]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - include/linux/mmzone.h
Merge tag 'powerpc-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/kernel/stable.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22
23 /* Free memory management - zoned buddy allocator. */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30
31 /*
32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33 * costly to service. That is between allocation orders which should
34 * coalesce naturally under reasonable reclaim pressure and those which
35 * will not.
36 */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38
39 enum migratetype {
40 MIGRATE_UNMOVABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_RECLAIMABLE,
43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 /*
47 * MIGRATE_CMA migration type is designed to mimic the way
48 * ZONE_MOVABLE works. Only movable pages can be allocated
49 * from MIGRATE_CMA pageblocks and page allocator never
50 * implicitly change migration type of MIGRATE_CMA pageblock.
51 *
52 * The way to use it is to change migratetype of a range of
53 * pageblocks to MIGRATE_CMA which can be done by
54 * __free_pageblock_cma() function. What is important though
55 * is that a range of pageblocks must be aligned to
56 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 * a single pageblock.
58 */
59 MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 MIGRATE_ISOLATE, /* can't allocate from here */
63 #endif
64 MIGRATE_TYPES
65 };
66
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern char * const migratetype_names[MIGRATE_TYPES];
69
70 #ifdef CONFIG_CMA
71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 # define is_migrate_cma(migratetype) false
75 # define is_migrate_cma_page(_page) false
76 #endif
77
78 static inline bool is_migrate_movable(int mt)
79 {
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82
83 #define for_each_migratetype_order(order, type) \
84 for (order = 0; order < MAX_ORDER; order++) \
85 for (type = 0; type < MIGRATE_TYPES; type++)
86
87 extern int page_group_by_mobility_disabled;
88
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91
92 #define get_pageblock_migratetype(page) \
93 get_pfnblock_flags_mask(page, page_to_pfn(page), \
94 PB_migrate_end, MIGRATETYPE_MASK)
95
96 struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99 };
100
101 struct pglist_data;
102
103 /*
104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105 * So add a wild amount of padding here to ensure that they fall into separate
106 * cachelines. There are very few zone structures in the machine, so space
107 * consumption is not a concern here.
108 */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name) struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131
132 enum zone_stat_item {
133 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_FREE_PAGES,
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
143 NR_PAGETABLE, /* used for pagetables */
144 NR_KERNEL_STACK_KB, /* measured in KiB */
145 /* Second 128 byte cacheline */
146 NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 NR_ZSPAGES, /* allocated in zsmalloc */
149 #endif
150 NR_FREE_CMA_PAGES,
151 NR_VM_ZONE_STAT_ITEMS };
152
153 enum node_stat_item {
154 NR_LRU_BASE,
155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 NR_ACTIVE_ANON, /* " " " " " */
157 NR_INACTIVE_FILE, /* " " " " " */
158 NR_ACTIVE_FILE, /* " " " " " */
159 NR_UNEVICTABLE, /* " " " " " */
160 NR_SLAB_RECLAIMABLE,
161 NR_SLAB_UNRECLAIMABLE,
162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
164 WORKINGSET_NODES,
165 WORKINGSET_REFAULT,
166 WORKINGSET_ACTIVATE,
167 WORKINGSET_RESTORE,
168 WORKINGSET_NODERECLAIM,
169 NR_ANON_MAPPED, /* Mapped anonymous pages */
170 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
171 only modified from process context */
172 NR_FILE_PAGES,
173 NR_FILE_DIRTY,
174 NR_WRITEBACK,
175 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
176 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
177 NR_SHMEM_THPS,
178 NR_SHMEM_PMDMAPPED,
179 NR_ANON_THPS,
180 NR_UNSTABLE_NFS, /* NFS unstable pages */
181 NR_VMSCAN_WRITE,
182 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
183 NR_DIRTIED, /* page dirtyings since bootup */
184 NR_WRITTEN, /* page writings since bootup */
185 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
186 NR_VM_NODE_STAT_ITEMS
187 };
188
189 /*
190 * We do arithmetic on the LRU lists in various places in the code,
191 * so it is important to keep the active lists LRU_ACTIVE higher in
192 * the array than the corresponding inactive lists, and to keep
193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
194 *
195 * This has to be kept in sync with the statistics in zone_stat_item
196 * above and the descriptions in vmstat_text in mm/vmstat.c
197 */
198 #define LRU_BASE 0
199 #define LRU_ACTIVE 1
200 #define LRU_FILE 2
201
202 enum lru_list {
203 LRU_INACTIVE_ANON = LRU_BASE,
204 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
205 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
206 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
207 LRU_UNEVICTABLE,
208 NR_LRU_LISTS
209 };
210
211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
212
213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
214
215 static inline int is_file_lru(enum lru_list lru)
216 {
217 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
218 }
219
220 static inline int is_active_lru(enum lru_list lru)
221 {
222 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
223 }
224
225 struct zone_reclaim_stat {
226 /*
227 * The pageout code in vmscan.c keeps track of how many of the
228 * mem/swap backed and file backed pages are referenced.
229 * The higher the rotated/scanned ratio, the more valuable
230 * that cache is.
231 *
232 * The anon LRU stats live in [0], file LRU stats in [1]
233 */
234 unsigned long recent_rotated[2];
235 unsigned long recent_scanned[2];
236 };
237
238 struct lruvec {
239 struct list_head lists[NR_LRU_LISTS];
240 struct zone_reclaim_stat reclaim_stat;
241 /* Evictions & activations on the inactive file list */
242 atomic_long_t inactive_age;
243 /* Refaults at the time of last reclaim cycle */
244 unsigned long refaults;
245 #ifdef CONFIG_MEMCG
246 struct pglist_data *pgdat;
247 #endif
248 };
249
250 /* Mask used at gathering information at once (see memcontrol.c) */
251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
253 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
254
255 /* Isolate unmapped file */
256 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
257 /* Isolate for asynchronous migration */
258 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
259 /* Isolate unevictable pages */
260 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
261
262 /* LRU Isolation modes. */
263 typedef unsigned __bitwise isolate_mode_t;
264
265 enum zone_watermarks {
266 WMARK_MIN,
267 WMARK_LOW,
268 WMARK_HIGH,
269 NR_WMARK
270 };
271
272 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
273 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
274 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
275
276 struct per_cpu_pages {
277 int count; /* number of pages in the list */
278 int high; /* high watermark, emptying needed */
279 int batch; /* chunk size for buddy add/remove */
280
281 /* Lists of pages, one per migrate type stored on the pcp-lists */
282 struct list_head lists[MIGRATE_PCPTYPES];
283 };
284
285 struct per_cpu_pageset {
286 struct per_cpu_pages pcp;
287 #ifdef CONFIG_NUMA
288 s8 expire;
289 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
290 #endif
291 #ifdef CONFIG_SMP
292 s8 stat_threshold;
293 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
294 #endif
295 };
296
297 struct per_cpu_nodestat {
298 s8 stat_threshold;
299 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
300 };
301
302 #endif /* !__GENERATING_BOUNDS.H */
303
304 enum zone_type {
305 #ifdef CONFIG_ZONE_DMA
306 /*
307 * ZONE_DMA is used when there are devices that are not able
308 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
309 * carve out the portion of memory that is needed for these devices.
310 * The range is arch specific.
311 *
312 * Some examples
313 *
314 * Architecture Limit
315 * ---------------------------
316 * parisc, ia64, sparc <4G
317 * s390, powerpc <2G
318 * arm Various
319 * alpha Unlimited or 0-16MB.
320 *
321 * i386, x86_64 and multiple other arches
322 * <16M.
323 */
324 ZONE_DMA,
325 #endif
326 #ifdef CONFIG_ZONE_DMA32
327 /*
328 * x86_64 needs two ZONE_DMAs because it supports devices that are
329 * only able to do DMA to the lower 16M but also 32 bit devices that
330 * can only do DMA areas below 4G.
331 */
332 ZONE_DMA32,
333 #endif
334 /*
335 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
336 * performed on pages in ZONE_NORMAL if the DMA devices support
337 * transfers to all addressable memory.
338 */
339 ZONE_NORMAL,
340 #ifdef CONFIG_HIGHMEM
341 /*
342 * A memory area that is only addressable by the kernel through
343 * mapping portions into its own address space. This is for example
344 * used by i386 to allow the kernel to address the memory beyond
345 * 900MB. The kernel will set up special mappings (page
346 * table entries on i386) for each page that the kernel needs to
347 * access.
348 */
349 ZONE_HIGHMEM,
350 #endif
351 ZONE_MOVABLE,
352 #ifdef CONFIG_ZONE_DEVICE
353 ZONE_DEVICE,
354 #endif
355 __MAX_NR_ZONES
356
357 };
358
359 #ifndef __GENERATING_BOUNDS_H
360
361 struct zone {
362 /* Read-mostly fields */
363
364 /* zone watermarks, access with *_wmark_pages(zone) macros */
365 unsigned long watermark[NR_WMARK];
366
367 unsigned long nr_reserved_highatomic;
368
369 /*
370 * We don't know if the memory that we're going to allocate will be
371 * freeable or/and it will be released eventually, so to avoid totally
372 * wasting several GB of ram we must reserve some of the lower zone
373 * memory (otherwise we risk to run OOM on the lower zones despite
374 * there being tons of freeable ram on the higher zones). This array is
375 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
376 * changes.
377 */
378 long lowmem_reserve[MAX_NR_ZONES];
379
380 #ifdef CONFIG_NUMA
381 int node;
382 #endif
383 struct pglist_data *zone_pgdat;
384 struct per_cpu_pageset __percpu *pageset;
385
386 #ifndef CONFIG_SPARSEMEM
387 /*
388 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
389 * In SPARSEMEM, this map is stored in struct mem_section
390 */
391 unsigned long *pageblock_flags;
392 #endif /* CONFIG_SPARSEMEM */
393
394 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
395 unsigned long zone_start_pfn;
396
397 /*
398 * spanned_pages is the total pages spanned by the zone, including
399 * holes, which is calculated as:
400 * spanned_pages = zone_end_pfn - zone_start_pfn;
401 *
402 * present_pages is physical pages existing within the zone, which
403 * is calculated as:
404 * present_pages = spanned_pages - absent_pages(pages in holes);
405 *
406 * managed_pages is present pages managed by the buddy system, which
407 * is calculated as (reserved_pages includes pages allocated by the
408 * bootmem allocator):
409 * managed_pages = present_pages - reserved_pages;
410 *
411 * So present_pages may be used by memory hotplug or memory power
412 * management logic to figure out unmanaged pages by checking
413 * (present_pages - managed_pages). And managed_pages should be used
414 * by page allocator and vm scanner to calculate all kinds of watermarks
415 * and thresholds.
416 *
417 * Locking rules:
418 *
419 * zone_start_pfn and spanned_pages are protected by span_seqlock.
420 * It is a seqlock because it has to be read outside of zone->lock,
421 * and it is done in the main allocator path. But, it is written
422 * quite infrequently.
423 *
424 * The span_seq lock is declared along with zone->lock because it is
425 * frequently read in proximity to zone->lock. It's good to
426 * give them a chance of being in the same cacheline.
427 *
428 * Write access to present_pages at runtime should be protected by
429 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
430 * present_pages should get_online_mems() to get a stable value.
431 *
432 * Read access to managed_pages should be safe because it's unsigned
433 * long. Write access to zone->managed_pages and totalram_pages are
434 * protected by managed_page_count_lock at runtime. Idealy only
435 * adjust_managed_page_count() should be used instead of directly
436 * touching zone->managed_pages and totalram_pages.
437 */
438 unsigned long managed_pages;
439 unsigned long spanned_pages;
440 unsigned long present_pages;
441
442 const char *name;
443
444 #ifdef CONFIG_MEMORY_ISOLATION
445 /*
446 * Number of isolated pageblock. It is used to solve incorrect
447 * freepage counting problem due to racy retrieving migratetype
448 * of pageblock. Protected by zone->lock.
449 */
450 unsigned long nr_isolate_pageblock;
451 #endif
452
453 #ifdef CONFIG_MEMORY_HOTPLUG
454 /* see spanned/present_pages for more description */
455 seqlock_t span_seqlock;
456 #endif
457
458 int initialized;
459
460 /* Write-intensive fields used from the page allocator */
461 ZONE_PADDING(_pad1_)
462
463 /* free areas of different sizes */
464 struct free_area free_area[MAX_ORDER];
465
466 /* zone flags, see below */
467 unsigned long flags;
468
469 /* Primarily protects free_area */
470 spinlock_t lock;
471
472 /* Write-intensive fields used by compaction and vmstats. */
473 ZONE_PADDING(_pad2_)
474
475 /*
476 * When free pages are below this point, additional steps are taken
477 * when reading the number of free pages to avoid per-cpu counter
478 * drift allowing watermarks to be breached
479 */
480 unsigned long percpu_drift_mark;
481
482 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
483 /* pfn where compaction free scanner should start */
484 unsigned long compact_cached_free_pfn;
485 /* pfn where async and sync compaction migration scanner should start */
486 unsigned long compact_cached_migrate_pfn[2];
487 #endif
488
489 #ifdef CONFIG_COMPACTION
490 /*
491 * On compaction failure, 1<<compact_defer_shift compactions
492 * are skipped before trying again. The number attempted since
493 * last failure is tracked with compact_considered.
494 */
495 unsigned int compact_considered;
496 unsigned int compact_defer_shift;
497 int compact_order_failed;
498 #endif
499
500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 /* Set to true when the PG_migrate_skip bits should be cleared */
502 bool compact_blockskip_flush;
503 #endif
504
505 bool contiguous;
506
507 ZONE_PADDING(_pad3_)
508 /* Zone statistics */
509 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
510 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
511 } ____cacheline_internodealigned_in_smp;
512
513 enum pgdat_flags {
514 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
515 * a congested BDI
516 */
517 PGDAT_DIRTY, /* reclaim scanning has recently found
518 * many dirty file pages at the tail
519 * of the LRU.
520 */
521 PGDAT_WRITEBACK, /* reclaim scanning has recently found
522 * many pages under writeback
523 */
524 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
525 };
526
527 static inline unsigned long zone_end_pfn(const struct zone *zone)
528 {
529 return zone->zone_start_pfn + zone->spanned_pages;
530 }
531
532 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
533 {
534 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
535 }
536
537 static inline bool zone_is_initialized(struct zone *zone)
538 {
539 return zone->initialized;
540 }
541
542 static inline bool zone_is_empty(struct zone *zone)
543 {
544 return zone->spanned_pages == 0;
545 }
546
547 /*
548 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
549 * intersection with the given zone
550 */
551 static inline bool zone_intersects(struct zone *zone,
552 unsigned long start_pfn, unsigned long nr_pages)
553 {
554 if (zone_is_empty(zone))
555 return false;
556 if (start_pfn >= zone_end_pfn(zone) ||
557 start_pfn + nr_pages <= zone->zone_start_pfn)
558 return false;
559
560 return true;
561 }
562
563 /*
564 * The "priority" of VM scanning is how much of the queues we will scan in one
565 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
566 * queues ("queue_length >> 12") during an aging round.
567 */
568 #define DEF_PRIORITY 12
569
570 /* Maximum number of zones on a zonelist */
571 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
572
573 enum {
574 ZONELIST_FALLBACK, /* zonelist with fallback */
575 #ifdef CONFIG_NUMA
576 /*
577 * The NUMA zonelists are doubled because we need zonelists that
578 * restrict the allocations to a single node for __GFP_THISNODE.
579 */
580 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
581 #endif
582 MAX_ZONELISTS
583 };
584
585 /*
586 * This struct contains information about a zone in a zonelist. It is stored
587 * here to avoid dereferences into large structures and lookups of tables
588 */
589 struct zoneref {
590 struct zone *zone; /* Pointer to actual zone */
591 int zone_idx; /* zone_idx(zoneref->zone) */
592 };
593
594 /*
595 * One allocation request operates on a zonelist. A zonelist
596 * is a list of zones, the first one is the 'goal' of the
597 * allocation, the other zones are fallback zones, in decreasing
598 * priority.
599 *
600 * To speed the reading of the zonelist, the zonerefs contain the zone index
601 * of the entry being read. Helper functions to access information given
602 * a struct zoneref are
603 *
604 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
605 * zonelist_zone_idx() - Return the index of the zone for an entry
606 * zonelist_node_idx() - Return the index of the node for an entry
607 */
608 struct zonelist {
609 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
610 };
611
612 #ifndef CONFIG_DISCONTIGMEM
613 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
614 extern struct page *mem_map;
615 #endif
616
617 /*
618 * On NUMA machines, each NUMA node would have a pg_data_t to describe
619 * it's memory layout. On UMA machines there is a single pglist_data which
620 * describes the whole memory.
621 *
622 * Memory statistics and page replacement data structures are maintained on a
623 * per-zone basis.
624 */
625 struct bootmem_data;
626 typedef struct pglist_data {
627 struct zone node_zones[MAX_NR_ZONES];
628 struct zonelist node_zonelists[MAX_ZONELISTS];
629 int nr_zones;
630 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
631 struct page *node_mem_map;
632 #ifdef CONFIG_PAGE_EXTENSION
633 struct page_ext *node_page_ext;
634 #endif
635 #endif
636 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
637 /*
638 * Must be held any time you expect node_start_pfn, node_present_pages
639 * or node_spanned_pages stay constant. Holding this will also
640 * guarantee that any pfn_valid() stays that way.
641 *
642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
644 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
645 *
646 * Nests above zone->lock and zone->span_seqlock
647 */
648 spinlock_t node_size_lock;
649 #endif
650 unsigned long node_start_pfn;
651 unsigned long node_present_pages; /* total number of physical pages */
652 unsigned long node_spanned_pages; /* total size of physical page
653 range, including holes */
654 int node_id;
655 wait_queue_head_t kswapd_wait;
656 wait_queue_head_t pfmemalloc_wait;
657 struct task_struct *kswapd; /* Protected by
658 mem_hotplug_begin/end() */
659 int kswapd_order;
660 enum zone_type kswapd_classzone_idx;
661
662 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
663
664 #ifdef CONFIG_COMPACTION
665 int kcompactd_max_order;
666 enum zone_type kcompactd_classzone_idx;
667 wait_queue_head_t kcompactd_wait;
668 struct task_struct *kcompactd;
669 #endif
670 /*
671 * This is a per-node reserve of pages that are not available
672 * to userspace allocations.
673 */
674 unsigned long totalreserve_pages;
675
676 #ifdef CONFIG_NUMA
677 /*
678 * zone reclaim becomes active if more unmapped pages exist.
679 */
680 unsigned long min_unmapped_pages;
681 unsigned long min_slab_pages;
682 #endif /* CONFIG_NUMA */
683
684 /* Write-intensive fields used by page reclaim */
685 ZONE_PADDING(_pad1_)
686 spinlock_t lru_lock;
687
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 /*
690 * If memory initialisation on large machines is deferred then this
691 * is the first PFN that needs to be initialised.
692 */
693 unsigned long first_deferred_pfn;
694 /* Number of non-deferred pages */
695 unsigned long static_init_pgcnt;
696 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
697
698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
699 spinlock_t split_queue_lock;
700 struct list_head split_queue;
701 unsigned long split_queue_len;
702 #endif
703
704 /* Fields commonly accessed by the page reclaim scanner */
705 struct lruvec lruvec;
706
707 unsigned long flags;
708
709 ZONE_PADDING(_pad2_)
710
711 /* Per-node vmstats */
712 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
713 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
714 } pg_data_t;
715
716 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
717 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
718 #ifdef CONFIG_FLAT_NODE_MEM_MAP
719 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
720 #else
721 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
722 #endif
723 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
724
725 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
726 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
727 static inline spinlock_t *zone_lru_lock(struct zone *zone)
728 {
729 return &zone->zone_pgdat->lru_lock;
730 }
731
732 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
733 {
734 return &pgdat->lruvec;
735 }
736
737 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
738 {
739 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
740 }
741
742 static inline bool pgdat_is_empty(pg_data_t *pgdat)
743 {
744 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
745 }
746
747 #include <linux/memory_hotplug.h>
748
749 void build_all_zonelists(pg_data_t *pgdat);
750 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
751 enum zone_type classzone_idx);
752 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
753 int classzone_idx, unsigned int alloc_flags,
754 long free_pages);
755 bool zone_watermark_ok(struct zone *z, unsigned int order,
756 unsigned long mark, int classzone_idx,
757 unsigned int alloc_flags);
758 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
759 unsigned long mark, int classzone_idx);
760 enum memmap_context {
761 MEMMAP_EARLY,
762 MEMMAP_HOTPLUG,
763 };
764 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
765 unsigned long size);
766
767 extern void lruvec_init(struct lruvec *lruvec);
768
769 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
770 {
771 #ifdef CONFIG_MEMCG
772 return lruvec->pgdat;
773 #else
774 return container_of(lruvec, struct pglist_data, lruvec);
775 #endif
776 }
777
778 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
779
780 #ifdef CONFIG_HAVE_MEMORY_PRESENT
781 void memory_present(int nid, unsigned long start, unsigned long end);
782 #else
783 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
784 #endif
785
786 #if defined(CONFIG_SPARSEMEM)
787 void memblocks_present(void);
788 #else
789 static inline void memblocks_present(void) {}
790 #endif
791
792 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
793 int local_memory_node(int node_id);
794 #else
795 static inline int local_memory_node(int node_id) { return node_id; };
796 #endif
797
798 /*
799 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
800 */
801 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
802
803 #ifdef CONFIG_ZONE_DEVICE
804 static inline bool is_dev_zone(const struct zone *zone)
805 {
806 return zone_idx(zone) == ZONE_DEVICE;
807 }
808 #else
809 static inline bool is_dev_zone(const struct zone *zone)
810 {
811 return false;
812 }
813 #endif
814
815 /*
816 * Returns true if a zone has pages managed by the buddy allocator.
817 * All the reclaim decisions have to use this function rather than
818 * populated_zone(). If the whole zone is reserved then we can easily
819 * end up with populated_zone() && !managed_zone().
820 */
821 static inline bool managed_zone(struct zone *zone)
822 {
823 return zone->managed_pages;
824 }
825
826 /* Returns true if a zone has memory */
827 static inline bool populated_zone(struct zone *zone)
828 {
829 return zone->present_pages;
830 }
831
832 #ifdef CONFIG_NUMA
833 static inline int zone_to_nid(struct zone *zone)
834 {
835 return zone->node;
836 }
837
838 static inline void zone_set_nid(struct zone *zone, int nid)
839 {
840 zone->node = nid;
841 }
842 #else
843 static inline int zone_to_nid(struct zone *zone)
844 {
845 return 0;
846 }
847
848 static inline void zone_set_nid(struct zone *zone, int nid) {}
849 #endif
850
851 extern int movable_zone;
852
853 #ifdef CONFIG_HIGHMEM
854 static inline int zone_movable_is_highmem(void)
855 {
856 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
857 return movable_zone == ZONE_HIGHMEM;
858 #else
859 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
860 #endif
861 }
862 #endif
863
864 static inline int is_highmem_idx(enum zone_type idx)
865 {
866 #ifdef CONFIG_HIGHMEM
867 return (idx == ZONE_HIGHMEM ||
868 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
869 #else
870 return 0;
871 #endif
872 }
873
874 /**
875 * is_highmem - helper function to quickly check if a struct zone is a
876 * highmem zone or not. This is an attempt to keep references
877 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
878 * @zone - pointer to struct zone variable
879 */
880 static inline int is_highmem(struct zone *zone)
881 {
882 #ifdef CONFIG_HIGHMEM
883 return is_highmem_idx(zone_idx(zone));
884 #else
885 return 0;
886 #endif
887 }
888
889 /* These two functions are used to setup the per zone pages min values */
890 struct ctl_table;
891 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
894 void __user *, size_t *, loff_t *);
895 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
896 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
899 void __user *, size_t *, loff_t *);
900 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
901 void __user *, size_t *, loff_t *);
902 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
903 void __user *, size_t *, loff_t *);
904
905 extern int numa_zonelist_order_handler(struct ctl_table *, int,
906 void __user *, size_t *, loff_t *);
907 extern char numa_zonelist_order[];
908 #define NUMA_ZONELIST_ORDER_LEN 16
909
910 #ifndef CONFIG_NEED_MULTIPLE_NODES
911
912 extern struct pglist_data contig_page_data;
913 #define NODE_DATA(nid) (&contig_page_data)
914 #define NODE_MEM_MAP(nid) mem_map
915
916 #else /* CONFIG_NEED_MULTIPLE_NODES */
917
918 #include <asm/mmzone.h>
919
920 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
921
922 extern struct pglist_data *first_online_pgdat(void);
923 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
924 extern struct zone *next_zone(struct zone *zone);
925
926 /**
927 * for_each_online_pgdat - helper macro to iterate over all online nodes
928 * @pgdat - pointer to a pg_data_t variable
929 */
930 #define for_each_online_pgdat(pgdat) \
931 for (pgdat = first_online_pgdat(); \
932 pgdat; \
933 pgdat = next_online_pgdat(pgdat))
934 /**
935 * for_each_zone - helper macro to iterate over all memory zones
936 * @zone - pointer to struct zone variable
937 *
938 * The user only needs to declare the zone variable, for_each_zone
939 * fills it in.
940 */
941 #define for_each_zone(zone) \
942 for (zone = (first_online_pgdat())->node_zones; \
943 zone; \
944 zone = next_zone(zone))
945
946 #define for_each_populated_zone(zone) \
947 for (zone = (first_online_pgdat())->node_zones; \
948 zone; \
949 zone = next_zone(zone)) \
950 if (!populated_zone(zone)) \
951 ; /* do nothing */ \
952 else
953
954 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
955 {
956 return zoneref->zone;
957 }
958
959 static inline int zonelist_zone_idx(struct zoneref *zoneref)
960 {
961 return zoneref->zone_idx;
962 }
963
964 static inline int zonelist_node_idx(struct zoneref *zoneref)
965 {
966 return zone_to_nid(zoneref->zone);
967 }
968
969 struct zoneref *__next_zones_zonelist(struct zoneref *z,
970 enum zone_type highest_zoneidx,
971 nodemask_t *nodes);
972
973 /**
974 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
975 * @z - The cursor used as a starting point for the search
976 * @highest_zoneidx - The zone index of the highest zone to return
977 * @nodes - An optional nodemask to filter the zonelist with
978 *
979 * This function returns the next zone at or below a given zone index that is
980 * within the allowed nodemask using a cursor as the starting point for the
981 * search. The zoneref returned is a cursor that represents the current zone
982 * being examined. It should be advanced by one before calling
983 * next_zones_zonelist again.
984 */
985 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
986 enum zone_type highest_zoneidx,
987 nodemask_t *nodes)
988 {
989 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
990 return z;
991 return __next_zones_zonelist(z, highest_zoneidx, nodes);
992 }
993
994 /**
995 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
996 * @zonelist - The zonelist to search for a suitable zone
997 * @highest_zoneidx - The zone index of the highest zone to return
998 * @nodes - An optional nodemask to filter the zonelist with
999 * @return - Zoneref pointer for the first suitable zone found (see below)
1000 *
1001 * This function returns the first zone at or below a given zone index that is
1002 * within the allowed nodemask. The zoneref returned is a cursor that can be
1003 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1004 * one before calling.
1005 *
1006 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1007 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1008 * update due to cpuset modification.
1009 */
1010 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1011 enum zone_type highest_zoneidx,
1012 nodemask_t *nodes)
1013 {
1014 return next_zones_zonelist(zonelist->_zonerefs,
1015 highest_zoneidx, nodes);
1016 }
1017
1018 /**
1019 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1020 * @zone - The current zone in the iterator
1021 * @z - The current pointer within zonelist->zones being iterated
1022 * @zlist - The zonelist being iterated
1023 * @highidx - The zone index of the highest zone to return
1024 * @nodemask - Nodemask allowed by the allocator
1025 *
1026 * This iterator iterates though all zones at or below a given zone index and
1027 * within a given nodemask
1028 */
1029 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1030 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1031 zone; \
1032 z = next_zones_zonelist(++z, highidx, nodemask), \
1033 zone = zonelist_zone(z))
1034
1035 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1036 for (zone = z->zone; \
1037 zone; \
1038 z = next_zones_zonelist(++z, highidx, nodemask), \
1039 zone = zonelist_zone(z))
1040
1041
1042 /**
1043 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1044 * @zone - The current zone in the iterator
1045 * @z - The current pointer within zonelist->zones being iterated
1046 * @zlist - The zonelist being iterated
1047 * @highidx - The zone index of the highest zone to return
1048 *
1049 * This iterator iterates though all zones at or below a given zone index.
1050 */
1051 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1052 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1053
1054 #ifdef CONFIG_SPARSEMEM
1055 #include <asm/sparsemem.h>
1056 #endif
1057
1058 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1059 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1060 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1061 {
1062 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1063 return 0;
1064 }
1065 #endif
1066
1067 #ifdef CONFIG_FLATMEM
1068 #define pfn_to_nid(pfn) (0)
1069 #endif
1070
1071 #ifdef CONFIG_SPARSEMEM
1072
1073 /*
1074 * SECTION_SHIFT #bits space required to store a section #
1075 *
1076 * PA_SECTION_SHIFT physical address to/from section number
1077 * PFN_SECTION_SHIFT pfn to/from section number
1078 */
1079 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1080 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1081
1082 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1083
1084 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1085 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1086
1087 #define SECTION_BLOCKFLAGS_BITS \
1088 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1089
1090 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1091 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1092 #endif
1093
1094 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1095 {
1096 return pfn >> PFN_SECTION_SHIFT;
1097 }
1098 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1099 {
1100 return sec << PFN_SECTION_SHIFT;
1101 }
1102
1103 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1104 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1105
1106 struct page;
1107 struct page_ext;
1108 struct mem_section {
1109 /*
1110 * This is, logically, a pointer to an array of struct
1111 * pages. However, it is stored with some other magic.
1112 * (see sparse.c::sparse_init_one_section())
1113 *
1114 * Additionally during early boot we encode node id of
1115 * the location of the section here to guide allocation.
1116 * (see sparse.c::memory_present())
1117 *
1118 * Making it a UL at least makes someone do a cast
1119 * before using it wrong.
1120 */
1121 unsigned long section_mem_map;
1122
1123 /* See declaration of similar field in struct zone */
1124 unsigned long *pageblock_flags;
1125 #ifdef CONFIG_PAGE_EXTENSION
1126 /*
1127 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1128 * section. (see page_ext.h about this.)
1129 */
1130 struct page_ext *page_ext;
1131 unsigned long pad;
1132 #endif
1133 /*
1134 * WARNING: mem_section must be a power-of-2 in size for the
1135 * calculation and use of SECTION_ROOT_MASK to make sense.
1136 */
1137 };
1138
1139 #ifdef CONFIG_SPARSEMEM_EXTREME
1140 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1141 #else
1142 #define SECTIONS_PER_ROOT 1
1143 #endif
1144
1145 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1146 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1147 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1148
1149 #ifdef CONFIG_SPARSEMEM_EXTREME
1150 extern struct mem_section **mem_section;
1151 #else
1152 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1153 #endif
1154
1155 static inline struct mem_section *__nr_to_section(unsigned long nr)
1156 {
1157 #ifdef CONFIG_SPARSEMEM_EXTREME
1158 if (!mem_section)
1159 return NULL;
1160 #endif
1161 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1162 return NULL;
1163 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1164 }
1165 extern int __section_nr(struct mem_section* ms);
1166 extern unsigned long usemap_size(void);
1167
1168 /*
1169 * We use the lower bits of the mem_map pointer to store
1170 * a little bit of information. The pointer is calculated
1171 * as mem_map - section_nr_to_pfn(pnum). The result is
1172 * aligned to the minimum alignment of the two values:
1173 * 1. All mem_map arrays are page-aligned.
1174 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1175 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1176 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1177 * worst combination is powerpc with 256k pages,
1178 * which results in PFN_SECTION_SHIFT equal 6.
1179 * To sum it up, at least 6 bits are available.
1180 */
1181 #define SECTION_MARKED_PRESENT (1UL<<0)
1182 #define SECTION_HAS_MEM_MAP (1UL<<1)
1183 #define SECTION_IS_ONLINE (1UL<<2)
1184 #define SECTION_MAP_LAST_BIT (1UL<<3)
1185 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1186 #define SECTION_NID_SHIFT 3
1187
1188 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1189 {
1190 unsigned long map = section->section_mem_map;
1191 map &= SECTION_MAP_MASK;
1192 return (struct page *)map;
1193 }
1194
1195 static inline int present_section(struct mem_section *section)
1196 {
1197 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1198 }
1199
1200 static inline int present_section_nr(unsigned long nr)
1201 {
1202 return present_section(__nr_to_section(nr));
1203 }
1204
1205 static inline int valid_section(struct mem_section *section)
1206 {
1207 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1208 }
1209
1210 static inline int valid_section_nr(unsigned long nr)
1211 {
1212 return valid_section(__nr_to_section(nr));
1213 }
1214
1215 static inline int online_section(struct mem_section *section)
1216 {
1217 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1218 }
1219
1220 static inline int online_section_nr(unsigned long nr)
1221 {
1222 return online_section(__nr_to_section(nr));
1223 }
1224
1225 #ifdef CONFIG_MEMORY_HOTPLUG
1226 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1227 #ifdef CONFIG_MEMORY_HOTREMOVE
1228 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1229 #endif
1230 #endif
1231
1232 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1233 {
1234 return __nr_to_section(pfn_to_section_nr(pfn));
1235 }
1236
1237 extern int __highest_present_section_nr;
1238
1239 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1240 static inline int pfn_valid(unsigned long pfn)
1241 {
1242 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1243 return 0;
1244 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1245 }
1246 #endif
1247
1248 static inline int pfn_present(unsigned long pfn)
1249 {
1250 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1251 return 0;
1252 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1253 }
1254
1255 /*
1256 * These are _only_ used during initialisation, therefore they
1257 * can use __initdata ... They could have names to indicate
1258 * this restriction.
1259 */
1260 #ifdef CONFIG_NUMA
1261 #define pfn_to_nid(pfn) \
1262 ({ \
1263 unsigned long __pfn_to_nid_pfn = (pfn); \
1264 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1265 })
1266 #else
1267 #define pfn_to_nid(pfn) (0)
1268 #endif
1269
1270 #define early_pfn_valid(pfn) pfn_valid(pfn)
1271 void sparse_init(void);
1272 #else
1273 #define sparse_init() do {} while (0)
1274 #define sparse_index_init(_sec, _nid) do {} while (0)
1275 #endif /* CONFIG_SPARSEMEM */
1276
1277 /*
1278 * During memory init memblocks map pfns to nids. The search is expensive and
1279 * this caches recent lookups. The implementation of __early_pfn_to_nid
1280 * may treat start/end as pfns or sections.
1281 */
1282 struct mminit_pfnnid_cache {
1283 unsigned long last_start;
1284 unsigned long last_end;
1285 int last_nid;
1286 };
1287
1288 #ifndef early_pfn_valid
1289 #define early_pfn_valid(pfn) (1)
1290 #endif
1291
1292 void memory_present(int nid, unsigned long start, unsigned long end);
1293
1294 /*
1295 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1296 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1297 * pfn_valid_within() should be used in this case; we optimise this away
1298 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1299 */
1300 #ifdef CONFIG_HOLES_IN_ZONE
1301 #define pfn_valid_within(pfn) pfn_valid(pfn)
1302 #else
1303 #define pfn_valid_within(pfn) (1)
1304 #endif
1305
1306 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1307 /*
1308 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1309 * associated with it or not. This means that a struct page exists for this
1310 * pfn. The caller cannot assume the page is fully initialized in general.
1311 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1312 * will ensure the struct page is fully online and initialized. Special pages
1313 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1314 *
1315 * In FLATMEM, it is expected that holes always have valid memmap as long as
1316 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1317 * that a valid section has a memmap for the entire section.
1318 *
1319 * However, an ARM, and maybe other embedded architectures in the future
1320 * free memmap backing holes to save memory on the assumption the memmap is
1321 * never used. The page_zone linkages are then broken even though pfn_valid()
1322 * returns true. A walker of the full memmap must then do this additional
1323 * check to ensure the memmap they are looking at is sane by making sure
1324 * the zone and PFN linkages are still valid. This is expensive, but walkers
1325 * of the full memmap are extremely rare.
1326 */
1327 bool memmap_valid_within(unsigned long pfn,
1328 struct page *page, struct zone *zone);
1329 #else
1330 static inline bool memmap_valid_within(unsigned long pfn,
1331 struct page *page, struct zone *zone)
1332 {
1333 return true;
1334 }
1335 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1336
1337 #endif /* !__GENERATING_BOUNDS.H */
1338 #endif /* !__ASSEMBLY__ */
1339 #endif /* _LINUX_MMZONE_H */