]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/kvm_host.h
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / include / linux / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/swait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQUEST_ARCH_BASE 8
150
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160 extern struct mutex kvm_lock;
161 extern struct list_head vm_list;
162
163 struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167 };
168
169 #define NR_IOBUS_DEVS 1000
170
171 struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175 };
176
177 enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183 };
184
185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198 #ifdef CONFIG_KVM_ASYNC_PF
199 struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209 };
210
211 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
212 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
213 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
214 unsigned long hva, struct kvm_arch_async_pf *arch);
215 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
216 #endif
217
218 enum {
219 OUTSIDE_GUEST_MODE,
220 IN_GUEST_MODE,
221 EXITING_GUEST_MODE,
222 READING_SHADOW_PAGE_TABLES,
223 };
224
225 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
226
227 struct kvm_host_map {
228 /*
229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
230 * a 'struct page' for it. When using mem= kernel parameter some memory
231 * can be used as guest memory but they are not managed by host
232 * kernel).
233 * If 'pfn' is not managed by the host kernel, this field is
234 * initialized to KVM_UNMAPPED_PAGE.
235 */
236 struct page *page;
237 void *hva;
238 kvm_pfn_t pfn;
239 kvm_pfn_t gfn;
240 };
241
242 /*
243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
244 * directly to check for that.
245 */
246 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
247 {
248 return !!map->hva;
249 }
250
251 /*
252 * Sometimes a large or cross-page mmio needs to be broken up into separate
253 * exits for userspace servicing.
254 */
255 struct kvm_mmio_fragment {
256 gpa_t gpa;
257 void *data;
258 unsigned len;
259 };
260
261 struct kvm_vcpu {
262 struct kvm *kvm;
263 #ifdef CONFIG_PREEMPT_NOTIFIERS
264 struct preempt_notifier preempt_notifier;
265 #endif
266 int cpu;
267 int vcpu_id; /* id given by userspace at creation */
268 int vcpu_idx; /* index in kvm->vcpus array */
269 int srcu_idx;
270 int mode;
271 u64 requests;
272 unsigned long guest_debug;
273
274 int pre_pcpu;
275 struct list_head blocked_vcpu_list;
276
277 struct mutex mutex;
278 struct kvm_run *run;
279
280 struct swait_queue_head wq;
281 struct pid __rcu *pid;
282 int sigset_active;
283 sigset_t sigset;
284 struct kvm_vcpu_stat stat;
285 unsigned int halt_poll_ns;
286 bool valid_wakeup;
287
288 #ifdef CONFIG_HAS_IOMEM
289 int mmio_needed;
290 int mmio_read_completed;
291 int mmio_is_write;
292 int mmio_cur_fragment;
293 int mmio_nr_fragments;
294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
295 #endif
296
297 #ifdef CONFIG_KVM_ASYNC_PF
298 struct {
299 u32 queued;
300 struct list_head queue;
301 struct list_head done;
302 spinlock_t lock;
303 } async_pf;
304 #endif
305
306 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
307 /*
308 * Cpu relax intercept or pause loop exit optimization
309 * in_spin_loop: set when a vcpu does a pause loop exit
310 * or cpu relax intercepted.
311 * dy_eligible: indicates whether vcpu is eligible for directed yield.
312 */
313 struct {
314 bool in_spin_loop;
315 bool dy_eligible;
316 } spin_loop;
317 #endif
318 bool preempted;
319 bool ready;
320 struct kvm_vcpu_arch arch;
321 struct dentry *debugfs_dentry;
322 };
323
324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325 {
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333 }
334
335 /*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341 struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349 };
350
351 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352 {
353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354 }
355
356 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357 {
358 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359
360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361 }
362
363 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
364 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
365 #endif
366
367 struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373 };
374
375 struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378 };
379
380 struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402 };
403
404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405 struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[0];
413 };
414 #endif
415
416 #ifndef KVM_PRIVATE_MEM_SLOTS
417 #define KVM_PRIVATE_MEM_SLOTS 0
418 #endif
419
420 #ifndef KVM_MEM_SLOTS_NUM
421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422 #endif
423
424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426 {
427 return 0;
428 }
429 #endif
430
431 /*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436 struct kvm_memslots {
437 u64 generation;
438 /* The mapping table from slot id to the index in memslots[]. */
439 short id_to_index[KVM_MEM_SLOTS_NUM];
440 atomic_t lru_slot;
441 int used_slots;
442 struct kvm_memory_slot memslots[];
443 };
444
445 struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464 #ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472 #endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476 #ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480 #endif
481
482 struct mutex irq_lock;
483 #ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488 #endif
489 #ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491 #endif
492
493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497 #endif
498 long tlbs_dirty;
499 struct list_head devices;
500 u64 manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506 };
507
508 #define kvm_err(fmt, ...) \
509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510 #define kvm_info(fmt, ...) \
511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_debug(fmt, ...) \
513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_debug_ratelimited(fmt, ...) \
515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
516 ## __VA_ARGS__)
517 #define kvm_pr_unimpl(fmt, ...) \
518 pr_err_ratelimited("kvm [%i]: " fmt, \
519 task_tgid_nr(current), ## __VA_ARGS__)
520
521 /* The guest did something we don't support. */
522 #define vcpu_unimpl(vcpu, fmt, ...) \
523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
525
526 #define vcpu_debug(vcpu, fmt, ...) \
527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
528 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
530 ## __VA_ARGS__)
531 #define vcpu_err(vcpu, fmt, ...) \
532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
533
534 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
535 {
536 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
537 }
538
539 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
540 {
541 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
542 lockdep_is_held(&kvm->slots_lock) ||
543 !refcount_read(&kvm->users_count));
544 }
545
546 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
547 {
548 int num_vcpus = atomic_read(&kvm->online_vcpus);
549 i = array_index_nospec(i, num_vcpus);
550
551 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
552 smp_rmb();
553 return kvm->vcpus[i];
554 }
555
556 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
557 for (idx = 0; \
558 idx < atomic_read(&kvm->online_vcpus) && \
559 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
560 idx++)
561
562 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
563 {
564 struct kvm_vcpu *vcpu = NULL;
565 int i;
566
567 if (id < 0)
568 return NULL;
569 if (id < KVM_MAX_VCPUS)
570 vcpu = kvm_get_vcpu(kvm, id);
571 if (vcpu && vcpu->vcpu_id == id)
572 return vcpu;
573 kvm_for_each_vcpu(i, vcpu, kvm)
574 if (vcpu->vcpu_id == id)
575 return vcpu;
576 return NULL;
577 }
578
579 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
580 {
581 return vcpu->vcpu_idx;
582 }
583
584 #define kvm_for_each_memslot(memslot, slots) \
585 for (memslot = &slots->memslots[0]; \
586 memslot < slots->memslots + slots->used_slots; memslot++) \
587 if (WARN_ON_ONCE(!memslot->npages)) { \
588 } else
589
590 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
591
592 void vcpu_load(struct kvm_vcpu *vcpu);
593 void vcpu_put(struct kvm_vcpu *vcpu);
594
595 #ifdef __KVM_HAVE_IOAPIC
596 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
597 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
598 #else
599 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
600 {
601 }
602 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
603 {
604 }
605 #endif
606
607 #ifdef CONFIG_HAVE_KVM_IRQFD
608 int kvm_irqfd_init(void);
609 void kvm_irqfd_exit(void);
610 #else
611 static inline int kvm_irqfd_init(void)
612 {
613 return 0;
614 }
615
616 static inline void kvm_irqfd_exit(void)
617 {
618 }
619 #endif
620 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
621 struct module *module);
622 void kvm_exit(void);
623
624 void kvm_get_kvm(struct kvm *kvm);
625 void kvm_put_kvm(struct kvm *kvm);
626 void kvm_put_kvm_no_destroy(struct kvm *kvm);
627
628 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
629 {
630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
632 lockdep_is_held(&kvm->slots_lock) ||
633 !refcount_read(&kvm->users_count));
634 }
635
636 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
637 {
638 return __kvm_memslots(kvm, 0);
639 }
640
641 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
642 {
643 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
644
645 return __kvm_memslots(vcpu->kvm, as_id);
646 }
647
648 static inline
649 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
650 {
651 int index = slots->id_to_index[id];
652 struct kvm_memory_slot *slot;
653
654 if (index < 0)
655 return NULL;
656
657 slot = &slots->memslots[index];
658
659 WARN_ON(slot->id != id);
660 return slot;
661 }
662
663 /*
664 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
665 * - create a new memory slot
666 * - delete an existing memory slot
667 * - modify an existing memory slot
668 * -- move it in the guest physical memory space
669 * -- just change its flags
670 *
671 * Since flags can be changed by some of these operations, the following
672 * differentiation is the best we can do for __kvm_set_memory_region():
673 */
674 enum kvm_mr_change {
675 KVM_MR_CREATE,
676 KVM_MR_DELETE,
677 KVM_MR_MOVE,
678 KVM_MR_FLAGS_ONLY,
679 };
680
681 int kvm_set_memory_region(struct kvm *kvm,
682 const struct kvm_userspace_memory_region *mem);
683 int __kvm_set_memory_region(struct kvm *kvm,
684 const struct kvm_userspace_memory_region *mem);
685 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
686 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
687 int kvm_arch_prepare_memory_region(struct kvm *kvm,
688 struct kvm_memory_slot *memslot,
689 const struct kvm_userspace_memory_region *mem,
690 enum kvm_mr_change change);
691 void kvm_arch_commit_memory_region(struct kvm *kvm,
692 const struct kvm_userspace_memory_region *mem,
693 struct kvm_memory_slot *old,
694 const struct kvm_memory_slot *new,
695 enum kvm_mr_change change);
696 /* flush all memory translations */
697 void kvm_arch_flush_shadow_all(struct kvm *kvm);
698 /* flush memory translations pointing to 'slot' */
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 struct kvm_memory_slot *slot);
701
702 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
703 struct page **pages, int nr_pages);
704
705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
708 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
710 bool *writable);
711 void kvm_release_page_clean(struct page *page);
712 void kvm_release_page_dirty(struct page *page);
713 void kvm_set_page_accessed(struct page *page);
714
715 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
716 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
717 bool *writable);
718 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
719 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
720 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
721 bool atomic, bool *async, bool write_fault,
722 bool *writable);
723
724 void kvm_release_pfn_clean(kvm_pfn_t pfn);
725 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
726 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
727 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
728 void kvm_get_pfn(kvm_pfn_t pfn);
729
730 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
731 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
732 int len);
733 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
734 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
735 void *data, unsigned long len);
736 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
737 int offset, int len);
738 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
739 unsigned long len);
740 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
741 void *data, unsigned long len);
742 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
743 void *data, unsigned int offset,
744 unsigned long len);
745 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
746 gpa_t gpa, unsigned long len);
747
748 #define __kvm_put_guest(kvm, gfn, offset, value, type) \
749 ({ \
750 unsigned long __addr = gfn_to_hva(kvm, gfn); \
751 type __user *__uaddr = (type __user *)(__addr + offset); \
752 int __ret = -EFAULT; \
753 \
754 if (!kvm_is_error_hva(__addr)) \
755 __ret = put_user(value, __uaddr); \
756 if (!__ret) \
757 mark_page_dirty(kvm, gfn); \
758 __ret; \
759 })
760
761 #define kvm_put_guest(kvm, gpa, value, type) \
762 ({ \
763 gpa_t __gpa = gpa; \
764 struct kvm *__kvm = kvm; \
765 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
766 offset_in_page(__gpa), (value), type); \
767 })
768
769 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
770 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
771 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
772 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
773 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
774 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
775
776 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
777 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
778 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
779 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
780 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
781 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
782 struct gfn_to_pfn_cache *cache, bool atomic);
783 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
785 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
786 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
787 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
788 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
789 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
790 int len);
791 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
792 unsigned long len);
793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
794 unsigned long len);
795 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
796 int offset, int len);
797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
798 unsigned long len);
799 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
800
801 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
802 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
803
804 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
805 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
806 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
807 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
808 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
809 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
810 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
811
812 void kvm_flush_remote_tlbs(struct kvm *kvm);
813 void kvm_reload_remote_mmus(struct kvm *kvm);
814
815 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
816 struct kvm_vcpu *except,
817 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
818 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
819 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
820 struct kvm_vcpu *except);
821 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
822 unsigned long *vcpu_bitmap);
823
824 long kvm_arch_dev_ioctl(struct file *filp,
825 unsigned int ioctl, unsigned long arg);
826 long kvm_arch_vcpu_ioctl(struct file *filp,
827 unsigned int ioctl, unsigned long arg);
828 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
829
830 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
831
832 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
833 struct kvm_memory_slot *slot,
834 gfn_t gfn_offset,
835 unsigned long mask);
836 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
837
838 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
839 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
840 struct kvm_memory_slot *memslot);
841 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
842 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
843 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
844 int *is_dirty, struct kvm_memory_slot **memslot);
845 #endif
846
847 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
848 bool line_status);
849 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
850 struct kvm_enable_cap *cap);
851 long kvm_arch_vm_ioctl(struct file *filp,
852 unsigned int ioctl, unsigned long arg);
853
854 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
855 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
856
857 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
858 struct kvm_translation *tr);
859
860 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
861 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
862 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
863 struct kvm_sregs *sregs);
864 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
865 struct kvm_sregs *sregs);
866 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
867 struct kvm_mp_state *mp_state);
868 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
869 struct kvm_mp_state *mp_state);
870 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
871 struct kvm_guest_debug *dbg);
872 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
873
874 int kvm_arch_init(void *opaque);
875 void kvm_arch_exit(void);
876
877 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
878
879 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
880 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
881 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
882 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
883 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
884 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
885
886 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
887 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
888 #endif
889
890 int kvm_arch_hardware_enable(void);
891 void kvm_arch_hardware_disable(void);
892 int kvm_arch_hardware_setup(void *opaque);
893 void kvm_arch_hardware_unsetup(void);
894 int kvm_arch_check_processor_compat(void *opaque);
895 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
896 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
897 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
898 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
899 int kvm_arch_post_init_vm(struct kvm *kvm);
900 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
901
902 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
903 /*
904 * All architectures that want to use vzalloc currently also
905 * need their own kvm_arch_alloc_vm implementation.
906 */
907 static inline struct kvm *kvm_arch_alloc_vm(void)
908 {
909 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
910 }
911
912 static inline void kvm_arch_free_vm(struct kvm *kvm)
913 {
914 kfree(kvm);
915 }
916 #endif
917
918 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
919 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
920 {
921 return -ENOTSUPP;
922 }
923 #endif
924
925 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
926 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
927 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
928 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
929 #else
930 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
931 {
932 }
933
934 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
935 {
936 }
937
938 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
939 {
940 return false;
941 }
942 #endif
943 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
944 void kvm_arch_start_assignment(struct kvm *kvm);
945 void kvm_arch_end_assignment(struct kvm *kvm);
946 bool kvm_arch_has_assigned_device(struct kvm *kvm);
947 #else
948 static inline void kvm_arch_start_assignment(struct kvm *kvm)
949 {
950 }
951
952 static inline void kvm_arch_end_assignment(struct kvm *kvm)
953 {
954 }
955
956 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
957 {
958 return false;
959 }
960 #endif
961
962 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
963 {
964 #ifdef __KVM_HAVE_ARCH_WQP
965 return vcpu->arch.wqp;
966 #else
967 return &vcpu->wq;
968 #endif
969 }
970
971 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
972 /*
973 * returns true if the virtual interrupt controller is initialized and
974 * ready to accept virtual IRQ. On some architectures the virtual interrupt
975 * controller is dynamically instantiated and this is not always true.
976 */
977 bool kvm_arch_intc_initialized(struct kvm *kvm);
978 #else
979 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
980 {
981 return true;
982 }
983 #endif
984
985 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
986 void kvm_arch_destroy_vm(struct kvm *kvm);
987 void kvm_arch_sync_events(struct kvm *kvm);
988
989 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
990
991 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
992 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
993 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
994
995 struct kvm_irq_ack_notifier {
996 struct hlist_node link;
997 unsigned gsi;
998 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
999 };
1000
1001 int kvm_irq_map_gsi(struct kvm *kvm,
1002 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1003 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1004
1005 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1006 bool line_status);
1007 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1008 int irq_source_id, int level, bool line_status);
1009 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1010 struct kvm *kvm, int irq_source_id,
1011 int level, bool line_status);
1012 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1013 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1014 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1015 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1016 struct kvm_irq_ack_notifier *kian);
1017 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1018 struct kvm_irq_ack_notifier *kian);
1019 int kvm_request_irq_source_id(struct kvm *kvm);
1020 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1021 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1022
1023 /*
1024 * search_memslots() and __gfn_to_memslot() are here because they are
1025 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1026 * gfn_to_memslot() itself isn't here as an inline because that would
1027 * bloat other code too much.
1028 *
1029 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1030 */
1031 static inline struct kvm_memory_slot *
1032 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1033 {
1034 int start = 0, end = slots->used_slots;
1035 int slot = atomic_read(&slots->lru_slot);
1036 struct kvm_memory_slot *memslots = slots->memslots;
1037
1038 if (unlikely(!slots->used_slots))
1039 return NULL;
1040
1041 if (gfn >= memslots[slot].base_gfn &&
1042 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1043 return &memslots[slot];
1044
1045 while (start < end) {
1046 slot = start + (end - start) / 2;
1047
1048 if (gfn >= memslots[slot].base_gfn)
1049 end = slot;
1050 else
1051 start = slot + 1;
1052 }
1053
1054 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1055 gfn < memslots[start].base_gfn + memslots[start].npages) {
1056 atomic_set(&slots->lru_slot, start);
1057 return &memslots[start];
1058 }
1059
1060 return NULL;
1061 }
1062
1063 static inline struct kvm_memory_slot *
1064 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1065 {
1066 return search_memslots(slots, gfn);
1067 }
1068
1069 static inline unsigned long
1070 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1071 {
1072 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1073 }
1074
1075 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1076 {
1077 return gfn_to_memslot(kvm, gfn)->id;
1078 }
1079
1080 static inline gfn_t
1081 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1082 {
1083 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1084
1085 return slot->base_gfn + gfn_offset;
1086 }
1087
1088 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1089 {
1090 return (gpa_t)gfn << PAGE_SHIFT;
1091 }
1092
1093 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1094 {
1095 return (gfn_t)(gpa >> PAGE_SHIFT);
1096 }
1097
1098 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1099 {
1100 return (hpa_t)pfn << PAGE_SHIFT;
1101 }
1102
1103 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1104 gpa_t gpa)
1105 {
1106 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1107 }
1108
1109 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1110 {
1111 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1112
1113 return kvm_is_error_hva(hva);
1114 }
1115
1116 enum kvm_stat_kind {
1117 KVM_STAT_VM,
1118 KVM_STAT_VCPU,
1119 };
1120
1121 struct kvm_stat_data {
1122 struct kvm *kvm;
1123 struct kvm_stats_debugfs_item *dbgfs_item;
1124 };
1125
1126 struct kvm_stats_debugfs_item {
1127 const char *name;
1128 int offset;
1129 enum kvm_stat_kind kind;
1130 int mode;
1131 };
1132
1133 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1134 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1135
1136 extern struct kvm_stats_debugfs_item debugfs_entries[];
1137 extern struct dentry *kvm_debugfs_dir;
1138
1139 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1140 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1141 {
1142 if (unlikely(kvm->mmu_notifier_count))
1143 return 1;
1144 /*
1145 * Ensure the read of mmu_notifier_count happens before the read
1146 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1147 * mmu_notifier_invalidate_range_end to make sure that the caller
1148 * either sees the old (non-zero) value of mmu_notifier_count or
1149 * the new (incremented) value of mmu_notifier_seq.
1150 * PowerPC Book3s HV KVM calls this under a per-page lock
1151 * rather than under kvm->mmu_lock, for scalability, so
1152 * can't rely on kvm->mmu_lock to keep things ordered.
1153 */
1154 smp_rmb();
1155 if (kvm->mmu_notifier_seq != mmu_seq)
1156 return 1;
1157 return 0;
1158 }
1159 #endif
1160
1161 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1162
1163 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1164
1165 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1166 int kvm_set_irq_routing(struct kvm *kvm,
1167 const struct kvm_irq_routing_entry *entries,
1168 unsigned nr,
1169 unsigned flags);
1170 int kvm_set_routing_entry(struct kvm *kvm,
1171 struct kvm_kernel_irq_routing_entry *e,
1172 const struct kvm_irq_routing_entry *ue);
1173 void kvm_free_irq_routing(struct kvm *kvm);
1174
1175 #else
1176
1177 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1178
1179 #endif
1180
1181 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1182
1183 #ifdef CONFIG_HAVE_KVM_EVENTFD
1184
1185 void kvm_eventfd_init(struct kvm *kvm);
1186 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1187
1188 #ifdef CONFIG_HAVE_KVM_IRQFD
1189 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1190 void kvm_irqfd_release(struct kvm *kvm);
1191 void kvm_irq_routing_update(struct kvm *);
1192 #else
1193 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1194 {
1195 return -EINVAL;
1196 }
1197
1198 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1199 #endif
1200
1201 #else
1202
1203 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1204
1205 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1206 {
1207 return -EINVAL;
1208 }
1209
1210 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1211
1212 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1213 static inline void kvm_irq_routing_update(struct kvm *kvm)
1214 {
1215 }
1216 #endif
1217
1218 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1219 {
1220 return -ENOSYS;
1221 }
1222
1223 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1224
1225 void kvm_arch_irq_routing_update(struct kvm *kvm);
1226
1227 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1228 {
1229 /*
1230 * Ensure the rest of the request is published to kvm_check_request's
1231 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1232 */
1233 smp_wmb();
1234 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1235 }
1236
1237 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1238 {
1239 return READ_ONCE(vcpu->requests);
1240 }
1241
1242 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1243 {
1244 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1245 }
1246
1247 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1248 {
1249 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1250 }
1251
1252 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1253 {
1254 if (kvm_test_request(req, vcpu)) {
1255 kvm_clear_request(req, vcpu);
1256
1257 /*
1258 * Ensure the rest of the request is visible to kvm_check_request's
1259 * caller. Paired with the smp_wmb in kvm_make_request.
1260 */
1261 smp_mb__after_atomic();
1262 return true;
1263 } else {
1264 return false;
1265 }
1266 }
1267
1268 extern bool kvm_rebooting;
1269
1270 extern unsigned int halt_poll_ns;
1271 extern unsigned int halt_poll_ns_grow;
1272 extern unsigned int halt_poll_ns_grow_start;
1273 extern unsigned int halt_poll_ns_shrink;
1274
1275 struct kvm_device {
1276 const struct kvm_device_ops *ops;
1277 struct kvm *kvm;
1278 void *private;
1279 struct list_head vm_node;
1280 };
1281
1282 /* create, destroy, and name are mandatory */
1283 struct kvm_device_ops {
1284 const char *name;
1285
1286 /*
1287 * create is called holding kvm->lock and any operations not suitable
1288 * to do while holding the lock should be deferred to init (see
1289 * below).
1290 */
1291 int (*create)(struct kvm_device *dev, u32 type);
1292
1293 /*
1294 * init is called after create if create is successful and is called
1295 * outside of holding kvm->lock.
1296 */
1297 void (*init)(struct kvm_device *dev);
1298
1299 /*
1300 * Destroy is responsible for freeing dev.
1301 *
1302 * Destroy may be called before or after destructors are called
1303 * on emulated I/O regions, depending on whether a reference is
1304 * held by a vcpu or other kvm component that gets destroyed
1305 * after the emulated I/O.
1306 */
1307 void (*destroy)(struct kvm_device *dev);
1308
1309 /*
1310 * Release is an alternative method to free the device. It is
1311 * called when the device file descriptor is closed. Once
1312 * release is called, the destroy method will not be called
1313 * anymore as the device is removed from the device list of
1314 * the VM. kvm->lock is held.
1315 */
1316 void (*release)(struct kvm_device *dev);
1317
1318 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1319 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1320 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1321 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1322 unsigned long arg);
1323 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1324 };
1325
1326 void kvm_device_get(struct kvm_device *dev);
1327 void kvm_device_put(struct kvm_device *dev);
1328 struct kvm_device *kvm_device_from_filp(struct file *filp);
1329 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1330 void kvm_unregister_device_ops(u32 type);
1331
1332 extern struct kvm_device_ops kvm_mpic_ops;
1333 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1334 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1335
1336 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1337
1338 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1339 {
1340 vcpu->spin_loop.in_spin_loop = val;
1341 }
1342 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1343 {
1344 vcpu->spin_loop.dy_eligible = val;
1345 }
1346
1347 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1348
1349 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1350 {
1351 }
1352
1353 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1354 {
1355 }
1356 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1357
1358 struct kvm_vcpu *kvm_get_running_vcpu(void);
1359 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1360
1361 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1362 bool kvm_arch_has_irq_bypass(void);
1363 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1364 struct irq_bypass_producer *);
1365 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1366 struct irq_bypass_producer *);
1367 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1368 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1369 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1370 uint32_t guest_irq, bool set);
1371 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1372
1373 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1374 /* If we wakeup during the poll time, was it a sucessful poll? */
1375 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1376 {
1377 return vcpu->valid_wakeup;
1378 }
1379
1380 #else
1381 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1382 {
1383 return true;
1384 }
1385 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1386
1387 #ifdef CONFIG_HAVE_KVM_NO_POLL
1388 /* Callback that tells if we must not poll */
1389 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1390 #else
1391 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1392 {
1393 return false;
1394 }
1395 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1396
1397 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1398 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1399 unsigned int ioctl, unsigned long arg);
1400 #else
1401 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1402 unsigned int ioctl,
1403 unsigned long arg)
1404 {
1405 return -ENOIOCTLCMD;
1406 }
1407 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1408
1409 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1410 unsigned long start, unsigned long end, bool blockable);
1411
1412 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1413 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1414 #else
1415 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1416 {
1417 return 0;
1418 }
1419 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1420
1421 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1422
1423 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1424 uintptr_t data, const char *name,
1425 struct task_struct **thread_ptr);
1426
1427 #endif