]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/mm_types.h
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / include / linux / mm_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17
18 #include <asm/mmu.h>
19
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25
26 struct address_space;
27 struct mem_cgroup;
28
29 /*
30 * Each physical page in the system has a struct page associated with
31 * it to keep track of whatever it is we are using the page for at the
32 * moment. Note that we have no way to track which tasks are using
33 * a page, though if it is a pagecache page, rmap structures can tell us
34 * who is mapping it.
35 *
36 * If you allocate the page using alloc_pages(), you can use some of the
37 * space in struct page for your own purposes. The five words in the main
38 * union are available, except for bit 0 of the first word which must be
39 * kept clear. Many users use this word to store a pointer to an object
40 * which is guaranteed to be aligned. If you use the same storage as
41 * page->mapping, you must restore it to NULL before freeing the page.
42 *
43 * If your page will not be mapped to userspace, you can also use the four
44 * bytes in the mapcount union, but you must call page_mapcount_reset()
45 * before freeing it.
46 *
47 * If you want to use the refcount field, it must be used in such a way
48 * that other CPUs temporarily incrementing and then decrementing the
49 * refcount does not cause problems. On receiving the page from
50 * alloc_pages(), the refcount will be positive.
51 *
52 * If you allocate pages of order > 0, you can use some of the fields
53 * in each subpage, but you may need to restore some of their values
54 * afterwards.
55 *
56 * SLUB uses cmpxchg_double() to atomically update its freelist and
57 * counters. That requires that freelist & counters be adjacent and
58 * double-word aligned. We align all struct pages to double-word
59 * boundaries, and ensure that 'freelist' is aligned within the
60 * struct.
61 */
62 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
63 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
64 #else
65 #define _struct_page_alignment
66 #endif
67
68 struct page {
69 unsigned long flags; /* Atomic flags, some possibly
70 * updated asynchronously */
71 /*
72 * Five words (20/40 bytes) are available in this union.
73 * WARNING: bit 0 of the first word is used for PageTail(). That
74 * means the other users of this union MUST NOT use the bit to
75 * avoid collision and false-positive PageTail().
76 */
77 union {
78 struct { /* Page cache and anonymous pages */
79 /**
80 * @lru: Pageout list, eg. active_list protected by
81 * pgdat->lru_lock. Sometimes used as a generic list
82 * by the page owner.
83 */
84 struct list_head lru;
85 /* See page-flags.h for PAGE_MAPPING_FLAGS */
86 struct address_space *mapping;
87 pgoff_t index; /* Our offset within mapping. */
88 /**
89 * @private: Mapping-private opaque data.
90 * Usually used for buffer_heads if PagePrivate.
91 * Used for swp_entry_t if PageSwapCache.
92 * Indicates order in the buddy system if PageBuddy.
93 */
94 unsigned long private;
95 };
96 struct { /* page_pool used by netstack */
97 /**
98 * @dma_addr: might require a 64-bit value even on
99 * 32-bit architectures.
100 */
101 dma_addr_t dma_addr;
102 };
103 struct { /* slab, slob and slub */
104 union {
105 struct list_head slab_list;
106 struct { /* Partial pages */
107 struct page *next;
108 #ifdef CONFIG_64BIT
109 int pages; /* Nr of pages left */
110 int pobjects; /* Approximate count */
111 #else
112 short int pages;
113 short int pobjects;
114 #endif
115 };
116 };
117 struct kmem_cache *slab_cache; /* not slob */
118 /* Double-word boundary */
119 void *freelist; /* first free object */
120 union {
121 void *s_mem; /* slab: first object */
122 unsigned long counters; /* SLUB */
123 struct { /* SLUB */
124 unsigned inuse:16;
125 unsigned objects:15;
126 unsigned frozen:1;
127 };
128 };
129 };
130 struct { /* Tail pages of compound page */
131 unsigned long compound_head; /* Bit zero is set */
132
133 /* First tail page only */
134 unsigned char compound_dtor;
135 unsigned char compound_order;
136 atomic_t compound_mapcount;
137 };
138 struct { /* Second tail page of compound page */
139 unsigned long _compound_pad_1; /* compound_head */
140 atomic_t hpage_pinned_refcount;
141 /* For both global and memcg */
142 struct list_head deferred_list;
143 };
144 struct { /* Page table pages */
145 unsigned long _pt_pad_1; /* compound_head */
146 pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 unsigned long _pt_pad_2; /* mapping */
148 union {
149 struct mm_struct *pt_mm; /* x86 pgds only */
150 atomic_t pt_frag_refcount; /* powerpc */
151 };
152 #if ALLOC_SPLIT_PTLOCKS
153 spinlock_t *ptl;
154 #else
155 spinlock_t ptl;
156 #endif
157 };
158 struct { /* ZONE_DEVICE pages */
159 /** @pgmap: Points to the hosting device page map. */
160 struct dev_pagemap *pgmap;
161 void *zone_device_data;
162 /*
163 * ZONE_DEVICE private pages are counted as being
164 * mapped so the next 3 words hold the mapping, index,
165 * and private fields from the source anonymous or
166 * page cache page while the page is migrated to device
167 * private memory.
168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
169 * use the mapping, index, and private fields when
170 * pmem backed DAX files are mapped.
171 */
172 };
173
174 /** @rcu_head: You can use this to free a page by RCU. */
175 struct rcu_head rcu_head;
176 };
177
178 union { /* This union is 4 bytes in size. */
179 /*
180 * If the page can be mapped to userspace, encodes the number
181 * of times this page is referenced by a page table.
182 */
183 atomic_t _mapcount;
184
185 /*
186 * If the page is neither PageSlab nor mappable to userspace,
187 * the value stored here may help determine what this page
188 * is used for. See page-flags.h for a list of page types
189 * which are currently stored here.
190 */
191 unsigned int page_type;
192
193 unsigned int active; /* SLAB */
194 int units; /* SLOB */
195 };
196
197 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
198 atomic_t _refcount;
199
200 #ifdef CONFIG_MEMCG
201 struct mem_cgroup *mem_cgroup;
202 #endif
203
204 /*
205 * On machines where all RAM is mapped into kernel address space,
206 * we can simply calculate the virtual address. On machines with
207 * highmem some memory is mapped into kernel virtual memory
208 * dynamically, so we need a place to store that address.
209 * Note that this field could be 16 bits on x86 ... ;)
210 *
211 * Architectures with slow multiplication can define
212 * WANT_PAGE_VIRTUAL in asm/page.h
213 */
214 #if defined(WANT_PAGE_VIRTUAL)
215 void *virtual; /* Kernel virtual address (NULL if
216 not kmapped, ie. highmem) */
217 #endif /* WANT_PAGE_VIRTUAL */
218
219 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
220 int _last_cpupid;
221 #endif
222 } _struct_page_alignment;
223
224 static inline atomic_t *compound_mapcount_ptr(struct page *page)
225 {
226 return &page[1].compound_mapcount;
227 }
228
229 static inline atomic_t *compound_pincount_ptr(struct page *page)
230 {
231 return &page[2].hpage_pinned_refcount;
232 }
233
234 /*
235 * Used for sizing the vmemmap region on some architectures
236 */
237 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
238
239 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
240 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
241
242 #define page_private(page) ((page)->private)
243
244 static inline void set_page_private(struct page *page, unsigned long private)
245 {
246 page->private = private;
247 }
248
249 struct page_frag_cache {
250 void * va;
251 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
252 __u16 offset;
253 __u16 size;
254 #else
255 __u32 offset;
256 #endif
257 /* we maintain a pagecount bias, so that we dont dirty cache line
258 * containing page->_refcount every time we allocate a fragment.
259 */
260 unsigned int pagecnt_bias;
261 bool pfmemalloc;
262 };
263
264 typedef unsigned long vm_flags_t;
265
266 /*
267 * A region containing a mapping of a non-memory backed file under NOMMU
268 * conditions. These are held in a global tree and are pinned by the VMAs that
269 * map parts of them.
270 */
271 struct vm_region {
272 struct rb_node vm_rb; /* link in global region tree */
273 vm_flags_t vm_flags; /* VMA vm_flags */
274 unsigned long vm_start; /* start address of region */
275 unsigned long vm_end; /* region initialised to here */
276 unsigned long vm_top; /* region allocated to here */
277 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
278 struct file *vm_file; /* the backing file or NULL */
279
280 int vm_usage; /* region usage count (access under nommu_region_sem) */
281 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
282 * this region */
283 };
284
285 #ifdef CONFIG_USERFAULTFD
286 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
287 struct vm_userfaultfd_ctx {
288 struct userfaultfd_ctx *ctx;
289 };
290 #else /* CONFIG_USERFAULTFD */
291 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
292 struct vm_userfaultfd_ctx {};
293 #endif /* CONFIG_USERFAULTFD */
294
295 /*
296 * This struct describes a virtual memory area. There is one of these
297 * per VM-area/task. A VM area is any part of the process virtual memory
298 * space that has a special rule for the page-fault handlers (ie a shared
299 * library, the executable area etc).
300 */
301 struct vm_area_struct {
302 /* The first cache line has the info for VMA tree walking. */
303
304 unsigned long vm_start; /* Our start address within vm_mm. */
305 unsigned long vm_end; /* The first byte after our end address
306 within vm_mm. */
307
308 /* linked list of VM areas per task, sorted by address */
309 struct vm_area_struct *vm_next, *vm_prev;
310
311 struct rb_node vm_rb;
312
313 /*
314 * Largest free memory gap in bytes to the left of this VMA.
315 * Either between this VMA and vma->vm_prev, or between one of the
316 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
317 * get_unmapped_area find a free area of the right size.
318 */
319 unsigned long rb_subtree_gap;
320
321 /* Second cache line starts here. */
322
323 struct mm_struct *vm_mm; /* The address space we belong to. */
324
325 /*
326 * Access permissions of this VMA.
327 * See vmf_insert_mixed_prot() for discussion.
328 */
329 pgprot_t vm_page_prot;
330 unsigned long vm_flags; /* Flags, see mm.h. */
331
332 /*
333 * For areas with an address space and backing store,
334 * linkage into the address_space->i_mmap interval tree.
335 */
336 struct {
337 struct rb_node rb;
338 unsigned long rb_subtree_last;
339 } shared;
340
341 /*
342 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
343 * list, after a COW of one of the file pages. A MAP_SHARED vma
344 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
345 * or brk vma (with NULL file) can only be in an anon_vma list.
346 */
347 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
348 * page_table_lock */
349 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
350
351 /* Function pointers to deal with this struct. */
352 const struct vm_operations_struct *vm_ops;
353
354 /* Information about our backing store: */
355 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
356 units */
357 struct file * vm_file; /* File we map to (can be NULL). */
358 void * vm_private_data; /* was vm_pte (shared mem) */
359
360 #ifdef CONFIG_SWAP
361 atomic_long_t swap_readahead_info;
362 #endif
363 #ifndef CONFIG_MMU
364 struct vm_region *vm_region; /* NOMMU mapping region */
365 #endif
366 #ifdef CONFIG_NUMA
367 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
368 #endif
369 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
370 } __randomize_layout;
371
372 struct core_thread {
373 struct task_struct *task;
374 struct core_thread *next;
375 };
376
377 struct core_state {
378 atomic_t nr_threads;
379 struct core_thread dumper;
380 struct completion startup;
381 };
382
383 struct kioctx_table;
384 struct mm_struct {
385 struct {
386 struct vm_area_struct *mmap; /* list of VMAs */
387 struct rb_root mm_rb;
388 u64 vmacache_seqnum; /* per-thread vmacache */
389 #ifdef CONFIG_MMU
390 unsigned long (*get_unmapped_area) (struct file *filp,
391 unsigned long addr, unsigned long len,
392 unsigned long pgoff, unsigned long flags);
393 #endif
394 unsigned long mmap_base; /* base of mmap area */
395 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
396 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
397 /* Base adresses for compatible mmap() */
398 unsigned long mmap_compat_base;
399 unsigned long mmap_compat_legacy_base;
400 #endif
401 unsigned long task_size; /* size of task vm space */
402 unsigned long highest_vm_end; /* highest vma end address */
403 pgd_t * pgd;
404
405 #ifdef CONFIG_MEMBARRIER
406 /**
407 * @membarrier_state: Flags controlling membarrier behavior.
408 *
409 * This field is close to @pgd to hopefully fit in the same
410 * cache-line, which needs to be touched by switch_mm().
411 */
412 atomic_t membarrier_state;
413 #endif
414
415 /**
416 * @mm_users: The number of users including userspace.
417 *
418 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
419 * drops to 0 (i.e. when the task exits and there are no other
420 * temporary reference holders), we also release a reference on
421 * @mm_count (which may then free the &struct mm_struct if
422 * @mm_count also drops to 0).
423 */
424 atomic_t mm_users;
425
426 /**
427 * @mm_count: The number of references to &struct mm_struct
428 * (@mm_users count as 1).
429 *
430 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
431 * &struct mm_struct is freed.
432 */
433 atomic_t mm_count;
434
435 #ifdef CONFIG_MMU
436 atomic_long_t pgtables_bytes; /* PTE page table pages */
437 #endif
438 int map_count; /* number of VMAs */
439
440 spinlock_t page_table_lock; /* Protects page tables and some
441 * counters
442 */
443 struct rw_semaphore mmap_lock;
444
445 struct list_head mmlist; /* List of maybe swapped mm's. These
446 * are globally strung together off
447 * init_mm.mmlist, and are protected
448 * by mmlist_lock
449 */
450
451
452 unsigned long hiwater_rss; /* High-watermark of RSS usage */
453 unsigned long hiwater_vm; /* High-water virtual memory usage */
454
455 unsigned long total_vm; /* Total pages mapped */
456 unsigned long locked_vm; /* Pages that have PG_mlocked set */
457 atomic64_t pinned_vm; /* Refcount permanently increased */
458 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
459 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
460 unsigned long stack_vm; /* VM_STACK */
461 unsigned long def_flags;
462
463 spinlock_t arg_lock; /* protect the below fields */
464 unsigned long start_code, end_code, start_data, end_data;
465 unsigned long start_brk, brk, start_stack;
466 unsigned long arg_start, arg_end, env_start, env_end;
467
468 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
469
470 /*
471 * Special counters, in some configurations protected by the
472 * page_table_lock, in other configurations by being atomic.
473 */
474 struct mm_rss_stat rss_stat;
475
476 struct linux_binfmt *binfmt;
477
478 /* Architecture-specific MM context */
479 mm_context_t context;
480
481 unsigned long flags; /* Must use atomic bitops to access */
482
483 struct core_state *core_state; /* coredumping support */
484
485 #ifdef CONFIG_AIO
486 spinlock_t ioctx_lock;
487 struct kioctx_table __rcu *ioctx_table;
488 #endif
489 #ifdef CONFIG_MEMCG
490 /*
491 * "owner" points to a task that is regarded as the canonical
492 * user/owner of this mm. All of the following must be true in
493 * order for it to be changed:
494 *
495 * current == mm->owner
496 * current->mm != mm
497 * new_owner->mm == mm
498 * new_owner->alloc_lock is held
499 */
500 struct task_struct __rcu *owner;
501 #endif
502 struct user_namespace *user_ns;
503
504 /* store ref to file /proc/<pid>/exe symlink points to */
505 struct file __rcu *exe_file;
506 #ifdef CONFIG_MMU_NOTIFIER
507 struct mmu_notifier_subscriptions *notifier_subscriptions;
508 #endif
509 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
510 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
511 #endif
512 #ifdef CONFIG_NUMA_BALANCING
513 /*
514 * numa_next_scan is the next time that the PTEs will be marked
515 * pte_numa. NUMA hinting faults will gather statistics and
516 * migrate pages to new nodes if necessary.
517 */
518 unsigned long numa_next_scan;
519
520 /* Restart point for scanning and setting pte_numa */
521 unsigned long numa_scan_offset;
522
523 /* numa_scan_seq prevents two threads setting pte_numa */
524 int numa_scan_seq;
525 #endif
526 /*
527 * An operation with batched TLB flushing is going on. Anything
528 * that can move process memory needs to flush the TLB when
529 * moving a PROT_NONE or PROT_NUMA mapped page.
530 */
531 atomic_t tlb_flush_pending;
532 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
533 /* See flush_tlb_batched_pending() */
534 bool tlb_flush_batched;
535 #endif
536 struct uprobes_state uprobes_state;
537 #ifdef CONFIG_HUGETLB_PAGE
538 atomic_long_t hugetlb_usage;
539 #endif
540 struct work_struct async_put_work;
541 } __randomize_layout;
542
543 /*
544 * The mm_cpumask needs to be at the end of mm_struct, because it
545 * is dynamically sized based on nr_cpu_ids.
546 */
547 unsigned long cpu_bitmap[];
548 };
549
550 extern struct mm_struct init_mm;
551
552 /* Pointer magic because the dynamic array size confuses some compilers. */
553 static inline void mm_init_cpumask(struct mm_struct *mm)
554 {
555 unsigned long cpu_bitmap = (unsigned long)mm;
556
557 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
558 cpumask_clear((struct cpumask *)cpu_bitmap);
559 }
560
561 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
562 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
563 {
564 return (struct cpumask *)&mm->cpu_bitmap;
565 }
566
567 struct mmu_gather;
568 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
569 unsigned long start, unsigned long end);
570 extern void tlb_finish_mmu(struct mmu_gather *tlb,
571 unsigned long start, unsigned long end);
572
573 static inline void init_tlb_flush_pending(struct mm_struct *mm)
574 {
575 atomic_set(&mm->tlb_flush_pending, 0);
576 }
577
578 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
579 {
580 atomic_inc(&mm->tlb_flush_pending);
581 /*
582 * The only time this value is relevant is when there are indeed pages
583 * to flush. And we'll only flush pages after changing them, which
584 * requires the PTL.
585 *
586 * So the ordering here is:
587 *
588 * atomic_inc(&mm->tlb_flush_pending);
589 * spin_lock(&ptl);
590 * ...
591 * set_pte_at();
592 * spin_unlock(&ptl);
593 *
594 * spin_lock(&ptl)
595 * mm_tlb_flush_pending();
596 * ....
597 * spin_unlock(&ptl);
598 *
599 * flush_tlb_range();
600 * atomic_dec(&mm->tlb_flush_pending);
601 *
602 * Where the increment if constrained by the PTL unlock, it thus
603 * ensures that the increment is visible if the PTE modification is
604 * visible. After all, if there is no PTE modification, nobody cares
605 * about TLB flushes either.
606 *
607 * This very much relies on users (mm_tlb_flush_pending() and
608 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
609 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
610 * locks (PPC) the unlock of one doesn't order against the lock of
611 * another PTL.
612 *
613 * The decrement is ordered by the flush_tlb_range(), such that
614 * mm_tlb_flush_pending() will not return false unless all flushes have
615 * completed.
616 */
617 }
618
619 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
620 {
621 /*
622 * See inc_tlb_flush_pending().
623 *
624 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
625 * not order against TLB invalidate completion, which is what we need.
626 *
627 * Therefore we must rely on tlb_flush_*() to guarantee order.
628 */
629 atomic_dec(&mm->tlb_flush_pending);
630 }
631
632 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
633 {
634 /*
635 * Must be called after having acquired the PTL; orders against that
636 * PTLs release and therefore ensures that if we observe the modified
637 * PTE we must also observe the increment from inc_tlb_flush_pending().
638 *
639 * That is, it only guarantees to return true if there is a flush
640 * pending for _this_ PTL.
641 */
642 return atomic_read(&mm->tlb_flush_pending);
643 }
644
645 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
646 {
647 /*
648 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
649 * for which there is a TLB flush pending in order to guarantee
650 * we've seen both that PTE modification and the increment.
651 *
652 * (no requirement on actually still holding the PTL, that is irrelevant)
653 */
654 return atomic_read(&mm->tlb_flush_pending) > 1;
655 }
656
657 struct vm_fault;
658
659 /**
660 * typedef vm_fault_t - Return type for page fault handlers.
661 *
662 * Page fault handlers return a bitmask of %VM_FAULT values.
663 */
664 typedef __bitwise unsigned int vm_fault_t;
665
666 /**
667 * enum vm_fault_reason - Page fault handlers return a bitmask of
668 * these values to tell the core VM what happened when handling the
669 * fault. Used to decide whether a process gets delivered SIGBUS or
670 * just gets major/minor fault counters bumped up.
671 *
672 * @VM_FAULT_OOM: Out Of Memory
673 * @VM_FAULT_SIGBUS: Bad access
674 * @VM_FAULT_MAJOR: Page read from storage
675 * @VM_FAULT_WRITE: Special case for get_user_pages
676 * @VM_FAULT_HWPOISON: Hit poisoned small page
677 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
678 * in upper bits
679 * @VM_FAULT_SIGSEGV: segmentation fault
680 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
681 * @VM_FAULT_LOCKED: ->fault locked the returned page
682 * @VM_FAULT_RETRY: ->fault blocked, must retry
683 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
684 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
685 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
686 * fsync() to complete (for synchronous page faults
687 * in DAX)
688 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
689 *
690 */
691 enum vm_fault_reason {
692 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
693 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
694 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
695 VM_FAULT_WRITE = (__force vm_fault_t)0x000008,
696 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
697 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
698 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
699 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
700 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
701 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
702 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
703 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
704 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
705 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
706 };
707
708 /* Encode hstate index for a hwpoisoned large page */
709 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
710 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
711
712 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
713 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
714 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
715
716 #define VM_FAULT_RESULT_TRACE \
717 { VM_FAULT_OOM, "OOM" }, \
718 { VM_FAULT_SIGBUS, "SIGBUS" }, \
719 { VM_FAULT_MAJOR, "MAJOR" }, \
720 { VM_FAULT_WRITE, "WRITE" }, \
721 { VM_FAULT_HWPOISON, "HWPOISON" }, \
722 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
723 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
724 { VM_FAULT_NOPAGE, "NOPAGE" }, \
725 { VM_FAULT_LOCKED, "LOCKED" }, \
726 { VM_FAULT_RETRY, "RETRY" }, \
727 { VM_FAULT_FALLBACK, "FALLBACK" }, \
728 { VM_FAULT_DONE_COW, "DONE_COW" }, \
729 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
730
731 struct vm_special_mapping {
732 const char *name; /* The name, e.g. "[vdso]". */
733
734 /*
735 * If .fault is not provided, this points to a
736 * NULL-terminated array of pages that back the special mapping.
737 *
738 * This must not be NULL unless .fault is provided.
739 */
740 struct page **pages;
741
742 /*
743 * If non-NULL, then this is called to resolve page faults
744 * on the special mapping. If used, .pages is not checked.
745 */
746 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
747 struct vm_area_struct *vma,
748 struct vm_fault *vmf);
749
750 int (*mremap)(const struct vm_special_mapping *sm,
751 struct vm_area_struct *new_vma);
752 };
753
754 enum tlb_flush_reason {
755 TLB_FLUSH_ON_TASK_SWITCH,
756 TLB_REMOTE_SHOOTDOWN,
757 TLB_LOCAL_SHOOTDOWN,
758 TLB_LOCAL_MM_SHOOTDOWN,
759 TLB_REMOTE_SEND_IPI,
760 NR_TLB_FLUSH_REASONS,
761 };
762
763 /*
764 * A swap entry has to fit into a "unsigned long", as the entry is hidden
765 * in the "index" field of the swapper address space.
766 */
767 typedef struct {
768 unsigned long val;
769 } swp_entry_t;
770
771 #endif /* _LINUX_MM_TYPES_H */