]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/mm.h
Merge tag 'regulator-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[thirdparty/linux.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39
40 extern int sysctl_page_lock_unfairness;
41
42 void mm_core_init(void);
43 void init_mm_internals(void);
44
45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61
62 static inline void totalram_pages_inc(void)
63 {
64 atomic_long_inc(&_totalram_pages);
65 }
66
67 static inline void totalram_pages_dec(void)
68 {
69 atomic_long_dec(&_totalram_pages);
70 }
71
72 static inline void totalram_pages_add(long count)
73 {
74 atomic_long_add(count, &_totalram_pages);
75 }
76
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/processor.h>
100
101 #ifndef __pa_symbol
102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104
105 #ifndef page_to_virt
106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108
109 #ifndef lm_alias
110 #define lm_alias(x) __va(__pa_symbol(x))
111 #endif
112
113 /*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X) (0)
122 #endif
123
124 /*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
129 */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
134 * combine write statements if they are both assignments and can be reordered,
135 * this can result in several of the writes here being dropped.
136 */
137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 unsigned long *_pp = (void *)page;
141
142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
145 BUILD_BUG_ON(sizeof(struct page) > 96);
146
147 switch (sizeof(struct page)) {
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
154 case 80:
155 _pp[9] = 0;
156 fallthrough;
157 case 72:
158 _pp[8] = 0;
159 fallthrough;
160 case 64:
161 _pp[7] = 0;
162 fallthrough;
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172 }
173 #else
174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176
177 /*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193 #define MAPCOUNT_ELF_CORE_MARGIN (5)
194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196 extern int sysctl_max_map_count;
197
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
218 #endif
219
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 return list_entry((head)->prev, struct folio, lru);
233 }
234
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
238 /*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259
260 /*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264 #define VM_NONE 0x00000000
265
266 #define VM_READ 0x00000001 /* currently active flags */
267 #define VM_WRITE 0x00000002
268 #define VM_EXEC 0x00000004
269 #define VM_SHARED 0x00000008
270
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273 #define VM_MAYWRITE 0x00000020
274 #define VM_MAYEXEC 0x00000040
275 #define VM_MAYSHARE 0x00000080
276
277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING 0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
286
287 #define VM_LOCKED 0x00002000
288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300 #define VM_SYNC 0x00800000 /* Synchronous page faults */
301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
304
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY 0
309 #endif
310
311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
315
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4 0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341
342 #if defined(CONFIG_X86)
343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358 #endif
359
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363 #else
364 # define VM_MTE VM_NONE
365 # define VM_MTE_ALLOWED VM_NONE
366 #endif
367
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP VM_NONE
370 #endif
371
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT 37
374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
381
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394 #endif
395
396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK VM_GROWSUP
402 #define VM_STACK_EARLY VM_GROWSDOWN
403 #else
404 #define VM_STACK VM_GROWSDOWN
405 #define VM_STACK_EARLY 0
406 #endif
407
408 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409
410 /* VMA basic access permission flags */
411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412
413
414 /*
415 * Special vmas that are non-mergable, non-mlock()able.
416 */
417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
418
419 /* This mask prevents VMA from being scanned with khugepaged */
420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421
422 /* This mask defines which mm->def_flags a process can inherit its parent */
423 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
424
425 /* This mask represents all the VMA flag bits used by mlock */
426 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
427
428 /* Arch-specific flags to clear when updating VM flags on protection change */
429 #ifndef VM_ARCH_CLEAR
430 # define VM_ARCH_CLEAR VM_NONE
431 #endif
432 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433
434 /*
435 * mapping from the currently active vm_flags protection bits (the
436 * low four bits) to a page protection mask..
437 */
438
439 /*
440 * The default fault flags that should be used by most of the
441 * arch-specific page fault handlers.
442 */
443 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
444 FAULT_FLAG_KILLABLE | \
445 FAULT_FLAG_INTERRUPTIBLE)
446
447 /**
448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
449 * @flags: Fault flags.
450 *
451 * This is mostly used for places where we want to try to avoid taking
452 * the mmap_lock for too long a time when waiting for another condition
453 * to change, in which case we can try to be polite to release the
454 * mmap_lock in the first round to avoid potential starvation of other
455 * processes that would also want the mmap_lock.
456 *
457 * Return: true if the page fault allows retry and this is the first
458 * attempt of the fault handling; false otherwise.
459 */
460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
461 {
462 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 (!(flags & FAULT_FLAG_TRIED));
464 }
465
466 #define FAULT_FLAG_TRACE \
467 { FAULT_FLAG_WRITE, "WRITE" }, \
468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
472 { FAULT_FLAG_TRIED, "TRIED" }, \
473 { FAULT_FLAG_USER, "USER" }, \
474 { FAULT_FLAG_REMOTE, "REMOTE" }, \
475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
478
479 /*
480 * vm_fault is filled by the pagefault handler and passed to the vma's
481 * ->fault function. The vma's ->fault is responsible for returning a bitmask
482 * of VM_FAULT_xxx flags that give details about how the fault was handled.
483 *
484 * MM layer fills up gfp_mask for page allocations but fault handler might
485 * alter it if its implementation requires a different allocation context.
486 *
487 * pgoff should be used in favour of virtual_address, if possible.
488 */
489 struct vm_fault {
490 const struct {
491 struct vm_area_struct *vma; /* Target VMA */
492 gfp_t gfp_mask; /* gfp mask to be used for allocations */
493 pgoff_t pgoff; /* Logical page offset based on vma */
494 unsigned long address; /* Faulting virtual address - masked */
495 unsigned long real_address; /* Faulting virtual address - unmasked */
496 };
497 enum fault_flag flags; /* FAULT_FLAG_xxx flags
498 * XXX: should really be 'const' */
499 pmd_t *pmd; /* Pointer to pmd entry matching
500 * the 'address' */
501 pud_t *pud; /* Pointer to pud entry matching
502 * the 'address'
503 */
504 union {
505 pte_t orig_pte; /* Value of PTE at the time of fault */
506 pmd_t orig_pmd; /* Value of PMD at the time of fault,
507 * used by PMD fault only.
508 */
509 };
510
511 struct page *cow_page; /* Page handler may use for COW fault */
512 struct page *page; /* ->fault handlers should return a
513 * page here, unless VM_FAULT_NOPAGE
514 * is set (which is also implied by
515 * VM_FAULT_ERROR).
516 */
517 /* These three entries are valid only while holding ptl lock */
518 pte_t *pte; /* Pointer to pte entry matching
519 * the 'address'. NULL if the page
520 * table hasn't been allocated.
521 */
522 spinlock_t *ptl; /* Page table lock.
523 * Protects pte page table if 'pte'
524 * is not NULL, otherwise pmd.
525 */
526 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
527 * vm_ops->map_pages() sets up a page
528 * table from atomic context.
529 * do_fault_around() pre-allocates
530 * page table to avoid allocation from
531 * atomic context.
532 */
533 };
534
535 /* page entry size for vm->huge_fault() */
536 enum page_entry_size {
537 PE_SIZE_PTE = 0,
538 PE_SIZE_PMD,
539 PE_SIZE_PUD,
540 };
541
542 /*
543 * These are the virtual MM functions - opening of an area, closing and
544 * unmapping it (needed to keep files on disk up-to-date etc), pointer
545 * to the functions called when a no-page or a wp-page exception occurs.
546 */
547 struct vm_operations_struct {
548 void (*open)(struct vm_area_struct * area);
549 /**
550 * @close: Called when the VMA is being removed from the MM.
551 * Context: User context. May sleep. Caller holds mmap_lock.
552 */
553 void (*close)(struct vm_area_struct * area);
554 /* Called any time before splitting to check if it's allowed */
555 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
556 int (*mremap)(struct vm_area_struct *area);
557 /*
558 * Called by mprotect() to make driver-specific permission
559 * checks before mprotect() is finalised. The VMA must not
560 * be modified. Returns 0 if mprotect() can proceed.
561 */
562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 unsigned long end, unsigned long newflags);
564 vm_fault_t (*fault)(struct vm_fault *vmf);
565 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 enum page_entry_size pe_size);
567 vm_fault_t (*map_pages)(struct vm_fault *vmf,
568 pgoff_t start_pgoff, pgoff_t end_pgoff);
569 unsigned long (*pagesize)(struct vm_area_struct * area);
570
571 /* notification that a previously read-only page is about to become
572 * writable, if an error is returned it will cause a SIGBUS */
573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
574
575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
577
578 /* called by access_process_vm when get_user_pages() fails, typically
579 * for use by special VMAs. See also generic_access_phys() for a generic
580 * implementation useful for any iomem mapping.
581 */
582 int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 void *buf, int len, int write);
584
585 /* Called by the /proc/PID/maps code to ask the vma whether it
586 * has a special name. Returning non-NULL will also cause this
587 * vma to be dumped unconditionally. */
588 const char *(*name)(struct vm_area_struct *vma);
589
590 #ifdef CONFIG_NUMA
591 /*
592 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 * to hold the policy upon return. Caller should pass NULL @new to
594 * remove a policy and fall back to surrounding context--i.e. do not
595 * install a MPOL_DEFAULT policy, nor the task or system default
596 * mempolicy.
597 */
598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
599
600 /*
601 * get_policy() op must add reference [mpol_get()] to any policy at
602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
603 * in mm/mempolicy.c will do this automatically.
604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 * must return NULL--i.e., do not "fallback" to task or system default
608 * policy.
609 */
610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 unsigned long addr);
612 #endif
613 /*
614 * Called by vm_normal_page() for special PTEs to find the
615 * page for @addr. This is useful if the default behavior
616 * (using pte_page()) would not find the correct page.
617 */
618 struct page *(*find_special_page)(struct vm_area_struct *vma,
619 unsigned long addr);
620 };
621
622 #ifdef CONFIG_NUMA_BALANCING
623 static inline void vma_numab_state_init(struct vm_area_struct *vma)
624 {
625 vma->numab_state = NULL;
626 }
627 static inline void vma_numab_state_free(struct vm_area_struct *vma)
628 {
629 kfree(vma->numab_state);
630 }
631 #else
632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634 #endif /* CONFIG_NUMA_BALANCING */
635
636 #ifdef CONFIG_PER_VMA_LOCK
637 /*
638 * Try to read-lock a vma. The function is allowed to occasionally yield false
639 * locked result to avoid performance overhead, in which case we fall back to
640 * using mmap_lock. The function should never yield false unlocked result.
641 */
642 static inline bool vma_start_read(struct vm_area_struct *vma)
643 {
644 /*
645 * Check before locking. A race might cause false locked result.
646 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
647 * ACQUIRE semantics, because this is just a lockless check whose result
648 * we don't rely on for anything - the mm_lock_seq read against which we
649 * need ordering is below.
650 */
651 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
652 return false;
653
654 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
655 return false;
656
657 /*
658 * Overflow might produce false locked result.
659 * False unlocked result is impossible because we modify and check
660 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
661 * modification invalidates all existing locks.
662 *
663 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
664 * racing with vma_end_write_all(), we only start reading from the VMA
665 * after it has been unlocked.
666 * This pairs with RELEASE semantics in vma_end_write_all().
667 */
668 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
669 up_read(&vma->vm_lock->lock);
670 return false;
671 }
672 return true;
673 }
674
675 static inline void vma_end_read(struct vm_area_struct *vma)
676 {
677 rcu_read_lock(); /* keeps vma alive till the end of up_read */
678 up_read(&vma->vm_lock->lock);
679 rcu_read_unlock();
680 }
681
682 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
683 {
684 mmap_assert_write_locked(vma->vm_mm);
685
686 /*
687 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
688 * mm->mm_lock_seq can't be concurrently modified.
689 */
690 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
691 return (vma->vm_lock_seq == *mm_lock_seq);
692 }
693
694 static inline void vma_start_write(struct vm_area_struct *vma)
695 {
696 int mm_lock_seq;
697
698 if (__is_vma_write_locked(vma, &mm_lock_seq))
699 return;
700
701 down_write(&vma->vm_lock->lock);
702 /*
703 * We should use WRITE_ONCE() here because we can have concurrent reads
704 * from the early lockless pessimistic check in vma_start_read().
705 * We don't really care about the correctness of that early check, but
706 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
707 */
708 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
709 up_write(&vma->vm_lock->lock);
710 }
711
712 static inline bool vma_try_start_write(struct vm_area_struct *vma)
713 {
714 int mm_lock_seq;
715
716 if (__is_vma_write_locked(vma, &mm_lock_seq))
717 return true;
718
719 if (!down_write_trylock(&vma->vm_lock->lock))
720 return false;
721
722 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
723 up_write(&vma->vm_lock->lock);
724 return true;
725 }
726
727 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728 {
729 int mm_lock_seq;
730
731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
732 }
733
734 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
735 {
736 /* When detaching vma should be write-locked */
737 if (detached)
738 vma_assert_write_locked(vma);
739 vma->detached = detached;
740 }
741
742 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
743 unsigned long address);
744
745 #else /* CONFIG_PER_VMA_LOCK */
746
747 static inline bool vma_start_read(struct vm_area_struct *vma)
748 { return false; }
749 static inline void vma_end_read(struct vm_area_struct *vma) {}
750 static inline void vma_start_write(struct vm_area_struct *vma) {}
751 static inline bool vma_try_start_write(struct vm_area_struct *vma)
752 { return true; }
753 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
754 static inline void vma_mark_detached(struct vm_area_struct *vma,
755 bool detached) {}
756
757 #endif /* CONFIG_PER_VMA_LOCK */
758
759 /*
760 * WARNING: vma_init does not initialize vma->vm_lock.
761 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
762 */
763 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
764 {
765 static const struct vm_operations_struct dummy_vm_ops = {};
766
767 memset(vma, 0, sizeof(*vma));
768 vma->vm_mm = mm;
769 vma->vm_ops = &dummy_vm_ops;
770 INIT_LIST_HEAD(&vma->anon_vma_chain);
771 vma_mark_detached(vma, false);
772 vma_numab_state_init(vma);
773 }
774
775 /* Use when VMA is not part of the VMA tree and needs no locking */
776 static inline void vm_flags_init(struct vm_area_struct *vma,
777 vm_flags_t flags)
778 {
779 ACCESS_PRIVATE(vma, __vm_flags) = flags;
780 }
781
782 /* Use when VMA is part of the VMA tree and modifications need coordination */
783 static inline void vm_flags_reset(struct vm_area_struct *vma,
784 vm_flags_t flags)
785 {
786 vma_start_write(vma);
787 vm_flags_init(vma, flags);
788 }
789
790 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
791 vm_flags_t flags)
792 {
793 vma_start_write(vma);
794 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
795 }
796
797 static inline void vm_flags_set(struct vm_area_struct *vma,
798 vm_flags_t flags)
799 {
800 vma_start_write(vma);
801 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
802 }
803
804 static inline void vm_flags_clear(struct vm_area_struct *vma,
805 vm_flags_t flags)
806 {
807 vma_start_write(vma);
808 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
809 }
810
811 /*
812 * Use only if VMA is not part of the VMA tree or has no other users and
813 * therefore needs no locking.
814 */
815 static inline void __vm_flags_mod(struct vm_area_struct *vma,
816 vm_flags_t set, vm_flags_t clear)
817 {
818 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
819 }
820
821 /*
822 * Use only when the order of set/clear operations is unimportant, otherwise
823 * use vm_flags_{set|clear} explicitly.
824 */
825 static inline void vm_flags_mod(struct vm_area_struct *vma,
826 vm_flags_t set, vm_flags_t clear)
827 {
828 vma_start_write(vma);
829 __vm_flags_mod(vma, set, clear);
830 }
831
832 static inline void vma_set_anonymous(struct vm_area_struct *vma)
833 {
834 vma->vm_ops = NULL;
835 }
836
837 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
838 {
839 return !vma->vm_ops;
840 }
841
842 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
843 {
844 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
845
846 if (!maybe_stack)
847 return false;
848
849 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
850 VM_STACK_INCOMPLETE_SETUP)
851 return true;
852
853 return false;
854 }
855
856 static inline bool vma_is_foreign(struct vm_area_struct *vma)
857 {
858 if (!current->mm)
859 return true;
860
861 if (current->mm != vma->vm_mm)
862 return true;
863
864 return false;
865 }
866
867 static inline bool vma_is_accessible(struct vm_area_struct *vma)
868 {
869 return vma->vm_flags & VM_ACCESS_FLAGS;
870 }
871
872 static inline
873 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
874 {
875 return mas_find(&vmi->mas, max - 1);
876 }
877
878 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
879 {
880 /*
881 * Uses mas_find() to get the first VMA when the iterator starts.
882 * Calling mas_next() could skip the first entry.
883 */
884 return mas_find(&vmi->mas, ULONG_MAX);
885 }
886
887 static inline
888 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
889 {
890 return mas_next_range(&vmi->mas, ULONG_MAX);
891 }
892
893
894 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
895 {
896 return mas_prev(&vmi->mas, 0);
897 }
898
899 static inline
900 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
901 {
902 return mas_prev_range(&vmi->mas, 0);
903 }
904
905 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
906 {
907 return vmi->mas.index;
908 }
909
910 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
911 {
912 return vmi->mas.last + 1;
913 }
914 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
915 unsigned long count)
916 {
917 return mas_expected_entries(&vmi->mas, count);
918 }
919
920 /* Free any unused preallocations */
921 static inline void vma_iter_free(struct vma_iterator *vmi)
922 {
923 mas_destroy(&vmi->mas);
924 }
925
926 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
927 struct vm_area_struct *vma)
928 {
929 vmi->mas.index = vma->vm_start;
930 vmi->mas.last = vma->vm_end - 1;
931 mas_store(&vmi->mas, vma);
932 if (unlikely(mas_is_err(&vmi->mas)))
933 return -ENOMEM;
934
935 return 0;
936 }
937
938 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
939 {
940 mas_pause(&vmi->mas);
941 }
942
943 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
944 {
945 mas_set(&vmi->mas, addr);
946 }
947
948 #define for_each_vma(__vmi, __vma) \
949 while (((__vma) = vma_next(&(__vmi))) != NULL)
950
951 /* The MM code likes to work with exclusive end addresses */
952 #define for_each_vma_range(__vmi, __vma, __end) \
953 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
954
955 #ifdef CONFIG_SHMEM
956 /*
957 * The vma_is_shmem is not inline because it is used only by slow
958 * paths in userfault.
959 */
960 bool vma_is_shmem(struct vm_area_struct *vma);
961 bool vma_is_anon_shmem(struct vm_area_struct *vma);
962 #else
963 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
964 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
965 #endif
966
967 int vma_is_stack_for_current(struct vm_area_struct *vma);
968
969 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
970 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
971
972 struct mmu_gather;
973 struct inode;
974
975 /*
976 * compound_order() can be called without holding a reference, which means
977 * that niceties like page_folio() don't work. These callers should be
978 * prepared to handle wild return values. For example, PG_head may be
979 * set before _folio_order is initialised, or this may be a tail page.
980 * See compaction.c for some good examples.
981 */
982 static inline unsigned int compound_order(struct page *page)
983 {
984 struct folio *folio = (struct folio *)page;
985
986 if (!test_bit(PG_head, &folio->flags))
987 return 0;
988 return folio->_folio_order;
989 }
990
991 /**
992 * folio_order - The allocation order of a folio.
993 * @folio: The folio.
994 *
995 * A folio is composed of 2^order pages. See get_order() for the definition
996 * of order.
997 *
998 * Return: The order of the folio.
999 */
1000 static inline unsigned int folio_order(struct folio *folio)
1001 {
1002 if (!folio_test_large(folio))
1003 return 0;
1004 return folio->_folio_order;
1005 }
1006
1007 #include <linux/huge_mm.h>
1008
1009 /*
1010 * Methods to modify the page usage count.
1011 *
1012 * What counts for a page usage:
1013 * - cache mapping (page->mapping)
1014 * - private data (page->private)
1015 * - page mapped in a task's page tables, each mapping
1016 * is counted separately
1017 *
1018 * Also, many kernel routines increase the page count before a critical
1019 * routine so they can be sure the page doesn't go away from under them.
1020 */
1021
1022 /*
1023 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1024 */
1025 static inline int put_page_testzero(struct page *page)
1026 {
1027 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1028 return page_ref_dec_and_test(page);
1029 }
1030
1031 static inline int folio_put_testzero(struct folio *folio)
1032 {
1033 return put_page_testzero(&folio->page);
1034 }
1035
1036 /*
1037 * Try to grab a ref unless the page has a refcount of zero, return false if
1038 * that is the case.
1039 * This can be called when MMU is off so it must not access
1040 * any of the virtual mappings.
1041 */
1042 static inline bool get_page_unless_zero(struct page *page)
1043 {
1044 return page_ref_add_unless(page, 1, 0);
1045 }
1046
1047 static inline struct folio *folio_get_nontail_page(struct page *page)
1048 {
1049 if (unlikely(!get_page_unless_zero(page)))
1050 return NULL;
1051 return (struct folio *)page;
1052 }
1053
1054 extern int page_is_ram(unsigned long pfn);
1055
1056 enum {
1057 REGION_INTERSECTS,
1058 REGION_DISJOINT,
1059 REGION_MIXED,
1060 };
1061
1062 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1063 unsigned long desc);
1064
1065 /* Support for virtually mapped pages */
1066 struct page *vmalloc_to_page(const void *addr);
1067 unsigned long vmalloc_to_pfn(const void *addr);
1068
1069 /*
1070 * Determine if an address is within the vmalloc range
1071 *
1072 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1073 * is no special casing required.
1074 */
1075
1076 #ifndef is_ioremap_addr
1077 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1078 #endif
1079
1080 #ifdef CONFIG_MMU
1081 extern bool is_vmalloc_addr(const void *x);
1082 extern int is_vmalloc_or_module_addr(const void *x);
1083 #else
1084 static inline bool is_vmalloc_addr(const void *x)
1085 {
1086 return false;
1087 }
1088 static inline int is_vmalloc_or_module_addr(const void *x)
1089 {
1090 return 0;
1091 }
1092 #endif
1093
1094 /*
1095 * How many times the entire folio is mapped as a single unit (eg by a
1096 * PMD or PUD entry). This is probably not what you want, except for
1097 * debugging purposes - it does not include PTE-mapped sub-pages; look
1098 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1099 */
1100 static inline int folio_entire_mapcount(struct folio *folio)
1101 {
1102 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1103 return atomic_read(&folio->_entire_mapcount) + 1;
1104 }
1105
1106 /*
1107 * The atomic page->_mapcount, starts from -1: so that transitions
1108 * both from it and to it can be tracked, using atomic_inc_and_test
1109 * and atomic_add_negative(-1).
1110 */
1111 static inline void page_mapcount_reset(struct page *page)
1112 {
1113 atomic_set(&(page)->_mapcount, -1);
1114 }
1115
1116 /**
1117 * page_mapcount() - Number of times this precise page is mapped.
1118 * @page: The page.
1119 *
1120 * The number of times this page is mapped. If this page is part of
1121 * a large folio, it includes the number of times this page is mapped
1122 * as part of that folio.
1123 *
1124 * The result is undefined for pages which cannot be mapped into userspace.
1125 * For example SLAB or special types of pages. See function page_has_type().
1126 * They use this field in struct page differently.
1127 */
1128 static inline int page_mapcount(struct page *page)
1129 {
1130 int mapcount = atomic_read(&page->_mapcount) + 1;
1131
1132 if (unlikely(PageCompound(page)))
1133 mapcount += folio_entire_mapcount(page_folio(page));
1134
1135 return mapcount;
1136 }
1137
1138 int folio_total_mapcount(struct folio *folio);
1139
1140 /**
1141 * folio_mapcount() - Calculate the number of mappings of this folio.
1142 * @folio: The folio.
1143 *
1144 * A large folio tracks both how many times the entire folio is mapped,
1145 * and how many times each individual page in the folio is mapped.
1146 * This function calculates the total number of times the folio is
1147 * mapped.
1148 *
1149 * Return: The number of times this folio is mapped.
1150 */
1151 static inline int folio_mapcount(struct folio *folio)
1152 {
1153 if (likely(!folio_test_large(folio)))
1154 return atomic_read(&folio->_mapcount) + 1;
1155 return folio_total_mapcount(folio);
1156 }
1157
1158 static inline int total_mapcount(struct page *page)
1159 {
1160 if (likely(!PageCompound(page)))
1161 return atomic_read(&page->_mapcount) + 1;
1162 return folio_total_mapcount(page_folio(page));
1163 }
1164
1165 static inline bool folio_large_is_mapped(struct folio *folio)
1166 {
1167 /*
1168 * Reading _entire_mapcount below could be omitted if hugetlb
1169 * participated in incrementing nr_pages_mapped when compound mapped.
1170 */
1171 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1172 atomic_read(&folio->_entire_mapcount) >= 0;
1173 }
1174
1175 /**
1176 * folio_mapped - Is this folio mapped into userspace?
1177 * @folio: The folio.
1178 *
1179 * Return: True if any page in this folio is referenced by user page tables.
1180 */
1181 static inline bool folio_mapped(struct folio *folio)
1182 {
1183 if (likely(!folio_test_large(folio)))
1184 return atomic_read(&folio->_mapcount) >= 0;
1185 return folio_large_is_mapped(folio);
1186 }
1187
1188 /*
1189 * Return true if this page is mapped into pagetables.
1190 * For compound page it returns true if any sub-page of compound page is mapped,
1191 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1192 */
1193 static inline bool page_mapped(struct page *page)
1194 {
1195 if (likely(!PageCompound(page)))
1196 return atomic_read(&page->_mapcount) >= 0;
1197 return folio_large_is_mapped(page_folio(page));
1198 }
1199
1200 static inline struct page *virt_to_head_page(const void *x)
1201 {
1202 struct page *page = virt_to_page(x);
1203
1204 return compound_head(page);
1205 }
1206
1207 static inline struct folio *virt_to_folio(const void *x)
1208 {
1209 struct page *page = virt_to_page(x);
1210
1211 return page_folio(page);
1212 }
1213
1214 void __folio_put(struct folio *folio);
1215
1216 void put_pages_list(struct list_head *pages);
1217
1218 void split_page(struct page *page, unsigned int order);
1219 void folio_copy(struct folio *dst, struct folio *src);
1220
1221 unsigned long nr_free_buffer_pages(void);
1222
1223 /*
1224 * Compound pages have a destructor function. Provide a
1225 * prototype for that function and accessor functions.
1226 * These are _only_ valid on the head of a compound page.
1227 */
1228 typedef void compound_page_dtor(struct page *);
1229
1230 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1231 enum compound_dtor_id {
1232 NULL_COMPOUND_DTOR,
1233 COMPOUND_PAGE_DTOR,
1234 #ifdef CONFIG_HUGETLB_PAGE
1235 HUGETLB_PAGE_DTOR,
1236 #endif
1237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1238 TRANSHUGE_PAGE_DTOR,
1239 #endif
1240 NR_COMPOUND_DTORS,
1241 };
1242
1243 static inline void folio_set_compound_dtor(struct folio *folio,
1244 enum compound_dtor_id compound_dtor)
1245 {
1246 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1247 folio->_folio_dtor = compound_dtor;
1248 }
1249
1250 void destroy_large_folio(struct folio *folio);
1251
1252 /* Returns the number of bytes in this potentially compound page. */
1253 static inline unsigned long page_size(struct page *page)
1254 {
1255 return PAGE_SIZE << compound_order(page);
1256 }
1257
1258 /* Returns the number of bits needed for the number of bytes in a page */
1259 static inline unsigned int page_shift(struct page *page)
1260 {
1261 return PAGE_SHIFT + compound_order(page);
1262 }
1263
1264 /**
1265 * thp_order - Order of a transparent huge page.
1266 * @page: Head page of a transparent huge page.
1267 */
1268 static inline unsigned int thp_order(struct page *page)
1269 {
1270 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1271 return compound_order(page);
1272 }
1273
1274 /**
1275 * thp_size - Size of a transparent huge page.
1276 * @page: Head page of a transparent huge page.
1277 *
1278 * Return: Number of bytes in this page.
1279 */
1280 static inline unsigned long thp_size(struct page *page)
1281 {
1282 return PAGE_SIZE << thp_order(page);
1283 }
1284
1285 void free_compound_page(struct page *page);
1286
1287 #ifdef CONFIG_MMU
1288 /*
1289 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1290 * servicing faults for write access. In the normal case, do always want
1291 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1292 * that do not have writing enabled, when used by access_process_vm.
1293 */
1294 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1295 {
1296 if (likely(vma->vm_flags & VM_WRITE))
1297 pte = pte_mkwrite(pte);
1298 return pte;
1299 }
1300
1301 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1302 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1303
1304 vm_fault_t finish_fault(struct vm_fault *vmf);
1305 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1306 #endif
1307
1308 /*
1309 * Multiple processes may "see" the same page. E.g. for untouched
1310 * mappings of /dev/null, all processes see the same page full of
1311 * zeroes, and text pages of executables and shared libraries have
1312 * only one copy in memory, at most, normally.
1313 *
1314 * For the non-reserved pages, page_count(page) denotes a reference count.
1315 * page_count() == 0 means the page is free. page->lru is then used for
1316 * freelist management in the buddy allocator.
1317 * page_count() > 0 means the page has been allocated.
1318 *
1319 * Pages are allocated by the slab allocator in order to provide memory
1320 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1321 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1322 * unless a particular usage is carefully commented. (the responsibility of
1323 * freeing the kmalloc memory is the caller's, of course).
1324 *
1325 * A page may be used by anyone else who does a __get_free_page().
1326 * In this case, page_count still tracks the references, and should only
1327 * be used through the normal accessor functions. The top bits of page->flags
1328 * and page->virtual store page management information, but all other fields
1329 * are unused and could be used privately, carefully. The management of this
1330 * page is the responsibility of the one who allocated it, and those who have
1331 * subsequently been given references to it.
1332 *
1333 * The other pages (we may call them "pagecache pages") are completely
1334 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1335 * The following discussion applies only to them.
1336 *
1337 * A pagecache page contains an opaque `private' member, which belongs to the
1338 * page's address_space. Usually, this is the address of a circular list of
1339 * the page's disk buffers. PG_private must be set to tell the VM to call
1340 * into the filesystem to release these pages.
1341 *
1342 * A page may belong to an inode's memory mapping. In this case, page->mapping
1343 * is the pointer to the inode, and page->index is the file offset of the page,
1344 * in units of PAGE_SIZE.
1345 *
1346 * If pagecache pages are not associated with an inode, they are said to be
1347 * anonymous pages. These may become associated with the swapcache, and in that
1348 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1349 *
1350 * In either case (swapcache or inode backed), the pagecache itself holds one
1351 * reference to the page. Setting PG_private should also increment the
1352 * refcount. The each user mapping also has a reference to the page.
1353 *
1354 * The pagecache pages are stored in a per-mapping radix tree, which is
1355 * rooted at mapping->i_pages, and indexed by offset.
1356 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1357 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1358 *
1359 * All pagecache pages may be subject to I/O:
1360 * - inode pages may need to be read from disk,
1361 * - inode pages which have been modified and are MAP_SHARED may need
1362 * to be written back to the inode on disk,
1363 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1364 * modified may need to be swapped out to swap space and (later) to be read
1365 * back into memory.
1366 */
1367
1368 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1369 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1370
1371 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1372 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1373 {
1374 if (!static_branch_unlikely(&devmap_managed_key))
1375 return false;
1376 if (!is_zone_device_page(page))
1377 return false;
1378 return __put_devmap_managed_page_refs(page, refs);
1379 }
1380 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1381 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1382 {
1383 return false;
1384 }
1385 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1386
1387 static inline bool put_devmap_managed_page(struct page *page)
1388 {
1389 return put_devmap_managed_page_refs(page, 1);
1390 }
1391
1392 /* 127: arbitrary random number, small enough to assemble well */
1393 #define folio_ref_zero_or_close_to_overflow(folio) \
1394 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1395
1396 /**
1397 * folio_get - Increment the reference count on a folio.
1398 * @folio: The folio.
1399 *
1400 * Context: May be called in any context, as long as you know that
1401 * you have a refcount on the folio. If you do not already have one,
1402 * folio_try_get() may be the right interface for you to use.
1403 */
1404 static inline void folio_get(struct folio *folio)
1405 {
1406 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1407 folio_ref_inc(folio);
1408 }
1409
1410 static inline void get_page(struct page *page)
1411 {
1412 folio_get(page_folio(page));
1413 }
1414
1415 static inline __must_check bool try_get_page(struct page *page)
1416 {
1417 page = compound_head(page);
1418 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1419 return false;
1420 page_ref_inc(page);
1421 return true;
1422 }
1423
1424 /**
1425 * folio_put - Decrement the reference count on a folio.
1426 * @folio: The folio.
1427 *
1428 * If the folio's reference count reaches zero, the memory will be
1429 * released back to the page allocator and may be used by another
1430 * allocation immediately. Do not access the memory or the struct folio
1431 * after calling folio_put() unless you can be sure that it wasn't the
1432 * last reference.
1433 *
1434 * Context: May be called in process or interrupt context, but not in NMI
1435 * context. May be called while holding a spinlock.
1436 */
1437 static inline void folio_put(struct folio *folio)
1438 {
1439 if (folio_put_testzero(folio))
1440 __folio_put(folio);
1441 }
1442
1443 /**
1444 * folio_put_refs - Reduce the reference count on a folio.
1445 * @folio: The folio.
1446 * @refs: The amount to subtract from the folio's reference count.
1447 *
1448 * If the folio's reference count reaches zero, the memory will be
1449 * released back to the page allocator and may be used by another
1450 * allocation immediately. Do not access the memory or the struct folio
1451 * after calling folio_put_refs() unless you can be sure that these weren't
1452 * the last references.
1453 *
1454 * Context: May be called in process or interrupt context, but not in NMI
1455 * context. May be called while holding a spinlock.
1456 */
1457 static inline void folio_put_refs(struct folio *folio, int refs)
1458 {
1459 if (folio_ref_sub_and_test(folio, refs))
1460 __folio_put(folio);
1461 }
1462
1463 /*
1464 * union release_pages_arg - an array of pages or folios
1465 *
1466 * release_pages() releases a simple array of multiple pages, and
1467 * accepts various different forms of said page array: either
1468 * a regular old boring array of pages, an array of folios, or
1469 * an array of encoded page pointers.
1470 *
1471 * The transparent union syntax for this kind of "any of these
1472 * argument types" is all kinds of ugly, so look away.
1473 */
1474 typedef union {
1475 struct page **pages;
1476 struct folio **folios;
1477 struct encoded_page **encoded_pages;
1478 } release_pages_arg __attribute__ ((__transparent_union__));
1479
1480 void release_pages(release_pages_arg, int nr);
1481
1482 /**
1483 * folios_put - Decrement the reference count on an array of folios.
1484 * @folios: The folios.
1485 * @nr: How many folios there are.
1486 *
1487 * Like folio_put(), but for an array of folios. This is more efficient
1488 * than writing the loop yourself as it will optimise the locks which
1489 * need to be taken if the folios are freed.
1490 *
1491 * Context: May be called in process or interrupt context, but not in NMI
1492 * context. May be called while holding a spinlock.
1493 */
1494 static inline void folios_put(struct folio **folios, unsigned int nr)
1495 {
1496 release_pages(folios, nr);
1497 }
1498
1499 static inline void put_page(struct page *page)
1500 {
1501 struct folio *folio = page_folio(page);
1502
1503 /*
1504 * For some devmap managed pages we need to catch refcount transition
1505 * from 2 to 1:
1506 */
1507 if (put_devmap_managed_page(&folio->page))
1508 return;
1509 folio_put(folio);
1510 }
1511
1512 /*
1513 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1514 * the page's refcount so that two separate items are tracked: the original page
1515 * reference count, and also a new count of how many pin_user_pages() calls were
1516 * made against the page. ("gup-pinned" is another term for the latter).
1517 *
1518 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1519 * distinct from normal pages. As such, the unpin_user_page() call (and its
1520 * variants) must be used in order to release gup-pinned pages.
1521 *
1522 * Choice of value:
1523 *
1524 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1525 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1526 * simpler, due to the fact that adding an even power of two to the page
1527 * refcount has the effect of using only the upper N bits, for the code that
1528 * counts up using the bias value. This means that the lower bits are left for
1529 * the exclusive use of the original code that increments and decrements by one
1530 * (or at least, by much smaller values than the bias value).
1531 *
1532 * Of course, once the lower bits overflow into the upper bits (and this is
1533 * OK, because subtraction recovers the original values), then visual inspection
1534 * no longer suffices to directly view the separate counts. However, for normal
1535 * applications that don't have huge page reference counts, this won't be an
1536 * issue.
1537 *
1538 * Locking: the lockless algorithm described in folio_try_get_rcu()
1539 * provides safe operation for get_user_pages(), page_mkclean() and
1540 * other calls that race to set up page table entries.
1541 */
1542 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1543
1544 void unpin_user_page(struct page *page);
1545 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1546 bool make_dirty);
1547 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1548 bool make_dirty);
1549 void unpin_user_pages(struct page **pages, unsigned long npages);
1550
1551 static inline bool is_cow_mapping(vm_flags_t flags)
1552 {
1553 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1554 }
1555
1556 #ifndef CONFIG_MMU
1557 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1558 {
1559 /*
1560 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1561 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1562 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1563 * underlying memory if ptrace is active, so this is only possible if
1564 * ptrace does not apply. Note that there is no mprotect() to upgrade
1565 * write permissions later.
1566 */
1567 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1568 }
1569 #endif
1570
1571 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1572 #define SECTION_IN_PAGE_FLAGS
1573 #endif
1574
1575 /*
1576 * The identification function is mainly used by the buddy allocator for
1577 * determining if two pages could be buddies. We are not really identifying
1578 * the zone since we could be using the section number id if we do not have
1579 * node id available in page flags.
1580 * We only guarantee that it will return the same value for two combinable
1581 * pages in a zone.
1582 */
1583 static inline int page_zone_id(struct page *page)
1584 {
1585 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1586 }
1587
1588 #ifdef NODE_NOT_IN_PAGE_FLAGS
1589 extern int page_to_nid(const struct page *page);
1590 #else
1591 static inline int page_to_nid(const struct page *page)
1592 {
1593 struct page *p = (struct page *)page;
1594
1595 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1596 }
1597 #endif
1598
1599 static inline int folio_nid(const struct folio *folio)
1600 {
1601 return page_to_nid(&folio->page);
1602 }
1603
1604 #ifdef CONFIG_NUMA_BALANCING
1605 /* page access time bits needs to hold at least 4 seconds */
1606 #define PAGE_ACCESS_TIME_MIN_BITS 12
1607 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1608 #define PAGE_ACCESS_TIME_BUCKETS \
1609 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1610 #else
1611 #define PAGE_ACCESS_TIME_BUCKETS 0
1612 #endif
1613
1614 #define PAGE_ACCESS_TIME_MASK \
1615 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1616
1617 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1618 {
1619 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1620 }
1621
1622 static inline int cpupid_to_pid(int cpupid)
1623 {
1624 return cpupid & LAST__PID_MASK;
1625 }
1626
1627 static inline int cpupid_to_cpu(int cpupid)
1628 {
1629 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1630 }
1631
1632 static inline int cpupid_to_nid(int cpupid)
1633 {
1634 return cpu_to_node(cpupid_to_cpu(cpupid));
1635 }
1636
1637 static inline bool cpupid_pid_unset(int cpupid)
1638 {
1639 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1640 }
1641
1642 static inline bool cpupid_cpu_unset(int cpupid)
1643 {
1644 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1645 }
1646
1647 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1648 {
1649 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1650 }
1651
1652 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1653 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1654 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1655 {
1656 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1657 }
1658
1659 static inline int page_cpupid_last(struct page *page)
1660 {
1661 return page->_last_cpupid;
1662 }
1663 static inline void page_cpupid_reset_last(struct page *page)
1664 {
1665 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1666 }
1667 #else
1668 static inline int page_cpupid_last(struct page *page)
1669 {
1670 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1671 }
1672
1673 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1674
1675 static inline void page_cpupid_reset_last(struct page *page)
1676 {
1677 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1678 }
1679 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1680
1681 static inline int xchg_page_access_time(struct page *page, int time)
1682 {
1683 int last_time;
1684
1685 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1686 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1687 }
1688
1689 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1690 {
1691 unsigned int pid_bit;
1692
1693 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1694 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1695 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1696 }
1697 }
1698 #else /* !CONFIG_NUMA_BALANCING */
1699 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1700 {
1701 return page_to_nid(page); /* XXX */
1702 }
1703
1704 static inline int xchg_page_access_time(struct page *page, int time)
1705 {
1706 return 0;
1707 }
1708
1709 static inline int page_cpupid_last(struct page *page)
1710 {
1711 return page_to_nid(page); /* XXX */
1712 }
1713
1714 static inline int cpupid_to_nid(int cpupid)
1715 {
1716 return -1;
1717 }
1718
1719 static inline int cpupid_to_pid(int cpupid)
1720 {
1721 return -1;
1722 }
1723
1724 static inline int cpupid_to_cpu(int cpupid)
1725 {
1726 return -1;
1727 }
1728
1729 static inline int cpu_pid_to_cpupid(int nid, int pid)
1730 {
1731 return -1;
1732 }
1733
1734 static inline bool cpupid_pid_unset(int cpupid)
1735 {
1736 return true;
1737 }
1738
1739 static inline void page_cpupid_reset_last(struct page *page)
1740 {
1741 }
1742
1743 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1744 {
1745 return false;
1746 }
1747
1748 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1749 {
1750 }
1751 #endif /* CONFIG_NUMA_BALANCING */
1752
1753 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1754
1755 /*
1756 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1757 * setting tags for all pages to native kernel tag value 0xff, as the default
1758 * value 0x00 maps to 0xff.
1759 */
1760
1761 static inline u8 page_kasan_tag(const struct page *page)
1762 {
1763 u8 tag = 0xff;
1764
1765 if (kasan_enabled()) {
1766 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1767 tag ^= 0xff;
1768 }
1769
1770 return tag;
1771 }
1772
1773 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1774 {
1775 unsigned long old_flags, flags;
1776
1777 if (!kasan_enabled())
1778 return;
1779
1780 tag ^= 0xff;
1781 old_flags = READ_ONCE(page->flags);
1782 do {
1783 flags = old_flags;
1784 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1785 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1786 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1787 }
1788
1789 static inline void page_kasan_tag_reset(struct page *page)
1790 {
1791 if (kasan_enabled())
1792 page_kasan_tag_set(page, 0xff);
1793 }
1794
1795 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796
1797 static inline u8 page_kasan_tag(const struct page *page)
1798 {
1799 return 0xff;
1800 }
1801
1802 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1803 static inline void page_kasan_tag_reset(struct page *page) { }
1804
1805 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1806
1807 static inline struct zone *page_zone(const struct page *page)
1808 {
1809 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1810 }
1811
1812 static inline pg_data_t *page_pgdat(const struct page *page)
1813 {
1814 return NODE_DATA(page_to_nid(page));
1815 }
1816
1817 static inline struct zone *folio_zone(const struct folio *folio)
1818 {
1819 return page_zone(&folio->page);
1820 }
1821
1822 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1823 {
1824 return page_pgdat(&folio->page);
1825 }
1826
1827 #ifdef SECTION_IN_PAGE_FLAGS
1828 static inline void set_page_section(struct page *page, unsigned long section)
1829 {
1830 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1831 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1832 }
1833
1834 static inline unsigned long page_to_section(const struct page *page)
1835 {
1836 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1837 }
1838 #endif
1839
1840 /**
1841 * folio_pfn - Return the Page Frame Number of a folio.
1842 * @folio: The folio.
1843 *
1844 * A folio may contain multiple pages. The pages have consecutive
1845 * Page Frame Numbers.
1846 *
1847 * Return: The Page Frame Number of the first page in the folio.
1848 */
1849 static inline unsigned long folio_pfn(struct folio *folio)
1850 {
1851 return page_to_pfn(&folio->page);
1852 }
1853
1854 static inline struct folio *pfn_folio(unsigned long pfn)
1855 {
1856 return page_folio(pfn_to_page(pfn));
1857 }
1858
1859 /**
1860 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1861 * @folio: The folio.
1862 *
1863 * This function checks if a folio has been pinned via a call to
1864 * a function in the pin_user_pages() family.
1865 *
1866 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1867 * because it means "definitely not pinned for DMA", but true means "probably
1868 * pinned for DMA, but possibly a false positive due to having at least
1869 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1870 *
1871 * False positives are OK, because: a) it's unlikely for a folio to
1872 * get that many refcounts, and b) all the callers of this routine are
1873 * expected to be able to deal gracefully with a false positive.
1874 *
1875 * For large folios, the result will be exactly correct. That's because
1876 * we have more tracking data available: the _pincount field is used
1877 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1878 *
1879 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1880 *
1881 * Return: True, if it is likely that the page has been "dma-pinned".
1882 * False, if the page is definitely not dma-pinned.
1883 */
1884 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1885 {
1886 if (folio_test_large(folio))
1887 return atomic_read(&folio->_pincount) > 0;
1888
1889 /*
1890 * folio_ref_count() is signed. If that refcount overflows, then
1891 * folio_ref_count() returns a negative value, and callers will avoid
1892 * further incrementing the refcount.
1893 *
1894 * Here, for that overflow case, use the sign bit to count a little
1895 * bit higher via unsigned math, and thus still get an accurate result.
1896 */
1897 return ((unsigned int)folio_ref_count(folio)) >=
1898 GUP_PIN_COUNTING_BIAS;
1899 }
1900
1901 static inline bool page_maybe_dma_pinned(struct page *page)
1902 {
1903 return folio_maybe_dma_pinned(page_folio(page));
1904 }
1905
1906 /*
1907 * This should most likely only be called during fork() to see whether we
1908 * should break the cow immediately for an anon page on the src mm.
1909 *
1910 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1911 */
1912 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1913 struct page *page)
1914 {
1915 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1916
1917 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1918 return false;
1919
1920 return page_maybe_dma_pinned(page);
1921 }
1922
1923 /**
1924 * is_zero_page - Query if a page is a zero page
1925 * @page: The page to query
1926 *
1927 * This returns true if @page is one of the permanent zero pages.
1928 */
1929 static inline bool is_zero_page(const struct page *page)
1930 {
1931 return is_zero_pfn(page_to_pfn(page));
1932 }
1933
1934 /**
1935 * is_zero_folio - Query if a folio is a zero page
1936 * @folio: The folio to query
1937 *
1938 * This returns true if @folio is one of the permanent zero pages.
1939 */
1940 static inline bool is_zero_folio(const struct folio *folio)
1941 {
1942 return is_zero_page(&folio->page);
1943 }
1944
1945 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1946 #ifdef CONFIG_MIGRATION
1947 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1948 {
1949 #ifdef CONFIG_CMA
1950 int mt = folio_migratetype(folio);
1951
1952 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1953 return false;
1954 #endif
1955 /* The zero page can be "pinned" but gets special handling. */
1956 if (is_zero_folio(folio))
1957 return true;
1958
1959 /* Coherent device memory must always allow eviction. */
1960 if (folio_is_device_coherent(folio))
1961 return false;
1962
1963 /* Otherwise, non-movable zone folios can be pinned. */
1964 return !folio_is_zone_movable(folio);
1965
1966 }
1967 #else
1968 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1969 {
1970 return true;
1971 }
1972 #endif
1973
1974 static inline void set_page_zone(struct page *page, enum zone_type zone)
1975 {
1976 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1977 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1978 }
1979
1980 static inline void set_page_node(struct page *page, unsigned long node)
1981 {
1982 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1983 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1984 }
1985
1986 static inline void set_page_links(struct page *page, enum zone_type zone,
1987 unsigned long node, unsigned long pfn)
1988 {
1989 set_page_zone(page, zone);
1990 set_page_node(page, node);
1991 #ifdef SECTION_IN_PAGE_FLAGS
1992 set_page_section(page, pfn_to_section_nr(pfn));
1993 #endif
1994 }
1995
1996 /**
1997 * folio_nr_pages - The number of pages in the folio.
1998 * @folio: The folio.
1999 *
2000 * Return: A positive power of two.
2001 */
2002 static inline long folio_nr_pages(struct folio *folio)
2003 {
2004 if (!folio_test_large(folio))
2005 return 1;
2006 #ifdef CONFIG_64BIT
2007 return folio->_folio_nr_pages;
2008 #else
2009 return 1L << folio->_folio_order;
2010 #endif
2011 }
2012
2013 /*
2014 * compound_nr() returns the number of pages in this potentially compound
2015 * page. compound_nr() can be called on a tail page, and is defined to
2016 * return 1 in that case.
2017 */
2018 static inline unsigned long compound_nr(struct page *page)
2019 {
2020 struct folio *folio = (struct folio *)page;
2021
2022 if (!test_bit(PG_head, &folio->flags))
2023 return 1;
2024 #ifdef CONFIG_64BIT
2025 return folio->_folio_nr_pages;
2026 #else
2027 return 1L << folio->_folio_order;
2028 #endif
2029 }
2030
2031 /**
2032 * thp_nr_pages - The number of regular pages in this huge page.
2033 * @page: The head page of a huge page.
2034 */
2035 static inline int thp_nr_pages(struct page *page)
2036 {
2037 return folio_nr_pages((struct folio *)page);
2038 }
2039
2040 /**
2041 * folio_next - Move to the next physical folio.
2042 * @folio: The folio we're currently operating on.
2043 *
2044 * If you have physically contiguous memory which may span more than
2045 * one folio (eg a &struct bio_vec), use this function to move from one
2046 * folio to the next. Do not use it if the memory is only virtually
2047 * contiguous as the folios are almost certainly not adjacent to each
2048 * other. This is the folio equivalent to writing ``page++``.
2049 *
2050 * Context: We assume that the folios are refcounted and/or locked at a
2051 * higher level and do not adjust the reference counts.
2052 * Return: The next struct folio.
2053 */
2054 static inline struct folio *folio_next(struct folio *folio)
2055 {
2056 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2057 }
2058
2059 /**
2060 * folio_shift - The size of the memory described by this folio.
2061 * @folio: The folio.
2062 *
2063 * A folio represents a number of bytes which is a power-of-two in size.
2064 * This function tells you which power-of-two the folio is. See also
2065 * folio_size() and folio_order().
2066 *
2067 * Context: The caller should have a reference on the folio to prevent
2068 * it from being split. It is not necessary for the folio to be locked.
2069 * Return: The base-2 logarithm of the size of this folio.
2070 */
2071 static inline unsigned int folio_shift(struct folio *folio)
2072 {
2073 return PAGE_SHIFT + folio_order(folio);
2074 }
2075
2076 /**
2077 * folio_size - The number of bytes in a folio.
2078 * @folio: The folio.
2079 *
2080 * Context: The caller should have a reference on the folio to prevent
2081 * it from being split. It is not necessary for the folio to be locked.
2082 * Return: The number of bytes in this folio.
2083 */
2084 static inline size_t folio_size(struct folio *folio)
2085 {
2086 return PAGE_SIZE << folio_order(folio);
2087 }
2088
2089 /**
2090 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2091 * @folio: The folio.
2092 *
2093 * folio_estimated_sharers() aims to serve as a function to efficiently
2094 * estimate the number of processes sharing a folio. This is done by
2095 * looking at the precise mapcount of the first subpage in the folio, and
2096 * assuming the other subpages are the same. This may not be true for large
2097 * folios. If you want exact mapcounts for exact calculations, look at
2098 * page_mapcount() or folio_total_mapcount().
2099 *
2100 * Return: The estimated number of processes sharing a folio.
2101 */
2102 static inline int folio_estimated_sharers(struct folio *folio)
2103 {
2104 return page_mapcount(folio_page(folio, 0));
2105 }
2106
2107 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2108 static inline int arch_make_page_accessible(struct page *page)
2109 {
2110 return 0;
2111 }
2112 #endif
2113
2114 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2115 static inline int arch_make_folio_accessible(struct folio *folio)
2116 {
2117 int ret;
2118 long i, nr = folio_nr_pages(folio);
2119
2120 for (i = 0; i < nr; i++) {
2121 ret = arch_make_page_accessible(folio_page(folio, i));
2122 if (ret)
2123 break;
2124 }
2125
2126 return ret;
2127 }
2128 #endif
2129
2130 /*
2131 * Some inline functions in vmstat.h depend on page_zone()
2132 */
2133 #include <linux/vmstat.h>
2134
2135 static __always_inline void *lowmem_page_address(const struct page *page)
2136 {
2137 return page_to_virt(page);
2138 }
2139
2140 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2141 #define HASHED_PAGE_VIRTUAL
2142 #endif
2143
2144 #if defined(WANT_PAGE_VIRTUAL)
2145 static inline void *page_address(const struct page *page)
2146 {
2147 return page->virtual;
2148 }
2149 static inline void set_page_address(struct page *page, void *address)
2150 {
2151 page->virtual = address;
2152 }
2153 #define page_address_init() do { } while(0)
2154 #endif
2155
2156 #if defined(HASHED_PAGE_VIRTUAL)
2157 void *page_address(const struct page *page);
2158 void set_page_address(struct page *page, void *virtual);
2159 void page_address_init(void);
2160 #endif
2161
2162 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2163 #define page_address(page) lowmem_page_address(page)
2164 #define set_page_address(page, address) do { } while(0)
2165 #define page_address_init() do { } while(0)
2166 #endif
2167
2168 static inline void *folio_address(const struct folio *folio)
2169 {
2170 return page_address(&folio->page);
2171 }
2172
2173 extern void *page_rmapping(struct page *page);
2174 extern pgoff_t __page_file_index(struct page *page);
2175
2176 /*
2177 * Return the pagecache index of the passed page. Regular pagecache pages
2178 * use ->index whereas swapcache pages use swp_offset(->private)
2179 */
2180 static inline pgoff_t page_index(struct page *page)
2181 {
2182 if (unlikely(PageSwapCache(page)))
2183 return __page_file_index(page);
2184 return page->index;
2185 }
2186
2187 /*
2188 * Return true only if the page has been allocated with
2189 * ALLOC_NO_WATERMARKS and the low watermark was not
2190 * met implying that the system is under some pressure.
2191 */
2192 static inline bool page_is_pfmemalloc(const struct page *page)
2193 {
2194 /*
2195 * lru.next has bit 1 set if the page is allocated from the
2196 * pfmemalloc reserves. Callers may simply overwrite it if
2197 * they do not need to preserve that information.
2198 */
2199 return (uintptr_t)page->lru.next & BIT(1);
2200 }
2201
2202 /*
2203 * Return true only if the folio has been allocated with
2204 * ALLOC_NO_WATERMARKS and the low watermark was not
2205 * met implying that the system is under some pressure.
2206 */
2207 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2208 {
2209 /*
2210 * lru.next has bit 1 set if the page is allocated from the
2211 * pfmemalloc reserves. Callers may simply overwrite it if
2212 * they do not need to preserve that information.
2213 */
2214 return (uintptr_t)folio->lru.next & BIT(1);
2215 }
2216
2217 /*
2218 * Only to be called by the page allocator on a freshly allocated
2219 * page.
2220 */
2221 static inline void set_page_pfmemalloc(struct page *page)
2222 {
2223 page->lru.next = (void *)BIT(1);
2224 }
2225
2226 static inline void clear_page_pfmemalloc(struct page *page)
2227 {
2228 page->lru.next = NULL;
2229 }
2230
2231 /*
2232 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2233 */
2234 extern void pagefault_out_of_memory(void);
2235
2236 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2237 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2238 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2239
2240 /*
2241 * Flags passed to show_mem() and show_free_areas() to suppress output in
2242 * various contexts.
2243 */
2244 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
2245
2246 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2247 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2248 {
2249 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2250 }
2251
2252 /*
2253 * Parameter block passed down to zap_pte_range in exceptional cases.
2254 */
2255 struct zap_details {
2256 struct folio *single_folio; /* Locked folio to be unmapped */
2257 bool even_cows; /* Zap COWed private pages too? */
2258 zap_flags_t zap_flags; /* Extra flags for zapping */
2259 };
2260
2261 /*
2262 * Whether to drop the pte markers, for example, the uffd-wp information for
2263 * file-backed memory. This should only be specified when we will completely
2264 * drop the page in the mm, either by truncation or unmapping of the vma. By
2265 * default, the flag is not set.
2266 */
2267 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2268 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2269 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2270
2271 #ifdef CONFIG_SCHED_MM_CID
2272 void sched_mm_cid_before_execve(struct task_struct *t);
2273 void sched_mm_cid_after_execve(struct task_struct *t);
2274 void sched_mm_cid_fork(struct task_struct *t);
2275 void sched_mm_cid_exit_signals(struct task_struct *t);
2276 static inline int task_mm_cid(struct task_struct *t)
2277 {
2278 return t->mm_cid;
2279 }
2280 #else
2281 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2282 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2283 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2284 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2285 static inline int task_mm_cid(struct task_struct *t)
2286 {
2287 /*
2288 * Use the processor id as a fall-back when the mm cid feature is
2289 * disabled. This provides functional per-cpu data structure accesses
2290 * in user-space, althrough it won't provide the memory usage benefits.
2291 */
2292 return raw_smp_processor_id();
2293 }
2294 #endif
2295
2296 #ifdef CONFIG_MMU
2297 extern bool can_do_mlock(void);
2298 #else
2299 static inline bool can_do_mlock(void) { return false; }
2300 #endif
2301 extern int user_shm_lock(size_t, struct ucounts *);
2302 extern void user_shm_unlock(size_t, struct ucounts *);
2303
2304 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2305 pte_t pte);
2306 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2307 pte_t pte);
2308 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2309 pmd_t pmd);
2310
2311 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2312 unsigned long size);
2313 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2314 unsigned long size, struct zap_details *details);
2315 static inline void zap_vma_pages(struct vm_area_struct *vma)
2316 {
2317 zap_page_range_single(vma, vma->vm_start,
2318 vma->vm_end - vma->vm_start, NULL);
2319 }
2320 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2321 struct vm_area_struct *start_vma, unsigned long start,
2322 unsigned long end, bool mm_wr_locked);
2323
2324 struct mmu_notifier_range;
2325
2326 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2327 unsigned long end, unsigned long floor, unsigned long ceiling);
2328 int
2329 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2330 int follow_pte(struct mm_struct *mm, unsigned long address,
2331 pte_t **ptepp, spinlock_t **ptlp);
2332 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2333 unsigned long *pfn);
2334 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2335 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2336 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2337 void *buf, int len, int write);
2338
2339 extern void truncate_pagecache(struct inode *inode, loff_t new);
2340 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2341 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2342 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2343 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2344
2345 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2346 unsigned long address, struct pt_regs *regs);
2347
2348 #ifdef CONFIG_MMU
2349 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2350 unsigned long address, unsigned int flags,
2351 struct pt_regs *regs);
2352 extern int fixup_user_fault(struct mm_struct *mm,
2353 unsigned long address, unsigned int fault_flags,
2354 bool *unlocked);
2355 void unmap_mapping_pages(struct address_space *mapping,
2356 pgoff_t start, pgoff_t nr, bool even_cows);
2357 void unmap_mapping_range(struct address_space *mapping,
2358 loff_t const holebegin, loff_t const holelen, int even_cows);
2359 #else
2360 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2361 unsigned long address, unsigned int flags,
2362 struct pt_regs *regs)
2363 {
2364 /* should never happen if there's no MMU */
2365 BUG();
2366 return VM_FAULT_SIGBUS;
2367 }
2368 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2369 unsigned int fault_flags, bool *unlocked)
2370 {
2371 /* should never happen if there's no MMU */
2372 BUG();
2373 return -EFAULT;
2374 }
2375 static inline void unmap_mapping_pages(struct address_space *mapping,
2376 pgoff_t start, pgoff_t nr, bool even_cows) { }
2377 static inline void unmap_mapping_range(struct address_space *mapping,
2378 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2379 #endif
2380
2381 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2382 loff_t const holebegin, loff_t const holelen)
2383 {
2384 unmap_mapping_range(mapping, holebegin, holelen, 0);
2385 }
2386
2387 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2388 unsigned long addr);
2389
2390 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2391 void *buf, int len, unsigned int gup_flags);
2392 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2393 void *buf, int len, unsigned int gup_flags);
2394 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2395 void *buf, int len, unsigned int gup_flags);
2396
2397 long get_user_pages_remote(struct mm_struct *mm,
2398 unsigned long start, unsigned long nr_pages,
2399 unsigned int gup_flags, struct page **pages,
2400 int *locked);
2401 long pin_user_pages_remote(struct mm_struct *mm,
2402 unsigned long start, unsigned long nr_pages,
2403 unsigned int gup_flags, struct page **pages,
2404 int *locked);
2405
2406 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2407 unsigned long addr,
2408 int gup_flags,
2409 struct vm_area_struct **vmap)
2410 {
2411 struct page *page;
2412 struct vm_area_struct *vma;
2413 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2414
2415 if (got < 0)
2416 return ERR_PTR(got);
2417 if (got == 0)
2418 return NULL;
2419
2420 vma = vma_lookup(mm, addr);
2421 if (WARN_ON_ONCE(!vma)) {
2422 put_page(page);
2423 return ERR_PTR(-EINVAL);
2424 }
2425
2426 *vmap = vma;
2427 return page;
2428 }
2429
2430 long get_user_pages(unsigned long start, unsigned long nr_pages,
2431 unsigned int gup_flags, struct page **pages);
2432 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2433 unsigned int gup_flags, struct page **pages);
2434 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2435 struct page **pages, unsigned int gup_flags);
2436 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2437 struct page **pages, unsigned int gup_flags);
2438
2439 int get_user_pages_fast(unsigned long start, int nr_pages,
2440 unsigned int gup_flags, struct page **pages);
2441 int pin_user_pages_fast(unsigned long start, int nr_pages,
2442 unsigned int gup_flags, struct page **pages);
2443 void folio_add_pin(struct folio *folio);
2444
2445 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2446 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2447 struct task_struct *task, bool bypass_rlim);
2448
2449 struct kvec;
2450 struct page *get_dump_page(unsigned long addr);
2451
2452 bool folio_mark_dirty(struct folio *folio);
2453 bool set_page_dirty(struct page *page);
2454 int set_page_dirty_lock(struct page *page);
2455
2456 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2457
2458 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2459 unsigned long old_addr, struct vm_area_struct *new_vma,
2460 unsigned long new_addr, unsigned long len,
2461 bool need_rmap_locks);
2462
2463 /*
2464 * Flags used by change_protection(). For now we make it a bitmap so
2465 * that we can pass in multiple flags just like parameters. However
2466 * for now all the callers are only use one of the flags at the same
2467 * time.
2468 */
2469 /*
2470 * Whether we should manually check if we can map individual PTEs writable,
2471 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2472 * PTEs automatically in a writable mapping.
2473 */
2474 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2475 /* Whether this protection change is for NUMA hints */
2476 #define MM_CP_PROT_NUMA (1UL << 1)
2477 /* Whether this change is for write protecting */
2478 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2479 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2480 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2481 MM_CP_UFFD_WP_RESOLVE)
2482
2483 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2485 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2486 {
2487 /*
2488 * We want to check manually if we can change individual PTEs writable
2489 * if we can't do that automatically for all PTEs in a mapping. For
2490 * private mappings, that's always the case when we have write
2491 * permissions as we properly have to handle COW.
2492 */
2493 if (vma->vm_flags & VM_SHARED)
2494 return vma_wants_writenotify(vma, vma->vm_page_prot);
2495 return !!(vma->vm_flags & VM_WRITE);
2496
2497 }
2498 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2499 pte_t pte);
2500 extern long change_protection(struct mmu_gather *tlb,
2501 struct vm_area_struct *vma, unsigned long start,
2502 unsigned long end, unsigned long cp_flags);
2503 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2504 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2505 unsigned long start, unsigned long end, unsigned long newflags);
2506
2507 /*
2508 * doesn't attempt to fault and will return short.
2509 */
2510 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2511 unsigned int gup_flags, struct page **pages);
2512
2513 static inline bool get_user_page_fast_only(unsigned long addr,
2514 unsigned int gup_flags, struct page **pagep)
2515 {
2516 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2517 }
2518 /*
2519 * per-process(per-mm_struct) statistics.
2520 */
2521 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2522 {
2523 return percpu_counter_read_positive(&mm->rss_stat[member]);
2524 }
2525
2526 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2527
2528 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2529 {
2530 percpu_counter_add(&mm->rss_stat[member], value);
2531
2532 mm_trace_rss_stat(mm, member);
2533 }
2534
2535 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2536 {
2537 percpu_counter_inc(&mm->rss_stat[member]);
2538
2539 mm_trace_rss_stat(mm, member);
2540 }
2541
2542 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2543 {
2544 percpu_counter_dec(&mm->rss_stat[member]);
2545
2546 mm_trace_rss_stat(mm, member);
2547 }
2548
2549 /* Optimized variant when page is already known not to be PageAnon */
2550 static inline int mm_counter_file(struct page *page)
2551 {
2552 if (PageSwapBacked(page))
2553 return MM_SHMEMPAGES;
2554 return MM_FILEPAGES;
2555 }
2556
2557 static inline int mm_counter(struct page *page)
2558 {
2559 if (PageAnon(page))
2560 return MM_ANONPAGES;
2561 return mm_counter_file(page);
2562 }
2563
2564 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2565 {
2566 return get_mm_counter(mm, MM_FILEPAGES) +
2567 get_mm_counter(mm, MM_ANONPAGES) +
2568 get_mm_counter(mm, MM_SHMEMPAGES);
2569 }
2570
2571 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2572 {
2573 return max(mm->hiwater_rss, get_mm_rss(mm));
2574 }
2575
2576 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2577 {
2578 return max(mm->hiwater_vm, mm->total_vm);
2579 }
2580
2581 static inline void update_hiwater_rss(struct mm_struct *mm)
2582 {
2583 unsigned long _rss = get_mm_rss(mm);
2584
2585 if ((mm)->hiwater_rss < _rss)
2586 (mm)->hiwater_rss = _rss;
2587 }
2588
2589 static inline void update_hiwater_vm(struct mm_struct *mm)
2590 {
2591 if (mm->hiwater_vm < mm->total_vm)
2592 mm->hiwater_vm = mm->total_vm;
2593 }
2594
2595 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2596 {
2597 mm->hiwater_rss = get_mm_rss(mm);
2598 }
2599
2600 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2601 struct mm_struct *mm)
2602 {
2603 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2604
2605 if (*maxrss < hiwater_rss)
2606 *maxrss = hiwater_rss;
2607 }
2608
2609 #if defined(SPLIT_RSS_COUNTING)
2610 void sync_mm_rss(struct mm_struct *mm);
2611 #else
2612 static inline void sync_mm_rss(struct mm_struct *mm)
2613 {
2614 }
2615 #endif
2616
2617 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2618 static inline int pte_special(pte_t pte)
2619 {
2620 return 0;
2621 }
2622
2623 static inline pte_t pte_mkspecial(pte_t pte)
2624 {
2625 return pte;
2626 }
2627 #endif
2628
2629 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2630 static inline int pte_devmap(pte_t pte)
2631 {
2632 return 0;
2633 }
2634 #endif
2635
2636 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2637 spinlock_t **ptl);
2638 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2639 spinlock_t **ptl)
2640 {
2641 pte_t *ptep;
2642 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2643 return ptep;
2644 }
2645
2646 #ifdef __PAGETABLE_P4D_FOLDED
2647 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2648 unsigned long address)
2649 {
2650 return 0;
2651 }
2652 #else
2653 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2654 #endif
2655
2656 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2657 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2658 unsigned long address)
2659 {
2660 return 0;
2661 }
2662 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2663 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2664
2665 #else
2666 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2667
2668 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2669 {
2670 if (mm_pud_folded(mm))
2671 return;
2672 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2673 }
2674
2675 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2676 {
2677 if (mm_pud_folded(mm))
2678 return;
2679 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2680 }
2681 #endif
2682
2683 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2684 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2685 unsigned long address)
2686 {
2687 return 0;
2688 }
2689
2690 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2691 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2692
2693 #else
2694 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2695
2696 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2697 {
2698 if (mm_pmd_folded(mm))
2699 return;
2700 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2701 }
2702
2703 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2704 {
2705 if (mm_pmd_folded(mm))
2706 return;
2707 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2708 }
2709 #endif
2710
2711 #ifdef CONFIG_MMU
2712 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2713 {
2714 atomic_long_set(&mm->pgtables_bytes, 0);
2715 }
2716
2717 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2718 {
2719 return atomic_long_read(&mm->pgtables_bytes);
2720 }
2721
2722 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2723 {
2724 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2725 }
2726
2727 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2728 {
2729 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2730 }
2731 #else
2732
2733 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2734 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2735 {
2736 return 0;
2737 }
2738
2739 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2740 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2741 #endif
2742
2743 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2744 int __pte_alloc_kernel(pmd_t *pmd);
2745
2746 #if defined(CONFIG_MMU)
2747
2748 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2749 unsigned long address)
2750 {
2751 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2752 NULL : p4d_offset(pgd, address);
2753 }
2754
2755 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2756 unsigned long address)
2757 {
2758 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2759 NULL : pud_offset(p4d, address);
2760 }
2761
2762 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2763 {
2764 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2765 NULL: pmd_offset(pud, address);
2766 }
2767 #endif /* CONFIG_MMU */
2768
2769 #if USE_SPLIT_PTE_PTLOCKS
2770 #if ALLOC_SPLIT_PTLOCKS
2771 void __init ptlock_cache_init(void);
2772 extern bool ptlock_alloc(struct page *page);
2773 extern void ptlock_free(struct page *page);
2774
2775 static inline spinlock_t *ptlock_ptr(struct page *page)
2776 {
2777 return page->ptl;
2778 }
2779 #else /* ALLOC_SPLIT_PTLOCKS */
2780 static inline void ptlock_cache_init(void)
2781 {
2782 }
2783
2784 static inline bool ptlock_alloc(struct page *page)
2785 {
2786 return true;
2787 }
2788
2789 static inline void ptlock_free(struct page *page)
2790 {
2791 }
2792
2793 static inline spinlock_t *ptlock_ptr(struct page *page)
2794 {
2795 return &page->ptl;
2796 }
2797 #endif /* ALLOC_SPLIT_PTLOCKS */
2798
2799 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2800 {
2801 return ptlock_ptr(pmd_page(*pmd));
2802 }
2803
2804 static inline bool ptlock_init(struct page *page)
2805 {
2806 /*
2807 * prep_new_page() initialize page->private (and therefore page->ptl)
2808 * with 0. Make sure nobody took it in use in between.
2809 *
2810 * It can happen if arch try to use slab for page table allocation:
2811 * slab code uses page->slab_cache, which share storage with page->ptl.
2812 */
2813 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2814 if (!ptlock_alloc(page))
2815 return false;
2816 spin_lock_init(ptlock_ptr(page));
2817 return true;
2818 }
2819
2820 #else /* !USE_SPLIT_PTE_PTLOCKS */
2821 /*
2822 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2823 */
2824 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2825 {
2826 return &mm->page_table_lock;
2827 }
2828 static inline void ptlock_cache_init(void) {}
2829 static inline bool ptlock_init(struct page *page) { return true; }
2830 static inline void ptlock_free(struct page *page) {}
2831 #endif /* USE_SPLIT_PTE_PTLOCKS */
2832
2833 static inline bool pgtable_pte_page_ctor(struct page *page)
2834 {
2835 if (!ptlock_init(page))
2836 return false;
2837 __SetPageTable(page);
2838 inc_lruvec_page_state(page, NR_PAGETABLE);
2839 return true;
2840 }
2841
2842 static inline void pgtable_pte_page_dtor(struct page *page)
2843 {
2844 ptlock_free(page);
2845 __ClearPageTable(page);
2846 dec_lruvec_page_state(page, NR_PAGETABLE);
2847 }
2848
2849 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2850 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2851 {
2852 return __pte_offset_map(pmd, addr, NULL);
2853 }
2854
2855 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2856 unsigned long addr, spinlock_t **ptlp);
2857 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2858 unsigned long addr, spinlock_t **ptlp)
2859 {
2860 pte_t *pte;
2861
2862 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2863 return pte;
2864 }
2865
2866 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2867 unsigned long addr, spinlock_t **ptlp);
2868
2869 #define pte_unmap_unlock(pte, ptl) do { \
2870 spin_unlock(ptl); \
2871 pte_unmap(pte); \
2872 } while (0)
2873
2874 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2875
2876 #define pte_alloc_map(mm, pmd, address) \
2877 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2878
2879 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2880 (pte_alloc(mm, pmd) ? \
2881 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2882
2883 #define pte_alloc_kernel(pmd, address) \
2884 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2885 NULL: pte_offset_kernel(pmd, address))
2886
2887 #if USE_SPLIT_PMD_PTLOCKS
2888
2889 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2890 {
2891 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2892 return virt_to_page((void *)((unsigned long) pmd & mask));
2893 }
2894
2895 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2896 {
2897 return ptlock_ptr(pmd_pgtable_page(pmd));
2898 }
2899
2900 static inline bool pmd_ptlock_init(struct page *page)
2901 {
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 page->pmd_huge_pte = NULL;
2904 #endif
2905 return ptlock_init(page);
2906 }
2907
2908 static inline void pmd_ptlock_free(struct page *page)
2909 {
2910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2911 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2912 #endif
2913 ptlock_free(page);
2914 }
2915
2916 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2917
2918 #else
2919
2920 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2921 {
2922 return &mm->page_table_lock;
2923 }
2924
2925 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2926 static inline void pmd_ptlock_free(struct page *page) {}
2927
2928 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2929
2930 #endif
2931
2932 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2933 {
2934 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2935 spin_lock(ptl);
2936 return ptl;
2937 }
2938
2939 static inline bool pgtable_pmd_page_ctor(struct page *page)
2940 {
2941 if (!pmd_ptlock_init(page))
2942 return false;
2943 __SetPageTable(page);
2944 inc_lruvec_page_state(page, NR_PAGETABLE);
2945 return true;
2946 }
2947
2948 static inline void pgtable_pmd_page_dtor(struct page *page)
2949 {
2950 pmd_ptlock_free(page);
2951 __ClearPageTable(page);
2952 dec_lruvec_page_state(page, NR_PAGETABLE);
2953 }
2954
2955 /*
2956 * No scalability reason to split PUD locks yet, but follow the same pattern
2957 * as the PMD locks to make it easier if we decide to. The VM should not be
2958 * considered ready to switch to split PUD locks yet; there may be places
2959 * which need to be converted from page_table_lock.
2960 */
2961 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2962 {
2963 return &mm->page_table_lock;
2964 }
2965
2966 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2967 {
2968 spinlock_t *ptl = pud_lockptr(mm, pud);
2969
2970 spin_lock(ptl);
2971 return ptl;
2972 }
2973
2974 extern void __init pagecache_init(void);
2975 extern void free_initmem(void);
2976
2977 /*
2978 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2979 * into the buddy system. The freed pages will be poisoned with pattern
2980 * "poison" if it's within range [0, UCHAR_MAX].
2981 * Return pages freed into the buddy system.
2982 */
2983 extern unsigned long free_reserved_area(void *start, void *end,
2984 int poison, const char *s);
2985
2986 extern void adjust_managed_page_count(struct page *page, long count);
2987
2988 extern void reserve_bootmem_region(phys_addr_t start,
2989 phys_addr_t end, int nid);
2990
2991 /* Free the reserved page into the buddy system, so it gets managed. */
2992 static inline void free_reserved_page(struct page *page)
2993 {
2994 ClearPageReserved(page);
2995 init_page_count(page);
2996 __free_page(page);
2997 adjust_managed_page_count(page, 1);
2998 }
2999 #define free_highmem_page(page) free_reserved_page(page)
3000
3001 static inline void mark_page_reserved(struct page *page)
3002 {
3003 SetPageReserved(page);
3004 adjust_managed_page_count(page, -1);
3005 }
3006
3007 /*
3008 * Default method to free all the __init memory into the buddy system.
3009 * The freed pages will be poisoned with pattern "poison" if it's within
3010 * range [0, UCHAR_MAX].
3011 * Return pages freed into the buddy system.
3012 */
3013 static inline unsigned long free_initmem_default(int poison)
3014 {
3015 extern char __init_begin[], __init_end[];
3016
3017 return free_reserved_area(&__init_begin, &__init_end,
3018 poison, "unused kernel image (initmem)");
3019 }
3020
3021 static inline unsigned long get_num_physpages(void)
3022 {
3023 int nid;
3024 unsigned long phys_pages = 0;
3025
3026 for_each_online_node(nid)
3027 phys_pages += node_present_pages(nid);
3028
3029 return phys_pages;
3030 }
3031
3032 /*
3033 * Using memblock node mappings, an architecture may initialise its
3034 * zones, allocate the backing mem_map and account for memory holes in an
3035 * architecture independent manner.
3036 *
3037 * An architecture is expected to register range of page frames backed by
3038 * physical memory with memblock_add[_node]() before calling
3039 * free_area_init() passing in the PFN each zone ends at. At a basic
3040 * usage, an architecture is expected to do something like
3041 *
3042 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3043 * max_highmem_pfn};
3044 * for_each_valid_physical_page_range()
3045 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3046 * free_area_init(max_zone_pfns);
3047 */
3048 void free_area_init(unsigned long *max_zone_pfn);
3049 unsigned long node_map_pfn_alignment(void);
3050 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3051 unsigned long end_pfn);
3052 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3053 unsigned long end_pfn);
3054 extern void get_pfn_range_for_nid(unsigned int nid,
3055 unsigned long *start_pfn, unsigned long *end_pfn);
3056
3057 #ifndef CONFIG_NUMA
3058 static inline int early_pfn_to_nid(unsigned long pfn)
3059 {
3060 return 0;
3061 }
3062 #else
3063 /* please see mm/page_alloc.c */
3064 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3065 #endif
3066
3067 extern void set_dma_reserve(unsigned long new_dma_reserve);
3068 extern void mem_init(void);
3069 extern void __init mmap_init(void);
3070
3071 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3072 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3073 {
3074 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3075 }
3076 extern long si_mem_available(void);
3077 extern void si_meminfo(struct sysinfo * val);
3078 extern void si_meminfo_node(struct sysinfo *val, int nid);
3079 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3080 extern unsigned long arch_reserved_kernel_pages(void);
3081 #endif
3082
3083 extern __printf(3, 4)
3084 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3085
3086 extern void setup_per_cpu_pageset(void);
3087
3088 /* nommu.c */
3089 extern atomic_long_t mmap_pages_allocated;
3090 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3091
3092 /* interval_tree.c */
3093 void vma_interval_tree_insert(struct vm_area_struct *node,
3094 struct rb_root_cached *root);
3095 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3096 struct vm_area_struct *prev,
3097 struct rb_root_cached *root);
3098 void vma_interval_tree_remove(struct vm_area_struct *node,
3099 struct rb_root_cached *root);
3100 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3101 unsigned long start, unsigned long last);
3102 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3103 unsigned long start, unsigned long last);
3104
3105 #define vma_interval_tree_foreach(vma, root, start, last) \
3106 for (vma = vma_interval_tree_iter_first(root, start, last); \
3107 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3108
3109 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3110 struct rb_root_cached *root);
3111 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3112 struct rb_root_cached *root);
3113 struct anon_vma_chain *
3114 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3115 unsigned long start, unsigned long last);
3116 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3117 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3118 #ifdef CONFIG_DEBUG_VM_RB
3119 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3120 #endif
3121
3122 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3123 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3124 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3125
3126 /* mmap.c */
3127 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3128 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3129 unsigned long start, unsigned long end, pgoff_t pgoff,
3130 struct vm_area_struct *next);
3131 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132 unsigned long start, unsigned long end, pgoff_t pgoff);
3133 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3134 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3135 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3136 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3137 struct anon_vma_name *);
3138 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3139 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3140 unsigned long addr, int new_below);
3141 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3142 unsigned long addr, int new_below);
3143 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3144 extern void unlink_file_vma(struct vm_area_struct *);
3145 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3146 unsigned long addr, unsigned long len, pgoff_t pgoff,
3147 bool *need_rmap_locks);
3148 extern void exit_mmap(struct mm_struct *);
3149
3150 static inline int check_data_rlimit(unsigned long rlim,
3151 unsigned long new,
3152 unsigned long start,
3153 unsigned long end_data,
3154 unsigned long start_data)
3155 {
3156 if (rlim < RLIM_INFINITY) {
3157 if (((new - start) + (end_data - start_data)) > rlim)
3158 return -ENOSPC;
3159 }
3160
3161 return 0;
3162 }
3163
3164 extern int mm_take_all_locks(struct mm_struct *mm);
3165 extern void mm_drop_all_locks(struct mm_struct *mm);
3166
3167 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3168 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3169 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3170 extern struct file *get_task_exe_file(struct task_struct *task);
3171
3172 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3173 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3174
3175 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3176 const struct vm_special_mapping *sm);
3177 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3178 unsigned long addr, unsigned long len,
3179 unsigned long flags,
3180 const struct vm_special_mapping *spec);
3181 /* This is an obsolete alternative to _install_special_mapping. */
3182 extern int install_special_mapping(struct mm_struct *mm,
3183 unsigned long addr, unsigned long len,
3184 unsigned long flags, struct page **pages);
3185
3186 unsigned long randomize_stack_top(unsigned long stack_top);
3187 unsigned long randomize_page(unsigned long start, unsigned long range);
3188
3189 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3190
3191 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3192 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3193 struct list_head *uf);
3194 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3195 unsigned long len, unsigned long prot, unsigned long flags,
3196 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3197 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3198 unsigned long start, size_t len, struct list_head *uf,
3199 bool unlock);
3200 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3201 struct list_head *uf);
3202 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3203
3204 #ifdef CONFIG_MMU
3205 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3206 unsigned long start, unsigned long end,
3207 struct list_head *uf, bool unlock);
3208 extern int __mm_populate(unsigned long addr, unsigned long len,
3209 int ignore_errors);
3210 static inline void mm_populate(unsigned long addr, unsigned long len)
3211 {
3212 /* Ignore errors */
3213 (void) __mm_populate(addr, len, 1);
3214 }
3215 #else
3216 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3217 #endif
3218
3219 /* These take the mm semaphore themselves */
3220 extern int __must_check vm_brk(unsigned long, unsigned long);
3221 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3222 extern int vm_munmap(unsigned long, size_t);
3223 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3224 unsigned long, unsigned long,
3225 unsigned long, unsigned long);
3226
3227 struct vm_unmapped_area_info {
3228 #define VM_UNMAPPED_AREA_TOPDOWN 1
3229 unsigned long flags;
3230 unsigned long length;
3231 unsigned long low_limit;
3232 unsigned long high_limit;
3233 unsigned long align_mask;
3234 unsigned long align_offset;
3235 };
3236
3237 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3238
3239 /* truncate.c */
3240 extern void truncate_inode_pages(struct address_space *, loff_t);
3241 extern void truncate_inode_pages_range(struct address_space *,
3242 loff_t lstart, loff_t lend);
3243 extern void truncate_inode_pages_final(struct address_space *);
3244
3245 /* generic vm_area_ops exported for stackable file systems */
3246 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3247 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3248 pgoff_t start_pgoff, pgoff_t end_pgoff);
3249 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3250
3251 extern unsigned long stack_guard_gap;
3252 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3253 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3254 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3255
3256 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3257 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3258
3259 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3260 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3261 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3262 struct vm_area_struct **pprev);
3263
3264 /*
3265 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3266 * NULL if none. Assume start_addr < end_addr.
3267 */
3268 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3269 unsigned long start_addr, unsigned long end_addr);
3270
3271 /**
3272 * vma_lookup() - Find a VMA at a specific address
3273 * @mm: The process address space.
3274 * @addr: The user address.
3275 *
3276 * Return: The vm_area_struct at the given address, %NULL otherwise.
3277 */
3278 static inline
3279 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3280 {
3281 return mtree_load(&mm->mm_mt, addr);
3282 }
3283
3284 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3285 {
3286 unsigned long vm_start = vma->vm_start;
3287
3288 if (vma->vm_flags & VM_GROWSDOWN) {
3289 vm_start -= stack_guard_gap;
3290 if (vm_start > vma->vm_start)
3291 vm_start = 0;
3292 }
3293 return vm_start;
3294 }
3295
3296 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3297 {
3298 unsigned long vm_end = vma->vm_end;
3299
3300 if (vma->vm_flags & VM_GROWSUP) {
3301 vm_end += stack_guard_gap;
3302 if (vm_end < vma->vm_end)
3303 vm_end = -PAGE_SIZE;
3304 }
3305 return vm_end;
3306 }
3307
3308 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3309 {
3310 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3311 }
3312
3313 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3314 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3315 unsigned long vm_start, unsigned long vm_end)
3316 {
3317 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3318
3319 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3320 vma = NULL;
3321
3322 return vma;
3323 }
3324
3325 static inline bool range_in_vma(struct vm_area_struct *vma,
3326 unsigned long start, unsigned long end)
3327 {
3328 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3329 }
3330
3331 #ifdef CONFIG_MMU
3332 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3333 void vma_set_page_prot(struct vm_area_struct *vma);
3334 #else
3335 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3336 {
3337 return __pgprot(0);
3338 }
3339 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3340 {
3341 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3342 }
3343 #endif
3344
3345 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3346
3347 #ifdef CONFIG_NUMA_BALANCING
3348 unsigned long change_prot_numa(struct vm_area_struct *vma,
3349 unsigned long start, unsigned long end);
3350 #endif
3351
3352 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3353 unsigned long addr);
3354 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3355 unsigned long pfn, unsigned long size, pgprot_t);
3356 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3357 unsigned long pfn, unsigned long size, pgprot_t prot);
3358 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3359 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3360 struct page **pages, unsigned long *num);
3361 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3362 unsigned long num);
3363 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3364 unsigned long num);
3365 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3366 unsigned long pfn);
3367 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3368 unsigned long pfn, pgprot_t pgprot);
3369 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3370 pfn_t pfn);
3371 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3372 unsigned long addr, pfn_t pfn);
3373 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3374
3375 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3376 unsigned long addr, struct page *page)
3377 {
3378 int err = vm_insert_page(vma, addr, page);
3379
3380 if (err == -ENOMEM)
3381 return VM_FAULT_OOM;
3382 if (err < 0 && err != -EBUSY)
3383 return VM_FAULT_SIGBUS;
3384
3385 return VM_FAULT_NOPAGE;
3386 }
3387
3388 #ifndef io_remap_pfn_range
3389 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3390 unsigned long addr, unsigned long pfn,
3391 unsigned long size, pgprot_t prot)
3392 {
3393 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3394 }
3395 #endif
3396
3397 static inline vm_fault_t vmf_error(int err)
3398 {
3399 if (err == -ENOMEM)
3400 return VM_FAULT_OOM;
3401 else if (err == -EHWPOISON)
3402 return VM_FAULT_HWPOISON;
3403 return VM_FAULT_SIGBUS;
3404 }
3405
3406 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3407 unsigned int foll_flags);
3408
3409 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3410 {
3411 if (vm_fault & VM_FAULT_OOM)
3412 return -ENOMEM;
3413 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3414 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3415 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3416 return -EFAULT;
3417 return 0;
3418 }
3419
3420 /*
3421 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3422 * a (NUMA hinting) fault is required.
3423 */
3424 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3425 unsigned int flags)
3426 {
3427 /*
3428 * If callers don't want to honor NUMA hinting faults, no need to
3429 * determine if we would actually have to trigger a NUMA hinting fault.
3430 */
3431 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3432 return true;
3433
3434 /*
3435 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3436 *
3437 * Requiring a fault here even for inaccessible VMAs would mean that
3438 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3439 * refuses to process NUMA hinting faults in inaccessible VMAs.
3440 */
3441 return !vma_is_accessible(vma);
3442 }
3443
3444 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3445 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3446 unsigned long size, pte_fn_t fn, void *data);
3447 extern int apply_to_existing_page_range(struct mm_struct *mm,
3448 unsigned long address, unsigned long size,
3449 pte_fn_t fn, void *data);
3450
3451 #ifdef CONFIG_PAGE_POISONING
3452 extern void __kernel_poison_pages(struct page *page, int numpages);
3453 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3454 extern bool _page_poisoning_enabled_early;
3455 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3456 static inline bool page_poisoning_enabled(void)
3457 {
3458 return _page_poisoning_enabled_early;
3459 }
3460 /*
3461 * For use in fast paths after init_mem_debugging() has run, or when a
3462 * false negative result is not harmful when called too early.
3463 */
3464 static inline bool page_poisoning_enabled_static(void)
3465 {
3466 return static_branch_unlikely(&_page_poisoning_enabled);
3467 }
3468 static inline void kernel_poison_pages(struct page *page, int numpages)
3469 {
3470 if (page_poisoning_enabled_static())
3471 __kernel_poison_pages(page, numpages);
3472 }
3473 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3474 {
3475 if (page_poisoning_enabled_static())
3476 __kernel_unpoison_pages(page, numpages);
3477 }
3478 #else
3479 static inline bool page_poisoning_enabled(void) { return false; }
3480 static inline bool page_poisoning_enabled_static(void) { return false; }
3481 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3482 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3483 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3484 #endif
3485
3486 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3487 static inline bool want_init_on_alloc(gfp_t flags)
3488 {
3489 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3490 &init_on_alloc))
3491 return true;
3492 return flags & __GFP_ZERO;
3493 }
3494
3495 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3496 static inline bool want_init_on_free(void)
3497 {
3498 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3499 &init_on_free);
3500 }
3501
3502 extern bool _debug_pagealloc_enabled_early;
3503 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3504
3505 static inline bool debug_pagealloc_enabled(void)
3506 {
3507 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3508 _debug_pagealloc_enabled_early;
3509 }
3510
3511 /*
3512 * For use in fast paths after init_debug_pagealloc() has run, or when a
3513 * false negative result is not harmful when called too early.
3514 */
3515 static inline bool debug_pagealloc_enabled_static(void)
3516 {
3517 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3518 return false;
3519
3520 return static_branch_unlikely(&_debug_pagealloc_enabled);
3521 }
3522
3523 /*
3524 * To support DEBUG_PAGEALLOC architecture must ensure that
3525 * __kernel_map_pages() never fails
3526 */
3527 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3528 #ifdef CONFIG_DEBUG_PAGEALLOC
3529 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3530 {
3531 if (debug_pagealloc_enabled_static())
3532 __kernel_map_pages(page, numpages, 1);
3533 }
3534
3535 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3536 {
3537 if (debug_pagealloc_enabled_static())
3538 __kernel_map_pages(page, numpages, 0);
3539 }
3540
3541 extern unsigned int _debug_guardpage_minorder;
3542 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3543
3544 static inline unsigned int debug_guardpage_minorder(void)
3545 {
3546 return _debug_guardpage_minorder;
3547 }
3548
3549 static inline bool debug_guardpage_enabled(void)
3550 {
3551 return static_branch_unlikely(&_debug_guardpage_enabled);
3552 }
3553
3554 static inline bool page_is_guard(struct page *page)
3555 {
3556 if (!debug_guardpage_enabled())
3557 return false;
3558
3559 return PageGuard(page);
3560 }
3561
3562 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3563 int migratetype);
3564 static inline bool set_page_guard(struct zone *zone, struct page *page,
3565 unsigned int order, int migratetype)
3566 {
3567 if (!debug_guardpage_enabled())
3568 return false;
3569 return __set_page_guard(zone, page, order, migratetype);
3570 }
3571
3572 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3573 int migratetype);
3574 static inline void clear_page_guard(struct zone *zone, struct page *page,
3575 unsigned int order, int migratetype)
3576 {
3577 if (!debug_guardpage_enabled())
3578 return;
3579 __clear_page_guard(zone, page, order, migratetype);
3580 }
3581
3582 #else /* CONFIG_DEBUG_PAGEALLOC */
3583 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3584 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3585 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3586 static inline bool debug_guardpage_enabled(void) { return false; }
3587 static inline bool page_is_guard(struct page *page) { return false; }
3588 static inline bool set_page_guard(struct zone *zone, struct page *page,
3589 unsigned int order, int migratetype) { return false; }
3590 static inline void clear_page_guard(struct zone *zone, struct page *page,
3591 unsigned int order, int migratetype) {}
3592 #endif /* CONFIG_DEBUG_PAGEALLOC */
3593
3594 #ifdef __HAVE_ARCH_GATE_AREA
3595 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3596 extern int in_gate_area_no_mm(unsigned long addr);
3597 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3598 #else
3599 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3600 {
3601 return NULL;
3602 }
3603 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3604 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3605 {
3606 return 0;
3607 }
3608 #endif /* __HAVE_ARCH_GATE_AREA */
3609
3610 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3611
3612 #ifdef CONFIG_SYSCTL
3613 extern int sysctl_drop_caches;
3614 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3615 loff_t *);
3616 #endif
3617
3618 void drop_slab(void);
3619
3620 #ifndef CONFIG_MMU
3621 #define randomize_va_space 0
3622 #else
3623 extern int randomize_va_space;
3624 #endif
3625
3626 const char * arch_vma_name(struct vm_area_struct *vma);
3627 #ifdef CONFIG_MMU
3628 void print_vma_addr(char *prefix, unsigned long rip);
3629 #else
3630 static inline void print_vma_addr(char *prefix, unsigned long rip)
3631 {
3632 }
3633 #endif
3634
3635 void *sparse_buffer_alloc(unsigned long size);
3636 struct page * __populate_section_memmap(unsigned long pfn,
3637 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3638 struct dev_pagemap *pgmap);
3639 void pmd_init(void *addr);
3640 void pud_init(void *addr);
3641 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3642 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3643 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3644 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3645 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3646 struct vmem_altmap *altmap, struct page *reuse);
3647 void *vmemmap_alloc_block(unsigned long size, int node);
3648 struct vmem_altmap;
3649 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3650 struct vmem_altmap *altmap);
3651 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3652 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3653 unsigned long addr, unsigned long next);
3654 int vmemmap_check_pmd(pmd_t *pmd, int node,
3655 unsigned long addr, unsigned long next);
3656 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3657 int node, struct vmem_altmap *altmap);
3658 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3659 int node, struct vmem_altmap *altmap);
3660 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3661 struct vmem_altmap *altmap);
3662 void vmemmap_populate_print_last(void);
3663 #ifdef CONFIG_MEMORY_HOTPLUG
3664 void vmemmap_free(unsigned long start, unsigned long end,
3665 struct vmem_altmap *altmap);
3666 #endif
3667
3668 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3669 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3670 struct dev_pagemap *pgmap)
3671 {
3672 return is_power_of_2(sizeof(struct page)) &&
3673 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3674 }
3675 #else
3676 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3677 struct dev_pagemap *pgmap)
3678 {
3679 return false;
3680 }
3681 #endif
3682
3683 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3684 unsigned long nr_pages);
3685
3686 enum mf_flags {
3687 MF_COUNT_INCREASED = 1 << 0,
3688 MF_ACTION_REQUIRED = 1 << 1,
3689 MF_MUST_KILL = 1 << 2,
3690 MF_SOFT_OFFLINE = 1 << 3,
3691 MF_UNPOISON = 1 << 4,
3692 MF_SW_SIMULATED = 1 << 5,
3693 MF_NO_RETRY = 1 << 6,
3694 };
3695 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3696 unsigned long count, int mf_flags);
3697 extern int memory_failure(unsigned long pfn, int flags);
3698 extern void memory_failure_queue_kick(int cpu);
3699 extern int unpoison_memory(unsigned long pfn);
3700 extern void shake_page(struct page *p);
3701 extern atomic_long_t num_poisoned_pages __read_mostly;
3702 extern int soft_offline_page(unsigned long pfn, int flags);
3703 #ifdef CONFIG_MEMORY_FAILURE
3704 /*
3705 * Sysfs entries for memory failure handling statistics.
3706 */
3707 extern const struct attribute_group memory_failure_attr_group;
3708 extern void memory_failure_queue(unsigned long pfn, int flags);
3709 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3710 bool *migratable_cleared);
3711 void num_poisoned_pages_inc(unsigned long pfn);
3712 void num_poisoned_pages_sub(unsigned long pfn, long i);
3713 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3714 #else
3715 static inline void memory_failure_queue(unsigned long pfn, int flags)
3716 {
3717 }
3718
3719 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3720 bool *migratable_cleared)
3721 {
3722 return 0;
3723 }
3724
3725 static inline void num_poisoned_pages_inc(unsigned long pfn)
3726 {
3727 }
3728
3729 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3730 {
3731 }
3732 #endif
3733
3734 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3735 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3736 struct vm_area_struct *vma, struct list_head *to_kill,
3737 unsigned long ksm_addr);
3738 #endif
3739
3740 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3741 extern void memblk_nr_poison_inc(unsigned long pfn);
3742 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3743 #else
3744 static inline void memblk_nr_poison_inc(unsigned long pfn)
3745 {
3746 }
3747
3748 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3749 {
3750 }
3751 #endif
3752
3753 #ifndef arch_memory_failure
3754 static inline int arch_memory_failure(unsigned long pfn, int flags)
3755 {
3756 return -ENXIO;
3757 }
3758 #endif
3759
3760 #ifndef arch_is_platform_page
3761 static inline bool arch_is_platform_page(u64 paddr)
3762 {
3763 return false;
3764 }
3765 #endif
3766
3767 /*
3768 * Error handlers for various types of pages.
3769 */
3770 enum mf_result {
3771 MF_IGNORED, /* Error: cannot be handled */
3772 MF_FAILED, /* Error: handling failed */
3773 MF_DELAYED, /* Will be handled later */
3774 MF_RECOVERED, /* Successfully recovered */
3775 };
3776
3777 enum mf_action_page_type {
3778 MF_MSG_KERNEL,
3779 MF_MSG_KERNEL_HIGH_ORDER,
3780 MF_MSG_SLAB,
3781 MF_MSG_DIFFERENT_COMPOUND,
3782 MF_MSG_HUGE,
3783 MF_MSG_FREE_HUGE,
3784 MF_MSG_UNMAP_FAILED,
3785 MF_MSG_DIRTY_SWAPCACHE,
3786 MF_MSG_CLEAN_SWAPCACHE,
3787 MF_MSG_DIRTY_MLOCKED_LRU,
3788 MF_MSG_CLEAN_MLOCKED_LRU,
3789 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3790 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3791 MF_MSG_DIRTY_LRU,
3792 MF_MSG_CLEAN_LRU,
3793 MF_MSG_TRUNCATED_LRU,
3794 MF_MSG_BUDDY,
3795 MF_MSG_DAX,
3796 MF_MSG_UNSPLIT_THP,
3797 MF_MSG_UNKNOWN,
3798 };
3799
3800 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3801 extern void clear_huge_page(struct page *page,
3802 unsigned long addr_hint,
3803 unsigned int pages_per_huge_page);
3804 int copy_user_large_folio(struct folio *dst, struct folio *src,
3805 unsigned long addr_hint,
3806 struct vm_area_struct *vma);
3807 long copy_folio_from_user(struct folio *dst_folio,
3808 const void __user *usr_src,
3809 bool allow_pagefault);
3810
3811 /**
3812 * vma_is_special_huge - Are transhuge page-table entries considered special?
3813 * @vma: Pointer to the struct vm_area_struct to consider
3814 *
3815 * Whether transhuge page-table entries are considered "special" following
3816 * the definition in vm_normal_page().
3817 *
3818 * Return: true if transhuge page-table entries should be considered special,
3819 * false otherwise.
3820 */
3821 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3822 {
3823 return vma_is_dax(vma) || (vma->vm_file &&
3824 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3825 }
3826
3827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3828
3829 #if MAX_NUMNODES > 1
3830 void __init setup_nr_node_ids(void);
3831 #else
3832 static inline void setup_nr_node_ids(void) {}
3833 #endif
3834
3835 extern int memcmp_pages(struct page *page1, struct page *page2);
3836
3837 static inline int pages_identical(struct page *page1, struct page *page2)
3838 {
3839 return !memcmp_pages(page1, page2);
3840 }
3841
3842 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3843 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3844 pgoff_t first_index, pgoff_t nr,
3845 pgoff_t bitmap_pgoff,
3846 unsigned long *bitmap,
3847 pgoff_t *start,
3848 pgoff_t *end);
3849
3850 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3851 pgoff_t first_index, pgoff_t nr);
3852 #endif
3853
3854 extern int sysctl_nr_trim_pages;
3855
3856 #ifdef CONFIG_PRINTK
3857 void mem_dump_obj(void *object);
3858 #else
3859 static inline void mem_dump_obj(void *object) {}
3860 #endif
3861
3862 /**
3863 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3864 * @seals: the seals to check
3865 * @vma: the vma to operate on
3866 *
3867 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3868 * the vma flags. Return 0 if check pass, or <0 for errors.
3869 */
3870 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3871 {
3872 if (seals & F_SEAL_FUTURE_WRITE) {
3873 /*
3874 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3875 * "future write" seal active.
3876 */
3877 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3878 return -EPERM;
3879
3880 /*
3881 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3882 * MAP_SHARED and read-only, take care to not allow mprotect to
3883 * revert protections on such mappings. Do this only for shared
3884 * mappings. For private mappings, don't need to mask
3885 * VM_MAYWRITE as we still want them to be COW-writable.
3886 */
3887 if (vma->vm_flags & VM_SHARED)
3888 vm_flags_clear(vma, VM_MAYWRITE);
3889 }
3890
3891 return 0;
3892 }
3893
3894 #ifdef CONFIG_ANON_VMA_NAME
3895 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3896 unsigned long len_in,
3897 struct anon_vma_name *anon_name);
3898 #else
3899 static inline int
3900 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3901 unsigned long len_in, struct anon_vma_name *anon_name) {
3902 return 0;
3903 }
3904 #endif
3905
3906 #ifdef CONFIG_UNACCEPTED_MEMORY
3907
3908 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3909 void accept_memory(phys_addr_t start, phys_addr_t end);
3910
3911 #else
3912
3913 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3914 phys_addr_t end)
3915 {
3916 return false;
3917 }
3918
3919 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3920 {
3921 }
3922
3923 #endif
3924
3925 #endif /* _LINUX_MM_H */