]> git.ipfire.org Git - people/ms/linux.git/blob - include/linux/memcontrol.h
memcg, slab: simplify synchronization scheme
[people/ms/linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /*
34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
35 * These two lists should keep in accord with each other.
36 */
37 enum mem_cgroup_stat_index {
38 /*
39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
40 */
41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
47 MEM_CGROUP_STAT_NSTATS,
48 };
49
50 struct mem_cgroup_reclaim_cookie {
51 struct zone *zone;
52 int priority;
53 unsigned int generation;
54 };
55
56 #ifdef CONFIG_MEMCG
57 /*
58 * All "charge" functions with gfp_mask should use GFP_KERNEL or
59 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
60 * alloc memory but reclaims memory from all available zones. So, "where I want
61 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
62 * available but adding a rule is better. charge functions' gfp_mask should
63 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
64 * codes.
65 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
66 */
67
68 extern int mem_cgroup_charge_anon(struct page *page, struct mm_struct *mm,
69 gfp_t gfp_mask);
70 /* for swap handling */
71 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
73 extern void mem_cgroup_commit_charge_swapin(struct page *page,
74 struct mem_cgroup *memcg);
75 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
76
77 extern int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
78 gfp_t gfp_mask);
79
80 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
81 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
82
83 /* For coalescing uncharge for reducing memcg' overhead*/
84 extern void mem_cgroup_uncharge_start(void);
85 extern void mem_cgroup_uncharge_end(void);
86
87 extern void mem_cgroup_uncharge_page(struct page *page);
88 extern void mem_cgroup_uncharge_cache_page(struct page *page);
89
90 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
91 struct mem_cgroup *memcg);
92 bool task_in_mem_cgroup(struct task_struct *task,
93 const struct mem_cgroup *memcg);
94
95 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
96 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
97
98 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
99 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
100
101 static inline
102 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
103 {
104 struct mem_cgroup *task_memcg;
105 bool match;
106
107 rcu_read_lock();
108 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
109 match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
110 rcu_read_unlock();
111 return match;
112 }
113
114 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
115
116 extern void
117 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
118 struct mem_cgroup **memcgp);
119 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
120 struct page *oldpage, struct page *newpage, bool migration_ok);
121
122 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
123 struct mem_cgroup *,
124 struct mem_cgroup_reclaim_cookie *);
125 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
126
127 /*
128 * For memory reclaim.
129 */
130 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
131 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
132 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
133 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
134 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
135 struct task_struct *p);
136 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
137 struct page *newpage);
138
139 static inline void mem_cgroup_oom_enable(void)
140 {
141 WARN_ON(current->memcg_oom.may_oom);
142 current->memcg_oom.may_oom = 1;
143 }
144
145 static inline void mem_cgroup_oom_disable(void)
146 {
147 WARN_ON(!current->memcg_oom.may_oom);
148 current->memcg_oom.may_oom = 0;
149 }
150
151 static inline bool task_in_memcg_oom(struct task_struct *p)
152 {
153 return p->memcg_oom.memcg;
154 }
155
156 bool mem_cgroup_oom_synchronize(bool wait);
157
158 #ifdef CONFIG_MEMCG_SWAP
159 extern int do_swap_account;
160 #endif
161
162 static inline bool mem_cgroup_disabled(void)
163 {
164 if (memory_cgrp_subsys.disabled)
165 return true;
166 return false;
167 }
168
169 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
170 unsigned long *flags);
171
172 extern atomic_t memcg_moving;
173
174 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
175 bool *locked, unsigned long *flags)
176 {
177 if (mem_cgroup_disabled())
178 return;
179 rcu_read_lock();
180 *locked = false;
181 if (atomic_read(&memcg_moving))
182 __mem_cgroup_begin_update_page_stat(page, locked, flags);
183 }
184
185 void __mem_cgroup_end_update_page_stat(struct page *page,
186 unsigned long *flags);
187 static inline void mem_cgroup_end_update_page_stat(struct page *page,
188 bool *locked, unsigned long *flags)
189 {
190 if (mem_cgroup_disabled())
191 return;
192 if (*locked)
193 __mem_cgroup_end_update_page_stat(page, flags);
194 rcu_read_unlock();
195 }
196
197 void mem_cgroup_update_page_stat(struct page *page,
198 enum mem_cgroup_stat_index idx,
199 int val);
200
201 static inline void mem_cgroup_inc_page_stat(struct page *page,
202 enum mem_cgroup_stat_index idx)
203 {
204 mem_cgroup_update_page_stat(page, idx, 1);
205 }
206
207 static inline void mem_cgroup_dec_page_stat(struct page *page,
208 enum mem_cgroup_stat_index idx)
209 {
210 mem_cgroup_update_page_stat(page, idx, -1);
211 }
212
213 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
214 gfp_t gfp_mask,
215 unsigned long *total_scanned);
216
217 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
218 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
219 enum vm_event_item idx)
220 {
221 if (mem_cgroup_disabled())
222 return;
223 __mem_cgroup_count_vm_event(mm, idx);
224 }
225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
226 void mem_cgroup_split_huge_fixup(struct page *head);
227 #endif
228
229 #ifdef CONFIG_DEBUG_VM
230 bool mem_cgroup_bad_page_check(struct page *page);
231 void mem_cgroup_print_bad_page(struct page *page);
232 #endif
233 #else /* CONFIG_MEMCG */
234 struct mem_cgroup;
235
236 static inline int mem_cgroup_charge_anon(struct page *page,
237 struct mm_struct *mm, gfp_t gfp_mask)
238 {
239 return 0;
240 }
241
242 static inline int mem_cgroup_charge_file(struct page *page,
243 struct mm_struct *mm, gfp_t gfp_mask)
244 {
245 return 0;
246 }
247
248 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
249 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
250 {
251 return 0;
252 }
253
254 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
255 struct mem_cgroup *memcg)
256 {
257 }
258
259 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
260 {
261 }
262
263 static inline void mem_cgroup_uncharge_start(void)
264 {
265 }
266
267 static inline void mem_cgroup_uncharge_end(void)
268 {
269 }
270
271 static inline void mem_cgroup_uncharge_page(struct page *page)
272 {
273 }
274
275 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
276 {
277 }
278
279 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
280 struct mem_cgroup *memcg)
281 {
282 return &zone->lruvec;
283 }
284
285 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
286 struct zone *zone)
287 {
288 return &zone->lruvec;
289 }
290
291 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
292 {
293 return NULL;
294 }
295
296 static inline bool mm_match_cgroup(struct mm_struct *mm,
297 struct mem_cgroup *memcg)
298 {
299 return true;
300 }
301
302 static inline bool task_in_mem_cgroup(struct task_struct *task,
303 const struct mem_cgroup *memcg)
304 {
305 return true;
306 }
307
308 static inline struct cgroup_subsys_state
309 *mem_cgroup_css(struct mem_cgroup *memcg)
310 {
311 return NULL;
312 }
313
314 static inline void
315 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
316 struct mem_cgroup **memcgp)
317 {
318 }
319
320 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
321 struct page *oldpage, struct page *newpage, bool migration_ok)
322 {
323 }
324
325 static inline struct mem_cgroup *
326 mem_cgroup_iter(struct mem_cgroup *root,
327 struct mem_cgroup *prev,
328 struct mem_cgroup_reclaim_cookie *reclaim)
329 {
330 return NULL;
331 }
332
333 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
334 struct mem_cgroup *prev)
335 {
336 }
337
338 static inline bool mem_cgroup_disabled(void)
339 {
340 return true;
341 }
342
343 static inline int
344 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
345 {
346 return 1;
347 }
348
349 static inline unsigned long
350 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
351 {
352 return 0;
353 }
354
355 static inline void
356 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
357 int increment)
358 {
359 }
360
361 static inline void
362 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
363 {
364 }
365
366 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
367 bool *locked, unsigned long *flags)
368 {
369 }
370
371 static inline void mem_cgroup_end_update_page_stat(struct page *page,
372 bool *locked, unsigned long *flags)
373 {
374 }
375
376 static inline void mem_cgroup_oom_enable(void)
377 {
378 }
379
380 static inline void mem_cgroup_oom_disable(void)
381 {
382 }
383
384 static inline bool task_in_memcg_oom(struct task_struct *p)
385 {
386 return false;
387 }
388
389 static inline bool mem_cgroup_oom_synchronize(bool wait)
390 {
391 return false;
392 }
393
394 static inline void mem_cgroup_inc_page_stat(struct page *page,
395 enum mem_cgroup_stat_index idx)
396 {
397 }
398
399 static inline void mem_cgroup_dec_page_stat(struct page *page,
400 enum mem_cgroup_stat_index idx)
401 {
402 }
403
404 static inline
405 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
406 gfp_t gfp_mask,
407 unsigned long *total_scanned)
408 {
409 return 0;
410 }
411
412 static inline void mem_cgroup_split_huge_fixup(struct page *head)
413 {
414 }
415
416 static inline
417 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
418 {
419 }
420 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
421 struct page *newpage)
422 {
423 }
424 #endif /* CONFIG_MEMCG */
425
426 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
427 static inline bool
428 mem_cgroup_bad_page_check(struct page *page)
429 {
430 return false;
431 }
432
433 static inline void
434 mem_cgroup_print_bad_page(struct page *page)
435 {
436 }
437 #endif
438
439 enum {
440 UNDER_LIMIT,
441 SOFT_LIMIT,
442 OVER_LIMIT,
443 };
444
445 struct sock;
446 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
447 void sock_update_memcg(struct sock *sk);
448 void sock_release_memcg(struct sock *sk);
449 #else
450 static inline void sock_update_memcg(struct sock *sk)
451 {
452 }
453 static inline void sock_release_memcg(struct sock *sk)
454 {
455 }
456 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
457
458 #ifdef CONFIG_MEMCG_KMEM
459 extern struct static_key memcg_kmem_enabled_key;
460
461 extern int memcg_limited_groups_array_size;
462
463 /*
464 * Helper macro to loop through all memcg-specific caches. Callers must still
465 * check if the cache is valid (it is either valid or NULL).
466 * the slab_mutex must be held when looping through those caches
467 */
468 #define for_each_memcg_cache_index(_idx) \
469 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
470
471 static inline bool memcg_kmem_enabled(void)
472 {
473 return static_key_false(&memcg_kmem_enabled_key);
474 }
475
476 /*
477 * In general, we'll do everything in our power to not incur in any overhead
478 * for non-memcg users for the kmem functions. Not even a function call, if we
479 * can avoid it.
480 *
481 * Therefore, we'll inline all those functions so that in the best case, we'll
482 * see that kmemcg is off for everybody and proceed quickly. If it is on,
483 * we'll still do most of the flag checking inline. We check a lot of
484 * conditions, but because they are pretty simple, they are expected to be
485 * fast.
486 */
487 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
488 int order);
489 void __memcg_kmem_commit_charge(struct page *page,
490 struct mem_cgroup *memcg, int order);
491 void __memcg_kmem_uncharge_pages(struct page *page, int order);
492
493 int memcg_cache_id(struct mem_cgroup *memcg);
494
495 char *memcg_create_cache_name(struct mem_cgroup *memcg,
496 struct kmem_cache *root_cache);
497 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
498 struct kmem_cache *root_cache);
499 void memcg_free_cache_params(struct kmem_cache *s);
500
501 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
502 void memcg_update_array_size(int num_groups);
503
504 struct kmem_cache *
505 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
506
507 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order);
508 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order);
509
510 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s);
511
512 /**
513 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
514 * @gfp: the gfp allocation flags.
515 * @memcg: a pointer to the memcg this was charged against.
516 * @order: allocation order.
517 *
518 * returns true if the memcg where the current task belongs can hold this
519 * allocation.
520 *
521 * We return true automatically if this allocation is not to be accounted to
522 * any memcg.
523 */
524 static inline bool
525 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
526 {
527 if (!memcg_kmem_enabled())
528 return true;
529
530 /*
531 * __GFP_NOFAIL allocations will move on even if charging is not
532 * possible. Therefore we don't even try, and have this allocation
533 * unaccounted. We could in theory charge it with
534 * res_counter_charge_nofail, but we hope those allocations are rare,
535 * and won't be worth the trouble.
536 */
537 if (gfp & __GFP_NOFAIL)
538 return true;
539 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
540 return true;
541
542 /* If the test is dying, just let it go. */
543 if (unlikely(fatal_signal_pending(current)))
544 return true;
545
546 return __memcg_kmem_newpage_charge(gfp, memcg, order);
547 }
548
549 /**
550 * memcg_kmem_uncharge_pages: uncharge pages from memcg
551 * @page: pointer to struct page being freed
552 * @order: allocation order.
553 *
554 * there is no need to specify memcg here, since it is embedded in page_cgroup
555 */
556 static inline void
557 memcg_kmem_uncharge_pages(struct page *page, int order)
558 {
559 if (memcg_kmem_enabled())
560 __memcg_kmem_uncharge_pages(page, order);
561 }
562
563 /**
564 * memcg_kmem_commit_charge: embeds correct memcg in a page
565 * @page: pointer to struct page recently allocated
566 * @memcg: the memcg structure we charged against
567 * @order: allocation order.
568 *
569 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
570 * failure of the allocation. if @page is NULL, this function will revert the
571 * charges. Otherwise, it will commit the memcg given by @memcg to the
572 * corresponding page_cgroup.
573 */
574 static inline void
575 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
576 {
577 if (memcg_kmem_enabled() && memcg)
578 __memcg_kmem_commit_charge(page, memcg, order);
579 }
580
581 /**
582 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
583 * @cachep: the original global kmem cache
584 * @gfp: allocation flags.
585 *
586 * All memory allocated from a per-memcg cache is charged to the owner memcg.
587 */
588 static __always_inline struct kmem_cache *
589 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
590 {
591 if (!memcg_kmem_enabled())
592 return cachep;
593 if (gfp & __GFP_NOFAIL)
594 return cachep;
595 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
596 return cachep;
597 if (unlikely(fatal_signal_pending(current)))
598 return cachep;
599
600 return __memcg_kmem_get_cache(cachep, gfp);
601 }
602 #else
603 #define for_each_memcg_cache_index(_idx) \
604 for (; NULL; )
605
606 static inline bool memcg_kmem_enabled(void)
607 {
608 return false;
609 }
610
611 static inline bool
612 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
613 {
614 return true;
615 }
616
617 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
618 {
619 }
620
621 static inline void
622 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
623 {
624 }
625
626 static inline int memcg_cache_id(struct mem_cgroup *memcg)
627 {
628 return -1;
629 }
630
631 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
632 struct kmem_cache *s, struct kmem_cache *root_cache)
633 {
634 return 0;
635 }
636
637 static inline void memcg_free_cache_params(struct kmem_cache *s)
638 {
639 }
640
641 static inline struct kmem_cache *
642 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
643 {
644 return cachep;
645 }
646 #endif /* CONFIG_MEMCG_KMEM */
647 #endif /* _LINUX_MEMCONTROL_H */
648