]> git.ipfire.org Git - thirdparty/u-boot.git/blob - include/fdtdec.h
Convert CONFIG_SHOW_BOOT_PROGRESS to Kconfig
[thirdparty/u-boot.git] / include / fdtdec.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (c) 2011 The Chromium OS Authors.
4 */
5
6 #ifndef __fdtdec_h
7 #define __fdtdec_h
8
9 /*
10 * This file contains convenience functions for decoding useful and
11 * enlightening information from FDTs. It is intended to be used by device
12 * drivers and board-specific code within U-Boot. It aims to reduce the
13 * amount of FDT munging required within U-Boot itself, so that driver code
14 * changes to support FDT are minimized.
15 */
16
17 #include <linux/libfdt.h>
18 #include <pci.h>
19
20 /*
21 * A typedef for a physical address. Note that fdt data is always big
22 * endian even on a litle endian machine.
23 */
24 typedef phys_addr_t fdt_addr_t;
25 typedef phys_size_t fdt_size_t;
26
27 #ifdef CONFIG_PHYS_64BIT
28 #define FDT_ADDR_T_NONE (-1U)
29 #define fdt_addr_to_cpu(reg) be64_to_cpu(reg)
30 #define fdt_size_to_cpu(reg) be64_to_cpu(reg)
31 #define cpu_to_fdt_addr(reg) cpu_to_be64(reg)
32 #define cpu_to_fdt_size(reg) cpu_to_be64(reg)
33 typedef fdt64_t fdt_val_t;
34 #else
35 #define FDT_ADDR_T_NONE (-1U)
36 #define fdt_addr_to_cpu(reg) be32_to_cpu(reg)
37 #define fdt_size_to_cpu(reg) be32_to_cpu(reg)
38 #define cpu_to_fdt_addr(reg) cpu_to_be32(reg)
39 #define cpu_to_fdt_size(reg) cpu_to_be32(reg)
40 typedef fdt32_t fdt_val_t;
41 #endif
42
43 /* Information obtained about memory from the FDT */
44 struct fdt_memory {
45 fdt_addr_t start;
46 fdt_addr_t end;
47 };
48
49 struct bd_info;
50
51 #ifdef CONFIG_SPL_BUILD
52 #define SPL_BUILD 1
53 #else
54 #define SPL_BUILD 0
55 #endif
56
57 #if CONFIG_IS_ENABLED(OF_PRIOR_STAGE)
58 extern phys_addr_t prior_stage_fdt_address;
59 #endif
60
61 /*
62 * Information about a resource. start is the first address of the resource
63 * and end is the last address (inclusive). The length of the resource will
64 * be equal to: end - start + 1.
65 */
66 struct fdt_resource {
67 fdt_addr_t start;
68 fdt_addr_t end;
69 };
70
71 enum fdt_pci_space {
72 FDT_PCI_SPACE_CONFIG = 0,
73 FDT_PCI_SPACE_IO = 0x01000000,
74 FDT_PCI_SPACE_MEM32 = 0x02000000,
75 FDT_PCI_SPACE_MEM64 = 0x03000000,
76 FDT_PCI_SPACE_MEM32_PREF = 0x42000000,
77 FDT_PCI_SPACE_MEM64_PREF = 0x43000000,
78 };
79
80 #define FDT_PCI_ADDR_CELLS 3
81 #define FDT_PCI_SIZE_CELLS 2
82 #define FDT_PCI_REG_SIZE \
83 ((FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS) * sizeof(u32))
84
85 /*
86 * The Open Firmware spec defines PCI physical address as follows:
87 *
88 * bits# 31 .... 24 23 .... 16 15 .... 08 07 .... 00
89 *
90 * phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr
91 * phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
92 * phys.lo cell: llllllll llllllll llllllll llllllll
93 *
94 * where:
95 *
96 * n: is 0 if the address is relocatable, 1 otherwise
97 * p: is 1 if addressable region is prefetchable, 0 otherwise
98 * t: is 1 if the address is aliased (for non-relocatable I/O) below 1MB
99 * (for Memory), or below 64KB (for relocatable I/O)
100 * ss: is the space code, denoting the address space
101 * bbbbbbbb: is the 8-bit Bus Number
102 * ddddd: is the 5-bit Device Number
103 * fff: is the 3-bit Function Number
104 * rrrrrrrr: is the 8-bit Register Number
105 * hhhhhhhh: is a 32-bit unsigned number
106 * llllllll: is a 32-bit unsigned number
107 */
108 struct fdt_pci_addr {
109 u32 phys_hi;
110 u32 phys_mid;
111 u32 phys_lo;
112 };
113
114 /**
115 * Compute the size of a resource.
116 *
117 * @param res the resource to operate on
118 * @return the size of the resource
119 */
120 static inline fdt_size_t fdt_resource_size(const struct fdt_resource *res)
121 {
122 return res->end - res->start + 1;
123 }
124
125 /**
126 * Compat types that we know about and for which we might have drivers.
127 * Each is named COMPAT_<dir>_<filename> where <dir> is the directory
128 * within drivers.
129 */
130 enum fdt_compat_id {
131 COMPAT_UNKNOWN,
132 COMPAT_NVIDIA_TEGRA20_EMC, /* Tegra20 memory controller */
133 COMPAT_NVIDIA_TEGRA20_EMC_TABLE, /* Tegra20 memory timing table */
134 COMPAT_NVIDIA_TEGRA20_NAND, /* Tegra2 NAND controller */
135 COMPAT_NVIDIA_TEGRA124_XUSB_PADCTL,
136 /* Tegra124 XUSB pad controller */
137 COMPAT_NVIDIA_TEGRA210_XUSB_PADCTL,
138 /* Tegra210 XUSB pad controller */
139 COMPAT_SMSC_LAN9215, /* SMSC 10/100 Ethernet LAN9215 */
140 COMPAT_SAMSUNG_EXYNOS5_SROMC, /* Exynos5 SROMC */
141 COMPAT_SAMSUNG_EXYNOS_USB_PHY, /* Exynos phy controller for usb2.0 */
142 COMPAT_SAMSUNG_EXYNOS5_USB3_PHY,/* Exynos phy controller for usb3.0 */
143 COMPAT_SAMSUNG_EXYNOS_TMU, /* Exynos TMU */
144 COMPAT_SAMSUNG_EXYNOS_MIPI_DSI, /* Exynos mipi dsi */
145 COMPAT_SAMSUNG_EXYNOS_DWMMC, /* Exynos DWMMC controller */
146 COMPAT_GENERIC_SPI_FLASH, /* Generic SPI Flash chip */
147 COMPAT_SAMSUNG_EXYNOS_SYSMMU, /* Exynos sysmmu */
148 COMPAT_INTEL_MICROCODE, /* Intel microcode update */
149 COMPAT_INTEL_QRK_MRC, /* Intel Quark MRC */
150 COMPAT_ALTERA_SOCFPGA_DWMAC, /* SoCFPGA Ethernet controller */
151 COMPAT_ALTERA_SOCFPGA_DWMMC, /* SoCFPGA DWMMC controller */
152 COMPAT_ALTERA_SOCFPGA_DWC2USB, /* SoCFPGA DWC2 USB controller */
153 COMPAT_INTEL_BAYTRAIL_FSP, /* Intel Bay Trail FSP */
154 COMPAT_INTEL_BAYTRAIL_FSP_MDP, /* Intel FSP memory-down params */
155 COMPAT_INTEL_IVYBRIDGE_FSP, /* Intel Ivy Bridge FSP */
156 COMPAT_SUNXI_NAND, /* SUNXI NAND controller */
157 COMPAT_ALTERA_SOCFPGA_CLK, /* SoCFPGA Clock initialization */
158 COMPAT_ALTERA_SOCFPGA_PINCTRL_SINGLE, /* SoCFPGA pinctrl-single */
159 COMPAT_ALTERA_SOCFPGA_H2F_BRG, /* SoCFPGA hps2fpga bridge */
160 COMPAT_ALTERA_SOCFPGA_LWH2F_BRG, /* SoCFPGA lwhps2fpga bridge */
161 COMPAT_ALTERA_SOCFPGA_F2H_BRG, /* SoCFPGA fpga2hps bridge */
162 COMPAT_ALTERA_SOCFPGA_F2SDR0, /* SoCFPGA fpga2SDRAM0 bridge */
163 COMPAT_ALTERA_SOCFPGA_F2SDR1, /* SoCFPGA fpga2SDRAM1 bridge */
164 COMPAT_ALTERA_SOCFPGA_F2SDR2, /* SoCFPGA fpga2SDRAM2 bridge */
165 COMPAT_ALTERA_SOCFPGA_FPGA0, /* SOCFPGA FPGA manager */
166 COMPAT_ALTERA_SOCFPGA_NOC, /* SOCFPGA Arria 10 NOC */
167 COMPAT_ALTERA_SOCFPGA_CLK_INIT, /* SOCFPGA Arria 10 clk init */
168
169 COMPAT_COUNT,
170 };
171
172 #define MAX_PHANDLE_ARGS 16
173 struct fdtdec_phandle_args {
174 int node;
175 int args_count;
176 uint32_t args[MAX_PHANDLE_ARGS];
177 };
178
179 /**
180 * fdtdec_parse_phandle_with_args() - Find a node pointed by phandle in a list
181 *
182 * This function is useful to parse lists of phandles and their arguments.
183 *
184 * Example:
185 *
186 * phandle1: node1 {
187 * #list-cells = <2>;
188 * }
189 *
190 * phandle2: node2 {
191 * #list-cells = <1>;
192 * }
193 *
194 * node3 {
195 * list = <&phandle1 1 2 &phandle2 3>;
196 * }
197 *
198 * To get a device_node of the `node2' node you may call this:
199 * fdtdec_parse_phandle_with_args(blob, node3, "list", "#list-cells", 0, 1,
200 * &args);
201 *
202 * (This function is a modified version of __of_parse_phandle_with_args() from
203 * Linux 3.18)
204 *
205 * @blob: Pointer to device tree
206 * @src_node: Offset of device tree node containing a list
207 * @list_name: property name that contains a list
208 * @cells_name: property name that specifies the phandles' arguments count,
209 * or NULL to use @cells_count
210 * @cells_count: Cell count to use if @cells_name is NULL
211 * @index: index of a phandle to parse out
212 * @out_args: optional pointer to output arguments structure (will be filled)
213 * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
214 * @list_name does not exist, a phandle was not found, @cells_name
215 * could not be found, the arguments were truncated or there were too
216 * many arguments.
217 *
218 */
219 int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
220 const char *list_name,
221 const char *cells_name,
222 int cell_count, int index,
223 struct fdtdec_phandle_args *out_args);
224
225 /**
226 * Find the next numbered alias for a peripheral. This is used to enumerate
227 * all the peripherals of a certain type.
228 *
229 * Do the first call with *upto = 0. Assuming /aliases/<name>0 exists then
230 * this function will return a pointer to the node the alias points to, and
231 * then update *upto to 1. Next time you call this function, the next node
232 * will be returned.
233 *
234 * All nodes returned will match the compatible ID, as it is assumed that
235 * all peripherals use the same driver.
236 *
237 * @param blob FDT blob to use
238 * @param name Root name of alias to search for
239 * @param id Compatible ID to look for
240 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
241 */
242 int fdtdec_next_alias(const void *blob, const char *name,
243 enum fdt_compat_id id, int *upto);
244
245 /**
246 * Find the compatible ID for a given node.
247 *
248 * Generally each node has at least one compatible string attached to it.
249 * This function looks through our list of known compatible strings and
250 * returns the corresponding ID which matches the compatible string.
251 *
252 * @param blob FDT blob to use
253 * @param node Node containing compatible string to find
254 * @return compatible ID, or COMPAT_UNKNOWN if we cannot find a match
255 */
256 enum fdt_compat_id fdtdec_lookup(const void *blob, int node);
257
258 /**
259 * Find the next compatible node for a peripheral.
260 *
261 * Do the first call with node = 0. This function will return a pointer to
262 * the next compatible node. Next time you call this function, pass the
263 * value returned, and the next node will be provided.
264 *
265 * @param blob FDT blob to use
266 * @param node Start node for search
267 * @param id Compatible ID to look for (enum fdt_compat_id)
268 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
269 */
270 int fdtdec_next_compatible(const void *blob, int node,
271 enum fdt_compat_id id);
272
273 /**
274 * Find the next compatible subnode for a peripheral.
275 *
276 * Do the first call with node set to the parent and depth = 0. This
277 * function will return the offset of the next compatible node. Next time
278 * you call this function, pass the node value returned last time, with
279 * depth unchanged, and the next node will be provided.
280 *
281 * @param blob FDT blob to use
282 * @param node Start node for search
283 * @param id Compatible ID to look for (enum fdt_compat_id)
284 * @param depthp Current depth (set to 0 before first call)
285 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
286 */
287 int fdtdec_next_compatible_subnode(const void *blob, int node,
288 enum fdt_compat_id id, int *depthp);
289
290 /*
291 * Look up an address property in a node and return the parsed address, and
292 * optionally the parsed size.
293 *
294 * This variant assumes a known and fixed number of cells are used to
295 * represent the address and size.
296 *
297 * You probably don't want to use this function directly except to parse
298 * non-standard properties, and never to parse the "reg" property. Instead,
299 * use one of the "auto" variants below, which automatically honor the
300 * #address-cells and #size-cells properties in the parent node.
301 *
302 * @param blob FDT blob
303 * @param node node to examine
304 * @param prop_name name of property to find
305 * @param index which address to retrieve from a list of addresses. Often 0.
306 * @param na the number of cells used to represent an address
307 * @param ns the number of cells used to represent a size
308 * @param sizep a pointer to store the size into. Use NULL if not required
309 * @param translate Indicates whether to translate the returned value
310 * using the parent node's ranges property.
311 * @return address, if found, or FDT_ADDR_T_NONE if not
312 */
313 fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node,
314 const char *prop_name, int index, int na, int ns,
315 fdt_size_t *sizep, bool translate);
316
317 /*
318 * Look up an address property in a node and return the parsed address, and
319 * optionally the parsed size.
320 *
321 * This variant automatically determines the number of cells used to represent
322 * the address and size by parsing the provided parent node's #address-cells
323 * and #size-cells properties.
324 *
325 * @param blob FDT blob
326 * @param parent parent node of @node
327 * @param node node to examine
328 * @param prop_name name of property to find
329 * @param index which address to retrieve from a list of addresses. Often 0.
330 * @param sizep a pointer to store the size into. Use NULL if not required
331 * @param translate Indicates whether to translate the returned value
332 * using the parent node's ranges property.
333 * @return address, if found, or FDT_ADDR_T_NONE if not
334 */
335 fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent,
336 int node, const char *prop_name, int index, fdt_size_t *sizep,
337 bool translate);
338
339 /*
340 * Look up an address property in a node and return the parsed address, and
341 * optionally the parsed size.
342 *
343 * This variant automatically determines the number of cells used to represent
344 * the address and size by parsing the parent node's #address-cells
345 * and #size-cells properties. The parent node is automatically found.
346 *
347 * The automatic parent lookup implemented by this function is slow.
348 * Consequently, fdtdec_get_addr_size_auto_parent() should be used where
349 * possible.
350 *
351 * @param blob FDT blob
352 * @param parent parent node of @node
353 * @param node node to examine
354 * @param prop_name name of property to find
355 * @param index which address to retrieve from a list of addresses. Often 0.
356 * @param sizep a pointer to store the size into. Use NULL if not required
357 * @param translate Indicates whether to translate the returned value
358 * using the parent node's ranges property.
359 * @return address, if found, or FDT_ADDR_T_NONE if not
360 */
361 fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node,
362 const char *prop_name, int index, fdt_size_t *sizep,
363 bool translate);
364
365 /*
366 * Look up an address property in a node and return the parsed address.
367 *
368 * This variant hard-codes the number of cells used to represent the address
369 * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also
370 * always returns the first address value in the property (index 0).
371 *
372 * Use of this function is not recommended due to the hard-coding of cell
373 * counts. There is no programmatic validation that these hard-coded values
374 * actually match the device tree content in any way at all. This assumption
375 * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately
376 * set in the U-Boot build and exercising strict control over DT content to
377 * ensure use of matching #address-cells/#size-cells properties. However, this
378 * approach is error-prone; those familiar with DT will not expect the
379 * assumption to exist, and could easily invalidate it. If the assumption is
380 * invalidated, this function will not report the issue, and debugging will
381 * be required. Instead, use fdtdec_get_addr_size_auto_parent().
382 *
383 * @param blob FDT blob
384 * @param node node to examine
385 * @param prop_name name of property to find
386 * @return address, if found, or FDT_ADDR_T_NONE if not
387 */
388 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
389 const char *prop_name);
390
391 /*
392 * Look up an address property in a node and return the parsed address, and
393 * optionally the parsed size.
394 *
395 * This variant hard-codes the number of cells used to represent the address
396 * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also
397 * always returns the first address value in the property (index 0).
398 *
399 * Use of this function is not recommended due to the hard-coding of cell
400 * counts. There is no programmatic validation that these hard-coded values
401 * actually match the device tree content in any way at all. This assumption
402 * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately
403 * set in the U-Boot build and exercising strict control over DT content to
404 * ensure use of matching #address-cells/#size-cells properties. However, this
405 * approach is error-prone; those familiar with DT will not expect the
406 * assumption to exist, and could easily invalidate it. If the assumption is
407 * invalidated, this function will not report the issue, and debugging will
408 * be required. Instead, use fdtdec_get_addr_size_auto_parent().
409 *
410 * @param blob FDT blob
411 * @param node node to examine
412 * @param prop_name name of property to find
413 * @param sizep a pointer to store the size into. Use NULL if not required
414 * @return address, if found, or FDT_ADDR_T_NONE if not
415 */
416 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
417 const char *prop_name, fdt_size_t *sizep);
418
419 /**
420 * Look at an address property in a node and return the pci address which
421 * corresponds to the given type in the form of fdt_pci_addr.
422 * The property must hold one fdt_pci_addr with a lengh.
423 *
424 * @param blob FDT blob
425 * @param node node to examine
426 * @param type pci address type (FDT_PCI_SPACE_xxx)
427 * @param prop_name name of property to find
428 * @param addr returns pci address in the form of fdt_pci_addr
429 * @return 0 if ok, -ENOENT if the property did not exist, -EINVAL if the
430 * format of the property was invalid, -ENXIO if the requested
431 * address type was not found
432 */
433 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
434 const char *prop_name, struct fdt_pci_addr *addr);
435
436 /**
437 * Look at the compatible property of a device node that represents a PCI
438 * device and extract pci vendor id and device id from it.
439 *
440 * @param blob FDT blob
441 * @param node node to examine
442 * @param vendor vendor id of the pci device
443 * @param device device id of the pci device
444 * @return 0 if ok, negative on error
445 */
446 int fdtdec_get_pci_vendev(const void *blob, int node,
447 u16 *vendor, u16 *device);
448
449 /**
450 * Look at the pci address of a device node that represents a PCI device
451 * and return base address of the pci device's registers.
452 *
453 * @param dev device to examine
454 * @param addr pci address in the form of fdt_pci_addr
455 * @param bar returns base address of the pci device's registers
456 * @return 0 if ok, negative on error
457 */
458 int fdtdec_get_pci_bar32(struct udevice *dev, struct fdt_pci_addr *addr,
459 u32 *bar);
460
461 /**
462 * Look up a 32-bit integer property in a node and return it. The property
463 * must have at least 4 bytes of data. The value of the first cell is
464 * returned.
465 *
466 * @param blob FDT blob
467 * @param node node to examine
468 * @param prop_name name of property to find
469 * @param default_val default value to return if the property is not found
470 * @return integer value, if found, or default_val if not
471 */
472 s32 fdtdec_get_int(const void *blob, int node, const char *prop_name,
473 s32 default_val);
474
475 /**
476 * Unsigned version of fdtdec_get_int. The property must have at least
477 * 4 bytes of data. The value of the first cell is returned.
478 *
479 * @param blob FDT blob
480 * @param node node to examine
481 * @param prop_name name of property to find
482 * @param default_val default value to return if the property is not found
483 * @return unsigned integer value, if found, or default_val if not
484 */
485 unsigned int fdtdec_get_uint(const void *blob, int node, const char *prop_name,
486 unsigned int default_val);
487
488 /**
489 * Get a variable-sized number from a property
490 *
491 * This reads a number from one or more cells.
492 *
493 * @param ptr Pointer to property
494 * @param cells Number of cells containing the number
495 * @return the value in the cells
496 */
497 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells);
498
499 /**
500 * Look up a 64-bit integer property in a node and return it. The property
501 * must have at least 8 bytes of data (2 cells). The first two cells are
502 * concatenated to form a 8 bytes value, where the first cell is top half and
503 * the second cell is bottom half.
504 *
505 * @param blob FDT blob
506 * @param node node to examine
507 * @param prop_name name of property to find
508 * @param default_val default value to return if the property is not found
509 * @return integer value, if found, or default_val if not
510 */
511 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
512 uint64_t default_val);
513
514 /**
515 * Checks whether a node is enabled.
516 * This looks for a 'status' property. If this exists, then returns 1 if
517 * the status is 'ok' and 0 otherwise. If there is no status property,
518 * it returns 1 on the assumption that anything mentioned should be enabled
519 * by default.
520 *
521 * @param blob FDT blob
522 * @param node node to examine
523 * @return integer value 0 (not enabled) or 1 (enabled)
524 */
525 int fdtdec_get_is_enabled(const void *blob, int node);
526
527 /**
528 * Make sure we have a valid fdt available to control U-Boot.
529 *
530 * If not, a message is printed to the console if the console is ready.
531 *
532 * @return 0 if all ok, -1 if not
533 */
534 int fdtdec_prepare_fdt(void);
535
536 /**
537 * Checks that we have a valid fdt available to control U-Boot.
538
539 * However, if not then for the moment nothing is done, since this function
540 * is called too early to panic().
541 *
542 * @returns 0
543 */
544 int fdtdec_check_fdt(void);
545
546 /**
547 * Find the nodes for a peripheral and return a list of them in the correct
548 * order. This is used to enumerate all the peripherals of a certain type.
549 *
550 * To use this, optionally set up a /aliases node with alias properties for
551 * a peripheral. For example, for usb you could have:
552 *
553 * aliases {
554 * usb0 = "/ehci@c5008000";
555 * usb1 = "/ehci@c5000000";
556 * };
557 *
558 * Pass "usb" as the name to this function and will return a list of two
559 * nodes offsets: /ehci@c5008000 and ehci@c5000000.
560 *
561 * All nodes returned will match the compatible ID, as it is assumed that
562 * all peripherals use the same driver.
563 *
564 * If no alias node is found, then the node list will be returned in the
565 * order found in the fdt. If the aliases mention a node which doesn't
566 * exist, then this will be ignored. If nodes are found with no aliases,
567 * they will be added in any order.
568 *
569 * If there is a gap in the aliases, then this function return a 0 node at
570 * that position. The return value will also count these gaps.
571 *
572 * This function checks node properties and will not return nodes which are
573 * marked disabled (status = "disabled").
574 *
575 * @param blob FDT blob to use
576 * @param name Root name of alias to search for
577 * @param id Compatible ID to look for
578 * @param node_list Place to put list of found nodes
579 * @param maxcount Maximum number of nodes to find
580 * @return number of nodes found on success, FDT_ERR_... on error
581 */
582 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
583 enum fdt_compat_id id, int *node_list, int maxcount);
584
585 /*
586 * This function is similar to fdtdec_find_aliases_for_id() except that it
587 * adds to the node_list that is passed in. Any 0 elements are considered
588 * available for allocation - others are considered already used and are
589 * skipped.
590 *
591 * You can use this by calling fdtdec_find_aliases_for_id() with an
592 * uninitialised array, then setting the elements that are returned to -1,
593 * say, then calling this function, perhaps with a different compat id.
594 * Any elements you get back that are >0 are new nodes added by the call
595 * to this function.
596 *
597 * Note that if you have some nodes with aliases and some without, you are
598 * sailing close to the wind. The call to fdtdec_find_aliases_for_id() with
599 * one compat_id may fill in positions for which you have aliases defined
600 * for another compat_id. When you later call *this* function with the second
601 * compat_id, the alias positions may already be used. A debug warning may
602 * be generated in this case, but it is safest to define aliases for all
603 * nodes when you care about the ordering.
604 */
605 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
606 enum fdt_compat_id id, int *node_list, int maxcount);
607
608 /**
609 * Get the alias sequence number of a node
610 *
611 * This works out whether a node is pointed to by an alias, and if so, the
612 * sequence number of that alias. Aliases are of the form <base><num> where
613 * <num> is the sequence number. For example spi2 would be sequence number
614 * 2.
615 *
616 * @param blob Device tree blob (if NULL, then error is returned)
617 * @param base Base name for alias (before the underscore)
618 * @param node Node to look up
619 * @param seqp This is set to the sequence number if one is found,
620 * but otherwise the value is left alone
621 * @return 0 if a sequence was found, -ve if not
622 */
623 int fdtdec_get_alias_seq(const void *blob, const char *base, int node,
624 int *seqp);
625
626 /**
627 * Get the highest alias number for susbystem.
628 *
629 * It parses all aliases and find out highest recorded alias for subsystem.
630 * Aliases are of the form <base><num> where <num> is the sequence number.
631 *
632 * @param blob Device tree blob (if NULL, then error is returned)
633 * @param base Base name for alias susbystem (before the number)
634 *
635 * @return 0 highest alias ID, -1 if not found
636 */
637 int fdtdec_get_alias_highest_id(const void *blob, const char *base);
638
639 /**
640 * Get a property from the /chosen node
641 *
642 * @param blob Device tree blob (if NULL, then NULL is returned)
643 * @param name Property name to look up
644 * @return Value of property, or NULL if it does not exist
645 */
646 const char *fdtdec_get_chosen_prop(const void *blob, const char *name);
647
648 /**
649 * Get the offset of the given /chosen node
650 *
651 * This looks up a property in /chosen containing the path to another node,
652 * then finds the offset of that node.
653 *
654 * @param blob Device tree blob (if NULL, then error is returned)
655 * @param name Property name, e.g. "stdout-path"
656 * @return Node offset referred to by that chosen node, or -ve FDT_ERR_...
657 */
658 int fdtdec_get_chosen_node(const void *blob, const char *name);
659
660 /*
661 * Get the name for a compatible ID
662 *
663 * @param id Compatible ID to look for
664 * @return compatible string for that id
665 */
666 const char *fdtdec_get_compatible(enum fdt_compat_id id);
667
668 /* Look up a phandle and follow it to its node. Then return the offset
669 * of that node.
670 *
671 * @param blob FDT blob
672 * @param node node to examine
673 * @param prop_name name of property to find
674 * @return node offset if found, -ve error code on error
675 */
676 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name);
677
678 /**
679 * Look up a property in a node and return its contents in an integer
680 * array of given length. The property must have at least enough data for
681 * the array (4*count bytes). It may have more, but this will be ignored.
682 *
683 * @param blob FDT blob
684 * @param node node to examine
685 * @param prop_name name of property to find
686 * @param array array to fill with data
687 * @param count number of array elements
688 * @return 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found,
689 * or -FDT_ERR_BADLAYOUT if not enough data
690 */
691 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
692 u32 *array, int count);
693
694 /**
695 * Look up a property in a node and return its contents in an integer
696 * array of given length. The property must exist but may have less data that
697 * expected (4*count bytes). It may have more, but this will be ignored.
698 *
699 * @param blob FDT blob
700 * @param node node to examine
701 * @param prop_name name of property to find
702 * @param array array to fill with data
703 * @param count number of array elements
704 * @return number of array elements if ok, or -FDT_ERR_NOTFOUND if the
705 * property is not found
706 */
707 int fdtdec_get_int_array_count(const void *blob, int node,
708 const char *prop_name, u32 *array, int count);
709
710 /**
711 * Look up a property in a node and return a pointer to its contents as a
712 * unsigned int array of given length. The property must have at least enough
713 * data for the array ('count' cells). It may have more, but this will be
714 * ignored. The data is not copied.
715 *
716 * Note that you must access elements of the array with fdt32_to_cpu(),
717 * since the elements will be big endian even on a little endian machine.
718 *
719 * @param blob FDT blob
720 * @param node node to examine
721 * @param prop_name name of property to find
722 * @param count number of array elements
723 * @return pointer to array if found, or NULL if the property is not
724 * found or there is not enough data
725 */
726 const u32 *fdtdec_locate_array(const void *blob, int node,
727 const char *prop_name, int count);
728
729 /**
730 * Look up a boolean property in a node and return it.
731 *
732 * A boolean properly is true if present in the device tree and false if not
733 * present, regardless of its value.
734 *
735 * @param blob FDT blob
736 * @param node node to examine
737 * @param prop_name name of property to find
738 * @return 1 if the properly is present; 0 if it isn't present
739 */
740 int fdtdec_get_bool(const void *blob, int node, const char *prop_name);
741
742 /*
743 * Count child nodes of one parent node.
744 *
745 * @param blob FDT blob
746 * @param node parent node
747 * @return number of child node; 0 if there is not child node
748 */
749 int fdtdec_get_child_count(const void *blob, int node);
750
751 /**
752 * Look in the FDT for a config item with the given name and return its value
753 * as a 32-bit integer. The property must have at least 4 bytes of data. The
754 * value of the first cell is returned.
755 *
756 * @param blob FDT blob to use
757 * @param prop_name Node property name
758 * @param default_val default value to return if the property is not found
759 * @return integer value, if found, or default_val if not
760 */
761 int fdtdec_get_config_int(const void *blob, const char *prop_name,
762 int default_val);
763
764 /**
765 * Look in the FDT for a config item with the given name
766 * and return whether it exists.
767 *
768 * @param blob FDT blob
769 * @param prop_name property name to look up
770 * @return 1, if it exists, or 0 if not
771 */
772 int fdtdec_get_config_bool(const void *blob, const char *prop_name);
773
774 /**
775 * Look in the FDT for a config item with the given name and return its value
776 * as a string.
777 *
778 * @param blob FDT blob
779 * @param prop_name property name to look up
780 * @returns property string, NULL on error.
781 */
782 char *fdtdec_get_config_string(const void *blob, const char *prop_name);
783
784 /*
785 * Look up a property in a node and return its contents in a byte
786 * array of given length. The property must have at least enough data for
787 * the array (count bytes). It may have more, but this will be ignored.
788 *
789 * @param blob FDT blob
790 * @param node node to examine
791 * @param prop_name name of property to find
792 * @param array array to fill with data
793 * @param count number of array elements
794 * @return 0 if ok, or -FDT_ERR_MISSING if the property is not found,
795 * or -FDT_ERR_BADLAYOUT if not enough data
796 */
797 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
798 u8 *array, int count);
799
800 /**
801 * Look up a property in a node and return a pointer to its contents as a
802 * byte array of given length. The property must have at least enough data
803 * for the array (count bytes). It may have more, but this will be ignored.
804 * The data is not copied.
805 *
806 * @param blob FDT blob
807 * @param node node to examine
808 * @param prop_name name of property to find
809 * @param count number of array elements
810 * @return pointer to byte array if found, or NULL if the property is not
811 * found or there is not enough data
812 */
813 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
814 const char *prop_name, int count);
815
816 /**
817 * Obtain an indexed resource from a device property.
818 *
819 * @param fdt FDT blob
820 * @param node node to examine
821 * @param property name of the property to parse
822 * @param index index of the resource to retrieve
823 * @param res returns the resource
824 * @return 0 if ok, negative on error
825 */
826 int fdt_get_resource(const void *fdt, int node, const char *property,
827 unsigned int index, struct fdt_resource *res);
828
829 /**
830 * Obtain a named resource from a device property.
831 *
832 * Look up the index of the name in a list of strings and return the resource
833 * at that index.
834 *
835 * @param fdt FDT blob
836 * @param node node to examine
837 * @param property name of the property to parse
838 * @param prop_names name of the property containing the list of names
839 * @param name the name of the entry to look up
840 * @param res returns the resource
841 */
842 int fdt_get_named_resource(const void *fdt, int node, const char *property,
843 const char *prop_names, const char *name,
844 struct fdt_resource *res);
845
846 /* Display timings from linux include/video/display_timing.h */
847 enum display_flags {
848 DISPLAY_FLAGS_HSYNC_LOW = 1 << 0,
849 DISPLAY_FLAGS_HSYNC_HIGH = 1 << 1,
850 DISPLAY_FLAGS_VSYNC_LOW = 1 << 2,
851 DISPLAY_FLAGS_VSYNC_HIGH = 1 << 3,
852
853 /* data enable flag */
854 DISPLAY_FLAGS_DE_LOW = 1 << 4,
855 DISPLAY_FLAGS_DE_HIGH = 1 << 5,
856 /* drive data on pos. edge */
857 DISPLAY_FLAGS_PIXDATA_POSEDGE = 1 << 6,
858 /* drive data on neg. edge */
859 DISPLAY_FLAGS_PIXDATA_NEGEDGE = 1 << 7,
860 DISPLAY_FLAGS_INTERLACED = 1 << 8,
861 DISPLAY_FLAGS_DOUBLESCAN = 1 << 9,
862 DISPLAY_FLAGS_DOUBLECLK = 1 << 10,
863 };
864
865 /*
866 * A single signal can be specified via a range of minimal and maximal values
867 * with a typical value, that lies somewhere inbetween.
868 */
869 struct timing_entry {
870 u32 min;
871 u32 typ;
872 u32 max;
873 };
874
875 /*
876 * Single "mode" entry. This describes one set of signal timings a display can
877 * have in one setting. This struct can later be converted to struct videomode
878 * (see include/video/videomode.h). As each timing_entry can be defined as a
879 * range, one struct display_timing may become multiple struct videomodes.
880 *
881 * Example: hsync active high, vsync active low
882 *
883 * Active Video
884 * Video ______________________XXXXXXXXXXXXXXXXXXXXXX_____________________
885 * |<- sync ->|<- back ->|<----- active ----->|<- front ->|<- sync..
886 * | | porch | | porch |
887 *
888 * HSync _|¯¯¯¯¯¯¯¯¯¯|___________________________________________|¯¯¯¯¯¯¯¯¯
889 *
890 * VSync ¯|__________|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|_________
891 */
892 struct display_timing {
893 struct timing_entry pixelclock;
894
895 struct timing_entry hactive; /* hor. active video */
896 struct timing_entry hfront_porch; /* hor. front porch */
897 struct timing_entry hback_porch; /* hor. back porch */
898 struct timing_entry hsync_len; /* hor. sync len */
899
900 struct timing_entry vactive; /* ver. active video */
901 struct timing_entry vfront_porch; /* ver. front porch */
902 struct timing_entry vback_porch; /* ver. back porch */
903 struct timing_entry vsync_len; /* ver. sync len */
904
905 enum display_flags flags; /* display flags */
906 bool hdmi_monitor; /* is hdmi monitor? */
907 };
908
909 /**
910 * fdtdec_decode_display_timing() - decode display timings
911 *
912 * Decode display timings from the supplied 'display-timings' node.
913 * See doc/device-tree-bindings/video/display-timing.txt for binding
914 * information.
915 *
916 * @param blob FDT blob
917 * @param node 'display-timing' node containing the timing subnodes
918 * @param index Index number to read (0=first timing subnode)
919 * @param config Place to put timings
920 * @return 0 if OK, -FDT_ERR_NOTFOUND if not found
921 */
922 int fdtdec_decode_display_timing(const void *blob, int node, int index,
923 struct display_timing *config);
924
925 /**
926 * fdtdec_setup_mem_size_base_fdt() - decode and setup gd->ram_size and
927 * gd->ram_start
928 *
929 * Decode the /memory 'reg' property to determine the size and start of the
930 * first memory bank, populate the global data with the size and start of the
931 * first bank of memory.
932 *
933 * This function should be called from a boards dram_init(). This helper
934 * function allows for boards to query the device tree for DRAM size and start
935 * address instead of hard coding the value in the case where the memory size
936 * and start address cannot be detected automatically.
937 *
938 * @param blob FDT blob
939 *
940 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
941 * invalid
942 */
943 int fdtdec_setup_mem_size_base_fdt(const void *blob);
944
945 /**
946 * fdtdec_setup_mem_size_base() - decode and setup gd->ram_size and
947 * gd->ram_start
948 *
949 * Decode the /memory 'reg' property to determine the size and start of the
950 * first memory bank, populate the global data with the size and start of the
951 * first bank of memory.
952 *
953 * This function should be called from a boards dram_init(). This helper
954 * function allows for boards to query the device tree for DRAM size and start
955 * address instead of hard coding the value in the case where the memory size
956 * and start address cannot be detected automatically.
957 *
958 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
959 * invalid
960 */
961 int fdtdec_setup_mem_size_base(void);
962
963 /**
964 * fdtdec_setup_memory_banksize_fdt() - decode and populate gd->bd->bi_dram
965 *
966 * Decode the /memory 'reg' property to determine the address and size of the
967 * memory banks. Use this data to populate the global data board info with the
968 * phys address and size of memory banks.
969 *
970 * This function should be called from a boards dram_init_banksize(). This
971 * helper function allows for boards to query the device tree for memory bank
972 * information instead of hard coding the information in cases where it cannot
973 * be detected automatically.
974 *
975 * @param blob FDT blob
976 *
977 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
978 * invalid
979 */
980 int fdtdec_setup_memory_banksize_fdt(const void *blob);
981
982 /**
983 * fdtdec_setup_memory_banksize() - decode and populate gd->bd->bi_dram
984 *
985 * Decode the /memory 'reg' property to determine the address and size of the
986 * memory banks. Use this data to populate the global data board info with the
987 * phys address and size of memory banks.
988 *
989 * This function should be called from a boards dram_init_banksize(). This
990 * helper function allows for boards to query the device tree for memory bank
991 * information instead of hard coding the information in cases where it cannot
992 * be detected automatically.
993 *
994 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
995 * invalid
996 */
997 int fdtdec_setup_memory_banksize(void);
998
999 /**
1000 * fdtdec_set_ethernet_mac_address() - set MAC address for default interface
1001 *
1002 * Looks up the default interface via the "ethernet" alias (in the /aliases
1003 * node) and stores the given MAC in its "local-mac-address" property. This
1004 * is useful on platforms that store the MAC address in a custom location.
1005 * Board code can call this in the late init stage to make sure that the
1006 * interface device tree node has the right MAC address configured for the
1007 * Ethernet uclass to pick it up.
1008 *
1009 * Typically the FDT passed into this function will be U-Boot's control DTB.
1010 * Given that a lot of code may be holding offsets to various nodes in that
1011 * tree, this code will only set the "local-mac-address" property in-place,
1012 * which means that it needs to exist and have space for the 6-byte address.
1013 * This ensures that the operation is non-destructive and does not invalidate
1014 * offsets that other drivers may be using.
1015 *
1016 * @param fdt FDT blob
1017 * @param mac buffer containing the MAC address to set
1018 * @param size size of MAC address
1019 * @return 0 on success or a negative error code on failure
1020 */
1021 int fdtdec_set_ethernet_mac_address(void *fdt, const u8 *mac, size_t size);
1022
1023 /**
1024 * fdtdec_set_phandle() - sets the phandle of a given node
1025 *
1026 * @param blob FDT blob
1027 * @param node offset in the FDT blob of the node whose phandle is to
1028 * be set
1029 * @param phandle phandle to set for the given node
1030 * @return 0 on success or a negative error code on failure
1031 */
1032 static inline int fdtdec_set_phandle(void *blob, int node, uint32_t phandle)
1033 {
1034 return fdt_setprop_u32(blob, node, "phandle", phandle);
1035 }
1036
1037 /**
1038 * fdtdec_add_reserved_memory() - add or find a reserved-memory node
1039 *
1040 * If a reserved-memory node already exists for the given carveout, a phandle
1041 * for that node will be returned. Otherwise a new node will be created and a
1042 * phandle corresponding to it will be returned.
1043 *
1044 * See Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
1045 * for details on how to use reserved memory regions.
1046 *
1047 * As an example, consider the following code snippet:
1048 *
1049 * struct fdt_memory fb = {
1050 * .start = 0x92cb3000,
1051 * .end = 0x934b2fff,
1052 * };
1053 * uint32_t phandle;
1054 *
1055 * fdtdec_add_reserved_memory(fdt, "framebuffer", &fb, &phandle);
1056 *
1057 * This results in the following subnode being added to the top-level
1058 * /reserved-memory node:
1059 *
1060 * reserved-memory {
1061 * #address-cells = <0x00000002>;
1062 * #size-cells = <0x00000002>;
1063 * ranges;
1064 *
1065 * framebuffer@92cb3000 {
1066 * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>;
1067 * phandle = <0x0000004d>;
1068 * };
1069 * };
1070 *
1071 * If the top-level /reserved-memory node does not exist, it will be created.
1072 * The phandle returned from the function call can be used to reference this
1073 * reserved memory region from other nodes.
1074 *
1075 * See fdtdec_set_carveout() for a more elaborate example.
1076 *
1077 * @param blob FDT blob
1078 * @param basename base name of the node to create
1079 * @param carveout information about the carveout region
1080 * @param phandlep return location for the phandle of the carveout region
1081 * @return 0 on success or a negative error code on failure
1082 */
1083 int fdtdec_add_reserved_memory(void *blob, const char *basename,
1084 const struct fdt_memory *carveout,
1085 uint32_t *phandlep);
1086
1087 /**
1088 * fdtdec_get_carveout() - reads a carveout from an FDT
1089 *
1090 * Reads information about a carveout region from an FDT. The carveout is a
1091 * referenced by its phandle that is read from a given property in a given
1092 * node.
1093 *
1094 * @param blob FDT blob
1095 * @param node name of a node
1096 * @param name name of the property in the given node that contains
1097 * the phandle for the carveout
1098 * @param index index of the phandle for which to read the carveout
1099 * @param carveout return location for the carveout information
1100 * @return 0 on success or a negative error code on failure
1101 */
1102 int fdtdec_get_carveout(const void *blob, const char *node, const char *name,
1103 unsigned int index, struct fdt_memory *carveout);
1104
1105 /**
1106 * fdtdec_set_carveout() - sets a carveout region for a given node
1107 *
1108 * Sets a carveout region for a given node. If a reserved-memory node already
1109 * exists for the carveout, the phandle for that node will be reused. If no
1110 * such node exists, a new one will be created and a phandle to it stored in
1111 * a specified property of the given node.
1112 *
1113 * As an example, consider the following code snippet:
1114 *
1115 * const char *node = "/host1x@50000000/dc@54240000";
1116 * struct fdt_memory fb = {
1117 * .start = 0x92cb3000,
1118 * .end = 0x934b2fff,
1119 * };
1120 *
1121 * fdtdec_set_carveout(fdt, node, "memory-region", 0, "framebuffer", &fb);
1122 *
1123 * dc@54200000 is a display controller and was set up by the bootloader to
1124 * scan out the framebuffer specified by "fb". This would cause the following
1125 * reserved memory region to be added:
1126 *
1127 * reserved-memory {
1128 * #address-cells = <0x00000002>;
1129 * #size-cells = <0x00000002>;
1130 * ranges;
1131 *
1132 * framebuffer@92cb3000 {
1133 * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>;
1134 * phandle = <0x0000004d>;
1135 * };
1136 * };
1137 *
1138 * A "memory-region" property will also be added to the node referenced by the
1139 * offset parameter.
1140 *
1141 * host1x@50000000 {
1142 * ...
1143 *
1144 * dc@54240000 {
1145 * ...
1146 * memory-region = <0x0000004d>;
1147 * ...
1148 * };
1149 *
1150 * ...
1151 * };
1152 *
1153 * @param blob FDT blob
1154 * @param node name of the node to add the carveout to
1155 * @param prop_name name of the property in which to store the phandle of
1156 * the carveout
1157 * @param index index of the phandle to store
1158 * @param name base name of the reserved-memory node to create
1159 * @param carveout information about the carveout to add
1160 * @return 0 on success or a negative error code on failure
1161 */
1162 int fdtdec_set_carveout(void *blob, const char *node, const char *prop_name,
1163 unsigned int index, const char *name,
1164 const struct fdt_memory *carveout);
1165
1166 /**
1167 * Set up the device tree ready for use
1168 */
1169 int fdtdec_setup(void);
1170
1171 #if CONFIG_IS_ENABLED(MULTI_DTB_FIT)
1172 /**
1173 * fdtdec_resetup() - Set up the device tree again
1174 *
1175 * The main difference with fdtdec_setup() is that it returns if the fdt has
1176 * changed because a better match has been found.
1177 * This is typically used for boards that rely on a DM driver to detect the
1178 * board type. This function sould be called by the board code after the stuff
1179 * needed by board_fit_config_name_match() to operate porperly is available.
1180 * If this functions signals that a rescan is necessary, the board code must
1181 * unbind all the drivers using dm_uninit() and then rescan the DT with
1182 * dm_init_and_scan().
1183 *
1184 * @param rescan Returns a flag indicating that fdt has changed and rescanning
1185 * the fdt is required
1186 *
1187 * @return 0 if OK, -ve on error
1188 */
1189 int fdtdec_resetup(int *rescan);
1190 #endif
1191
1192 /**
1193 * Board-specific FDT initialization. Returns the address to a device tree blob.
1194 * Called when CONFIG_OF_BOARD is defined, or if CONFIG_OF_SEPARATE is defined
1195 * and the board implements it.
1196 */
1197 void *board_fdt_blob_setup(void);
1198
1199 /*
1200 * Decode the size of memory
1201 *
1202 * RAM size is normally set in a /memory node and consists of a list of
1203 * (base, size) cells in the 'reg' property. This information is used to
1204 * determine the total available memory as well as the address and size
1205 * of each bank.
1206 *
1207 * Optionally the memory configuration can vary depending on a board id,
1208 * typically read from strapping resistors or an EEPROM on the board.
1209 *
1210 * Finally, memory size can be detected (within certain limits) by probing
1211 * the available memory. It is safe to do so within the limits provides by
1212 * the board's device tree information. This makes it possible to produce
1213 * boards with different memory sizes, where the device tree specifies the
1214 * maximum memory configuration, and the smaller memory configuration is
1215 * probed.
1216 *
1217 * This function decodes that information, returning the memory base address,
1218 * size and bank information. See the memory.txt binding for full
1219 * documentation.
1220 *
1221 * @param blob Device tree blob
1222 * @param area Name of node to check (NULL means "/memory")
1223 * @param board_id Board ID to look up
1224 * @param basep Returns base address of first memory bank (NULL to
1225 * ignore)
1226 * @param sizep Returns total memory size (NULL to ignore)
1227 * @param bd Updated with the memory bank information (NULL to skip)
1228 * @return 0 if OK, -ve on error
1229 */
1230 int fdtdec_decode_ram_size(const void *blob, const char *area, int board_id,
1231 phys_addr_t *basep, phys_size_t *sizep,
1232 struct bd_info *bd);
1233
1234 #endif