]> git.ipfire.org Git - people/ms/linux.git/blob - include/linux/mm.h
306f0d4ce7e32d6f00bcada907f249061904c33d
[people/ms/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33 max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52
53 extern unsigned long sysctl_user_reserve_kbytes;
54 extern unsigned long sysctl_admin_reserve_kbytes;
55
56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
58 /* to align the pointer to the (next) page boundary */
59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
64 /*
65 * Linux kernel virtual memory manager primitives.
66 * The idea being to have a "virtual" mm in the same way
67 * we have a virtual fs - giving a cleaner interface to the
68 * mm details, and allowing different kinds of memory mappings
69 * (from shared memory to executable loading to arbitrary
70 * mmap() functions).
71 */
72
73 extern struct kmem_cache *vm_area_cachep;
74
75 #ifndef CONFIG_MMU
76 extern struct rb_root nommu_region_tree;
77 extern struct rw_semaphore nommu_region_sem;
78
79 extern unsigned int kobjsize(const void *objp);
80 #endif
81
82 /*
83 * vm_flags in vm_area_struct, see mm_types.h.
84 */
85 #define VM_NONE 0x00000000
86
87 #define VM_READ 0x00000001 /* currently active flags */
88 #define VM_WRITE 0x00000002
89 #define VM_EXEC 0x00000004
90 #define VM_SHARED 0x00000008
91
92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
93 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
94 #define VM_MAYWRITE 0x00000020
95 #define VM_MAYEXEC 0x00000040
96 #define VM_MAYSHARE 0x00000080
97
98 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
99 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
100 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
101
102 #define VM_LOCKED 0x00002000
103 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
104
105 /* Used by sys_madvise() */
106 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
107 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
108
109 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
110 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
111 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
112 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
113 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
114 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
115 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
116 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
117
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
120 #else
121 # define VM_SOFTDIRTY 0
122 #endif
123
124 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
125 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
126 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
127 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
128
129 #if defined(CONFIG_X86)
130 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
131 #elif defined(CONFIG_PPC)
132 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
133 #elif defined(CONFIG_PARISC)
134 # define VM_GROWSUP VM_ARCH_1
135 #elif defined(CONFIG_METAG)
136 # define VM_GROWSUP VM_ARCH_1
137 #elif defined(CONFIG_IA64)
138 # define VM_GROWSUP VM_ARCH_1
139 #elif !defined(CONFIG_MMU)
140 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
141 #endif
142
143 #ifndef VM_GROWSUP
144 # define VM_GROWSUP VM_NONE
145 #endif
146
147 /* Bits set in the VMA until the stack is in its final location */
148 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
149
150 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
151 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152 #endif
153
154 #ifdef CONFIG_STACK_GROWSUP
155 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156 #else
157 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158 #endif
159
160 /*
161 * Special vmas that are non-mergable, non-mlock()able.
162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
163 */
164 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
165
166 /*
167 * mapping from the currently active vm_flags protection bits (the
168 * low four bits) to a page protection mask..
169 */
170 extern pgprot_t protection_map[16];
171
172 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
173 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
174 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
175 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
176 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
177 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
178 #define FAULT_FLAG_TRIED 0x40 /* second try */
179 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
180
181 /*
182 * vm_fault is filled by the the pagefault handler and passed to the vma's
183 * ->fault function. The vma's ->fault is responsible for returning a bitmask
184 * of VM_FAULT_xxx flags that give details about how the fault was handled.
185 *
186 * pgoff should be used in favour of virtual_address, if possible. If pgoff
187 * is used, one may implement ->remap_pages to get nonlinear mapping support.
188 */
189 struct vm_fault {
190 unsigned int flags; /* FAULT_FLAG_xxx flags */
191 pgoff_t pgoff; /* Logical page offset based on vma */
192 void __user *virtual_address; /* Faulting virtual address */
193
194 struct page *page; /* ->fault handlers should return a
195 * page here, unless VM_FAULT_NOPAGE
196 * is set (which is also implied by
197 * VM_FAULT_ERROR).
198 */
199 };
200
201 /*
202 * These are the virtual MM functions - opening of an area, closing and
203 * unmapping it (needed to keep files on disk up-to-date etc), pointer
204 * to the functions called when a no-page or a wp-page exception occurs.
205 */
206 struct vm_operations_struct {
207 void (*open)(struct vm_area_struct * area);
208 void (*close)(struct vm_area_struct * area);
209 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
210
211 /* notification that a previously read-only page is about to become
212 * writable, if an error is returned it will cause a SIGBUS */
213 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
214
215 /* called by access_process_vm when get_user_pages() fails, typically
216 * for use by special VMAs that can switch between memory and hardware
217 */
218 int (*access)(struct vm_area_struct *vma, unsigned long addr,
219 void *buf, int len, int write);
220 #ifdef CONFIG_NUMA
221 /*
222 * set_policy() op must add a reference to any non-NULL @new mempolicy
223 * to hold the policy upon return. Caller should pass NULL @new to
224 * remove a policy and fall back to surrounding context--i.e. do not
225 * install a MPOL_DEFAULT policy, nor the task or system default
226 * mempolicy.
227 */
228 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
229
230 /*
231 * get_policy() op must add reference [mpol_get()] to any policy at
232 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
233 * in mm/mempolicy.c will do this automatically.
234 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237 * must return NULL--i.e., do not "fallback" to task or system default
238 * policy.
239 */
240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 unsigned long addr);
242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 const nodemask_t *to, unsigned long flags);
244 #endif
245 /* called by sys_remap_file_pages() to populate non-linear mapping */
246 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247 unsigned long size, pgoff_t pgoff);
248 };
249
250 struct mmu_gather;
251 struct inode;
252
253 #define page_private(page) ((page)->private)
254 #define set_page_private(page, v) ((page)->private = (v))
255
256 /* It's valid only if the page is free path or free_list */
257 static inline void set_freepage_migratetype(struct page *page, int migratetype)
258 {
259 page->index = migratetype;
260 }
261
262 /* It's valid only if the page is free path or free_list */
263 static inline int get_freepage_migratetype(struct page *page)
264 {
265 return page->index;
266 }
267
268 /*
269 * FIXME: take this include out, include page-flags.h in
270 * files which need it (119 of them)
271 */
272 #include <linux/page-flags.h>
273 #include <linux/huge_mm.h>
274
275 /*
276 * Methods to modify the page usage count.
277 *
278 * What counts for a page usage:
279 * - cache mapping (page->mapping)
280 * - private data (page->private)
281 * - page mapped in a task's page tables, each mapping
282 * is counted separately
283 *
284 * Also, many kernel routines increase the page count before a critical
285 * routine so they can be sure the page doesn't go away from under them.
286 */
287
288 /*
289 * Drop a ref, return true if the refcount fell to zero (the page has no users)
290 */
291 static inline int put_page_testzero(struct page *page)
292 {
293 VM_BUG_ON(atomic_read(&page->_count) == 0);
294 return atomic_dec_and_test(&page->_count);
295 }
296
297 /*
298 * Try to grab a ref unless the page has a refcount of zero, return false if
299 * that is the case.
300 */
301 static inline int get_page_unless_zero(struct page *page)
302 {
303 return atomic_inc_not_zero(&page->_count);
304 }
305
306 extern int page_is_ram(unsigned long pfn);
307
308 /* Support for virtually mapped pages */
309 struct page *vmalloc_to_page(const void *addr);
310 unsigned long vmalloc_to_pfn(const void *addr);
311
312 /*
313 * Determine if an address is within the vmalloc range
314 *
315 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
316 * is no special casing required.
317 */
318 static inline int is_vmalloc_addr(const void *x)
319 {
320 #ifdef CONFIG_MMU
321 unsigned long addr = (unsigned long)x;
322
323 return addr >= VMALLOC_START && addr < VMALLOC_END;
324 #else
325 return 0;
326 #endif
327 }
328 #ifdef CONFIG_MMU
329 extern int is_vmalloc_or_module_addr(const void *x);
330 #else
331 static inline int is_vmalloc_or_module_addr(const void *x)
332 {
333 return 0;
334 }
335 #endif
336
337 static inline void compound_lock(struct page *page)
338 {
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 VM_BUG_ON(PageSlab(page));
341 bit_spin_lock(PG_compound_lock, &page->flags);
342 #endif
343 }
344
345 static inline void compound_unlock(struct page *page)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 VM_BUG_ON(PageSlab(page));
349 bit_spin_unlock(PG_compound_lock, &page->flags);
350 #endif
351 }
352
353 static inline unsigned long compound_lock_irqsave(struct page *page)
354 {
355 unsigned long uninitialized_var(flags);
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 local_irq_save(flags);
358 compound_lock(page);
359 #endif
360 return flags;
361 }
362
363 static inline void compound_unlock_irqrestore(struct page *page,
364 unsigned long flags)
365 {
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 compound_unlock(page);
368 local_irq_restore(flags);
369 #endif
370 }
371
372 static inline struct page *compound_head(struct page *page)
373 {
374 if (unlikely(PageTail(page))) {
375 struct page *head = page->first_page;
376
377 /*
378 * page->first_page may be a dangling pointer to an old
379 * compound page, so recheck that it is still a tail
380 * page before returning.
381 */
382 smp_rmb();
383 if (likely(PageTail(page)))
384 return head;
385 }
386 return page;
387 }
388
389 /*
390 * The atomic page->_mapcount, starts from -1: so that transitions
391 * both from it and to it can be tracked, using atomic_inc_and_test
392 * and atomic_add_negative(-1).
393 */
394 static inline void page_mapcount_reset(struct page *page)
395 {
396 atomic_set(&(page)->_mapcount, -1);
397 }
398
399 static inline int page_mapcount(struct page *page)
400 {
401 return atomic_read(&(page)->_mapcount) + 1;
402 }
403
404 static inline int page_count(struct page *page)
405 {
406 return atomic_read(&compound_head(page)->_count);
407 }
408
409 static inline void get_huge_page_tail(struct page *page)
410 {
411 /*
412 * __split_huge_page_refcount() cannot run
413 * from under us.
414 */
415 VM_BUG_ON(page_mapcount(page) < 0);
416 VM_BUG_ON(atomic_read(&page->_count) != 0);
417 atomic_inc(&page->_mapcount);
418 }
419
420 extern bool __get_page_tail(struct page *page);
421
422 static inline void get_page(struct page *page)
423 {
424 if (unlikely(PageTail(page)))
425 if (likely(__get_page_tail(page)))
426 return;
427 /*
428 * Getting a normal page or the head of a compound page
429 * requires to already have an elevated page->_count.
430 */
431 VM_BUG_ON(atomic_read(&page->_count) <= 0);
432 atomic_inc(&page->_count);
433 }
434
435 static inline struct page *virt_to_head_page(const void *x)
436 {
437 struct page *page = virt_to_page(x);
438 return compound_head(page);
439 }
440
441 /*
442 * Setup the page count before being freed into the page allocator for
443 * the first time (boot or memory hotplug)
444 */
445 static inline void init_page_count(struct page *page)
446 {
447 atomic_set(&page->_count, 1);
448 }
449
450 /*
451 * PageBuddy() indicate that the page is free and in the buddy system
452 * (see mm/page_alloc.c).
453 *
454 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
455 * -2 so that an underflow of the page_mapcount() won't be mistaken
456 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
457 * efficiently by most CPU architectures.
458 */
459 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
460
461 static inline int PageBuddy(struct page *page)
462 {
463 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
464 }
465
466 static inline void __SetPageBuddy(struct page *page)
467 {
468 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
469 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
470 }
471
472 static inline void __ClearPageBuddy(struct page *page)
473 {
474 VM_BUG_ON(!PageBuddy(page));
475 atomic_set(&page->_mapcount, -1);
476 }
477
478 void put_page(struct page *page);
479 void put_pages_list(struct list_head *pages);
480
481 void split_page(struct page *page, unsigned int order);
482 int split_free_page(struct page *page);
483
484 /*
485 * Compound pages have a destructor function. Provide a
486 * prototype for that function and accessor functions.
487 * These are _only_ valid on the head of a PG_compound page.
488 */
489 typedef void compound_page_dtor(struct page *);
490
491 static inline void set_compound_page_dtor(struct page *page,
492 compound_page_dtor *dtor)
493 {
494 page[1].lru.next = (void *)dtor;
495 }
496
497 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
498 {
499 return (compound_page_dtor *)page[1].lru.next;
500 }
501
502 static inline int compound_order(struct page *page)
503 {
504 if (!PageHead(page))
505 return 0;
506 return (unsigned long)page[1].lru.prev;
507 }
508
509 static inline void set_compound_order(struct page *page, unsigned long order)
510 {
511 page[1].lru.prev = (void *)order;
512 }
513
514 #ifdef CONFIG_MMU
515 /*
516 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
517 * servicing faults for write access. In the normal case, do always want
518 * pte_mkwrite. But get_user_pages can cause write faults for mappings
519 * that do not have writing enabled, when used by access_process_vm.
520 */
521 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
522 {
523 if (likely(vma->vm_flags & VM_WRITE))
524 pte = pte_mkwrite(pte);
525 return pte;
526 }
527 #endif
528
529 /*
530 * Multiple processes may "see" the same page. E.g. for untouched
531 * mappings of /dev/null, all processes see the same page full of
532 * zeroes, and text pages of executables and shared libraries have
533 * only one copy in memory, at most, normally.
534 *
535 * For the non-reserved pages, page_count(page) denotes a reference count.
536 * page_count() == 0 means the page is free. page->lru is then used for
537 * freelist management in the buddy allocator.
538 * page_count() > 0 means the page has been allocated.
539 *
540 * Pages are allocated by the slab allocator in order to provide memory
541 * to kmalloc and kmem_cache_alloc. In this case, the management of the
542 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
543 * unless a particular usage is carefully commented. (the responsibility of
544 * freeing the kmalloc memory is the caller's, of course).
545 *
546 * A page may be used by anyone else who does a __get_free_page().
547 * In this case, page_count still tracks the references, and should only
548 * be used through the normal accessor functions. The top bits of page->flags
549 * and page->virtual store page management information, but all other fields
550 * are unused and could be used privately, carefully. The management of this
551 * page is the responsibility of the one who allocated it, and those who have
552 * subsequently been given references to it.
553 *
554 * The other pages (we may call them "pagecache pages") are completely
555 * managed by the Linux memory manager: I/O, buffers, swapping etc.
556 * The following discussion applies only to them.
557 *
558 * A pagecache page contains an opaque `private' member, which belongs to the
559 * page's address_space. Usually, this is the address of a circular list of
560 * the page's disk buffers. PG_private must be set to tell the VM to call
561 * into the filesystem to release these pages.
562 *
563 * A page may belong to an inode's memory mapping. In this case, page->mapping
564 * is the pointer to the inode, and page->index is the file offset of the page,
565 * in units of PAGE_CACHE_SIZE.
566 *
567 * If pagecache pages are not associated with an inode, they are said to be
568 * anonymous pages. These may become associated with the swapcache, and in that
569 * case PG_swapcache is set, and page->private is an offset into the swapcache.
570 *
571 * In either case (swapcache or inode backed), the pagecache itself holds one
572 * reference to the page. Setting PG_private should also increment the
573 * refcount. The each user mapping also has a reference to the page.
574 *
575 * The pagecache pages are stored in a per-mapping radix tree, which is
576 * rooted at mapping->page_tree, and indexed by offset.
577 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
578 * lists, we instead now tag pages as dirty/writeback in the radix tree.
579 *
580 * All pagecache pages may be subject to I/O:
581 * - inode pages may need to be read from disk,
582 * - inode pages which have been modified and are MAP_SHARED may need
583 * to be written back to the inode on disk,
584 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
585 * modified may need to be swapped out to swap space and (later) to be read
586 * back into memory.
587 */
588
589 /*
590 * The zone field is never updated after free_area_init_core()
591 * sets it, so none of the operations on it need to be atomic.
592 */
593
594 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
595 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
596 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
597 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
598 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
599
600 /*
601 * Define the bit shifts to access each section. For non-existent
602 * sections we define the shift as 0; that plus a 0 mask ensures
603 * the compiler will optimise away reference to them.
604 */
605 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
606 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
607 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
608 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
609
610 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
611 #ifdef NODE_NOT_IN_PAGE_FLAGS
612 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
613 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
614 SECTIONS_PGOFF : ZONES_PGOFF)
615 #else
616 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
617 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
618 NODES_PGOFF : ZONES_PGOFF)
619 #endif
620
621 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
622
623 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
624 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
625 #endif
626
627 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
628 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
629 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
630 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
631 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
632
633 static inline enum zone_type page_zonenum(const struct page *page)
634 {
635 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
636 }
637
638 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
639 #define SECTION_IN_PAGE_FLAGS
640 #endif
641
642 /*
643 * The identification function is mainly used by the buddy allocator for
644 * determining if two pages could be buddies. We are not really identifying
645 * the zone since we could be using the section number id if we do not have
646 * node id available in page flags.
647 * We only guarantee that it will return the same value for two combinable
648 * pages in a zone.
649 */
650 static inline int page_zone_id(struct page *page)
651 {
652 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
653 }
654
655 static inline int zone_to_nid(struct zone *zone)
656 {
657 #ifdef CONFIG_NUMA
658 return zone->node;
659 #else
660 return 0;
661 #endif
662 }
663
664 #ifdef NODE_NOT_IN_PAGE_FLAGS
665 extern int page_to_nid(const struct page *page);
666 #else
667 static inline int page_to_nid(const struct page *page)
668 {
669 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
670 }
671 #endif
672
673 #ifdef CONFIG_NUMA_BALANCING
674 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
675 static inline int page_nid_xchg_last(struct page *page, int nid)
676 {
677 return xchg(&page->_last_nid, nid);
678 }
679
680 static inline int page_nid_last(struct page *page)
681 {
682 return page->_last_nid;
683 }
684 static inline void page_nid_reset_last(struct page *page)
685 {
686 page->_last_nid = -1;
687 }
688 #else
689 static inline int page_nid_last(struct page *page)
690 {
691 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
692 }
693
694 extern int page_nid_xchg_last(struct page *page, int nid);
695
696 static inline void page_nid_reset_last(struct page *page)
697 {
698 int nid = (1 << LAST_NID_SHIFT) - 1;
699
700 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
701 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
702 }
703 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
704 #else
705 static inline int page_nid_xchg_last(struct page *page, int nid)
706 {
707 return page_to_nid(page);
708 }
709
710 static inline int page_nid_last(struct page *page)
711 {
712 return page_to_nid(page);
713 }
714
715 static inline void page_nid_reset_last(struct page *page)
716 {
717 }
718 #endif
719
720 static inline struct zone *page_zone(const struct page *page)
721 {
722 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
723 }
724
725 #ifdef SECTION_IN_PAGE_FLAGS
726 static inline void set_page_section(struct page *page, unsigned long section)
727 {
728 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
729 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
730 }
731
732 static inline unsigned long page_to_section(const struct page *page)
733 {
734 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
735 }
736 #endif
737
738 static inline void set_page_zone(struct page *page, enum zone_type zone)
739 {
740 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
741 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
742 }
743
744 static inline void set_page_node(struct page *page, unsigned long node)
745 {
746 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
747 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
748 }
749
750 static inline void set_page_links(struct page *page, enum zone_type zone,
751 unsigned long node, unsigned long pfn)
752 {
753 set_page_zone(page, zone);
754 set_page_node(page, node);
755 #ifdef SECTION_IN_PAGE_FLAGS
756 set_page_section(page, pfn_to_section_nr(pfn));
757 #endif
758 }
759
760 /*
761 * Some inline functions in vmstat.h depend on page_zone()
762 */
763 #include <linux/vmstat.h>
764
765 static __always_inline void *lowmem_page_address(const struct page *page)
766 {
767 return __va(PFN_PHYS(page_to_pfn(page)));
768 }
769
770 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
771 #define HASHED_PAGE_VIRTUAL
772 #endif
773
774 #if defined(WANT_PAGE_VIRTUAL)
775 static inline void *page_address(const struct page *page)
776 {
777 return page->virtual;
778 }
779 static inline void set_page_address(struct page *page, void *address)
780 {
781 page->virtual = address;
782 }
783 #define page_address_init() do { } while(0)
784 #endif
785
786 #if defined(HASHED_PAGE_VIRTUAL)
787 void *page_address(const struct page *page);
788 void set_page_address(struct page *page, void *virtual);
789 void page_address_init(void);
790 #endif
791
792 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
793 #define page_address(page) lowmem_page_address(page)
794 #define set_page_address(page, address) do { } while(0)
795 #define page_address_init() do { } while(0)
796 #endif
797
798 /*
799 * On an anonymous page mapped into a user virtual memory area,
800 * page->mapping points to its anon_vma, not to a struct address_space;
801 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
802 *
803 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
804 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
805 * and then page->mapping points, not to an anon_vma, but to a private
806 * structure which KSM associates with that merged page. See ksm.h.
807 *
808 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
809 *
810 * Please note that, confusingly, "page_mapping" refers to the inode
811 * address_space which maps the page from disk; whereas "page_mapped"
812 * refers to user virtual address space into which the page is mapped.
813 */
814 #define PAGE_MAPPING_ANON 1
815 #define PAGE_MAPPING_KSM 2
816 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
817
818 extern struct address_space *page_mapping(struct page *page);
819
820 /* Neutral page->mapping pointer to address_space or anon_vma or other */
821 static inline void *page_rmapping(struct page *page)
822 {
823 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
824 }
825
826 extern struct address_space *__page_file_mapping(struct page *);
827
828 static inline
829 struct address_space *page_file_mapping(struct page *page)
830 {
831 if (unlikely(PageSwapCache(page)))
832 return __page_file_mapping(page);
833
834 return page->mapping;
835 }
836
837 static inline int PageAnon(struct page *page)
838 {
839 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
840 }
841
842 /*
843 * Return the pagecache index of the passed page. Regular pagecache pages
844 * use ->index whereas swapcache pages use ->private
845 */
846 static inline pgoff_t page_index(struct page *page)
847 {
848 if (unlikely(PageSwapCache(page)))
849 return page_private(page);
850 return page->index;
851 }
852
853 extern pgoff_t __page_file_index(struct page *page);
854
855 /*
856 * Return the file index of the page. Regular pagecache pages use ->index
857 * whereas swapcache pages use swp_offset(->private)
858 */
859 static inline pgoff_t page_file_index(struct page *page)
860 {
861 if (unlikely(PageSwapCache(page)))
862 return __page_file_index(page);
863
864 return page->index;
865 }
866
867 /*
868 * Return true if this page is mapped into pagetables.
869 */
870 static inline int page_mapped(struct page *page)
871 {
872 return atomic_read(&(page)->_mapcount) >= 0;
873 }
874
875 /*
876 * Different kinds of faults, as returned by handle_mm_fault().
877 * Used to decide whether a process gets delivered SIGBUS or
878 * just gets major/minor fault counters bumped up.
879 */
880
881 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
882
883 #define VM_FAULT_OOM 0x0001
884 #define VM_FAULT_SIGBUS 0x0002
885 #define VM_FAULT_MAJOR 0x0004
886 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
887 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
888 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
889
890 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
891 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
892 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
893 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
894
895 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
896
897 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
898 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
899
900 /* Encode hstate index for a hwpoisoned large page */
901 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
902 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
903
904 /*
905 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
906 */
907 extern void pagefault_out_of_memory(void);
908
909 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
910
911 /*
912 * Flags passed to show_mem() and show_free_areas() to suppress output in
913 * various contexts.
914 */
915 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
916 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
917
918 extern void show_free_areas(unsigned int flags);
919 extern bool skip_free_areas_node(unsigned int flags, int nid);
920
921 int shmem_zero_setup(struct vm_area_struct *);
922 #ifdef CONFIG_SHMEM
923 bool shmem_mapping(struct address_space *mapping);
924 #else
925 static inline bool shmem_mapping(struct address_space *mapping)
926 {
927 return false;
928 }
929 #endif
930
931 extern int can_do_mlock(void);
932 extern int user_shm_lock(size_t, struct user_struct *);
933 extern void user_shm_unlock(size_t, struct user_struct *);
934
935 /*
936 * Parameter block passed down to zap_pte_range in exceptional cases.
937 */
938 struct zap_details {
939 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
940 struct address_space *check_mapping; /* Check page->mapping if set */
941 pgoff_t first_index; /* Lowest page->index to unmap */
942 pgoff_t last_index; /* Highest page->index to unmap */
943 };
944
945 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
946 pte_t pte);
947
948 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
949 unsigned long size);
950 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
951 unsigned long size, struct zap_details *);
952 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
953 unsigned long start, unsigned long end);
954
955 /**
956 * mm_walk - callbacks for walk_page_range
957 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
958 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
959 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
960 * this handler is required to be able to handle
961 * pmd_trans_huge() pmds. They may simply choose to
962 * split_huge_page() instead of handling it explicitly.
963 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
964 * @pte_hole: if set, called for each hole at all levels
965 * @hugetlb_entry: if set, called for each hugetlb entry
966 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
967 * is used.
968 *
969 * (see walk_page_range for more details)
970 */
971 struct mm_walk {
972 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
973 unsigned long next, struct mm_walk *walk);
974 int (*pud_entry)(pud_t *pud, unsigned long addr,
975 unsigned long next, struct mm_walk *walk);
976 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
977 unsigned long next, struct mm_walk *walk);
978 int (*pte_entry)(pte_t *pte, unsigned long addr,
979 unsigned long next, struct mm_walk *walk);
980 int (*pte_hole)(unsigned long addr, unsigned long next,
981 struct mm_walk *walk);
982 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
983 unsigned long addr, unsigned long next,
984 struct mm_walk *walk);
985 struct mm_struct *mm;
986 void *private;
987 };
988
989 int walk_page_range(unsigned long addr, unsigned long end,
990 struct mm_walk *walk);
991 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
992 unsigned long end, unsigned long floor, unsigned long ceiling);
993 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
994 struct vm_area_struct *vma);
995 void unmap_mapping_range(struct address_space *mapping,
996 loff_t const holebegin, loff_t const holelen, int even_cows);
997 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
998 unsigned long *pfn);
999 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1000 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1001 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1002 void *buf, int len, int write);
1003
1004 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1005 loff_t const holebegin, loff_t const holelen)
1006 {
1007 unmap_mapping_range(mapping, holebegin, holelen, 0);
1008 }
1009
1010 extern void truncate_pagecache(struct inode *inode, loff_t new);
1011 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1012 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1013 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1014 int truncate_inode_page(struct address_space *mapping, struct page *page);
1015 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1016 int invalidate_inode_page(struct page *page);
1017
1018 #ifdef CONFIG_MMU
1019 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1020 unsigned long address, unsigned int flags);
1021 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long address, unsigned int fault_flags);
1023 #else
1024 static inline int handle_mm_fault(struct mm_struct *mm,
1025 struct vm_area_struct *vma, unsigned long address,
1026 unsigned int flags)
1027 {
1028 /* should never happen if there's no MMU */
1029 BUG();
1030 return VM_FAULT_SIGBUS;
1031 }
1032 static inline int fixup_user_fault(struct task_struct *tsk,
1033 struct mm_struct *mm, unsigned long address,
1034 unsigned int fault_flags)
1035 {
1036 /* should never happen if there's no MMU */
1037 BUG();
1038 return -EFAULT;
1039 }
1040 #endif
1041
1042 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1043 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1044 void *buf, int len, int write);
1045
1046 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 unsigned long start, unsigned long nr_pages,
1048 unsigned int foll_flags, struct page **pages,
1049 struct vm_area_struct **vmas, int *nonblocking);
1050 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1051 unsigned long start, unsigned long nr_pages,
1052 int write, int force, struct page **pages,
1053 struct vm_area_struct **vmas);
1054 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1055 struct page **pages);
1056 struct kvec;
1057 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1058 struct page **pages);
1059 int get_kernel_page(unsigned long start, int write, struct page **pages);
1060 struct page *get_dump_page(unsigned long addr);
1061
1062 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1063 extern void do_invalidatepage(struct page *page, unsigned int offset,
1064 unsigned int length);
1065
1066 int __set_page_dirty_nobuffers(struct page *page);
1067 int __set_page_dirty_no_writeback(struct page *page);
1068 int redirty_page_for_writepage(struct writeback_control *wbc,
1069 struct page *page);
1070 void account_page_dirtied(struct page *page, struct address_space *mapping);
1071 void account_page_writeback(struct page *page);
1072 int set_page_dirty(struct page *page);
1073 int set_page_dirty_lock(struct page *page);
1074 int clear_page_dirty_for_io(struct page *page);
1075
1076 /* Is the vma a continuation of the stack vma above it? */
1077 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1078 {
1079 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1080 }
1081
1082 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1083 unsigned long addr)
1084 {
1085 return (vma->vm_flags & VM_GROWSDOWN) &&
1086 (vma->vm_start == addr) &&
1087 !vma_growsdown(vma->vm_prev, addr);
1088 }
1089
1090 /* Is the vma a continuation of the stack vma below it? */
1091 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1092 {
1093 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1094 }
1095
1096 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1097 unsigned long addr)
1098 {
1099 return (vma->vm_flags & VM_GROWSUP) &&
1100 (vma->vm_end == addr) &&
1101 !vma_growsup(vma->vm_next, addr);
1102 }
1103
1104 extern pid_t
1105 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1106
1107 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1108 unsigned long old_addr, struct vm_area_struct *new_vma,
1109 unsigned long new_addr, unsigned long len,
1110 bool need_rmap_locks);
1111 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1112 unsigned long end, pgprot_t newprot,
1113 int dirty_accountable, int prot_numa);
1114 extern int mprotect_fixup(struct vm_area_struct *vma,
1115 struct vm_area_struct **pprev, unsigned long start,
1116 unsigned long end, unsigned long newflags);
1117
1118 /*
1119 * doesn't attempt to fault and will return short.
1120 */
1121 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1122 struct page **pages);
1123 /*
1124 * per-process(per-mm_struct) statistics.
1125 */
1126 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1127 {
1128 long val = atomic_long_read(&mm->rss_stat.count[member]);
1129
1130 #ifdef SPLIT_RSS_COUNTING
1131 /*
1132 * counter is updated in asynchronous manner and may go to minus.
1133 * But it's never be expected number for users.
1134 */
1135 if (val < 0)
1136 val = 0;
1137 #endif
1138 return (unsigned long)val;
1139 }
1140
1141 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1142 {
1143 atomic_long_add(value, &mm->rss_stat.count[member]);
1144 }
1145
1146 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1147 {
1148 atomic_long_inc(&mm->rss_stat.count[member]);
1149 }
1150
1151 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1152 {
1153 atomic_long_dec(&mm->rss_stat.count[member]);
1154 }
1155
1156 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1157 {
1158 return get_mm_counter(mm, MM_FILEPAGES) +
1159 get_mm_counter(mm, MM_ANONPAGES);
1160 }
1161
1162 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1163 {
1164 return max(mm->hiwater_rss, get_mm_rss(mm));
1165 }
1166
1167 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1168 {
1169 return max(mm->hiwater_vm, mm->total_vm);
1170 }
1171
1172 static inline void update_hiwater_rss(struct mm_struct *mm)
1173 {
1174 unsigned long _rss = get_mm_rss(mm);
1175
1176 if ((mm)->hiwater_rss < _rss)
1177 (mm)->hiwater_rss = _rss;
1178 }
1179
1180 static inline void update_hiwater_vm(struct mm_struct *mm)
1181 {
1182 if (mm->hiwater_vm < mm->total_vm)
1183 mm->hiwater_vm = mm->total_vm;
1184 }
1185
1186 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1187 struct mm_struct *mm)
1188 {
1189 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1190
1191 if (*maxrss < hiwater_rss)
1192 *maxrss = hiwater_rss;
1193 }
1194
1195 #if defined(SPLIT_RSS_COUNTING)
1196 void sync_mm_rss(struct mm_struct *mm);
1197 #else
1198 static inline void sync_mm_rss(struct mm_struct *mm)
1199 {
1200 }
1201 #endif
1202
1203 int vma_wants_writenotify(struct vm_area_struct *vma);
1204
1205 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1206 spinlock_t **ptl);
1207 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1208 spinlock_t **ptl)
1209 {
1210 pte_t *ptep;
1211 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1212 return ptep;
1213 }
1214
1215 #ifdef __PAGETABLE_PUD_FOLDED
1216 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1217 unsigned long address)
1218 {
1219 return 0;
1220 }
1221 #else
1222 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1223 #endif
1224
1225 #ifdef __PAGETABLE_PMD_FOLDED
1226 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1227 unsigned long address)
1228 {
1229 return 0;
1230 }
1231 #else
1232 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1233 #endif
1234
1235 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1236 pmd_t *pmd, unsigned long address);
1237 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1238
1239 /*
1240 * The following ifdef needed to get the 4level-fixup.h header to work.
1241 * Remove it when 4level-fixup.h has been removed.
1242 */
1243 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1244 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1245 {
1246 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1247 NULL: pud_offset(pgd, address);
1248 }
1249
1250 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1251 {
1252 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1253 NULL: pmd_offset(pud, address);
1254 }
1255 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1256
1257 #if USE_SPLIT_PTLOCKS
1258 /*
1259 * We tuck a spinlock to guard each pagetable page into its struct page,
1260 * at page->private, with BUILD_BUG_ON to make sure that this will not
1261 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1262 * When freeing, reset page->mapping so free_pages_check won't complain.
1263 */
1264 #define __pte_lockptr(page) &((page)->ptl)
1265 #define pte_lock_init(_page) do { \
1266 spin_lock_init(__pte_lockptr(_page)); \
1267 } while (0)
1268 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1269 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1270 #else /* !USE_SPLIT_PTLOCKS */
1271 /*
1272 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1273 */
1274 #define pte_lock_init(page) do {} while (0)
1275 #define pte_lock_deinit(page) do {} while (0)
1276 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1277 #endif /* USE_SPLIT_PTLOCKS */
1278
1279 static inline void pgtable_page_ctor(struct page *page)
1280 {
1281 pte_lock_init(page);
1282 inc_zone_page_state(page, NR_PAGETABLE);
1283 }
1284
1285 static inline void pgtable_page_dtor(struct page *page)
1286 {
1287 pte_lock_deinit(page);
1288 dec_zone_page_state(page, NR_PAGETABLE);
1289 }
1290
1291 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1292 ({ \
1293 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1294 pte_t *__pte = pte_offset_map(pmd, address); \
1295 *(ptlp) = __ptl; \
1296 spin_lock(__ptl); \
1297 __pte; \
1298 })
1299
1300 #define pte_unmap_unlock(pte, ptl) do { \
1301 spin_unlock(ptl); \
1302 pte_unmap(pte); \
1303 } while (0)
1304
1305 #define pte_alloc_map(mm, vma, pmd, address) \
1306 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1307 pmd, address))? \
1308 NULL: pte_offset_map(pmd, address))
1309
1310 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1311 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1312 pmd, address))? \
1313 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1314
1315 #define pte_alloc_kernel(pmd, address) \
1316 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1317 NULL: pte_offset_kernel(pmd, address))
1318
1319 extern void free_area_init(unsigned long * zones_size);
1320 extern void free_area_init_node(int nid, unsigned long * zones_size,
1321 unsigned long zone_start_pfn, unsigned long *zholes_size);
1322 extern void free_initmem(void);
1323
1324 /*
1325 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1326 * into the buddy system. The freed pages will be poisoned with pattern
1327 * "poison" if it's within range [0, UCHAR_MAX].
1328 * Return pages freed into the buddy system.
1329 */
1330 extern unsigned long free_reserved_area(void *start, void *end,
1331 int poison, char *s);
1332
1333 #ifdef CONFIG_HIGHMEM
1334 /*
1335 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1336 * and totalram_pages.
1337 */
1338 extern void free_highmem_page(struct page *page);
1339 #endif
1340
1341 extern void adjust_managed_page_count(struct page *page, long count);
1342 extern void mem_init_print_info(const char *str);
1343
1344 /* Free the reserved page into the buddy system, so it gets managed. */
1345 static inline void __free_reserved_page(struct page *page)
1346 {
1347 ClearPageReserved(page);
1348 init_page_count(page);
1349 __free_page(page);
1350 }
1351
1352 static inline void free_reserved_page(struct page *page)
1353 {
1354 __free_reserved_page(page);
1355 adjust_managed_page_count(page, 1);
1356 }
1357
1358 static inline void mark_page_reserved(struct page *page)
1359 {
1360 SetPageReserved(page);
1361 adjust_managed_page_count(page, -1);
1362 }
1363
1364 /*
1365 * Default method to free all the __init memory into the buddy system.
1366 * The freed pages will be poisoned with pattern "poison" if it's within
1367 * range [0, UCHAR_MAX].
1368 * Return pages freed into the buddy system.
1369 */
1370 static inline unsigned long free_initmem_default(int poison)
1371 {
1372 extern char __init_begin[], __init_end[];
1373
1374 return free_reserved_area(&__init_begin, &__init_end,
1375 poison, "unused kernel");
1376 }
1377
1378 static inline unsigned long get_num_physpages(void)
1379 {
1380 int nid;
1381 unsigned long phys_pages = 0;
1382
1383 for_each_online_node(nid)
1384 phys_pages += node_present_pages(nid);
1385
1386 return phys_pages;
1387 }
1388
1389 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1390 /*
1391 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1392 * zones, allocate the backing mem_map and account for memory holes in a more
1393 * architecture independent manner. This is a substitute for creating the
1394 * zone_sizes[] and zholes_size[] arrays and passing them to
1395 * free_area_init_node()
1396 *
1397 * An architecture is expected to register range of page frames backed by
1398 * physical memory with memblock_add[_node]() before calling
1399 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1400 * usage, an architecture is expected to do something like
1401 *
1402 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1403 * max_highmem_pfn};
1404 * for_each_valid_physical_page_range()
1405 * memblock_add_node(base, size, nid)
1406 * free_area_init_nodes(max_zone_pfns);
1407 *
1408 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1409 * registered physical page range. Similarly
1410 * sparse_memory_present_with_active_regions() calls memory_present() for
1411 * each range when SPARSEMEM is enabled.
1412 *
1413 * See mm/page_alloc.c for more information on each function exposed by
1414 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1415 */
1416 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1417 unsigned long node_map_pfn_alignment(void);
1418 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1419 unsigned long end_pfn);
1420 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1421 unsigned long end_pfn);
1422 extern void get_pfn_range_for_nid(unsigned int nid,
1423 unsigned long *start_pfn, unsigned long *end_pfn);
1424 extern unsigned long find_min_pfn_with_active_regions(void);
1425 extern void free_bootmem_with_active_regions(int nid,
1426 unsigned long max_low_pfn);
1427 extern void sparse_memory_present_with_active_regions(int nid);
1428
1429 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1430
1431 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1432 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1433 static inline int __early_pfn_to_nid(unsigned long pfn)
1434 {
1435 return 0;
1436 }
1437 #else
1438 /* please see mm/page_alloc.c */
1439 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1440 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1441 /* there is a per-arch backend function. */
1442 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1443 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1444 #endif
1445
1446 extern void set_dma_reserve(unsigned long new_dma_reserve);
1447 extern void memmap_init_zone(unsigned long, int, unsigned long,
1448 unsigned long, enum memmap_context);
1449 extern void setup_per_zone_wmarks(void);
1450 extern int __meminit init_per_zone_wmark_min(void);
1451 extern void mem_init(void);
1452 extern void __init mmap_init(void);
1453 extern void show_mem(unsigned int flags);
1454 extern void si_meminfo(struct sysinfo * val);
1455 extern void si_meminfo_node(struct sysinfo *val, int nid);
1456
1457 extern __printf(3, 4)
1458 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1459
1460 extern void setup_per_cpu_pageset(void);
1461
1462 extern void zone_pcp_update(struct zone *zone);
1463 extern void zone_pcp_reset(struct zone *zone);
1464
1465 /* page_alloc.c */
1466 extern int min_free_kbytes;
1467
1468 /* nommu.c */
1469 extern atomic_long_t mmap_pages_allocated;
1470 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1471
1472 /* interval_tree.c */
1473 void vma_interval_tree_insert(struct vm_area_struct *node,
1474 struct rb_root *root);
1475 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1476 struct vm_area_struct *prev,
1477 struct rb_root *root);
1478 void vma_interval_tree_remove(struct vm_area_struct *node,
1479 struct rb_root *root);
1480 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1481 unsigned long start, unsigned long last);
1482 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1483 unsigned long start, unsigned long last);
1484
1485 #define vma_interval_tree_foreach(vma, root, start, last) \
1486 for (vma = vma_interval_tree_iter_first(root, start, last); \
1487 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1488
1489 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1490 struct list_head *list)
1491 {
1492 list_add_tail(&vma->shared.nonlinear, list);
1493 }
1494
1495 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1496 struct rb_root *root);
1497 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1498 struct rb_root *root);
1499 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1500 struct rb_root *root, unsigned long start, unsigned long last);
1501 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1502 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1503 #ifdef CONFIG_DEBUG_VM_RB
1504 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1505 #endif
1506
1507 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1508 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1509 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1510
1511 /* mmap.c */
1512 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1513 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1514 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1515 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1516 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1517 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1518 struct mempolicy *);
1519 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1520 extern int split_vma(struct mm_struct *,
1521 struct vm_area_struct *, unsigned long addr, int new_below);
1522 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1523 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1524 struct rb_node **, struct rb_node *);
1525 extern void unlink_file_vma(struct vm_area_struct *);
1526 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1527 unsigned long addr, unsigned long len, pgoff_t pgoff,
1528 bool *need_rmap_locks);
1529 extern void exit_mmap(struct mm_struct *);
1530
1531 extern int mm_take_all_locks(struct mm_struct *mm);
1532 extern void mm_drop_all_locks(struct mm_struct *mm);
1533
1534 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1535 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1536
1537 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1538 extern int install_special_mapping(struct mm_struct *mm,
1539 unsigned long addr, unsigned long len,
1540 unsigned long flags, struct page **pages);
1541
1542 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1543
1544 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1545 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1546 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1547 unsigned long len, unsigned long prot, unsigned long flags,
1548 unsigned long pgoff, unsigned long *populate);
1549 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1550
1551 #ifdef CONFIG_MMU
1552 extern int __mm_populate(unsigned long addr, unsigned long len,
1553 int ignore_errors);
1554 static inline void mm_populate(unsigned long addr, unsigned long len)
1555 {
1556 /* Ignore errors */
1557 (void) __mm_populate(addr, len, 1);
1558 }
1559 #else
1560 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1561 #endif
1562
1563 /* These take the mm semaphore themselves */
1564 extern unsigned long vm_brk(unsigned long, unsigned long);
1565 extern int vm_munmap(unsigned long, size_t);
1566 extern unsigned long vm_mmap(struct file *, unsigned long,
1567 unsigned long, unsigned long,
1568 unsigned long, unsigned long);
1569
1570 struct vm_unmapped_area_info {
1571 #define VM_UNMAPPED_AREA_TOPDOWN 1
1572 unsigned long flags;
1573 unsigned long length;
1574 unsigned long low_limit;
1575 unsigned long high_limit;
1576 unsigned long align_mask;
1577 unsigned long align_offset;
1578 };
1579
1580 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1581 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1582
1583 /*
1584 * Search for an unmapped address range.
1585 *
1586 * We are looking for a range that:
1587 * - does not intersect with any VMA;
1588 * - is contained within the [low_limit, high_limit) interval;
1589 * - is at least the desired size.
1590 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1591 */
1592 static inline unsigned long
1593 vm_unmapped_area(struct vm_unmapped_area_info *info)
1594 {
1595 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1596 return unmapped_area(info);
1597 else
1598 return unmapped_area_topdown(info);
1599 }
1600
1601 /* truncate.c */
1602 extern void truncate_inode_pages(struct address_space *, loff_t);
1603 extern void truncate_inode_pages_range(struct address_space *,
1604 loff_t lstart, loff_t lend);
1605
1606 /* generic vm_area_ops exported for stackable file systems */
1607 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1608 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1609
1610 /* mm/page-writeback.c */
1611 int write_one_page(struct page *page, int wait);
1612 void task_dirty_inc(struct task_struct *tsk);
1613
1614 /* readahead.c */
1615 #define VM_MAX_READAHEAD 128 /* kbytes */
1616 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1617
1618 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1619 pgoff_t offset, unsigned long nr_to_read);
1620
1621 void page_cache_sync_readahead(struct address_space *mapping,
1622 struct file_ra_state *ra,
1623 struct file *filp,
1624 pgoff_t offset,
1625 unsigned long size);
1626
1627 void page_cache_async_readahead(struct address_space *mapping,
1628 struct file_ra_state *ra,
1629 struct file *filp,
1630 struct page *pg,
1631 pgoff_t offset,
1632 unsigned long size);
1633
1634 unsigned long max_sane_readahead(unsigned long nr);
1635
1636 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1637 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1638
1639 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1640 extern int expand_downwards(struct vm_area_struct *vma,
1641 unsigned long address);
1642 #if VM_GROWSUP
1643 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1644 #else
1645 #define expand_upwards(vma, address) (0)
1646 #endif
1647
1648 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1649 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1650 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1651 struct vm_area_struct **pprev);
1652
1653 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1654 NULL if none. Assume start_addr < end_addr. */
1655 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1656 {
1657 struct vm_area_struct * vma = find_vma(mm,start_addr);
1658
1659 if (vma && end_addr <= vma->vm_start)
1660 vma = NULL;
1661 return vma;
1662 }
1663
1664 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1665 {
1666 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1667 }
1668
1669 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1670 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1671 unsigned long vm_start, unsigned long vm_end)
1672 {
1673 struct vm_area_struct *vma = find_vma(mm, vm_start);
1674
1675 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1676 vma = NULL;
1677
1678 return vma;
1679 }
1680
1681 #ifdef CONFIG_MMU
1682 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1683 #else
1684 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1685 {
1686 return __pgprot(0);
1687 }
1688 #endif
1689
1690 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1691 unsigned long change_prot_numa(struct vm_area_struct *vma,
1692 unsigned long start, unsigned long end);
1693 #endif
1694
1695 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1696 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1697 unsigned long pfn, unsigned long size, pgprot_t);
1698 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1699 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1700 unsigned long pfn);
1701 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1702 unsigned long pfn);
1703 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1704
1705
1706 struct page *follow_page_mask(struct vm_area_struct *vma,
1707 unsigned long address, unsigned int foll_flags,
1708 unsigned int *page_mask);
1709
1710 static inline struct page *follow_page(struct vm_area_struct *vma,
1711 unsigned long address, unsigned int foll_flags)
1712 {
1713 unsigned int unused_page_mask;
1714 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1715 }
1716
1717 #define FOLL_WRITE 0x01 /* check pte is writable */
1718 #define FOLL_TOUCH 0x02 /* mark page accessed */
1719 #define FOLL_GET 0x04 /* do get_page on page */
1720 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1721 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1722 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1723 * and return without waiting upon it */
1724 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1725 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1726 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1727 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1728 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1729
1730 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1731 void *data);
1732 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1733 unsigned long size, pte_fn_t fn, void *data);
1734
1735 #ifdef CONFIG_PROC_FS
1736 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1737 #else
1738 static inline void vm_stat_account(struct mm_struct *mm,
1739 unsigned long flags, struct file *file, long pages)
1740 {
1741 mm->total_vm += pages;
1742 }
1743 #endif /* CONFIG_PROC_FS */
1744
1745 #ifdef CONFIG_DEBUG_PAGEALLOC
1746 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1747 #ifdef CONFIG_HIBERNATION
1748 extern bool kernel_page_present(struct page *page);
1749 #endif /* CONFIG_HIBERNATION */
1750 #else
1751 static inline void
1752 kernel_map_pages(struct page *page, int numpages, int enable) {}
1753 #ifdef CONFIG_HIBERNATION
1754 static inline bool kernel_page_present(struct page *page) { return true; }
1755 #endif /* CONFIG_HIBERNATION */
1756 #endif
1757
1758 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1759 #ifdef __HAVE_ARCH_GATE_AREA
1760 int in_gate_area_no_mm(unsigned long addr);
1761 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1762 #else
1763 int in_gate_area_no_mm(unsigned long addr);
1764 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1765 #endif /* __HAVE_ARCH_GATE_AREA */
1766
1767 #ifdef CONFIG_SYSCTL
1768 extern int sysctl_drop_caches;
1769 int drop_caches_sysctl_handler(struct ctl_table *, int,
1770 void __user *, size_t *, loff_t *);
1771 #endif
1772
1773 unsigned long shrink_slab(struct shrink_control *shrink,
1774 unsigned long nr_pages_scanned,
1775 unsigned long lru_pages);
1776
1777 #ifndef CONFIG_MMU
1778 #define randomize_va_space 0
1779 #else
1780 extern int randomize_va_space;
1781 #endif
1782
1783 const char * arch_vma_name(struct vm_area_struct *vma);
1784 void print_vma_addr(char *prefix, unsigned long rip);
1785
1786 void sparse_mem_maps_populate_node(struct page **map_map,
1787 unsigned long pnum_begin,
1788 unsigned long pnum_end,
1789 unsigned long map_count,
1790 int nodeid);
1791
1792 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1793 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1794 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1795 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1796 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1797 void *vmemmap_alloc_block(unsigned long size, int node);
1798 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1799 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1800 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1801 int node);
1802 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1803 void vmemmap_populate_print_last(void);
1804 #ifdef CONFIG_MEMORY_HOTPLUG
1805 void vmemmap_free(unsigned long start, unsigned long end);
1806 #endif
1807 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1808 unsigned long size);
1809
1810 enum mf_flags {
1811 MF_COUNT_INCREASED = 1 << 0,
1812 MF_ACTION_REQUIRED = 1 << 1,
1813 MF_MUST_KILL = 1 << 2,
1814 MF_SOFT_OFFLINE = 1 << 3,
1815 };
1816 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1817 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1818 extern int unpoison_memory(unsigned long pfn);
1819 extern int sysctl_memory_failure_early_kill;
1820 extern int sysctl_memory_failure_recovery;
1821 extern void shake_page(struct page *p, int access);
1822 extern atomic_long_t num_poisoned_pages;
1823 extern int soft_offline_page(struct page *page, int flags);
1824
1825 extern void dump_page(struct page *page);
1826
1827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1828 extern void clear_huge_page(struct page *page,
1829 unsigned long addr,
1830 unsigned int pages_per_huge_page);
1831 extern void copy_user_huge_page(struct page *dst, struct page *src,
1832 unsigned long addr, struct vm_area_struct *vma,
1833 unsigned int pages_per_huge_page);
1834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1835
1836 #ifdef CONFIG_DEBUG_PAGEALLOC
1837 extern unsigned int _debug_guardpage_minorder;
1838
1839 static inline unsigned int debug_guardpage_minorder(void)
1840 {
1841 return _debug_guardpage_minorder;
1842 }
1843
1844 static inline bool page_is_guard(struct page *page)
1845 {
1846 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1847 }
1848 #else
1849 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1850 static inline bool page_is_guard(struct page *page) { return false; }
1851 #endif /* CONFIG_DEBUG_PAGEALLOC */
1852
1853 #if MAX_NUMNODES > 1
1854 void __init setup_nr_node_ids(void);
1855 #else
1856 static inline void setup_nr_node_ids(void) {}
1857 #endif
1858
1859 #endif /* __KERNEL__ */
1860 #endif /* _LINUX_MM_H */