec_align4 ec_params_vboot_hash {
1902 uint8_t cmd; /* enum ec_vboot_hash_cmd */
1903 uint8_t hash_type; /* enum ec_vboot_hash_type */
1904 uint8_t nonce_size; /* Nonce size; may be 0 */
1905 uint8_t reserved0; /* Reserved; set 0 */
1906 uint32_t offset; /* Offset in flash to hash */
1907 uint32_t size; /* Number of bytes to hash */
1908 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
1909 };
1910
1911 struct __ec_align4 ec_response_vboot_hash {
1912 uint8_t status; /* enum ec_vboot_hash_status */
1913 uint8_t hash_type; /* enum ec_vboot_hash_type */
1914 uint8_t digest_size; /* Size of hash digest in bytes */
1915 uint8_t reserved0; /* Ignore; will be 0 */
1916 uint32_t offset; /* Offset in flash which was hashed */
1917 uint32_t size; /* Number of bytes hashed */
1918 uint8_t hash_digest[64]; /* Hash digest data */
1919 };
1920
1921 enum ec_vboot_hash_cmd {
1922 EC_VBOOT_HASH_GET = 0, /* Get current hash status */
1923 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
1924 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
1925 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
1926 };
1927
1928 enum ec_vboot_hash_type {
1929 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1930 };
1931
1932 enum ec_vboot_hash_status {
1933 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1934 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1935 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1936 };
1937
1938 /*
1939 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1940 * If one of these is specified, the EC will automatically update offset and
1941 * size to the correct values for the specified image (RO or RW).
1942 */
1943 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1944 #define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd
1945 #define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc
1946
1947 /*****************************************************************************/
1948 /*
1949 * Motion sense commands. We'll make separate structs for sub-commands with
1950 * different input args, so that we know how much to expect.
1951 */
1952 #define EC_CMD_MOTION_SENSE_CMD 0x002B
1953
1954 /* Motion sense commands */
1955 enum motionsense_command {
1956 /*
1957 * Dump command returns all motion sensor data including motion sense
1958 * module flags and individual sensor flags.
1959 */
1960 MOTIONSENSE_CMD_DUMP = 0,
1961
1962 /*
1963 * Info command returns data describing the details of a given sensor,
1964 * including enum motionsensor_type, enum motionsensor_location, and
1965 * enum motionsensor_chip.
1966 */
1967 MOTIONSENSE_CMD_INFO = 1,
1968
1969 /*
1970 * EC Rate command is a setter/getter command for the EC sampling rate
1971 * in milliseconds.
1972 * It is per sensor, the EC run sample task at the minimum of all
1973 * sensors EC_RATE.
1974 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
1975 * to collect all the sensor samples.
1976 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
1977 * to process of all motion sensors in milliseconds.
1978 */
1979 MOTIONSENSE_CMD_EC_RATE = 2,
1980
1981 /*
1982 * Sensor ODR command is a setter/getter command for the output data
1983 * rate of a specific motion sensor in millihertz.
1984 */
1985 MOTIONSENSE_CMD_SENSOR_ODR = 3,
1986
1987 /*
1988 * Sensor range command is a setter/getter command for the range of
1989 * a specified motion sensor in +/-G's or +/- deg/s.
1990 */
1991 MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1992
1993 /*
1994 * Setter/getter command for the keyboard wake angle. When the lid
1995 * angle is greater than this value, keyboard wake is disabled in S3,
1996 * and when the lid angle goes less than this value, keyboard wake is
1997 * enabled. Note, the lid angle measurement is an approximate,
1998 * un-calibrated value, hence the wake angle isn't exact.
1999 */
2000 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2001
2002 /*
2003 * Returns a single sensor data.
2004 */
2005 MOTIONSENSE_CMD_DATA = 6,
2006
2007 /*
2008 * Return sensor fifo info.
2009 */
2010 MOTIONSENSE_CMD_FIFO_INFO = 7,
2011
2012 /*
2013 * Insert a flush element in the fifo and return sensor fifo info.
2014 * The host can use that element to synchronize its operation.
2015 */
2016 MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2017
2018 /*
2019 * Return a portion of the fifo.
2020 */
2021 MOTIONSENSE_CMD_FIFO_READ = 9,
2022
2023 /*
2024 * Perform low level calibration.
2025 * On sensors that support it, ask to do offset calibration.
2026 */
2027 MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2028
2029 /*
2030 * Sensor Offset command is a setter/getter command for the offset
2031 * used for calibration.
2032 * The offsets can be calculated by the host, or via
2033 * PERFORM_CALIB command.
2034 */
2035 MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2036
2037 /*
2038 * List available activities for a MOTION sensor.
2039 * Indicates if they are enabled or disabled.
2040 */
2041 MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2042
2043 /*
2044 * Activity management
2045 * Enable/Disable activity recognition.
2046 */
2047 MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2048
2049 /*
2050 * Lid Angle
2051 */
2052 MOTIONSENSE_CMD_LID_ANGLE = 14,
2053
2054 /*
2055 * Allow the FIFO to trigger interrupt via MKBP events.
2056 * By default the FIFO does not send interrupt to process the FIFO
2057 * until the AP is ready or it is coming from a wakeup sensor.
2058 */
2059 MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2060
2061 /*
2062 * Spoof the readings of the sensors. The spoofed readings can be set
2063 * to arbitrary values, or will lock to the last read actual values.
2064 */
2065 MOTIONSENSE_CMD_SPOOF = 16,
2066
2067 /* Number of motionsense sub-commands. */
2068 MOTIONSENSE_NUM_CMDS
2069 };
2070
2071 /* List of motion sensor types. */
2072 enum motionsensor_type {
2073 MOTIONSENSE_TYPE_ACCEL = 0,
2074 MOTIONSENSE_TYPE_GYRO = 1,
2075 MOTIONSENSE_TYPE_MAG = 2,
2076 MOTIONSENSE_TYPE_PROX = 3,
2077 MOTIONSENSE_TYPE_LIGHT = 4,
2078 MOTIONSENSE_TYPE_ACTIVITY = 5,
2079 MOTIONSENSE_TYPE_BARO = 6,
2080 MOTIONSENSE_TYPE_MAX,
2081 };
2082
2083 /* List of motion sensor locations. */
2084 enum motionsensor_location {
2085 MOTIONSENSE_LOC_BASE = 0,
2086 MOTIONSENSE_LOC_LID = 1,
2087 MOTIONSENSE_LOC_MAX,
2088 };
2089
2090 /* List of motion sensor chips. */
2091 enum motionsensor_chip {
2092 MOTIONSENSE_CHIP_KXCJ9 = 0,
2093 MOTIONSENSE_CHIP_LSM6DS0 = 1,
2094 MOTIONSENSE_CHIP_BMI160 = 2,
2095 MOTIONSENSE_CHIP_SI1141 = 3,
2096 MOTIONSENSE_CHIP_SI1142 = 4,
2097 MOTIONSENSE_CHIP_SI1143 = 5,
2098 MOTIONSENSE_CHIP_KX022 = 6,
2099 MOTIONSENSE_CHIP_L3GD20H = 7,
2100 MOTIONSENSE_CHIP_BMA255 = 8,
2101 MOTIONSENSE_CHIP_BMP280 = 9,
2102 MOTIONSENSE_CHIP_OPT3001 = 10,
2103 };
2104
2105 struct __ec_todo_packed ec_response_motion_sensor_data {
2106 /* Flags for each sensor. */
2107 uint8_t flags;
2108 /* sensor number the data comes from */
2109 uint8_t sensor_num;
2110 /* Each sensor is up to 3-axis. */
2111 union {
2112 int16_t data[3];
2113 struct __ec_todo_packed {
2114 uint16_t reserved;
2115 uint32_t timestamp;
2116 };
2117 struct __ec_todo_unpacked {
2118 uint8_t activity; /* motionsensor_activity */
2119 uint8_t state;
2120 int16_t add_info[2];
2121 };
2122 };
2123 };
2124
2125 /* Note: used in ec_response_get_next_data */
2126 struct __ec_todo_packed ec_response_motion_sense_fifo_info {
2127 /* Size of the fifo */
2128 uint16_t size;
2129 /* Amount of space used in the fifo */
2130 uint16_t count;
2131 /* Timestamp recorded in us */
2132 uint32_t timestamp;
2133 /* Total amount of vector lost */
2134 uint16_t total_lost;
2135 /* Lost events since the last fifo_info, per sensors */
2136 uint16_t lost[0];
2137 };
2138
2139 struct __ec_todo_packed ec_response_motion_sense_fifo_data {
2140 uint32_t number_data;
2141 struct ec_response_motion_sensor_data data[0];
2142 };
2143
2144 /* List supported activity recognition */
2145 enum motionsensor_activity {
2146 MOTIONSENSE_ACTIVITY_RESERVED = 0,
2147 MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2148 MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2149 };
2150
2151 struct __ec_todo_unpacked ec_motion_sense_activity {
2152 uint8_t sensor_num;
2153 uint8_t activity; /* one of enum motionsensor_activity */
2154 uint8_t enable; /* 1: enable, 0: disable */
2155 uint8_t reserved;
2156 uint16_t parameters[3]; /* activity dependent parameters */
2157 };
2158
2159 /* Module flag masks used for the dump sub-command. */
2160 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
2161
2162 /* Sensor flag masks used for the dump sub-command. */
2163 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
2164
2165 /*
2166 * Flush entry for synchronization.
2167 * data contains time stamp
2168 */
2169 #define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
2170 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
2171 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP (1<<2)
2172 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE (1<<3)
2173
2174 /*
2175 * Send this value for the data element to only perform a read. If you
2176 * send any other value, the EC will interpret it as data to set and will
2177 * return the actual value set.
2178 */
2179 #define EC_MOTION_SENSE_NO_VALUE -1
2180
2181 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2182
2183 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2184 /* Set Calibration information */
2185 #define MOTION_SENSE_SET_OFFSET 1
2186
2187 #define LID_ANGLE_UNRELIABLE 500
2188
2189 enum motionsense_spoof_mode {
2190 /* Disable spoof mode. */
2191 MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2192
2193 /* Enable spoof mode, but use provided component values. */
2194 MOTIONSENSE_SPOOF_MODE_CUSTOM,
2195
2196 /* Enable spoof mode, but use the current sensor values. */
2197 MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2198
2199 /* Query the current spoof mode status for the sensor. */
2200 MOTIONSENSE_SPOOF_MODE_QUERY,
2201 };
2202
2203 struct __ec_todo_packed ec_params_motion_sense {
2204 uint8_t cmd;
2205 union {
2206 /* Used for MOTIONSENSE_CMD_DUMP */
2207 struct __ec_todo_unpacked {
2208 /*
2209 * Maximal number of sensor the host is expecting.
2210 * 0 means the host is only interested in the number
2211 * of sensors controlled by the EC.
2212 */
2213 uint8_t max_sensor_count;
2214 } dump;
2215
2216 /*
2217 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2218 */
2219 struct __ec_todo_unpacked {
2220 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2221 * kb_wake_angle: angle to wakup AP.
2222 */
2223 int16_t data;
2224 } kb_wake_angle;
2225
2226 /* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2227 * and MOTIONSENSE_CMD_PERFORM_CALIB. */
2228 struct __ec_todo_unpacked {
2229 uint8_t sensor_num;
2230 } info, info_3, data, fifo_flush, perform_calib,
2231 list_activities;
2232
2233 /*
2234 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2235 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2236 */
2237 struct __ec_todo_unpacked {
2238 uint8_t sensor_num;
2239
2240 /* Rounding flag, true for round-up, false for down. */
2241 uint8_t roundup;
2242
2243 uint16_t reserved;
2244
2245 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2246 int32_t data;
2247 } ec_rate, sensor_odr, sensor_range;
2248
2249 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2250 struct __ec_todo_packed {
2251 uint8_t sensor_num;
2252
2253 /*
2254 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2255 * the calibration information in the EC.
2256 * If unset, just retrieve calibration information.
2257 */
2258 uint16_t flags;
2259
2260 /*
2261 * Temperature at calibration, in units of 0.01 C
2262 * 0x8000: invalid / unknown.
2263 * 0x0: 0C
2264 * 0x7fff: +327.67C
2265 */
2266 int16_t temp;
2267
2268 /*
2269 * Offset for calibration.
2270 * Unit:
2271 * Accelerometer: 1/1024 g
2272 * Gyro: 1/1024 deg/s
2273 * Compass: 1/16 uT
2274 */
2275 int16_t offset[3];
2276 } sensor_offset;
2277
2278 /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2279 struct __ec_todo_unpacked {
2280 } fifo_info;
2281
2282 /* Used for MOTIONSENSE_CMD_FIFO_READ */
2283 struct __ec_todo_unpacked {
2284 /*
2285 * Number of expected vector to return.
2286 * EC may return less or 0 if none available.
2287 */
2288 uint32_t max_data_vector;
2289 } fifo_read;
2290
2291 struct ec_motion_sense_activity set_activity;
2292
2293 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2294 struct __ec_todo_unpacked {
2295 } lid_angle;
2296
2297 /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2298 struct __ec_todo_unpacked {
2299 /*
2300 * 1: enable, 0 disable fifo,
2301 * EC_MOTION_SENSE_NO_VALUE return value.
2302 */
2303 int8_t enable;
2304 } fifo_int_enable;
2305
2306 /* Used for MOTIONSENSE_CMD_SPOOF */
2307 struct __ec_todo_packed {
2308 uint8_t sensor_id;
2309
2310 /* See enum motionsense_spoof_mode. */
2311 uint8_t spoof_enable;
2312
2313 /* Ignored, used for alignment. */
2314 uint8_t reserved;
2315
2316 /* Individual component values to spoof. */
2317 int16_t components[3];
2318 } spoof;
2319 };
2320 };
2321
2322 struct __ec_todo_packed ec_response_motion_sense {
2323 union {
2324 /* Used for MOTIONSENSE_CMD_DUMP */
2325 struct __ec_todo_unpacked {
2326 /* Flags representing the motion sensor module. */
2327 uint8_t module_flags;
2328
2329 /* Number of sensors managed directly by the EC */
2330 uint8_t sensor_count;
2331
2332 /*
2333 * sensor data is truncated if response_max is too small
2334 * for holding all the data.
2335 */
2336 struct ec_response_motion_sensor_data sensor[0];
2337 } dump;
2338
2339 /* Used for MOTIONSENSE_CMD_INFO. */
2340 struct __ec_todo_unpacked {
2341 /* Should be element of enum motionsensor_type. */
2342 uint8_t type;
2343
2344 /* Should be element of enum motionsensor_location. */
2345 uint8_t location;
2346
2347 /* Should be element of enum motionsensor_chip. */
2348 uint8_t chip;
2349 } info;
2350
2351 /* Used for MOTIONSENSE_CMD_INFO version 3 */
2352 struct __ec_todo_unpacked {
2353 /* Should be element of enum motionsensor_type. */
2354 uint8_t type;
2355
2356 /* Should be element of enum motionsensor_location. */
2357 uint8_t location;
2358
2359 /* Should be element of enum motionsensor_chip. */
2360 uint8_t chip;
2361
2362 /* Minimum sensor sampling frequency */
2363 uint32_t min_frequency;
2364
2365 /* Maximum sensor sampling frequency */
2366 uint32_t max_frequency;
2367
2368 /* Max number of sensor events that could be in fifo */
2369 uint32_t fifo_max_event_count;
2370 } info_3;
2371
2372 /* Used for MOTIONSENSE_CMD_DATA */
2373 struct ec_response_motion_sensor_data data;
2374
2375 /*
2376 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2377 * MOTIONSENSE_CMD_SENSOR_RANGE,
2378 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2379 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2380 * MOTIONSENSE_CMD_SPOOF.
2381 */
2382 struct __ec_todo_unpacked {
2383 /* Current value of the parameter queried. */
2384 int32_t ret;
2385 } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2386 fifo_int_enable, spoof;
2387
2388 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2389 struct __ec_todo_unpacked {
2390 int16_t temp;
2391 int16_t offset[3];
2392 } sensor_offset, perform_calib;
2393
2394 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2395
2396 struct ec_response_motion_sense_fifo_data fifo_read;
2397
2398 struct __ec_todo_packed {
2399 uint16_t reserved;
2400 uint32_t enabled;
2401 uint32_t disabled;
2402 } list_activities;
2403
2404 struct __ec_todo_unpacked {
2405 } set_activity;
2406
2407 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2408 struct __ec_todo_unpacked {
2409 /*
2410 * Angle between 0 and 360 degree if available,
2411 * LID_ANGLE_UNRELIABLE otherwise.
2412 */
2413 uint16_t value;
2414 } lid_angle;
2415 };
2416 };
2417
2418 /*****************************************************************************/
2419 /* Force lid open command */
2420
2421 /* Make lid event always open */
2422 #define EC_CMD_FORCE_LID_OPEN 0x002C
2423
2424 struct __ec_align1 ec_params_force_lid_open {
2425 uint8_t enabled;
2426 };
2427
2428 /*****************************************************************************/
2429 /* Configure the behavior of the power button */
2430 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2431
2432 enum ec_config_power_button_flags {
2433 /* Enable/Disable power button pulses for x86 devices */
2434 EC_POWER_BUTTON_ENABLE_PULSE = (1 << 0),
2435 };
2436
2437 struct __ec_align1 ec_params_config_power_button {
2438 /* See enum ec_config_power_button_flags */
2439 uint8_t flags;
2440 };
2441
2442 /*****************************************************************************/
2443 /* USB charging control commands */
2444
2445 /* Set USB port charging mode */
2446 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2447
2448 struct __ec_align1 ec_params_usb_charge_set_mode {
2449 uint8_t usb_port_id;
2450 uint8_t mode;
2451 };
2452
2453 /*****************************************************************************/
2454 /* Persistent storage for host */
2455
2456 /* Maximum bytes that can be read/written in a single command */
2457 #define EC_PSTORE_SIZE_MAX 64
2458
2459 /* Get persistent storage info */
2460 #define EC_CMD_PSTORE_INFO 0x0040
2461
2462 struct __ec_align4 ec_response_pstore_info {
2463 /* Persistent storage size, in bytes */
2464 uint32_t pstore_size;
2465 /* Access size; read/write offset and size must be a multiple of this */
2466 uint32_t access_size;
2467 };
2468
2469 /*
2470 * Read persistent storage
2471 *
2472 * Response is params.size bytes of data.
2473 */
2474 #define EC_CMD_PSTORE_READ 0x0041
2475
2476 struct __ec_align4 ec_params_pstore_read {
2477 uint32_t offset; /* Byte offset to read */
2478 uint32_t size; /* Size to read in bytes */
2479 };
2480
2481 /* Write persistent storage */
2482 #define EC_CMD_PSTORE_WRITE 0x0042
2483
2484 struct __ec_align4 ec_params_pstore_write {
2485 uint32_t offset; /* Byte offset to write */
2486 uint32_t size; /* Size to write in bytes */
2487 uint8_t data[EC_PSTORE_SIZE_MAX];
2488 };
2489
2490 /*****************************************************************************/
2491 /* Real-time clock */
2492
2493 /* RTC params and response structures */
2494 struct __ec_align4 ec_params_rtc {
2495 uint32_t time;
2496 };
2497
2498 struct __ec_align4 ec_response_rtc {
2499 uint32_t time;
2500 };
2501
2502 /* These use ec_response_rtc */
2503 #define EC_CMD_RTC_GET_VALUE 0x0044
2504 #define EC_CMD_RTC_GET_ALARM 0x0045
2505
2506 /* These all use ec_params_rtc */
2507 #define EC_CMD_RTC_SET_VALUE 0x0046
2508 #define EC_CMD_RTC_SET_ALARM 0x0047
2509
2510 /* Pass as time param to SET_ALARM to clear the current alarm */
2511 #define EC_RTC_ALARM_CLEAR 0
2512
2513 /*****************************************************************************/
2514 /* Port80 log access */
2515
2516 /* Maximum entries that can be read/written in a single command */
2517 #define EC_PORT80_SIZE_MAX 32
2518
2519 /* Get last port80 code from previous boot */
2520 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2521 #define EC_CMD_PORT80_READ 0x0048
2522
2523 enum ec_port80_subcmd {
2524 EC_PORT80_GET_INFO = 0,
2525 EC_PORT80_READ_BUFFER,
2526 };
2527
2528 struct __ec_todo_packed ec_params_port80_read {
2529 uint16_t subcmd;
2530 union {
2531 struct __ec_todo_unpacked {
2532 uint32_t offset;
2533 uint32_t num_entries;
2534 } read_buffer;
2535 };
2536 };
2537
2538 struct __ec_todo_packed ec_response_port80_read {
2539 union {
2540 struct __ec_todo_unpacked {
2541 uint32_t writes;
2542 uint32_t history_size;
2543 uint32_t last_boot;
2544 } get_info;
2545 struct __ec_todo_unpacked {
2546 uint16_t codes[EC_PORT80_SIZE_MAX];
2547 } data;
2548 };
2549 };
2550
2551 struct __ec_align2 ec_response_port80_last_boot {
2552 uint16_t code;
2553 };
2554
2555 /*****************************************************************************/
2556 /* Temporary secure storage for host verified boot use */
2557
2558 /* Number of bytes in a vstore slot */
2559 #define EC_VSTORE_SLOT_SIZE 64
2560
2561 /* Maximum number of vstore slots */
2562 #define EC_VSTORE_SLOT_MAX 32
2563
2564 /* Get persistent storage info */
2565 #define EC_CMD_VSTORE_INFO 0x0049
2566 struct __ec_align_size1 ec_response_vstore_info {
2567 /* Indicates which slots are locked */
2568 uint32_t slot_locked;
2569 /* Total number of slots available */
2570 uint8_t slot_count;
2571 };
2572
2573 /*
2574 * Read temporary secure storage
2575 *
2576 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2577 */
2578 #define EC_CMD_VSTORE_READ 0x004A
2579
2580 struct __ec_align1 ec_params_vstore_read {
2581 uint8_t slot; /* Slot to read from */
2582 };
2583
2584 struct __ec_align1 ec_response_vstore_read {
2585 uint8_t data[EC_VSTORE_SLOT_SIZE];
2586 };
2587
2588 /*
2589 * Write temporary secure storage and lock it.
2590 */
2591 #define EC_CMD_VSTORE_WRITE 0x004B
2592
2593 struct __ec_align1 ec_params_vstore_write {
2594 uint8_t slot; /* Slot to write to */
2595 uint8_t data[EC_VSTORE_SLOT_SIZE];
2596 };
2597
2598 /*****************************************************************************/
2599 /* Thermal engine commands. Note that there are two implementations. We'll
2600 * reuse the command number, but the data and behavior is incompatible.
2601 * Version 0 is what originally shipped on Link.
2602 * Version 1 separates the CPU thermal limits from the fan control.
2603 */
2604
2605 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2606 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2607
2608 /* The version 0 structs are opaque. You have to know what they are for
2609 * the get/set commands to make any sense.
2610 */
2611
2612 /* Version 0 - set */
2613 struct __ec_align2 ec_params_thermal_set_threshold {
2614 uint8_t sensor_type;
2615 uint8_t threshold_id;
2616 uint16_t value;
2617 };
2618
2619 /* Version 0 - get */
2620 struct __ec_align1 ec_params_thermal_get_threshold {
2621 uint8_t sensor_type;
2622 uint8_t threshold_id;
2623 };
2624
2625 struct __ec_align2 ec_response_thermal_get_threshold {
2626 uint16_t value;
2627 };
2628
2629
2630 /* The version 1 structs are visible. */
2631 enum ec_temp_thresholds {
2632 EC_TEMP_THRESH_WARN = 0,
2633 EC_TEMP_THRESH_HIGH,
2634 EC_TEMP_THRESH_HALT,
2635
2636 EC_TEMP_THRESH_COUNT
2637 };
2638
2639 /*
2640 * Thermal configuration for one temperature sensor. Temps are in degrees K.
2641 * Zero values will be silently ignored by the thermal task.
2642 *
2643 * Note that this structure is a sub-structure of
2644 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
2645 */
2646 struct __ec_align4 ec_thermal_config {
2647 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
2648 uint32_t temp_fan_off; /* no active cooling needed */
2649 uint32_t temp_fan_max; /* max active cooling needed */
2650 };
2651
2652 /* Version 1 - get config for one sensor. */
2653 struct __ec_align4 ec_params_thermal_get_threshold_v1 {
2654 uint32_t sensor_num;
2655 };
2656 /* This returns a struct ec_thermal_config */
2657
2658 /* Version 1 - set config for one sensor.
2659 * Use read-modify-write for best results! */
2660 struct __ec_align4 ec_params_thermal_set_threshold_v1 {
2661 uint32_t sensor_num;
2662 struct ec_thermal_config cfg;
2663 };
2664 /* This returns no data */
2665
2666 /****************************************************************************/
2667
2668 /* Toggle automatic fan control */
2669 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
2670
2671 /* Version 1 of input params */
2672 struct __ec_align1 ec_params_auto_fan_ctrl_v1 {
2673 uint8_t fan_idx;
2674 };
2675
2676 /* Get/Set TMP006 calibration data */
2677 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
2678 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
2679
2680 /*
2681 * The original TMP006 calibration only needed four params, but now we need
2682 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
2683 * the params opaque. The v1 "get" response will include the algorithm number
2684 * and how many params it requires. That way we can change the EC code without
2685 * needing to update this file. We can also use a different algorithm on each
2686 * sensor.
2687 */
2688
2689 /* This is the same struct for both v0 and v1. */
2690 struct __ec_align1 ec_params_tmp006_get_calibration {
2691 uint8_t index;
2692 };
2693
2694 /* Version 0 */
2695 struct __ec_align4 ec_response_tmp006_get_calibration_v0 {
2696 float s0;
2697 float b0;
2698 float b1;
2699 float b2;
2700 };
2701
2702 struct __ec_align4 ec_params_tmp006_set_calibration_v0 {
2703 uint8_t index;
2704 uint8_t reserved[3];
2705 float s0;
2706 float b0;
2707 float b1;
2708 float b2;
2709 };
2710
2711 /* Version 1 */
2712 struct __ec_align4 ec_response_tmp006_get_calibration_v1 {
2713 uint8_t algorithm;
2714 uint8_t num_params;
2715 uint8_t reserved[2];
2716 float val[0];
2717 };
2718
2719 struct __ec_align4 ec_params_tmp006_set_calibration_v1 {
2720 uint8_t index;
2721 uint8_t algorithm;
2722 uint8_t num_params;
2723 uint8_t reserved;
2724 float val[0];
2725 };
2726
2727
2728 /* Read raw TMP006 data */
2729 #define EC_CMD_TMP006_GET_RAW 0x0055
2730
2731 struct __ec_align1 ec_params_tmp006_get_raw {
2732 uint8_t index;
2733 };
2734
2735 struct __ec_align4 ec_response_tmp006_get_raw {
2736 int32_t t; /* In 1/100 K */
2737 int32_t v; /* In nV */
2738 };
2739
2740 /*****************************************************************************/
2741 /* MKBP - Matrix KeyBoard Protocol */
2742
2743 /*
2744 * Read key state
2745 *
2746 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
2747 * expected response size.
2748 *
2749 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
2750 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
2751 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
2752 */
2753 #define EC_CMD_MKBP_STATE 0x0060
2754
2755 /*
2756 * Provide information about various MKBP things. See enum ec_mkbp_info_type.
2757 */
2758 #define EC_CMD_MKBP_INFO 0x0061
2759
2760 struct __ec_align_size1 ec_response_mkbp_info {
2761 uint32_t rows;
2762 uint32_t cols;
2763 /* Formerly "switches", which was 0. */
2764 uint8_t reserved;
2765 };
2766
2767 struct __ec_align1 ec_params_mkbp_info {
2768 uint8_t info_type;
2769 uint8_t event_type;
2770 };
2771
2772 enum ec_mkbp_info_type {
2773 /*
2774 * Info about the keyboard matrix: number of rows and columns.
2775 *
2776 * Returns struct ec_response_mkbp_info.
2777 */
2778 EC_MKBP_INFO_KBD = 0,
2779
2780 /*
2781 * For buttons and switches, info about which specifically are
2782 * supported. event_type must be set to one of the values in enum
2783 * ec_mkbp_event.
2784 *
2785 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
2786 * bitmask indicating which buttons or switches are present. See the
2787 * bit inidices below.
2788 */
2789 EC_MKBP_INFO_SUPPORTED = 1,
2790
2791 /*
2792 * Instantaneous state of buttons and switches.
2793 *
2794 * event_type must be set to one of the values in enum ec_mkbp_event.
2795 *
2796 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
2797 * indicating the current state of the keyboard matrix.
2798 *
2799 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
2800 * event state.
2801 *
2802 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
2803 * state of supported buttons.
2804 *
2805 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
2806 * state of supported switches.
2807 */
2808 EC_MKBP_INFO_CURRENT = 2,
2809 };
2810
2811 /* Simulate key press */
2812 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
2813
2814 struct __ec_align1 ec_params_mkbp_simulate_key {
2815 uint8_t col;
2816 uint8_t row;
2817 uint8_t pressed;
2818 };
2819
2820 /* Configure keyboard scanning */
2821 #define EC_CMD_MKBP_SET_CONFIG 0x0064
2822 #define EC_CMD_MKBP_GET_CONFIG 0x0065
2823
2824 /* flags */
2825 enum mkbp_config_flags {
2826 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
2827 };
2828
2829 enum mkbp_config_valid {
2830 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
2831 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
2832 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
2833 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
2834 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
2835 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
2836 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
2837 };
2838
2839 /*
2840 * Configuration for our key scanning algorithm.
2841 *
2842 * Note that this is used as a sub-structure of
2843 * ec_{params/response}_mkbp_get_config.
2844 */
2845 struct __ec_align_size1 ec_mkbp_config {
2846 uint32_t valid_mask; /* valid fields */
2847 uint8_t flags; /* some flags (enum mkbp_config_flags) */
2848 uint8_t valid_flags; /* which flags are valid */
2849 uint16_t scan_period_us; /* period between start of scans */
2850 /* revert to interrupt mode after no activity for this long */
2851 uint32_t poll_timeout_us;
2852 /*
2853 * minimum post-scan relax time. Once we finish a scan we check
2854 * the time until we are due to start the next one. If this time is
2855 * shorter this field, we use this instead.
2856 */
2857 uint16_t min_post_scan_delay_us;
2858 /* delay between setting up output and waiting for it to settle */
2859 uint16_t output_settle_us;
2860 uint16_t debounce_down_us; /* time for debounce on key down */
2861 uint16_t debounce_up_us; /* time for debounce on key up */
2862 /* maximum depth to allow for fifo (0 = no keyscan output) */
2863 uint8_t fifo_max_depth;
2864 };
2865
2866 struct __ec_align_size1 ec_params_mkbp_set_config {
2867 struct ec_mkbp_config config;
2868 };
2869
2870 struct __ec_align_size1 ec_response_mkbp_get_config {
2871 struct ec_mkbp_config config;
2872 };
2873
2874 /* Run the key scan emulation */
2875 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
2876
2877 enum ec_keyscan_seq_cmd {
2878 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
2879 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
2880 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
2881 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
2882 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
2883 };
2884
2885 enum ec_collect_flags {
2886 /*
2887 * Indicates this scan was processed by the EC. Due to timing, some
2888 * scans may be skipped.
2889 */
2890 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
2891 };
2892
2893 struct __ec_align1 ec_collect_item {
2894 uint8_t flags; /* some flags (enum ec_collect_flags) */
2895 };
2896
2897 struct __ec_todo_packed ec_params_keyscan_seq_ctrl {
2898 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
2899 union {
2900 struct __ec_align1 {
2901 uint8_t active; /* still active */
2902 uint8_t num_items; /* number of items */
2903 /* Current item being presented */
2904 uint8_t cur_item;
2905 } status;
2906 struct __ec_todo_unpacked {
2907 /*
2908 * Absolute time for this scan, measured from the
2909 * start of the sequence.
2910 */
2911 uint32_t time_us;
2912 uint8_t scan[0]; /* keyscan data */
2913 } add;
2914 struct __ec_align1 {
2915 uint8_t start_item; /* First item to return */
2916 uint8_t num_items; /* Number of items to return */
2917 } collect;
2918 };
2919 };
2920
2921 struct __ec_todo_packed ec_result_keyscan_seq_ctrl {
2922 union {
2923 struct __ec_todo_unpacked {
2924 uint8_t num_items; /* Number of items */
2925 /* Data for each item */
2926 struct ec_collect_item item[0];
2927 } collect;
2928 };
2929 };
2930
2931 /*
2932 * Get the next pending MKBP event.
2933 *
2934 * Returns EC_RES_UNAVAILABLE if there is no event pending.
2935 */
2936 #define EC_CMD_GET_NEXT_EVENT 0x0067
2937
2938 enum ec_mkbp_event {
2939 /* Keyboard matrix changed. The event data is the new matrix state. */
2940 EC_MKBP_EVENT_KEY_MATRIX = 0,
2941
2942 /* New host event. The event data is 4 bytes of host event flags. */
2943 EC_MKBP_EVENT_HOST_EVENT = 1,
2944
2945 /* New Sensor FIFO data. The event data is fifo_info structure. */
2946 EC_MKBP_EVENT_SENSOR_FIFO = 2,
2947
2948 /* The state of the non-matrixed buttons have changed. */
2949 EC_MKBP_EVENT_BUTTON = 3,
2950
2951 /* The state of the switches have changed. */
2952 EC_MKBP_EVENT_SWITCH = 4,
2953
2954 /* New Fingerprint sensor event, the event data is fp_events bitmap. */
2955 EC_MKBP_EVENT_FINGERPRINT = 5,
2956
2957 /*
2958 * Sysrq event: send emulated sysrq. The event data is sysrq,
2959 * corresponding to the key to be pressed.
2960 */
2961 EC_MKBP_EVENT_SYSRQ = 6,
2962
2963 /* Number of MKBP events */
2964 EC_MKBP_EVENT_COUNT,
2965 };
2966
2967 union __ec_align_offset1 ec_response_get_next_data {
2968 uint8_t key_matrix[13];
2969
2970 /* Unaligned */
2971 uint32_t host_event;
2972
2973 struct __ec_todo_unpacked {
2974 /* For aligning the fifo_info */
2975 uint8_t reserved[3];
2976 struct ec_response_motion_sense_fifo_info info;
2977 } sensor_fifo;
2978
2979 uint32_t buttons;
2980
2981 uint32_t switches;
2982
2983 uint32_t fp_events;
2984
2985 uint32_t sysrq;
2986 };
2987
2988 struct __ec_align1 ec_response_get_next_event {
2989 uint8_t event_type;
2990 /* Followed by event data if any */
2991 union ec_response_get_next_data data;
2992 };
2993
2994 /* Bit indices for buttons and switches.*/
2995 /* Buttons */
2996 #define EC_MKBP_POWER_BUTTON 0
2997 #define EC_MKBP_VOL_UP 1
2998 #define EC_MKBP_VOL_DOWN 2
2999 #define EC_MKBP_RECOVERY 3
3000
3001 /* Switches */
3002 #define EC_MKBP_LID_OPEN 0
3003 #define EC_MKBP_TABLET_MODE 1
3004
3005 /* Run keyboard factory test scanning */
3006 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3007
3008 struct __ec_align2 ec_response_keyboard_factory_test {
3009 uint16_t shorted; /* Keyboard pins are shorted */
3010 };
3011
3012 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3013 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3014 #define EC_MKBP_FP_FINGER_DOWN (1 << 29)
3015 #define EC_MKBP_FP_FINGER_UP (1 << 30)
3016 #define EC_MKBP_FP_IMAGE_READY (1 << 31)
3017
3018 /*****************************************************************************/
3019 /* Temperature sensor commands */
3020
3021 /* Read temperature sensor info */
3022 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3023
3024 struct __ec_align1 ec_params_temp_sensor_get_info {
3025 uint8_t id;
3026 };
3027
3028 struct __ec_align1 ec_response_temp_sensor_get_info {
3029 char sensor_name[32];
3030 uint8_t sensor_type;
3031 };
3032
3033 /*****************************************************************************/
3034
3035 /*
3036 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3037 * commands accidentally sent to the wrong interface. See the ACPI section
3038 * below.
3039 */
3040
3041 /*****************************************************************************/
3042 /* Host event commands */
3043
3044
3045 /* Obsolete. New implementation should use EC_CMD_PROGRAM_HOST_EVENT instead */
3046 /*
3047 * Host event mask params and response structures, shared by all of the host
3048 * event commands below.
3049 */
3050 struct __ec_align4 ec_params_host_event_mask {
3051 uint32_t mask;
3052 };
3053
3054 struct __ec_align4 ec_response_host_event_mask {
3055 uint32_t mask;
3056 };
3057
3058 /* These all use ec_response_host_event_mask */
3059 #define EC_CMD_HOST_EVENT_GET_B 0x0087
3060 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088
3061 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089
3062 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3063
3064 /* These all use ec_params_host_event_mask */
3065 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A
3066 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B
3067 #define EC_CMD_HOST_EVENT_CLEAR 0x008C
3068 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3069 #define EC_CMD_HOST_EVENT_CLEAR_B 0x008F
3070
3071 /*
3072 * Unified host event programming interface - Should be used by newer versions
3073 * of BIOS/OS to program host events and masks
3074 */
3075
3076 struct __ec_align4 ec_params_host_event {
3077
3078 /* Action requested by host - one of enum ec_host_event_action. */
3079 uint8_t action;
3080
3081 /*
3082 * Mask type that the host requested the action on - one of
3083 * enum ec_host_event_mask_type.
3084 */
3085 uint8_t mask_type;
3086
3087 /* Set to 0, ignore on read */
3088 uint16_t reserved;
3089
3090 /* Value to be used in case of set operations. */
3091 uint64_t value;
3092 };
3093
3094 /*
3095 * Response structure returned by EC_CMD_HOST_EVENT.
3096 * Update the value on a GET request. Set to 0 on GET/CLEAR
3097 */
3098
3099 struct __ec_align4 ec_response_host_event {
3100
3101 /* Mask value in case of get operation */
3102 uint64_t value;
3103 };
3104
3105 enum ec_host_event_action {
3106 /*
3107 * params.value is ignored. Value of mask_type populated
3108 * in response.value
3109 */
3110 EC_HOST_EVENT_GET,
3111
3112 /* Bits in params.value are set */
3113 EC_HOST_EVENT_SET,
3114
3115 /* Bits in params.value are cleared */
3116 EC_HOST_EVENT_CLEAR,
3117 };
3118
3119 enum ec_host_event_mask_type {
3120
3121 /* Main host event copy */
3122 EC_HOST_EVENT_MAIN,
3123
3124 /* Copy B of host events */
3125 EC_HOST_EVENT_B,
3126
3127 /* SCI Mask */
3128 EC_HOST_EVENT_SCI_MASK,
3129
3130 /* SMI Mask */
3131 EC_HOST_EVENT_SMI_MASK,
3132
3133 /* Mask of events that should be always reported in hostevents */
3134 EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3135
3136 /* Active wake mask */
3137 EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3138
3139 /* Lazy wake mask for S0ix */
3140 EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3141
3142 /* Lazy wake mask for S3 */
3143 EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3144
3145 /* Lazy wake mask for S5 */
3146 EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3147 };
3148
3149 #define EC_CMD_HOST_EVENT 0x00A4
3150
3151 /*****************************************************************************/
3152 /* Switch commands */
3153
3154 /* Enable/disable LCD backlight */
3155 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3156
3157 struct __ec_align1 ec_params_switch_enable_backlight {
3158 uint8_t enabled;
3159 };
3160
3161 /* Enable/disable WLAN/Bluetooth */
3162 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3163 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3164
3165 /* Version 0 params; no response */
3166 struct __ec_align1 ec_params_switch_enable_wireless_v0 {
3167 uint8_t enabled;
3168 };
3169
3170 /* Version 1 params */
3171 struct __ec_align1 ec_params_switch_enable_wireless_v1 {
3172 /* Flags to enable now */
3173 uint8_t now_flags;
3174
3175 /* Which flags to copy from now_flags */
3176 uint8_t now_mask;
3177
3178 /*
3179 * Flags to leave enabled in S3, if they're on at the S0->S3
3180 * transition. (Other flags will be disabled by the S0->S3
3181 * transition.)
3182 */
3183 uint8_t suspend_flags;
3184
3185 /* Which flags to copy from suspend_flags */
3186 uint8_t suspend_mask;
3187 };
3188
3189 /* Version 1 response */
3190 struct __ec_align1 ec_response_switch_enable_wireless_v1 {
3191 /* Flags to enable now */
3192 uint8_t now_flags;
3193
3194 /* Flags to leave enabled in S3 */
3195 uint8_t suspend_flags;
3196 };
3197
3198 /*****************************************************************************/
3199 /* GPIO commands. Only available on EC if write protect has been disabled. */
3200
3201 /* Set GPIO output value */
3202 #define EC_CMD_GPIO_SET 0x0092
3203
3204 struct __ec_align1 ec_params_gpio_set {
3205 char name[32];
3206 uint8_t val;
3207 };
3208
3209 /* Get GPIO value */
3210 #define EC_CMD_GPIO_GET 0x0093
3211
3212 /* Version 0 of input params and response */
3213 struct __ec_align1 ec_params_gpio_get {
3214 char name[32];
3215 };
3216
3217 struct __ec_align1 ec_response_gpio_get {
3218 uint8_t val;
3219 };
3220
3221 /* Version 1 of input params and response */
3222 struct __ec_align1 ec_params_gpio_get_v1 {
3223 uint8_t subcmd;
3224 union {
3225 struct __ec_align1 {
3226 char name[32];
3227 } get_value_by_name;
3228 struct __ec_align1 {
3229 uint8_t index;
3230 } get_info;
3231 };
3232 };
3233
3234 struct __ec_todo_packed ec_response_gpio_get_v1 {
3235 union {
3236 struct __ec_align1 {
3237 uint8_t val;
3238 } get_value_by_name, get_count;
3239 struct __ec_todo_unpacked {
3240 uint8_t val;
3241 char name[32];
3242 uint32_t flags;
3243 } get_info;
3244 };
3245 };
3246
3247 enum gpio_get_subcmd {
3248 EC_GPIO_GET_BY_NAME = 0,
3249 EC_GPIO_GET_COUNT = 1,
3250 EC_GPIO_GET_INFO = 2,
3251 };
3252
3253 /*****************************************************************************/
3254 /* I2C commands. Only available when flash write protect is unlocked. */
3255
3256 /*
3257 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3258 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3259 *
3260 * Use EC_CMD_I2C_PASSTHRU instead.
3261 */
3262
3263 /* Read I2C bus */
3264 #define EC_CMD_I2C_READ 0x0094
3265
3266 struct __ec_align_size1 ec_params_i2c_read {
3267 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3268 uint8_t read_size; /* Either 8 or 16. */
3269 uint8_t port;
3270 uint8_t offset;
3271 };
3272
3273 struct __ec_align2 ec_response_i2c_read {
3274 uint16_t data;
3275 };
3276
3277 /* Write I2C bus */
3278 #define EC_CMD_I2C_WRITE 0x0095
3279
3280 struct __ec_align_size1 ec_params_i2c_write {
3281 uint16_t data;
3282 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3283 uint8_t write_size; /* Either 8 or 16. */
3284 uint8_t port;
3285 uint8_t offset;
3286 };
3287
3288 /*****************************************************************************/
3289 /* Charge state commands. Only available when flash write protect unlocked. */
3290
3291 /* Force charge state machine to stop charging the battery or force it to
3292 * discharge the battery.
3293 */
3294 #define EC_CMD_CHARGE_CONTROL 0x0096
3295 #define EC_VER_CHARGE_CONTROL 1
3296
3297 enum ec_charge_control_mode {
3298 CHARGE_CONTROL_NORMAL = 0,
3299 CHARGE_CONTROL_IDLE,
3300 CHARGE_CONTROL_DISCHARGE,
3301 };
3302
3303 struct __ec_align4 ec_params_charge_control {
3304 uint32_t mode; /* enum charge_control_mode */
3305 };
3306
3307 /*****************************************************************************/
3308 /* Console commands. Only available when flash write protect is unlocked. */
3309
3310 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3311 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3312
3313 /*
3314 * Read data from the saved snapshot. If the subcmd parameter is
3315 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3316 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3317 * end of the previous snapshot.
3318 *
3319 * The params are only looked at in version >= 1 of this command. Prior
3320 * versions will just default to CONSOLE_READ_NEXT behavior.
3321 *
3322 * Response is null-terminated string. Empty string, if there is no more
3323 * remaining output.
3324 */
3325 #define EC_CMD_CONSOLE_READ 0x0098
3326
3327 enum ec_console_read_subcmd {
3328 CONSOLE_READ_NEXT = 0,
3329 CONSOLE_READ_RECENT
3330 };
3331
3332 struct __ec_align1 ec_params_console_read_v1 {
3333 uint8_t subcmd; /* enum ec_console_read_subcmd */
3334 };
3335
3336 /*****************************************************************************/
3337
3338 /*
3339 * Cut off battery power immediately or after the host has shut down.
3340 *
3341 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3342 * EC_RES_SUCCESS if the command was successful.
3343 * EC_RES_ERROR if the cut off command failed.
3344 */
3345 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3346
3347 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0)
3348
3349 struct __ec_align1 ec_params_battery_cutoff {
3350 uint8_t flags;
3351 };
3352
3353 /*****************************************************************************/
3354 /* USB port mux control. */
3355
3356 /*
3357 * Switch USB mux or return to automatic switching.
3358 */
3359 #define EC_CMD_USB_MUX 0x009A
3360
3361 struct __ec_align1 ec_params_usb_mux {
3362 uint8_t mux;
3363 };
3364
3365 /*****************************************************************************/
3366 /* LDOs / FETs control. */
3367
3368 enum ec_ldo_state {
3369 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
3370 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
3371 };
3372
3373 /*
3374 * Switch on/off a LDO.
3375 */
3376 #define EC_CMD_LDO_SET 0x009B
3377
3378 struct __ec_align1 ec_params_ldo_set {
3379 uint8_t index;
3380 uint8_t state;
3381 };
3382
3383 /*
3384 * Get LDO state.
3385 */
3386 #define EC_CMD_LDO_GET 0x009C
3387
3388 struct __ec_align1 ec_params_ldo_get {
3389 uint8_t index;
3390 };
3391
3392 struct __ec_align1 ec_response_ldo_get {
3393 uint8_t state;
3394 };
3395
3396 /*****************************************************************************/
3397 /* Power info. */
3398
3399 /*
3400 * Get power info.
3401 */
3402 #define EC_CMD_POWER_INFO 0x009D
3403
3404 struct __ec_align4 ec_response_power_info {
3405 uint32_t usb_dev_type;
3406 uint16_t voltage_ac;
3407 uint16_t voltage_system;
3408 uint16_t current_system;
3409 uint16_t usb_current_limit;
3410 };
3411
3412 /*****************************************************************************/
3413 /* I2C passthru command */
3414
3415 #define EC_CMD_I2C_PASSTHRU 0x009E
3416
3417 /* Read data; if not present, message is a write */
3418 #define EC_I2C_FLAG_READ (1 << 15)
3419
3420 /* Mask for address */
3421 #define EC_I2C_ADDR_MASK 0x3ff
3422
3423 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
3424 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
3425
3426 /* Any error */
3427 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3428
3429 struct __ec_align2 ec_params_i2c_passthru_msg {
3430 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
3431 uint16_t len; /* Number of bytes to read or write */
3432 };
3433
3434 struct __ec_align2 ec_params_i2c_passthru {
3435 uint8_t port; /* I2C port number */
3436 uint8_t num_msgs; /* Number of messages */
3437 struct ec_params_i2c_passthru_msg msg[];
3438 /* Data to write for all messages is concatenated here */
3439 };
3440
3441 struct __ec_align1 ec_response_i2c_passthru {
3442 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
3443 uint8_t num_msgs; /* Number of messages processed */
3444 uint8_t data[]; /* Data read by messages concatenated here */
3445 };
3446
3447 /*****************************************************************************/
3448 /* Power button hang detect */
3449
3450 #define EC_CMD_HANG_DETECT 0x009F
3451
3452 /* Reasons to start hang detection timer */
3453 /* Power button pressed */
3454 #define EC_HANG_START_ON_POWER_PRESS (1 << 0)
3455
3456 /* Lid closed */
3457 #define EC_HANG_START_ON_LID_CLOSE (1 << 1)
3458
3459 /* Lid opened */
3460 #define EC_HANG_START_ON_LID_OPEN (1 << 2)
3461
3462 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3463 #define EC_HANG_START_ON_RESUME (1 << 3)
3464
3465 /* Reasons to cancel hang detection */
3466
3467 /* Power button released */
3468 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
3469
3470 /* Any host command from AP received */
3471 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9)
3472
3473 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3474 #define EC_HANG_STOP_ON_SUSPEND (1 << 10)
3475
3476 /*
3477 * If this flag is set, all the other fields are ignored, and the hang detect
3478 * timer is started. This provides the AP a way to start the hang timer
3479 * without reconfiguring any of the other hang detect settings. Note that
3480 * you must previously have configured the timeouts.
3481 */
3482 #define EC_HANG_START_NOW (1 << 30)
3483
3484 /*
3485 * If this flag is set, all the other fields are ignored (including
3486 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
3487 * without reconfiguring any of the other hang detect settings.
3488 */
3489 #define EC_HANG_STOP_NOW (1 << 31)
3490
3491 struct __ec_align4 ec_params_hang_detect {
3492 /* Flags; see EC_HANG_* */
3493 uint32_t flags;
3494
3495 /* Timeout in msec before generating host event, if enabled */
3496 uint16_t host_event_timeout_msec;
3497
3498 /* Timeout in msec before generating warm reboot, if enabled */
3499 uint16_t warm_reboot_timeout_msec;
3500 };
3501
3502 /*****************************************************************************/
3503 /* Commands for battery charging */
3504
3505 /*
3506 * This is the single catch-all host command to exchange data regarding the
3507 * charge state machine (v2 and up).
3508 */
3509 #define EC_CMD_CHARGE_STATE 0x00A0
3510
3511 /* Subcommands for this host command */
3512 enum charge_state_command {
3513 CHARGE_STATE_CMD_GET_STATE,
3514 CHARGE_STATE_CMD_GET_PARAM,
3515 CHARGE_STATE_CMD_SET_PARAM,
3516 CHARGE_STATE_NUM_CMDS
3517 };
3518
3519 /*
3520 * Known param numbers are defined here. Ranges are reserved for board-specific
3521 * params, which are handled by the particular implementations.
3522 */
3523 enum charge_state_params {
3524 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
3525 CS_PARAM_CHG_CURRENT, /* charger current limit */
3526 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
3527 CS_PARAM_CHG_STATUS, /* charger-specific status */
3528 CS_PARAM_CHG_OPTION, /* charger-specific options */
3529 CS_PARAM_LIMIT_POWER, /*
3530 * Check if power is limited due to
3531 * low battery and / or a weak external
3532 * charger. READ ONLY.
3533 */
3534 /* How many so far? */
3535 CS_NUM_BASE_PARAMS,
3536
3537 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
3538 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
3539 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
3540
3541 /* Other custom param ranges go here... */
3542 };
3543
3544 struct __ec_todo_packed ec_params_charge_state {
3545 uint8_t cmd; /* enum charge_state_command */
3546 union {
3547 struct __ec_align1 {
3548 /* no args */
3549 } get_state;
3550
3551 struct __ec_todo_unpacked {
3552 uint32_t param; /* enum charge_state_param */
3553 } get_param;
3554
3555 struct __ec_todo_unpacked {
3556 uint32_t param; /* param to set */
3557 uint32_t value; /* value to set */
3558 } set_param;
3559 };
3560 };
3561
3562 struct __ec_align4 ec_response_charge_state {
3563 union {
3564 struct __ec_align4 {
3565 int ac;
3566 int chg_voltage;
3567 int chg_current;
3568 int chg_input_current;
3569 int batt_state_of_charge;
3570 } get_state;
3571
3572 struct __ec_align4 {
3573 uint32_t value;
3574 } get_param;
3575 struct __ec_align4 {
3576 /* no return values */
3577 } set_param;
3578 };
3579 };
3580
3581
3582 /*
3583 * Set maximum battery charging current.
3584 */
3585 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
3586
3587 struct __ec_align4 ec_params_current_limit {
3588 uint32_t limit; /* in mA */
3589 };
3590
3591 /*
3592 * Set maximum external voltage / current.
3593 */
3594 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
3595
3596 /* Command v0 is used only on Spring and is obsolete + unsupported */
3597 struct __ec_align2 ec_params_external_power_limit_v1 {
3598 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
3599 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
3600 };
3601
3602 #define EC_POWER_LIMIT_NONE 0xffff
3603
3604 /*
3605 * Set maximum voltage & current of a dedicated charge port
3606 */
3607 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
3608
3609 struct __ec_align2 ec_params_dedicated_charger_limit {
3610 uint16_t current_lim; /* in mA */
3611 uint16_t voltage_lim; /* in mV */
3612 };
3613
3614 /*****************************************************************************/
3615 /* Hibernate/Deep Sleep Commands */
3616
3617 /* Set the delay before going into hibernation. */
3618 #define EC_CMD_HIBERNATION_DELAY 0x00A8
3619
3620 struct __ec_align4 ec_params_hibernation_delay {
3621 /*
3622 * Seconds to wait in G3 before hibernate. Pass in 0 to read the
3623 * current settings without changing them.
3624 */
3625 uint32_t seconds;
3626 };
3627
3628 struct __ec_align4 ec_response_hibernation_delay {
3629 /*
3630 * The current time in seconds in which the system has been in the G3
3631 * state. This value is reset if the EC transitions out of G3.
3632 */
3633 uint32_t time_g3;
3634
3635 /*
3636 * The current time remaining in seconds until the EC should hibernate.
3637 * This value is also reset if the EC transitions out of G3.
3638 */
3639 uint32_t time_remaining;
3640
3641 /*
3642 * The current time in seconds that the EC should wait in G3 before
3643 * hibernating.
3644 */
3645 uint32_t hibernate_delay;
3646 };
3647
3648 /* Inform the EC when entering a sleep state */
3649 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
3650
3651 enum host_sleep_event {
3652 HOST_SLEEP_EVENT_S3_SUSPEND = 1,
3653 HOST_SLEEP_EVENT_S3_RESUME = 2,
3654 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
3655 HOST_SLEEP_EVENT_S0IX_RESUME = 4
3656 };
3657
3658 struct __ec_align1 ec_params_host_sleep_event {
3659 uint8_t sleep_event;
3660 };
3661
3662 /*****************************************************************************/
3663 /* Device events */
3664 #define EC_CMD_DEVICE_EVENT 0x00AA
3665
3666 enum ec_device_event {
3667 EC_DEVICE_EVENT_TRACKPAD,
3668 EC_DEVICE_EVENT_DSP,
3669 EC_DEVICE_EVENT_WIFI,
3670 };
3671
3672 enum ec_device_event_param {
3673 /* Get and clear pending device events */
3674 EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
3675 /* Get device event mask */
3676 EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
3677 /* Set device event mask */
3678 EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
3679 };
3680
3681 #define EC_DEVICE_EVENT_MASK(event_code) (1UL << (event_code % 32))
3682
3683 struct __ec_align_size1 ec_params_device_event {
3684 uint32_t event_mask;
3685 uint8_t param;
3686 };
3687
3688 struct __ec_align4 ec_response_device_event {
3689 uint32_t event_mask;
3690 };
3691
3692 /*****************************************************************************/
3693 /* Smart battery pass-through */
3694
3695 /* Get / Set 16-bit smart battery registers */
3696 #define EC_CMD_SB_READ_WORD 0x00B0
3697 #define EC_CMD_SB_WRITE_WORD 0x00B1
3698
3699 /* Get / Set string smart battery parameters
3700 * formatted as SMBUS "block".
3701 */
3702 #define EC_CMD_SB_READ_BLOCK 0x00B2
3703 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
3704
3705 struct __ec_align1 ec_params_sb_rd {
3706 uint8_t reg;
3707 };
3708
3709 struct __ec_align2 ec_response_sb_rd_word {
3710 uint16_t value;
3711 };
3712
3713 struct __ec_align1 ec_params_sb_wr_word {
3714 uint8_t reg;
3715 uint16_t value;
3716 };
3717
3718 struct __ec_align1 ec_response_sb_rd_block {
3719 uint8_t data[32];
3720 };
3721
3722 struct __ec_align1 ec_params_sb_wr_block {
3723 uint8_t reg;
3724 uint16_t data[32];
3725 };
3726
3727 /*****************************************************************************/
3728 /* Battery vendor parameters
3729 *
3730 * Get or set vendor-specific parameters in the battery. Implementations may
3731 * differ between boards or batteries. On a set operation, the response
3732 * contains the actual value set, which may be rounded or clipped from the
3733 * requested value.
3734 */
3735
3736 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
3737
3738 enum ec_battery_vendor_param_mode {
3739 BATTERY_VENDOR_PARAM_MODE_GET = 0,
3740 BATTERY_VENDOR_PARAM_MODE_SET,
3741 };
3742
3743 struct __ec_align_size1 ec_params_battery_vendor_param {
3744 uint32_t param;
3745 uint32_t value;
3746 uint8_t mode;
3747 };
3748
3749 struct __ec_align4 ec_response_battery_vendor_param {
3750 uint32_t value;
3751 };
3752
3753 /*****************************************************************************/
3754 /*
3755 * Smart Battery Firmware Update Commands
3756 */
3757 #define EC_CMD_SB_FW_UPDATE 0x00B5
3758
3759 enum ec_sb_fw_update_subcmd {
3760 EC_SB_FW_UPDATE_PREPARE = 0x0,
3761 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */
3762 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */
3763 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */
3764 EC_SB_FW_UPDATE_END = 0x4,
3765 EC_SB_FW_UPDATE_STATUS = 0x5,
3766 EC_SB_FW_UPDATE_PROTECT = 0x6,
3767 EC_SB_FW_UPDATE_MAX = 0x7,
3768 };
3769
3770 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
3771 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
3772 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
3773
3774 struct __ec_align4 ec_sb_fw_update_header {
3775 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */
3776 uint16_t fw_id; /* firmware id */
3777 };
3778
3779 struct __ec_align4 ec_params_sb_fw_update {
3780 struct ec_sb_fw_update_header hdr;
3781 union {
3782 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */
3783 /* EC_SB_FW_UPDATE_INFO = 0x1 */
3784 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */
3785 /* EC_SB_FW_UPDATE_END = 0x4 */
3786 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
3787 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */
3788 struct __ec_align4 {
3789 /* no args */
3790 } dummy;
3791
3792 /* EC_SB_FW_UPDATE_WRITE = 0x3 */
3793 struct __ec_align4 {
3794 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
3795 } write;
3796 };
3797 };
3798
3799 struct __ec_align1 ec_response_sb_fw_update {
3800 union {
3801 /* EC_SB_FW_UPDATE_INFO = 0x1 */
3802 struct __ec_align1 {
3803 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
3804 } info;
3805
3806 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
3807 struct __ec_align1 {
3808 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
3809 } status;
3810 };
3811 };
3812
3813 /*
3814 * Entering Verified Boot Mode Command
3815 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
3816 * Valid Modes are: normal, developer, and recovery.
3817 */
3818 #define EC_CMD_ENTERING_MODE 0x00B6
3819
3820 struct __ec_align4 ec_params_entering_mode {
3821 int vboot_mode;
3822 };
3823
3824 #define VBOOT_MODE_NORMAL 0
3825 #define VBOOT_MODE_DEVELOPER 1
3826 #define VBOOT_MODE_RECOVERY 2
3827
3828 /*****************************************************************************/
3829 /*
3830 * I2C passthru protection command: Protects I2C tunnels against access on
3831 * certain addresses (board-specific).
3832 */
3833 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
3834
3835 enum ec_i2c_passthru_protect_subcmd {
3836 EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
3837 EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
3838 };
3839
3840 struct __ec_align1 ec_params_i2c_passthru_protect {
3841 uint8_t subcmd;
3842 uint8_t port; /* I2C port number */
3843 };
3844
3845 struct __ec_align1 ec_response_i2c_passthru_protect {
3846 uint8_t status; /* Status flags (0: unlocked, 1: locked) */
3847 };
3848
3849 /*****************************************************************************/
3850 /* System commands */
3851
3852 /*
3853 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
3854 * necessarily reboot the EC. Rename to "image" or something similar?
3855 */
3856 #define EC_CMD_REBOOT_EC 0x00D2
3857
3858 /* Command */
3859 enum ec_reboot_cmd {
3860 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
3861 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
3862 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
3863 /* (command 3 was jump to RW-B) */
3864 EC_REBOOT_COLD = 4, /* Cold-reboot */
3865 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
3866 EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */
3867 EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
3868 };
3869
3870 /* Flags for ec_params_reboot_ec.reboot_flags */
3871 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
3872 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
3873 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT (1 << 2) /* Switch RW slot */
3874
3875 struct __ec_align1 ec_params_reboot_ec {
3876 uint8_t cmd; /* enum ec_reboot_cmd */
3877 uint8_t flags; /* See EC_REBOOT_FLAG_* */
3878 };
3879
3880 /*
3881 * Get information on last EC panic.
3882 *
3883 * Returns variable-length platform-dependent panic information. See panic.h
3884 * for details.
3885 */
3886 #define EC_CMD_GET_PANIC_INFO 0x00D3
3887
3888 /*****************************************************************************/
3889 /*
3890 * Special commands
3891 *
3892 * These do not follow the normal rules for commands. See each command for
3893 * details.
3894 */
3895
3896 /*
3897 * Reboot NOW
3898 *
3899 * This command will work even when the EC LPC interface is busy, because the
3900 * reboot command is processed at interrupt level. Note that when the EC
3901 * reboots, the host will reboot too, so there is no response to this command.
3902 *
3903 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
3904 */
3905 #define EC_CMD_REBOOT 0x00D1 /* Think "die" */
3906
3907 /*
3908 * Resend last response (not supported on LPC).
3909 *
3910 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
3911 * there was no previous command, or the previous command's response was too
3912 * big to save.
3913 */
3914 #define EC_CMD_RESEND_RESPONSE 0x00DB
3915
3916 /*
3917 * This header byte on a command indicate version 0. Any header byte less
3918 * than this means that we are talking to an old EC which doesn't support
3919 * versioning. In that case, we assume version 0.
3920 *
3921 * Header bytes greater than this indicate a later version. For example,
3922 * EC_CMD_VERSION0 + 1 means we are using version 1.
3923 *
3924 * The old EC interface must not use commands 0xdc or higher.
3925 */
3926 #define EC_CMD_VERSION0 0x00DC
3927
3928 /*****************************************************************************/
3929 /*
3930 * PD commands
3931 *
3932 * These commands are for PD MCU communication.
3933 */
3934
3935 /* EC to PD MCU exchange status command */
3936 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
3937 #define EC_VER_PD_EXCHANGE_STATUS 2
3938
3939 enum pd_charge_state {
3940 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
3941 PD_CHARGE_NONE, /* No charging allowed */
3942 PD_CHARGE_5V, /* 5V charging only */
3943 PD_CHARGE_MAX /* Charge at max voltage */
3944 };
3945
3946 /* Status of EC being sent to PD */
3947 #define EC_STATUS_HIBERNATING (1 << 0)
3948
3949 struct __ec_align1 ec_params_pd_status {
3950 uint8_t status; /* EC status */
3951 int8_t batt_soc; /* battery state of charge */
3952 uint8_t charge_state; /* charging state (from enum pd_charge_state) */
3953 };
3954
3955 /* Status of PD being sent back to EC */
3956 #define PD_STATUS_HOST_EVENT (1 << 0) /* Forward host event to AP */
3957 #define PD_STATUS_IN_RW (1 << 1) /* Running RW image */
3958 #define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
3959 #define PD_STATUS_TCPC_ALERT_0 (1 << 3) /* Alert active in port 0 TCPC */
3960 #define PD_STATUS_TCPC_ALERT_1 (1 << 4) /* Alert active in port 1 TCPC */
3961 #define PD_STATUS_TCPC_ALERT_2 (1 << 5) /* Alert active in port 2 TCPC */
3962 #define PD_STATUS_TCPC_ALERT_3 (1 << 6) /* Alert active in port 3 TCPC */
3963 #define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \
3964 PD_STATUS_TCPC_ALERT_1 | \
3965 PD_STATUS_HOST_EVENT)
3966 struct __ec_align_size1 ec_response_pd_status {
3967 uint32_t curr_lim_ma; /* input current limit */
3968 uint16_t status; /* PD MCU status */
3969 int8_t active_charge_port; /* active charging port */
3970 };
3971
3972 /* AP to PD MCU host event status command, cleared on read */
3973 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
3974
3975 /* PD MCU host event status bits */
3976 #define PD_EVENT_UPDATE_DEVICE (1 << 0)
3977 #define PD_EVENT_POWER_CHANGE (1 << 1)
3978 #define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
3979 #define PD_EVENT_DATA_SWAP (1 << 3)
3980 struct __ec_align4 ec_response_host_event_status {
3981 uint32_t status; /* PD MCU host event status */
3982 };
3983
3984 /* Set USB type-C port role and muxes */
3985 #define EC_CMD_USB_PD_CONTROL 0x0101
3986
3987 enum usb_pd_control_role {
3988 USB_PD_CTRL_ROLE_NO_CHANGE = 0,
3989 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
3990 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
3991 USB_PD_CTRL_ROLE_FORCE_SINK = 3,
3992 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
3993 USB_PD_CTRL_ROLE_COUNT
3994 };
3995
3996 enum usb_pd_control_mux {
3997 USB_PD_CTRL_MUX_NO_CHANGE = 0,
3998 USB_PD_CTRL_MUX_NONE = 1,
3999 USB_PD_CTRL_MUX_USB = 2,
4000 USB_PD_CTRL_MUX_DP = 3,
4001 USB_PD_CTRL_MUX_DOCK = 4,
4002 USB_PD_CTRL_MUX_AUTO = 5,
4003 USB_PD_CTRL_MUX_COUNT
4004 };
4005
4006 enum usb_pd_control_swap {
4007 USB_PD_CTRL_SWAP_NONE = 0,
4008 USB_PD_CTRL_SWAP_DATA = 1,
4009 USB_PD_CTRL_SWAP_POWER = 2,
4010 USB_PD_CTRL_SWAP_VCONN = 3,
4011 USB_PD_CTRL_SWAP_COUNT
4012 };
4013
4014 struct __ec_align1 ec_params_usb_pd_control {
4015 uint8_t port;
4016 uint8_t role;
4017 uint8_t mux;
4018 uint8_t swap;
4019 };
4020
4021 #define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */
4022 #define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */
4023 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
4024
4025 #define PD_CTRL_RESP_ROLE_POWER (1 << 0) /* 0=SNK/1=SRC */
4026 #define PD_CTRL_RESP_ROLE_DATA (1 << 1) /* 0=UFP/1=DFP */
4027 #define PD_CTRL_RESP_ROLE_VCONN (1 << 2) /* Vconn status */
4028 #define PD_CTRL_RESP_ROLE_DR_POWER (1 << 3) /* Partner is dualrole power */
4029 #define PD_CTRL_RESP_ROLE_DR_DATA (1 << 4) /* Partner is dualrole data */
4030 #define PD_CTRL_RESP_ROLE_USB_COMM (1 << 5) /* Partner USB comm capable */
4031 #define PD_CTRL_RESP_ROLE_EXT_POWERED (1 << 6) /* Partner externally powerd */
4032
4033 struct __ec_align1 ec_response_usb_pd_control {
4034 uint8_t enabled;
4035 uint8_t role;
4036 uint8_t polarity;
4037 uint8_t state;
4038 };
4039
4040 struct __ec_align1 ec_response_usb_pd_control_v1 {
4041 uint8_t enabled;
4042 uint8_t role;
4043 uint8_t polarity;
4044 char state[32];
4045 };
4046
4047 #define EC_CMD_USB_PD_PORTS 0x0102
4048
4049 /* Maximum number of PD ports on a device, num_ports will be <= this */
4050 #define EC_USB_PD_MAX_PORTS 8
4051
4052 struct __ec_align1 ec_response_usb_pd_ports {
4053 uint8_t num_ports;
4054 };
4055
4056 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4057
4058 #define PD_POWER_CHARGING_PORT 0xff
4059 struct __ec_align1 ec_params_usb_pd_power_info {
4060 uint8_t port;
4061 };
4062
4063 enum usb_chg_type {
4064 USB_CHG_TYPE_NONE,
4065 USB_CHG_TYPE_PD,
4066 USB_CHG_TYPE_C,
4067 USB_CHG_TYPE_PROPRIETARY,
4068 USB_CHG_TYPE_BC12_DCP,
4069 USB_CHG_TYPE_BC12_CDP,
4070 USB_CHG_TYPE_BC12_SDP,
4071 USB_CHG_TYPE_OTHER,
4072 USB_CHG_TYPE_VBUS,
4073 USB_CHG_TYPE_UNKNOWN,
4074 };
4075 enum usb_power_roles {
4076 USB_PD_PORT_POWER_DISCONNECTED,
4077 USB_PD_PORT_POWER_SOURCE,
4078 USB_PD_PORT_POWER_SINK,
4079 USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4080 };
4081
4082 struct __ec_align2 usb_chg_measures {
4083 uint16_t voltage_max;
4084 uint16_t voltage_now;
4085 uint16_t current_max;
4086 uint16_t current_lim;
4087 };
4088
4089 struct __ec_align4 ec_response_usb_pd_power_info {
4090 uint8_t role;
4091 uint8_t type;
4092 uint8_t dualrole;
4093 uint8_t reserved1;
4094 struct usb_chg_measures meas;
4095 uint32_t max_power;
4096 };
4097
4098 /* Write USB-PD device FW */
4099 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
4100
4101 enum usb_pd_fw_update_cmds {
4102 USB_PD_FW_REBOOT,
4103 USB_PD_FW_FLASH_ERASE,
4104 USB_PD_FW_FLASH_WRITE,
4105 USB_PD_FW_ERASE_SIG,
4106 };
4107
4108 struct __ec_align4 ec_params_usb_pd_fw_update {
4109 uint16_t dev_id;
4110 uint8_t cmd;
4111 uint8_t port;
4112 uint32_t size; /* Size to write in bytes */
4113 /* Followed by data to write */
4114 };
4115
4116 /* Write USB-PD Accessory RW_HASH table entry */
4117 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
4118 /* RW hash is first 20 bytes of SHA-256 of RW section */
4119 #define PD_RW_HASH_SIZE 20
4120 struct __ec_align1 ec_params_usb_pd_rw_hash_entry {
4121 uint16_t dev_id;
4122 uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
4123 uint8_t reserved; /* For alignment of current_image
4124 * TODO(rspangler) but it's not aligned!
4125 * Should have been reserved[2]. */
4126 uint32_t current_image; /* One of ec_current_image */
4127 };
4128
4129 /* Read USB-PD Accessory info */
4130 #define EC_CMD_USB_PD_DEV_INFO 0x0112
4131
4132 struct __ec_align1 ec_params_usb_pd_info_request {
4133 uint8_t port;
4134 };
4135
4136 /* Read USB-PD Device discovery info */
4137 #define EC_CMD_USB_PD_DISCOVERY 0x0113
4138 struct __ec_align_size1 ec_params_usb_pd_discovery_entry {
4139 uint16_t vid; /* USB-IF VID */
4140 uint16_t pid; /* USB-IF PID */
4141 uint8_t ptype; /* product type (hub,periph,cable,ama) */
4142 };
4143
4144 /* Override default charge behavior */
4145 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
4146
4147 /* Negative port parameters have special meaning */
4148 enum usb_pd_override_ports {
4149 OVERRIDE_DONT_CHARGE = -2,
4150 OVERRIDE_OFF = -1,
4151 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
4152 };
4153
4154 struct __ec_align2 ec_params_charge_port_override {
4155 int16_t override_port; /* Override port# */
4156 };
4157
4158 /* Read (and delete) one entry of PD event log */
4159 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
4160
4161 struct __ec_align4 ec_response_pd_log {
4162 uint32_t timestamp; /* relative timestamp in milliseconds */
4163 uint8_t type; /* event type : see PD_EVENT_xx below */
4164 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */
4165 uint16_t data; /* type-defined data payload */
4166 uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
4167 };
4168
4169
4170 /* The timestamp is the microsecond counter shifted to get about a ms. */
4171 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
4172
4173 #define PD_LOG_SIZE_MASK 0x1f
4174 #define PD_LOG_PORT_MASK 0xe0
4175 #define PD_LOG_PORT_SHIFT 5
4176 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
4177 ((size) & PD_LOG_SIZE_MASK))
4178 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
4179 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
4180
4181 /* PD event log : entry types */
4182 /* PD MCU events */
4183 #define PD_EVENT_MCU_BASE 0x00
4184 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0)
4185 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1)
4186 /* Reserved for custom board event */
4187 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2)
4188 /* PD generic accessory events */
4189 #define PD_EVENT_ACC_BASE 0x20
4190 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0)
4191 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1)
4192 /* PD power supply events */
4193 #define PD_EVENT_PS_BASE 0x40
4194 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0)
4195 /* PD video dongles events */
4196 #define PD_EVENT_VIDEO_BASE 0x60
4197 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
4198 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1)
4199 /* Returned in the "type" field, when there is no entry available */
4200 #define PD_EVENT_NO_ENTRY 0xff
4201
4202 /*
4203 * PD_EVENT_MCU_CHARGE event definition :
4204 * the payload is "struct usb_chg_measures"
4205 * the data field contains the port state flags as defined below :
4206 */
4207 /* Port partner is a dual role device */
4208 #define CHARGE_FLAGS_DUAL_ROLE (1 << 15)
4209 /* Port is the pending override port */
4210 #define CHARGE_FLAGS_DELAYED_OVERRIDE (1 << 14)
4211 /* Port is the override port */
4212 #define CHARGE_FLAGS_OVERRIDE (1 << 13)
4213 /* Charger type */
4214 #define CHARGE_FLAGS_TYPE_SHIFT 3
4215 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT)
4216 /* Power delivery role */
4217 #define CHARGE_FLAGS_ROLE_MASK (7 << 0)
4218
4219 /*
4220 * PD_EVENT_PS_FAULT data field flags definition :
4221 */
4222 #define PS_FAULT_OCP 1
4223 #define PS_FAULT_FAST_OCP 2
4224 #define PS_FAULT_OVP 3
4225 #define PS_FAULT_DISCH 4
4226
4227 /*
4228 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
4229 */
4230 struct __ec_align4 mcdp_version {
4231 uint8_t major;
4232 uint8_t minor;
4233 uint16_t build;
4234 };
4235
4236 struct __ec_align4 mcdp_info {
4237 uint8_t family[2];
4238 uint8_t chipid[2];
4239 struct mcdp_version irom;
4240 struct mcdp_version fw;
4241 };
4242
4243 /* struct mcdp_info field decoding */
4244 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
4245 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
4246
4247 /* Get/Set USB-PD Alternate mode info */
4248 #define EC_CMD_USB_PD_GET_AMODE 0x0116
4249 struct __ec_align_size1 ec_params_usb_pd_get_mode_request {
4250 uint16_t svid_idx; /* SVID index to get */
4251 uint8_t port; /* port */
4252 };
4253
4254 struct __ec_align4 ec_params_usb_pd_get_mode_response {
4255 uint16_t svid; /* SVID */
4256 uint16_t opos; /* Object Position */
4257 uint32_t vdo[6]; /* Mode VDOs */
4258 };
4259
4260 #define EC_CMD_USB_PD_SET_AMODE 0x0117
4261
4262 enum pd_mode_cmd {
4263 PD_EXIT_MODE = 0,
4264 PD_ENTER_MODE = 1,
4265 /* Not a command. Do NOT remove. */
4266 PD_MODE_CMD_COUNT,
4267 };
4268
4269 struct __ec_align4 ec_params_usb_pd_set_mode_request {
4270 uint32_t cmd; /* enum pd_mode_cmd */
4271 uint16_t svid; /* SVID to set */
4272 uint8_t opos; /* Object Position */
4273 uint8_t port; /* port */
4274 };
4275
4276 /* Ask the PD MCU to record a log of a requested type */
4277 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
4278
4279 struct __ec_align1 ec_params_pd_write_log_entry {
4280 uint8_t type; /* event type : see PD_EVENT_xx above */
4281 uint8_t port; /* port#, or 0 for events unrelated to a given port */
4282 };
4283
4284
4285 /* Control USB-PD chip */
4286 #define EC_CMD_PD_CONTROL 0x0119
4287
4288 enum ec_pd_control_cmd {
4289 PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */
4290 PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */
4291 PD_RESET, /* Force reset the PD chip */
4292 PD_CONTROL_DISABLE /* Disable further calls to this command */
4293 };
4294
4295 struct __ec_align1 ec_params_pd_control {
4296 uint8_t chip; /* chip id (should be 0) */
4297 uint8_t subcmd;
4298 };
4299
4300 /* Get info about USB-C SS muxes */
4301 #define EC_CMD_USB_PD_MUX_INFO 0x011A
4302
4303 struct __ec_align1 ec_params_usb_pd_mux_info {
4304 uint8_t port; /* USB-C port number */
4305 };
4306
4307 /* Flags representing mux state */
4308 #define USB_PD_MUX_USB_ENABLED (1 << 0)
4309 #define USB_PD_MUX_DP_ENABLED (1 << 1)
4310 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
4311 #define USB_PD_MUX_HPD_IRQ (1 << 3)
4312
4313 struct __ec_align1 ec_response_usb_pd_mux_info {
4314 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
4315 };
4316
4317 #define EC_CMD_PD_CHIP_INFO 0x011B
4318
4319 struct __ec_align1 ec_params_pd_chip_info {
4320 uint8_t port; /* USB-C port number */
4321 uint8_t renew; /* Force renewal */
4322 };
4323
4324 struct __ec_align2 ec_response_pd_chip_info {
4325 uint16_t vendor_id;
4326 uint16_t product_id;
4327 uint16_t device_id;
4328 union {
4329 uint8_t fw_version_string[8];
4330 uint64_t fw_version_number;
4331 };
4332 };
4333
4334 /* Run RW signature verification and get status */
4335 #define EC_CMD_RWSIG_CHECK_STATUS 0x011C
4336
4337 struct __ec_align4 ec_response_rwsig_check_status {
4338 uint32_t status;
4339 };
4340
4341 /* For controlling RWSIG task */
4342 #define EC_CMD_RWSIG_ACTION 0x011D
4343
4344 enum rwsig_action {
4345 RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */
4346 RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */
4347 };
4348
4349 struct __ec_align4 ec_params_rwsig_action {
4350 uint32_t action;
4351 };
4352
4353 /* Run verification on a slot */
4354 #define EC_CMD_EFS_VERIFY 0x011E
4355
4356 struct __ec_align1 ec_params_efs_verify {
4357 uint8_t region; /* enum ec_flash_region */
4358 };
4359
4360 /*
4361 * Retrieve info from Cros Board Info store. Response is based on the data
4362 * type. Integers return a uint32. Strings return a string, using the response
4363 * size to determine how big it is.
4364 */
4365 #define EC_CMD_GET_CROS_BOARD_INFO 0x011F
4366 /*
4367 * Write info into Cros Board Info on EEPROM. Write fails if the board has
4368 * hardware write-protect enabled.
4369 */
4370 #define EC_CMD_SET_CROS_BOARD_INFO 0x0120
4371
4372 enum cbi_data_tag {
4373 CBI_TAG_BOARD_VERSION = 0, /* uint16_t or uint8_t[] = {minor,major} */
4374 CBI_TAG_OEM_ID = 1, /* uint8_t */
4375 CBI_TAG_SKU_ID = 2, /* uint8_t */
4376 CBI_TAG_COUNT,
4377 };
4378
4379 /*
4380 * Flags to control read operation
4381 *
4382 * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify
4383 * write was successful without reboot.
4384 */
4385 #define CBI_GET_RELOAD (1 << 0)
4386
4387 struct __ec_align4 ec_params_get_cbi {
4388 uint32_t type; /* enum cbi_data_tag */
4389 uint32_t flag; /* CBI_GET_* */
4390 };
4391
4392 /*
4393 * Flags to control write behavior.
4394 *
4395 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
4396 * useful when writing multiple fields in a row.
4397 * INIT: Needs to be set when creating a new CBI from scratch. All fields
4398 * will be initialized to zero first.
4399 */
4400 #define CBI_SET_NO_SYNC (1 << 0)
4401 #define CBI_SET_INIT (1 << 1)
4402
4403 struct __ec_align1 ec_params_set_cbi {
4404 uint32_t tag; /* enum cbi_data_tag */
4405 uint32_t flag; /* CBI_SET_* */
4406 uint32_t size; /* Data size */
4407 uint8_t data[]; /* For string and raw data */
4408 };
4409
4410 /*****************************************************************************/
4411 /* The command range 0x200-0x2FF is reserved for Rotor. */
4412
4413 /*****************************************************************************/
4414 /*
4415 * Reserve a range of host commands for the CR51 firmware.
4416 */
4417 #define EC_CMD_CR51_BASE 0x0300
4418 #define EC_CMD_CR51_LAST 0x03FF
4419
4420 /*****************************************************************************/
4421 /* Fingerprint MCU commands: range 0x0400-0x040x */
4422
4423 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
4424 #define EC_CMD_FP_PASSTHRU 0x0400
4425
4426 #define EC_FP_FLAG_NOT_COMPLETE 0x1
4427
4428 struct __ec_align2 ec_params_fp_passthru {
4429 uint16_t len; /* Number of bytes to write then read */
4430 uint16_t flags; /* EC_FP_FLAG_xxx */
4431 uint8_t data[]; /* Data to send */
4432 };
4433
4434 /* Fingerprint sensor configuration command: prototyping ONLY */
4435 #define EC_CMD_FP_SENSOR_CONFIG 0x0401
4436
4437 #define EC_FP_SENSOR_CONFIG_MAX_REGS 16
4438
4439 struct __ec_align2 ec_params_fp_sensor_config {
4440 uint8_t count; /* Number of setup registers */
4441 /*
4442 * the value to send to each of the 'count' setup registers
4443 * is stored in the 'data' array for 'len' bytes just after
4444 * the previous one.
4445 */
4446 uint8_t len[EC_FP_SENSOR_CONFIG_MAX_REGS];
4447 uint8_t data[];
4448 };
4449
4450 /* Configure the Fingerprint MCU behavior */
4451 #define EC_CMD_FP_MODE 0x0402
4452
4453 /* Put the sensor in its lowest power mode */
4454 #define FP_MODE_DEEPSLEEP (1<<0)
4455 /* Wait to see a finger on the sensor */
4456 #define FP_MODE_FINGER_DOWN (1<<1)
4457 /* Poll until the finger has left the sensor */
4458 #define FP_MODE_FINGER_UP (1<<2)
4459 /* Capture the current finger image */
4460 #define FP_MODE_CAPTURE (1<<3)
4461 /* special value: don't change anything just read back current mode */
4462 #define FP_MODE_DONT_CHANGE (1<<31)
4463
4464 struct __ec_align4 ec_params_fp_mode {
4465 uint32_t mode; /* as defined by FP_MODE_ constants */
4466 /* TBD */
4467 };
4468
4469 struct __ec_align4 ec_response_fp_mode {
4470 uint32_t mode; /* as defined by FP_MODE_ constants */
4471 /* TBD */
4472 };
4473
4474 /* Retrieve Fingerprint sensor information */
4475 #define EC_CMD_FP_INFO 0x0403
4476
4477 struct __ec_align2 ec_response_fp_info {
4478 /* Sensor identification */
4479 uint32_t vendor_id;
4480 uint32_t product_id;
4481 uint32_t model_id;
4482 uint32_t version;
4483 /* Image frame characteristics */
4484 uint32_t frame_size;
4485 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
4486 uint16_t width;
4487 uint16_t height;
4488 uint16_t bpp;
4489 };
4490
4491 /* Get the last captured finger frame: TODO: will be AES-encrypted */
4492 #define EC_CMD_FP_FRAME 0x0404
4493
4494 struct __ec_align4 ec_params_fp_frame {
4495 uint32_t offset;
4496 uint32_t size;
4497 };
4498
4499 /*****************************************************************************/
4500 /* Touchpad MCU commands: range 0x0500-0x05FF */
4501
4502 /* Perform touchpad self test */
4503 #define EC_CMD_TP_SELF_TEST 0x0500
4504
4505 /* Get number of frame types, and the size of each type */
4506 #define EC_CMD_TP_FRAME_INFO 0x0501
4507
4508 struct __ec_align4 ec_response_tp_frame_info {
4509 uint32_t n_frames;
4510 uint32_t frame_sizes[0];
4511 };
4512
4513 /* Create a snapshot of current frame readings */
4514 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
4515
4516 /* Read the frame */
4517 #define EC_CMD_TP_FRAME_GET 0x0503
4518
4519 struct __ec_align4 ec_params_tp_frame_get {
4520 uint32_t frame_index;
4521 uint32_t offset;
4522 uint32_t size;
4523 };
4524
4525 /*****************************************************************************/
4526 /*
4527 * Reserve a range of host commands for board-specific, experimental, or
4528 * special purpose features. These can be (re)used without updating this file.
4529 *
4530 * CAUTION: Don't go nuts with this. Shipping products should document ALL
4531 * their EC commands for easier development, testing, debugging, and support.
4532 *
4533 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
4534 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
4535 *
4536 * In your experimental code, you may want to do something like this:
4537 *
4538 * #define EC_CMD_MAGIC_FOO 0x0000
4539 * #define EC_CMD_MAGIC_BAR 0x0001
4540 * #define EC_CMD_MAGIC_HEY 0x0002
4541 *
4542 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
4543 * EC_VER_MASK(0);
4544 *
4545 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
4546 * EC_VER_MASK(0);
4547 *
4548 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
4549 * EC_VER_MASK(0);
4550 */
4551 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
4552 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
4553
4554 /*
4555 * Given the private host command offset, calculate the true private host
4556 * command value.
4557 */
4558 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
4559 (EC_CMD_BOARD_SPECIFIC_BASE + (command))
4560
4561 /*****************************************************************************/
4562 /*
4563 * Passthru commands
4564 *
4565 * Some platforms have sub-processors chained to each other. For example.
4566 *
4567 * AP <--> EC <--> PD MCU
4568 *
4569 * The top 2 bits of the command number are used to indicate which device the
4570 * command is intended for. Device 0 is always the device receiving the
4571 * command; other device mapping is board-specific.
4572 *
4573 * When a device receives a command to be passed to a sub-processor, it passes
4574 * it on with the device number set back to 0. This allows the sub-processor
4575 * to remain blissfully unaware of whether the command originated on the next
4576 * device up the chain, or was passed through from the AP.
4577 *
4578 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
4579 * AP sends command 0x4002 to the EC
4580 * EC sends command 0x0002 to the PD MCU
4581 * EC forwards PD MCU response back to the AP
4582 */
4583
4584 /* Offset and max command number for sub-device n */
4585 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
4586 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
4587
4588 /*****************************************************************************/
4589 /*
4590 * Deprecated constants. These constants have been renamed for clarity. The
4591 * meaning and size has not changed. Programs that use the old names should
4592 * switch to the new names soon, as the old names may not be carried forward
4593 * forever.
4594 */
4595 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
4596 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
4597 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
4598
4599 #endif /* !__ACPI__ && !__KERNEL__ */
4600
4601 #endif /* __CROS_EC_COMMANDS_H */