]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/memcontrol.h
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / include / linux / memcontrol.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40 };
41
42 enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51 };
52
53 enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57 };
58
59 struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 unsigned int generation;
62 };
63
64 #ifdef CONFIG_MEMCG
65
66 #define MEM_CGROUP_ID_SHIFT 16
67 #define MEM_CGROUP_ID_MAX USHRT_MAX
68
69 struct mem_cgroup_id {
70 int id;
71 refcount_t ref;
72 };
73
74 /*
75 * Per memcg event counter is incremented at every pagein/pageout. With THP,
76 * it will be incremated by the number of pages. This counter is used for
77 * for trigger some periodic events. This is straightforward and better
78 * than using jiffies etc. to handle periodic memcg event.
79 */
80 enum mem_cgroup_events_target {
81 MEM_CGROUP_TARGET_THRESH,
82 MEM_CGROUP_TARGET_SOFTLIMIT,
83 MEM_CGROUP_NTARGETS,
84 };
85
86 struct memcg_vmstats_percpu {
87 long stat[MEMCG_NR_STAT];
88 unsigned long events[NR_VM_EVENT_ITEMS];
89 unsigned long nr_page_events;
90 unsigned long targets[MEM_CGROUP_NTARGETS];
91 };
92
93 struct mem_cgroup_reclaim_iter {
94 struct mem_cgroup *position;
95 /* scan generation, increased every round-trip */
96 unsigned int generation;
97 };
98
99 struct lruvec_stat {
100 long count[NR_VM_NODE_STAT_ITEMS];
101 };
102
103 /*
104 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
105 * which have elements charged to this memcg.
106 */
107 struct memcg_shrinker_map {
108 struct rcu_head rcu;
109 unsigned long map[];
110 };
111
112 /*
113 * per-node information in memory controller.
114 */
115 struct mem_cgroup_per_node {
116 struct lruvec lruvec;
117
118 /* Legacy local VM stats */
119 struct lruvec_stat __percpu *lruvec_stat_local;
120
121 /* Subtree VM stats (batched updates) */
122 struct lruvec_stat __percpu *lruvec_stat_cpu;
123 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
124
125 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
126
127 struct mem_cgroup_reclaim_iter iter;
128
129 struct memcg_shrinker_map __rcu *shrinker_map;
130
131 struct rb_node tree_node; /* RB tree node */
132 unsigned long usage_in_excess;/* Set to the value by which */
133 /* the soft limit is exceeded*/
134 bool on_tree;
135 struct mem_cgroup *memcg; /* Back pointer, we cannot */
136 /* use container_of */
137 };
138
139 struct mem_cgroup_threshold {
140 struct eventfd_ctx *eventfd;
141 unsigned long threshold;
142 };
143
144 /* For threshold */
145 struct mem_cgroup_threshold_ary {
146 /* An array index points to threshold just below or equal to usage. */
147 int current_threshold;
148 /* Size of entries[] */
149 unsigned int size;
150 /* Array of thresholds */
151 struct mem_cgroup_threshold entries[];
152 };
153
154 struct mem_cgroup_thresholds {
155 /* Primary thresholds array */
156 struct mem_cgroup_threshold_ary *primary;
157 /*
158 * Spare threshold array.
159 * This is needed to make mem_cgroup_unregister_event() "never fail".
160 * It must be able to store at least primary->size - 1 entries.
161 */
162 struct mem_cgroup_threshold_ary *spare;
163 };
164
165 enum memcg_kmem_state {
166 KMEM_NONE,
167 KMEM_ALLOCATED,
168 KMEM_ONLINE,
169 };
170
171 #if defined(CONFIG_SMP)
172 struct memcg_padding {
173 char x[0];
174 } ____cacheline_internodealigned_in_smp;
175 #define MEMCG_PADDING(name) struct memcg_padding name;
176 #else
177 #define MEMCG_PADDING(name)
178 #endif
179
180 /*
181 * Remember four most recent foreign writebacks with dirty pages in this
182 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
183 * one in a given round, we're likely to catch it later if it keeps
184 * foreign-dirtying, so a fairly low count should be enough.
185 *
186 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
187 */
188 #define MEMCG_CGWB_FRN_CNT 4
189
190 struct memcg_cgwb_frn {
191 u64 bdi_id; /* bdi->id of the foreign inode */
192 int memcg_id; /* memcg->css.id of foreign inode */
193 u64 at; /* jiffies_64 at the time of dirtying */
194 struct wb_completion done; /* tracks in-flight foreign writebacks */
195 };
196
197 /*
198 * The memory controller data structure. The memory controller controls both
199 * page cache and RSS per cgroup. We would eventually like to provide
200 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
201 * to help the administrator determine what knobs to tune.
202 */
203 struct mem_cgroup {
204 struct cgroup_subsys_state css;
205
206 /* Private memcg ID. Used to ID objects that outlive the cgroup */
207 struct mem_cgroup_id id;
208
209 /* Accounted resources */
210 struct page_counter memory;
211 struct page_counter swap;
212
213 /* Legacy consumer-oriented counters */
214 struct page_counter memsw;
215 struct page_counter kmem;
216 struct page_counter tcpmem;
217
218 /* Upper bound of normal memory consumption range */
219 unsigned long high;
220
221 /* Range enforcement for interrupt charges */
222 struct work_struct high_work;
223
224 unsigned long soft_limit;
225
226 /* vmpressure notifications */
227 struct vmpressure vmpressure;
228
229 /*
230 * Should the accounting and control be hierarchical, per subtree?
231 */
232 bool use_hierarchy;
233
234 /*
235 * Should the OOM killer kill all belonging tasks, had it kill one?
236 */
237 bool oom_group;
238
239 /* protected by memcg_oom_lock */
240 bool oom_lock;
241 int under_oom;
242
243 int swappiness;
244 /* OOM-Killer disable */
245 int oom_kill_disable;
246
247 /* memory.events and memory.events.local */
248 struct cgroup_file events_file;
249 struct cgroup_file events_local_file;
250
251 /* handle for "memory.swap.events" */
252 struct cgroup_file swap_events_file;
253
254 /* protect arrays of thresholds */
255 struct mutex thresholds_lock;
256
257 /* thresholds for memory usage. RCU-protected */
258 struct mem_cgroup_thresholds thresholds;
259
260 /* thresholds for mem+swap usage. RCU-protected */
261 struct mem_cgroup_thresholds memsw_thresholds;
262
263 /* For oom notifier event fd */
264 struct list_head oom_notify;
265
266 /*
267 * Should we move charges of a task when a task is moved into this
268 * mem_cgroup ? And what type of charges should we move ?
269 */
270 unsigned long move_charge_at_immigrate;
271 /* taken only while moving_account > 0 */
272 spinlock_t move_lock;
273 unsigned long move_lock_flags;
274
275 MEMCG_PADDING(_pad1_);
276
277 /*
278 * set > 0 if pages under this cgroup are moving to other cgroup.
279 */
280 atomic_t moving_account;
281 struct task_struct *move_lock_task;
282
283 /* Legacy local VM stats and events */
284 struct memcg_vmstats_percpu __percpu *vmstats_local;
285
286 /* Subtree VM stats and events (batched updates) */
287 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
288
289 MEMCG_PADDING(_pad2_);
290
291 atomic_long_t vmstats[MEMCG_NR_STAT];
292 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
293
294 /* memory.events */
295 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
296 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
297
298 unsigned long socket_pressure;
299
300 /* Legacy tcp memory accounting */
301 bool tcpmem_active;
302 int tcpmem_pressure;
303
304 #ifdef CONFIG_MEMCG_KMEM
305 /* Index in the kmem_cache->memcg_params.memcg_caches array */
306 int kmemcg_id;
307 enum memcg_kmem_state kmem_state;
308 struct list_head kmem_caches;
309 #endif
310
311 #ifdef CONFIG_CGROUP_WRITEBACK
312 struct list_head cgwb_list;
313 struct wb_domain cgwb_domain;
314 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
315 #endif
316
317 /* List of events which userspace want to receive */
318 struct list_head event_list;
319 spinlock_t event_list_lock;
320
321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 struct deferred_split deferred_split_queue;
323 #endif
324
325 struct mem_cgroup_per_node *nodeinfo[0];
326 /* WARNING: nodeinfo must be the last member here */
327 };
328
329 /*
330 * size of first charge trial. "32" comes from vmscan.c's magic value.
331 * TODO: maybe necessary to use big numbers in big irons.
332 */
333 #define MEMCG_CHARGE_BATCH 32U
334
335 extern struct mem_cgroup *root_mem_cgroup;
336
337 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
338 {
339 return (memcg == root_mem_cgroup);
340 }
341
342 static inline bool mem_cgroup_disabled(void)
343 {
344 return !cgroup_subsys_enabled(memory_cgrp_subsys);
345 }
346
347 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
348 bool in_low_reclaim)
349 {
350 if (mem_cgroup_disabled())
351 return 0;
352
353 if (in_low_reclaim)
354 return READ_ONCE(memcg->memory.emin);
355
356 return max(READ_ONCE(memcg->memory.emin),
357 READ_ONCE(memcg->memory.elow));
358 }
359
360 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
361 struct mem_cgroup *memcg);
362
363 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
364 gfp_t gfp_mask, struct mem_cgroup **memcgp,
365 bool compound);
366 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
367 gfp_t gfp_mask, struct mem_cgroup **memcgp,
368 bool compound);
369 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
370 bool lrucare, bool compound);
371 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
372 bool compound);
373 void mem_cgroup_uncharge(struct page *page);
374 void mem_cgroup_uncharge_list(struct list_head *page_list);
375
376 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
377
378 static struct mem_cgroup_per_node *
379 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
380 {
381 return memcg->nodeinfo[nid];
382 }
383
384 /**
385 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
386 * @memcg: memcg of the wanted lruvec
387 *
388 * Returns the lru list vector holding pages for a given @memcg &
389 * @node combination. This can be the node lruvec, if the memory
390 * controller is disabled.
391 */
392 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
393 struct pglist_data *pgdat)
394 {
395 struct mem_cgroup_per_node *mz;
396 struct lruvec *lruvec;
397
398 if (mem_cgroup_disabled()) {
399 lruvec = &pgdat->__lruvec;
400 goto out;
401 }
402
403 if (!memcg)
404 memcg = root_mem_cgroup;
405
406 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
407 lruvec = &mz->lruvec;
408 out:
409 /*
410 * Since a node can be onlined after the mem_cgroup was created,
411 * we have to be prepared to initialize lruvec->pgdat here;
412 * and if offlined then reonlined, we need to reinitialize it.
413 */
414 if (unlikely(lruvec->pgdat != pgdat))
415 lruvec->pgdat = pgdat;
416 return lruvec;
417 }
418
419 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
420
421 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
422
423 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
424
425 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
426
427 static inline
428 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
429 return css ? container_of(css, struct mem_cgroup, css) : NULL;
430 }
431
432 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
433 {
434 if (memcg)
435 css_put(&memcg->css);
436 }
437
438 #define mem_cgroup_from_counter(counter, member) \
439 container_of(counter, struct mem_cgroup, member)
440
441 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
442 struct mem_cgroup *,
443 struct mem_cgroup_reclaim_cookie *);
444 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
445 int mem_cgroup_scan_tasks(struct mem_cgroup *,
446 int (*)(struct task_struct *, void *), void *);
447
448 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
449 {
450 if (mem_cgroup_disabled())
451 return 0;
452
453 return memcg->id.id;
454 }
455 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
456
457 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
458 {
459 return mem_cgroup_from_css(seq_css(m));
460 }
461
462 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
463 {
464 struct mem_cgroup_per_node *mz;
465
466 if (mem_cgroup_disabled())
467 return NULL;
468
469 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
470 return mz->memcg;
471 }
472
473 /**
474 * parent_mem_cgroup - find the accounting parent of a memcg
475 * @memcg: memcg whose parent to find
476 *
477 * Returns the parent memcg, or NULL if this is the root or the memory
478 * controller is in legacy no-hierarchy mode.
479 */
480 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
481 {
482 if (!memcg->memory.parent)
483 return NULL;
484 return mem_cgroup_from_counter(memcg->memory.parent, memory);
485 }
486
487 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
488 struct mem_cgroup *root)
489 {
490 if (root == memcg)
491 return true;
492 if (!root->use_hierarchy)
493 return false;
494 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
495 }
496
497 static inline bool mm_match_cgroup(struct mm_struct *mm,
498 struct mem_cgroup *memcg)
499 {
500 struct mem_cgroup *task_memcg;
501 bool match = false;
502
503 rcu_read_lock();
504 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
505 if (task_memcg)
506 match = mem_cgroup_is_descendant(task_memcg, memcg);
507 rcu_read_unlock();
508 return match;
509 }
510
511 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
512 ino_t page_cgroup_ino(struct page *page);
513
514 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
515 {
516 if (mem_cgroup_disabled())
517 return true;
518 return !!(memcg->css.flags & CSS_ONLINE);
519 }
520
521 /*
522 * For memory reclaim.
523 */
524 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
525
526 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
527 int zid, int nr_pages);
528
529 static inline
530 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
531 enum lru_list lru, int zone_idx)
532 {
533 struct mem_cgroup_per_node *mz;
534
535 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
536 return mz->lru_zone_size[zone_idx][lru];
537 }
538
539 void mem_cgroup_handle_over_high(void);
540
541 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
542
543 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
544
545 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
546 struct task_struct *p);
547
548 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
549
550 static inline void mem_cgroup_enter_user_fault(void)
551 {
552 WARN_ON(current->in_user_fault);
553 current->in_user_fault = 1;
554 }
555
556 static inline void mem_cgroup_exit_user_fault(void)
557 {
558 WARN_ON(!current->in_user_fault);
559 current->in_user_fault = 0;
560 }
561
562 static inline bool task_in_memcg_oom(struct task_struct *p)
563 {
564 return p->memcg_in_oom;
565 }
566
567 bool mem_cgroup_oom_synchronize(bool wait);
568 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
569 struct mem_cgroup *oom_domain);
570 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
571
572 #ifdef CONFIG_MEMCG_SWAP
573 extern int do_swap_account;
574 #endif
575
576 struct mem_cgroup *lock_page_memcg(struct page *page);
577 void __unlock_page_memcg(struct mem_cgroup *memcg);
578 void unlock_page_memcg(struct page *page);
579
580 /*
581 * idx can be of type enum memcg_stat_item or node_stat_item.
582 * Keep in sync with memcg_exact_page_state().
583 */
584 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
585 {
586 long x = atomic_long_read(&memcg->vmstats[idx]);
587 #ifdef CONFIG_SMP
588 if (x < 0)
589 x = 0;
590 #endif
591 return x;
592 }
593
594 /*
595 * idx can be of type enum memcg_stat_item or node_stat_item.
596 * Keep in sync with memcg_exact_page_state().
597 */
598 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
599 int idx)
600 {
601 long x = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
606 #ifdef CONFIG_SMP
607 if (x < 0)
608 x = 0;
609 #endif
610 return x;
611 }
612
613 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
614
615 /* idx can be of type enum memcg_stat_item or node_stat_item */
616 static inline void mod_memcg_state(struct mem_cgroup *memcg,
617 int idx, int val)
618 {
619 unsigned long flags;
620
621 local_irq_save(flags);
622 __mod_memcg_state(memcg, idx, val);
623 local_irq_restore(flags);
624 }
625
626 /**
627 * mod_memcg_page_state - update page state statistics
628 * @page: the page
629 * @idx: page state item to account
630 * @val: number of pages (positive or negative)
631 *
632 * The @page must be locked or the caller must use lock_page_memcg()
633 * to prevent double accounting when the page is concurrently being
634 * moved to another memcg:
635 *
636 * lock_page(page) or lock_page_memcg(page)
637 * if (TestClearPageState(page))
638 * mod_memcg_page_state(page, state, -1);
639 * unlock_page(page) or unlock_page_memcg(page)
640 *
641 * Kernel pages are an exception to this, since they'll never move.
642 */
643 static inline void __mod_memcg_page_state(struct page *page,
644 int idx, int val)
645 {
646 if (page->mem_cgroup)
647 __mod_memcg_state(page->mem_cgroup, idx, val);
648 }
649
650 static inline void mod_memcg_page_state(struct page *page,
651 int idx, int val)
652 {
653 if (page->mem_cgroup)
654 mod_memcg_state(page->mem_cgroup, idx, val);
655 }
656
657 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
658 enum node_stat_item idx)
659 {
660 struct mem_cgroup_per_node *pn;
661 long x;
662
663 if (mem_cgroup_disabled())
664 return node_page_state(lruvec_pgdat(lruvec), idx);
665
666 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
667 x = atomic_long_read(&pn->lruvec_stat[idx]);
668 #ifdef CONFIG_SMP
669 if (x < 0)
670 x = 0;
671 #endif
672 return x;
673 }
674
675 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
676 enum node_stat_item idx)
677 {
678 struct mem_cgroup_per_node *pn;
679 long x = 0;
680 int cpu;
681
682 if (mem_cgroup_disabled())
683 return node_page_state(lruvec_pgdat(lruvec), idx);
684
685 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
686 for_each_possible_cpu(cpu)
687 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
688 #ifdef CONFIG_SMP
689 if (x < 0)
690 x = 0;
691 #endif
692 return x;
693 }
694
695 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 int val);
697 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
698 void mod_memcg_obj_state(void *p, int idx, int val);
699
700 static inline void mod_lruvec_state(struct lruvec *lruvec,
701 enum node_stat_item idx, int val)
702 {
703 unsigned long flags;
704
705 local_irq_save(flags);
706 __mod_lruvec_state(lruvec, idx, val);
707 local_irq_restore(flags);
708 }
709
710 static inline void __mod_lruvec_page_state(struct page *page,
711 enum node_stat_item idx, int val)
712 {
713 pg_data_t *pgdat = page_pgdat(page);
714 struct lruvec *lruvec;
715
716 /* Untracked pages have no memcg, no lruvec. Update only the node */
717 if (!page->mem_cgroup) {
718 __mod_node_page_state(pgdat, idx, val);
719 return;
720 }
721
722 lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat);
723 __mod_lruvec_state(lruvec, idx, val);
724 }
725
726 static inline void mod_lruvec_page_state(struct page *page,
727 enum node_stat_item idx, int val)
728 {
729 unsigned long flags;
730
731 local_irq_save(flags);
732 __mod_lruvec_page_state(page, idx, val);
733 local_irq_restore(flags);
734 }
735
736 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
737 gfp_t gfp_mask,
738 unsigned long *total_scanned);
739
740 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
741 unsigned long count);
742
743 static inline void count_memcg_events(struct mem_cgroup *memcg,
744 enum vm_event_item idx,
745 unsigned long count)
746 {
747 unsigned long flags;
748
749 local_irq_save(flags);
750 __count_memcg_events(memcg, idx, count);
751 local_irq_restore(flags);
752 }
753
754 static inline void count_memcg_page_event(struct page *page,
755 enum vm_event_item idx)
756 {
757 if (page->mem_cgroup)
758 count_memcg_events(page->mem_cgroup, idx, 1);
759 }
760
761 static inline void count_memcg_event_mm(struct mm_struct *mm,
762 enum vm_event_item idx)
763 {
764 struct mem_cgroup *memcg;
765
766 if (mem_cgroup_disabled())
767 return;
768
769 rcu_read_lock();
770 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
771 if (likely(memcg))
772 count_memcg_events(memcg, idx, 1);
773 rcu_read_unlock();
774 }
775
776 static inline void memcg_memory_event(struct mem_cgroup *memcg,
777 enum memcg_memory_event event)
778 {
779 atomic_long_inc(&memcg->memory_events_local[event]);
780 cgroup_file_notify(&memcg->events_local_file);
781
782 do {
783 atomic_long_inc(&memcg->memory_events[event]);
784 cgroup_file_notify(&memcg->events_file);
785
786 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
787 break;
788 } while ((memcg = parent_mem_cgroup(memcg)) &&
789 !mem_cgroup_is_root(memcg));
790 }
791
792 static inline void memcg_memory_event_mm(struct mm_struct *mm,
793 enum memcg_memory_event event)
794 {
795 struct mem_cgroup *memcg;
796
797 if (mem_cgroup_disabled())
798 return;
799
800 rcu_read_lock();
801 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
802 if (likely(memcg))
803 memcg_memory_event(memcg, event);
804 rcu_read_unlock();
805 }
806
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
808 void mem_cgroup_split_huge_fixup(struct page *head);
809 #endif
810
811 #else /* CONFIG_MEMCG */
812
813 #define MEM_CGROUP_ID_SHIFT 0
814 #define MEM_CGROUP_ID_MAX 0
815
816 struct mem_cgroup;
817
818 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
819 {
820 return true;
821 }
822
823 static inline bool mem_cgroup_disabled(void)
824 {
825 return true;
826 }
827
828 static inline void memcg_memory_event(struct mem_cgroup *memcg,
829 enum memcg_memory_event event)
830 {
831 }
832
833 static inline void memcg_memory_event_mm(struct mm_struct *mm,
834 enum memcg_memory_event event)
835 {
836 }
837
838 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
839 bool in_low_reclaim)
840 {
841 return 0;
842 }
843
844 static inline enum mem_cgroup_protection mem_cgroup_protected(
845 struct mem_cgroup *root, struct mem_cgroup *memcg)
846 {
847 return MEMCG_PROT_NONE;
848 }
849
850 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
851 gfp_t gfp_mask,
852 struct mem_cgroup **memcgp,
853 bool compound)
854 {
855 *memcgp = NULL;
856 return 0;
857 }
858
859 static inline int mem_cgroup_try_charge_delay(struct page *page,
860 struct mm_struct *mm,
861 gfp_t gfp_mask,
862 struct mem_cgroup **memcgp,
863 bool compound)
864 {
865 *memcgp = NULL;
866 return 0;
867 }
868
869 static inline void mem_cgroup_commit_charge(struct page *page,
870 struct mem_cgroup *memcg,
871 bool lrucare, bool compound)
872 {
873 }
874
875 static inline void mem_cgroup_cancel_charge(struct page *page,
876 struct mem_cgroup *memcg,
877 bool compound)
878 {
879 }
880
881 static inline void mem_cgroup_uncharge(struct page *page)
882 {
883 }
884
885 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
886 {
887 }
888
889 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
890 {
891 }
892
893 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
894 struct pglist_data *pgdat)
895 {
896 return &pgdat->__lruvec;
897 }
898
899 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
900 struct pglist_data *pgdat)
901 {
902 return &pgdat->__lruvec;
903 }
904
905 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
906 {
907 return NULL;
908 }
909
910 static inline bool mm_match_cgroup(struct mm_struct *mm,
911 struct mem_cgroup *memcg)
912 {
913 return true;
914 }
915
916 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 return NULL;
919 }
920
921 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
922 {
923 return NULL;
924 }
925
926 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
927 {
928 }
929
930 static inline struct mem_cgroup *
931 mem_cgroup_iter(struct mem_cgroup *root,
932 struct mem_cgroup *prev,
933 struct mem_cgroup_reclaim_cookie *reclaim)
934 {
935 return NULL;
936 }
937
938 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
939 struct mem_cgroup *prev)
940 {
941 }
942
943 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
944 int (*fn)(struct task_struct *, void *), void *arg)
945 {
946 return 0;
947 }
948
949 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
950 {
951 return 0;
952 }
953
954 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
955 {
956 WARN_ON_ONCE(id);
957 /* XXX: This should always return root_mem_cgroup */
958 return NULL;
959 }
960
961 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
962 {
963 return NULL;
964 }
965
966 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
967 {
968 return NULL;
969 }
970
971 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
972 {
973 return true;
974 }
975
976 static inline
977 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
978 enum lru_list lru, int zone_idx)
979 {
980 return 0;
981 }
982
983 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
984 {
985 return 0;
986 }
987
988 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
989 {
990 return 0;
991 }
992
993 static inline void
994 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
995 {
996 }
997
998 static inline void
999 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1000 {
1001 }
1002
1003 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1004 {
1005 return NULL;
1006 }
1007
1008 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1009 {
1010 }
1011
1012 static inline void unlock_page_memcg(struct page *page)
1013 {
1014 }
1015
1016 static inline void mem_cgroup_handle_over_high(void)
1017 {
1018 }
1019
1020 static inline void mem_cgroup_enter_user_fault(void)
1021 {
1022 }
1023
1024 static inline void mem_cgroup_exit_user_fault(void)
1025 {
1026 }
1027
1028 static inline bool task_in_memcg_oom(struct task_struct *p)
1029 {
1030 return false;
1031 }
1032
1033 static inline bool mem_cgroup_oom_synchronize(bool wait)
1034 {
1035 return false;
1036 }
1037
1038 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1039 struct task_struct *victim, struct mem_cgroup *oom_domain)
1040 {
1041 return NULL;
1042 }
1043
1044 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1045 {
1046 }
1047
1048 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1049 {
1050 return 0;
1051 }
1052
1053 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1054 int idx)
1055 {
1056 return 0;
1057 }
1058
1059 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1060 int idx,
1061 int nr)
1062 {
1063 }
1064
1065 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1066 int idx,
1067 int nr)
1068 {
1069 }
1070
1071 static inline void __mod_memcg_page_state(struct page *page,
1072 int idx,
1073 int nr)
1074 {
1075 }
1076
1077 static inline void mod_memcg_page_state(struct page *page,
1078 int idx,
1079 int nr)
1080 {
1081 }
1082
1083 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1084 enum node_stat_item idx)
1085 {
1086 return node_page_state(lruvec_pgdat(lruvec), idx);
1087 }
1088
1089 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1090 enum node_stat_item idx)
1091 {
1092 return node_page_state(lruvec_pgdat(lruvec), idx);
1093 }
1094
1095 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1096 enum node_stat_item idx, int val)
1097 {
1098 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1099 }
1100
1101 static inline void mod_lruvec_state(struct lruvec *lruvec,
1102 enum node_stat_item idx, int val)
1103 {
1104 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1105 }
1106
1107 static inline void __mod_lruvec_page_state(struct page *page,
1108 enum node_stat_item idx, int val)
1109 {
1110 __mod_node_page_state(page_pgdat(page), idx, val);
1111 }
1112
1113 static inline void mod_lruvec_page_state(struct page *page,
1114 enum node_stat_item idx, int val)
1115 {
1116 mod_node_page_state(page_pgdat(page), idx, val);
1117 }
1118
1119 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1120 int val)
1121 {
1122 struct page *page = virt_to_head_page(p);
1123
1124 __mod_node_page_state(page_pgdat(page), idx, val);
1125 }
1126
1127 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1128 {
1129 }
1130
1131 static inline
1132 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1133 gfp_t gfp_mask,
1134 unsigned long *total_scanned)
1135 {
1136 return 0;
1137 }
1138
1139 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1140 {
1141 }
1142
1143 static inline void count_memcg_events(struct mem_cgroup *memcg,
1144 enum vm_event_item idx,
1145 unsigned long count)
1146 {
1147 }
1148
1149 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1150 enum vm_event_item idx,
1151 unsigned long count)
1152 {
1153 }
1154
1155 static inline void count_memcg_page_event(struct page *page,
1156 int idx)
1157 {
1158 }
1159
1160 static inline
1161 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1162 {
1163 }
1164 #endif /* CONFIG_MEMCG */
1165
1166 /* idx can be of type enum memcg_stat_item or node_stat_item */
1167 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1168 int idx)
1169 {
1170 __mod_memcg_state(memcg, idx, 1);
1171 }
1172
1173 /* idx can be of type enum memcg_stat_item or node_stat_item */
1174 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1175 int idx)
1176 {
1177 __mod_memcg_state(memcg, idx, -1);
1178 }
1179
1180 /* idx can be of type enum memcg_stat_item or node_stat_item */
1181 static inline void __inc_memcg_page_state(struct page *page,
1182 int idx)
1183 {
1184 __mod_memcg_page_state(page, idx, 1);
1185 }
1186
1187 /* idx can be of type enum memcg_stat_item or node_stat_item */
1188 static inline void __dec_memcg_page_state(struct page *page,
1189 int idx)
1190 {
1191 __mod_memcg_page_state(page, idx, -1);
1192 }
1193
1194 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1195 enum node_stat_item idx)
1196 {
1197 __mod_lruvec_state(lruvec, idx, 1);
1198 }
1199
1200 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1201 enum node_stat_item idx)
1202 {
1203 __mod_lruvec_state(lruvec, idx, -1);
1204 }
1205
1206 static inline void __inc_lruvec_page_state(struct page *page,
1207 enum node_stat_item idx)
1208 {
1209 __mod_lruvec_page_state(page, idx, 1);
1210 }
1211
1212 static inline void __dec_lruvec_page_state(struct page *page,
1213 enum node_stat_item idx)
1214 {
1215 __mod_lruvec_page_state(page, idx, -1);
1216 }
1217
1218 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1219 {
1220 __mod_lruvec_slab_state(p, idx, 1);
1221 }
1222
1223 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1224 {
1225 __mod_lruvec_slab_state(p, idx, -1);
1226 }
1227
1228 /* idx can be of type enum memcg_stat_item or node_stat_item */
1229 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1230 int idx)
1231 {
1232 mod_memcg_state(memcg, idx, 1);
1233 }
1234
1235 /* idx can be of type enum memcg_stat_item or node_stat_item */
1236 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1237 int idx)
1238 {
1239 mod_memcg_state(memcg, idx, -1);
1240 }
1241
1242 /* idx can be of type enum memcg_stat_item or node_stat_item */
1243 static inline void inc_memcg_page_state(struct page *page,
1244 int idx)
1245 {
1246 mod_memcg_page_state(page, idx, 1);
1247 }
1248
1249 /* idx can be of type enum memcg_stat_item or node_stat_item */
1250 static inline void dec_memcg_page_state(struct page *page,
1251 int idx)
1252 {
1253 mod_memcg_page_state(page, idx, -1);
1254 }
1255
1256 static inline void inc_lruvec_state(struct lruvec *lruvec,
1257 enum node_stat_item idx)
1258 {
1259 mod_lruvec_state(lruvec, idx, 1);
1260 }
1261
1262 static inline void dec_lruvec_state(struct lruvec *lruvec,
1263 enum node_stat_item idx)
1264 {
1265 mod_lruvec_state(lruvec, idx, -1);
1266 }
1267
1268 static inline void inc_lruvec_page_state(struct page *page,
1269 enum node_stat_item idx)
1270 {
1271 mod_lruvec_page_state(page, idx, 1);
1272 }
1273
1274 static inline void dec_lruvec_page_state(struct page *page,
1275 enum node_stat_item idx)
1276 {
1277 mod_lruvec_page_state(page, idx, -1);
1278 }
1279
1280 #ifdef CONFIG_CGROUP_WRITEBACK
1281
1282 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1283 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1284 unsigned long *pheadroom, unsigned long *pdirty,
1285 unsigned long *pwriteback);
1286
1287 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1288 struct bdi_writeback *wb);
1289
1290 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1291 struct bdi_writeback *wb)
1292 {
1293 if (mem_cgroup_disabled())
1294 return;
1295
1296 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1297 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1298 }
1299
1300 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1301
1302 #else /* CONFIG_CGROUP_WRITEBACK */
1303
1304 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1305 {
1306 return NULL;
1307 }
1308
1309 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1310 unsigned long *pfilepages,
1311 unsigned long *pheadroom,
1312 unsigned long *pdirty,
1313 unsigned long *pwriteback)
1314 {
1315 }
1316
1317 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1318 struct bdi_writeback *wb)
1319 {
1320 }
1321
1322 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1323 {
1324 }
1325
1326 #endif /* CONFIG_CGROUP_WRITEBACK */
1327
1328 struct sock;
1329 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1330 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1331 #ifdef CONFIG_MEMCG
1332 extern struct static_key_false memcg_sockets_enabled_key;
1333 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1334 void mem_cgroup_sk_alloc(struct sock *sk);
1335 void mem_cgroup_sk_free(struct sock *sk);
1336 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1337 {
1338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1339 return true;
1340 do {
1341 if (time_before(jiffies, memcg->socket_pressure))
1342 return true;
1343 } while ((memcg = parent_mem_cgroup(memcg)));
1344 return false;
1345 }
1346
1347 extern int memcg_expand_shrinker_maps(int new_id);
1348
1349 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1350 int nid, int shrinker_id);
1351 #else
1352 #define mem_cgroup_sockets_enabled 0
1353 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1354 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1355 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1356 {
1357 return false;
1358 }
1359
1360 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1361 int nid, int shrinker_id)
1362 {
1363 }
1364 #endif
1365
1366 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1367 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1368
1369 #ifdef CONFIG_MEMCG_KMEM
1370 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1371 unsigned int nr_pages);
1372 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1373 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1374 void __memcg_kmem_uncharge_page(struct page *page, int order);
1375
1376 extern struct static_key_false memcg_kmem_enabled_key;
1377 extern struct workqueue_struct *memcg_kmem_cache_wq;
1378
1379 extern int memcg_nr_cache_ids;
1380 void memcg_get_cache_ids(void);
1381 void memcg_put_cache_ids(void);
1382
1383 /*
1384 * Helper macro to loop through all memcg-specific caches. Callers must still
1385 * check if the cache is valid (it is either valid or NULL).
1386 * the slab_mutex must be held when looping through those caches
1387 */
1388 #define for_each_memcg_cache_index(_idx) \
1389 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1390
1391 static inline bool memcg_kmem_enabled(void)
1392 {
1393 return static_branch_unlikely(&memcg_kmem_enabled_key);
1394 }
1395
1396 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1397 int order)
1398 {
1399 if (memcg_kmem_enabled())
1400 return __memcg_kmem_charge_page(page, gfp, order);
1401 return 0;
1402 }
1403
1404 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1405 {
1406 if (memcg_kmem_enabled())
1407 __memcg_kmem_uncharge_page(page, order);
1408 }
1409
1410 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1411 unsigned int nr_pages)
1412 {
1413 if (memcg_kmem_enabled())
1414 return __memcg_kmem_charge(memcg, gfp, nr_pages);
1415 return 0;
1416 }
1417
1418 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1419 unsigned int nr_pages)
1420 {
1421 if (memcg_kmem_enabled())
1422 __memcg_kmem_uncharge(memcg, nr_pages);
1423 }
1424
1425 /*
1426 * helper for accessing a memcg's index. It will be used as an index in the
1427 * child cache array in kmem_cache, and also to derive its name. This function
1428 * will return -1 when this is not a kmem-limited memcg.
1429 */
1430 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1431 {
1432 return memcg ? memcg->kmemcg_id : -1;
1433 }
1434
1435 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1436
1437 #else
1438
1439 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1440 int order)
1441 {
1442 return 0;
1443 }
1444
1445 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1446 {
1447 }
1448
1449 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1450 int order)
1451 {
1452 return 0;
1453 }
1454
1455 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1456 {
1457 }
1458
1459 #define for_each_memcg_cache_index(_idx) \
1460 for (; NULL; )
1461
1462 static inline bool memcg_kmem_enabled(void)
1463 {
1464 return false;
1465 }
1466
1467 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1468 {
1469 return -1;
1470 }
1471
1472 static inline void memcg_get_cache_ids(void)
1473 {
1474 }
1475
1476 static inline void memcg_put_cache_ids(void)
1477 {
1478 }
1479
1480 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1481 {
1482 return NULL;
1483 }
1484
1485 #endif /* CONFIG_MEMCG_KMEM */
1486
1487 #endif /* _LINUX_MEMCONTROL_H */