]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - include/linux/mmzone.h
mm: vmscan: fix IO/refault regression in cache workingset transition
[thirdparty/kernel/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum migratetype {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
75 #endif
76
77 #define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
80
81 extern int page_group_by_mobility_disabled;
82
83 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85
86 #define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
89
90 struct free_area {
91 struct list_head free_list[MIGRATE_TYPES];
92 unsigned long nr_free;
93 };
94
95 struct pglist_data;
96
97 /*
98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
102 */
103 #if defined(CONFIG_SMP)
104 struct zone_padding {
105 char x[0];
106 } ____cacheline_internodealigned_in_smp;
107 #define ZONE_PADDING(name) struct zone_padding name;
108 #else
109 #define ZONE_PADDING(name)
110 #endif
111
112 enum zone_stat_item {
113 /* First 128 byte cacheline (assuming 64 bit words) */
114 NR_FREE_PAGES,
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 NR_ZONE_ACTIVE_ANON,
118 NR_ZONE_INACTIVE_FILE,
119 NR_ZONE_ACTIVE_FILE,
120 NR_ZONE_UNEVICTABLE,
121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
123 NR_SLAB_RECLAIMABLE,
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
126 NR_KERNEL_STACK_KB, /* measured in KiB */
127 /* Second 128 byte cacheline */
128 NR_BOUNCE,
129 #if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
131 #endif
132 #ifdef CONFIG_NUMA
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
139 #endif
140 NR_FREE_CMA_PAGES,
141 NR_VM_ZONE_STAT_ITEMS };
142
143 enum node_stat_item {
144 NR_LRU_BASE,
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 WORKINGSET_REFAULT,
153 WORKINGSET_ACTIVATE,
154 WORKINGSET_NODERECLAIM,
155 NR_ANON_MAPPED, /* Mapped anonymous pages */
156 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
157 only modified from process context */
158 NR_FILE_PAGES,
159 NR_FILE_DIRTY,
160 NR_WRITEBACK,
161 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
162 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
163 NR_SHMEM_THPS,
164 NR_SHMEM_PMDMAPPED,
165 NR_ANON_THPS,
166 NR_UNSTABLE_NFS, /* NFS unstable pages */
167 NR_VMSCAN_WRITE,
168 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
169 NR_DIRTIED, /* page dirtyings since bootup */
170 NR_WRITTEN, /* page writings since bootup */
171 NR_VM_NODE_STAT_ITEMS
172 };
173
174 /*
175 * We do arithmetic on the LRU lists in various places in the code,
176 * so it is important to keep the active lists LRU_ACTIVE higher in
177 * the array than the corresponding inactive lists, and to keep
178 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
179 *
180 * This has to be kept in sync with the statistics in zone_stat_item
181 * above and the descriptions in vmstat_text in mm/vmstat.c
182 */
183 #define LRU_BASE 0
184 #define LRU_ACTIVE 1
185 #define LRU_FILE 2
186
187 enum lru_list {
188 LRU_INACTIVE_ANON = LRU_BASE,
189 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
190 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
191 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
192 LRU_UNEVICTABLE,
193 NR_LRU_LISTS
194 };
195
196 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
197
198 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
199
200 static inline int is_file_lru(enum lru_list lru)
201 {
202 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
203 }
204
205 static inline int is_active_lru(enum lru_list lru)
206 {
207 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
208 }
209
210 struct zone_reclaim_stat {
211 /*
212 * The pageout code in vmscan.c keeps track of how many of the
213 * mem/swap backed and file backed pages are referenced.
214 * The higher the rotated/scanned ratio, the more valuable
215 * that cache is.
216 *
217 * The anon LRU stats live in [0], file LRU stats in [1]
218 */
219 unsigned long recent_rotated[2];
220 unsigned long recent_scanned[2];
221 };
222
223 struct lruvec {
224 struct list_head lists[NR_LRU_LISTS];
225 struct zone_reclaim_stat reclaim_stat;
226 /* Evictions & activations on the inactive file list */
227 atomic_long_t inactive_age;
228 /* Refaults at the time of last reclaim cycle */
229 unsigned long refaults;
230 #ifdef CONFIG_MEMCG
231 struct pglist_data *pgdat;
232 #endif
233 };
234
235 /* Mask used at gathering information at once (see memcontrol.c) */
236 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
237 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
238 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
239
240 /* Isolate unmapped file */
241 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
242 /* Isolate for asynchronous migration */
243 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
244 /* Isolate unevictable pages */
245 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
246
247 /* LRU Isolation modes. */
248 typedef unsigned __bitwise isolate_mode_t;
249
250 enum zone_watermarks {
251 WMARK_MIN,
252 WMARK_LOW,
253 WMARK_HIGH,
254 NR_WMARK
255 };
256
257 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
258 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
259 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
260
261 struct per_cpu_pages {
262 int count; /* number of pages in the list */
263 int high; /* high watermark, emptying needed */
264 int batch; /* chunk size for buddy add/remove */
265
266 /* Lists of pages, one per migrate type stored on the pcp-lists */
267 struct list_head lists[MIGRATE_PCPTYPES];
268 };
269
270 struct per_cpu_pageset {
271 struct per_cpu_pages pcp;
272 #ifdef CONFIG_NUMA
273 s8 expire;
274 #endif
275 #ifdef CONFIG_SMP
276 s8 stat_threshold;
277 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
278 #endif
279 };
280
281 struct per_cpu_nodestat {
282 s8 stat_threshold;
283 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
284 };
285
286 #endif /* !__GENERATING_BOUNDS.H */
287
288 enum zone_type {
289 #ifdef CONFIG_ZONE_DMA
290 /*
291 * ZONE_DMA is used when there are devices that are not able
292 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
293 * carve out the portion of memory that is needed for these devices.
294 * The range is arch specific.
295 *
296 * Some examples
297 *
298 * Architecture Limit
299 * ---------------------------
300 * parisc, ia64, sparc <4G
301 * s390 <2G
302 * arm Various
303 * alpha Unlimited or 0-16MB.
304 *
305 * i386, x86_64 and multiple other arches
306 * <16M.
307 */
308 ZONE_DMA,
309 #endif
310 #ifdef CONFIG_ZONE_DMA32
311 /*
312 * x86_64 needs two ZONE_DMAs because it supports devices that are
313 * only able to do DMA to the lower 16M but also 32 bit devices that
314 * can only do DMA areas below 4G.
315 */
316 ZONE_DMA32,
317 #endif
318 /*
319 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
320 * performed on pages in ZONE_NORMAL if the DMA devices support
321 * transfers to all addressable memory.
322 */
323 ZONE_NORMAL,
324 #ifdef CONFIG_HIGHMEM
325 /*
326 * A memory area that is only addressable by the kernel through
327 * mapping portions into its own address space. This is for example
328 * used by i386 to allow the kernel to address the memory beyond
329 * 900MB. The kernel will set up special mappings (page
330 * table entries on i386) for each page that the kernel needs to
331 * access.
332 */
333 ZONE_HIGHMEM,
334 #endif
335 ZONE_MOVABLE,
336 #ifdef CONFIG_ZONE_DEVICE
337 ZONE_DEVICE,
338 #endif
339 __MAX_NR_ZONES
340
341 };
342
343 #ifndef __GENERATING_BOUNDS_H
344
345 struct zone {
346 /* Read-mostly fields */
347
348 /* zone watermarks, access with *_wmark_pages(zone) macros */
349 unsigned long watermark[NR_WMARK];
350
351 unsigned long nr_reserved_highatomic;
352
353 /*
354 * We don't know if the memory that we're going to allocate will be
355 * freeable or/and it will be released eventually, so to avoid totally
356 * wasting several GB of ram we must reserve some of the lower zone
357 * memory (otherwise we risk to run OOM on the lower zones despite
358 * there being tons of freeable ram on the higher zones). This array is
359 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
360 * changes.
361 */
362 long lowmem_reserve[MAX_NR_ZONES];
363
364 #ifdef CONFIG_NUMA
365 int node;
366 #endif
367 struct pglist_data *zone_pgdat;
368 struct per_cpu_pageset __percpu *pageset;
369
370 #ifndef CONFIG_SPARSEMEM
371 /*
372 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
373 * In SPARSEMEM, this map is stored in struct mem_section
374 */
375 unsigned long *pageblock_flags;
376 #endif /* CONFIG_SPARSEMEM */
377
378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 unsigned long zone_start_pfn;
380
381 /*
382 * spanned_pages is the total pages spanned by the zone, including
383 * holes, which is calculated as:
384 * spanned_pages = zone_end_pfn - zone_start_pfn;
385 *
386 * present_pages is physical pages existing within the zone, which
387 * is calculated as:
388 * present_pages = spanned_pages - absent_pages(pages in holes);
389 *
390 * managed_pages is present pages managed by the buddy system, which
391 * is calculated as (reserved_pages includes pages allocated by the
392 * bootmem allocator):
393 * managed_pages = present_pages - reserved_pages;
394 *
395 * So present_pages may be used by memory hotplug or memory power
396 * management logic to figure out unmanaged pages by checking
397 * (present_pages - managed_pages). And managed_pages should be used
398 * by page allocator and vm scanner to calculate all kinds of watermarks
399 * and thresholds.
400 *
401 * Locking rules:
402 *
403 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 * It is a seqlock because it has to be read outside of zone->lock,
405 * and it is done in the main allocator path. But, it is written
406 * quite infrequently.
407 *
408 * The span_seq lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 *
412 * Write access to present_pages at runtime should be protected by
413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 * present_pages should get_online_mems() to get a stable value.
415 *
416 * Read access to managed_pages should be safe because it's unsigned
417 * long. Write access to zone->managed_pages and totalram_pages are
418 * protected by managed_page_count_lock at runtime. Idealy only
419 * adjust_managed_page_count() should be used instead of directly
420 * touching zone->managed_pages and totalram_pages.
421 */
422 unsigned long managed_pages;
423 unsigned long spanned_pages;
424 unsigned long present_pages;
425
426 const char *name;
427
428 #ifdef CONFIG_MEMORY_ISOLATION
429 /*
430 * Number of isolated pageblock. It is used to solve incorrect
431 * freepage counting problem due to racy retrieving migratetype
432 * of pageblock. Protected by zone->lock.
433 */
434 unsigned long nr_isolate_pageblock;
435 #endif
436
437 #ifdef CONFIG_MEMORY_HOTPLUG
438 /* see spanned/present_pages for more description */
439 seqlock_t span_seqlock;
440 #endif
441
442 int initialized;
443
444 /* Write-intensive fields used from the page allocator */
445 ZONE_PADDING(_pad1_)
446
447 /* free areas of different sizes */
448 struct free_area free_area[MAX_ORDER];
449
450 /* zone flags, see below */
451 unsigned long flags;
452
453 /* Primarily protects free_area */
454 spinlock_t lock;
455
456 /* Write-intensive fields used by compaction and vmstats. */
457 ZONE_PADDING(_pad2_)
458
459 /*
460 * When free pages are below this point, additional steps are taken
461 * when reading the number of free pages to avoid per-cpu counter
462 * drift allowing watermarks to be breached
463 */
464 unsigned long percpu_drift_mark;
465
466 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
467 /* pfn where compaction free scanner should start */
468 unsigned long compact_cached_free_pfn;
469 /* pfn where async and sync compaction migration scanner should start */
470 unsigned long compact_cached_migrate_pfn[2];
471 #endif
472
473 #ifdef CONFIG_COMPACTION
474 /*
475 * On compaction failure, 1<<compact_defer_shift compactions
476 * are skipped before trying again. The number attempted since
477 * last failure is tracked with compact_considered.
478 */
479 unsigned int compact_considered;
480 unsigned int compact_defer_shift;
481 int compact_order_failed;
482 #endif
483
484 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
485 /* Set to true when the PG_migrate_skip bits should be cleared */
486 bool compact_blockskip_flush;
487 #endif
488
489 bool contiguous;
490
491 ZONE_PADDING(_pad3_)
492 /* Zone statistics */
493 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
494 } ____cacheline_internodealigned_in_smp;
495
496 enum pgdat_flags {
497 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
498 * a congested BDI
499 */
500 PGDAT_DIRTY, /* reclaim scanning has recently found
501 * many dirty file pages at the tail
502 * of the LRU.
503 */
504 PGDAT_WRITEBACK, /* reclaim scanning has recently found
505 * many pages under writeback
506 */
507 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
508 };
509
510 static inline unsigned long zone_end_pfn(const struct zone *zone)
511 {
512 return zone->zone_start_pfn + zone->spanned_pages;
513 }
514
515 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
516 {
517 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
518 }
519
520 static inline bool zone_is_initialized(struct zone *zone)
521 {
522 return zone->initialized;
523 }
524
525 static inline bool zone_is_empty(struct zone *zone)
526 {
527 return zone->spanned_pages == 0;
528 }
529
530 /*
531 * The "priority" of VM scanning is how much of the queues we will scan in one
532 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
533 * queues ("queue_length >> 12") during an aging round.
534 */
535 #define DEF_PRIORITY 12
536
537 /* Maximum number of zones on a zonelist */
538 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
539
540 enum {
541 ZONELIST_FALLBACK, /* zonelist with fallback */
542 #ifdef CONFIG_NUMA
543 /*
544 * The NUMA zonelists are doubled because we need zonelists that
545 * restrict the allocations to a single node for __GFP_THISNODE.
546 */
547 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
548 #endif
549 MAX_ZONELISTS
550 };
551
552 /*
553 * This struct contains information about a zone in a zonelist. It is stored
554 * here to avoid dereferences into large structures and lookups of tables
555 */
556 struct zoneref {
557 struct zone *zone; /* Pointer to actual zone */
558 int zone_idx; /* zone_idx(zoneref->zone) */
559 };
560
561 /*
562 * One allocation request operates on a zonelist. A zonelist
563 * is a list of zones, the first one is the 'goal' of the
564 * allocation, the other zones are fallback zones, in decreasing
565 * priority.
566 *
567 * To speed the reading of the zonelist, the zonerefs contain the zone index
568 * of the entry being read. Helper functions to access information given
569 * a struct zoneref are
570 *
571 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
572 * zonelist_zone_idx() - Return the index of the zone for an entry
573 * zonelist_node_idx() - Return the index of the node for an entry
574 */
575 struct zonelist {
576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
577 };
578
579 #ifndef CONFIG_DISCONTIGMEM
580 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
581 extern struct page *mem_map;
582 #endif
583
584 /*
585 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
586 * (mostly NUMA machines?) to denote a higher-level memory zone than the
587 * zone denotes.
588 *
589 * On NUMA machines, each NUMA node would have a pg_data_t to describe
590 * it's memory layout.
591 *
592 * Memory statistics and page replacement data structures are maintained on a
593 * per-zone basis.
594 */
595 struct bootmem_data;
596 typedef struct pglist_data {
597 struct zone node_zones[MAX_NR_ZONES];
598 struct zonelist node_zonelists[MAX_ZONELISTS];
599 int nr_zones;
600 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
601 struct page *node_mem_map;
602 #ifdef CONFIG_PAGE_EXTENSION
603 struct page_ext *node_page_ext;
604 #endif
605 #endif
606 #ifndef CONFIG_NO_BOOTMEM
607 struct bootmem_data *bdata;
608 #endif
609 #ifdef CONFIG_MEMORY_HOTPLUG
610 /*
611 * Must be held any time you expect node_start_pfn, node_present_pages
612 * or node_spanned_pages stay constant. Holding this will also
613 * guarantee that any pfn_valid() stays that way.
614 *
615 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
616 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
617 *
618 * Nests above zone->lock and zone->span_seqlock
619 */
620 spinlock_t node_size_lock;
621 #endif
622 unsigned long node_start_pfn;
623 unsigned long node_present_pages; /* total number of physical pages */
624 unsigned long node_spanned_pages; /* total size of physical page
625 range, including holes */
626 int node_id;
627 wait_queue_head_t kswapd_wait;
628 wait_queue_head_t pfmemalloc_wait;
629 struct task_struct *kswapd; /* Protected by
630 mem_hotplug_begin/end() */
631 int kswapd_order;
632 enum zone_type kswapd_classzone_idx;
633
634 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
635
636 #ifdef CONFIG_COMPACTION
637 int kcompactd_max_order;
638 enum zone_type kcompactd_classzone_idx;
639 wait_queue_head_t kcompactd_wait;
640 struct task_struct *kcompactd;
641 #endif
642 #ifdef CONFIG_NUMA_BALANCING
643 /* Lock serializing the migrate rate limiting window */
644 spinlock_t numabalancing_migrate_lock;
645
646 /* Rate limiting time interval */
647 unsigned long numabalancing_migrate_next_window;
648
649 /* Number of pages migrated during the rate limiting time interval */
650 unsigned long numabalancing_migrate_nr_pages;
651 #endif
652 /*
653 * This is a per-node reserve of pages that are not available
654 * to userspace allocations.
655 */
656 unsigned long totalreserve_pages;
657
658 #ifdef CONFIG_NUMA
659 /*
660 * zone reclaim becomes active if more unmapped pages exist.
661 */
662 unsigned long min_unmapped_pages;
663 unsigned long min_slab_pages;
664 #endif /* CONFIG_NUMA */
665
666 /* Write-intensive fields used by page reclaim */
667 ZONE_PADDING(_pad1_)
668 spinlock_t lru_lock;
669
670 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
671 /*
672 * If memory initialisation on large machines is deferred then this
673 * is the first PFN that needs to be initialised.
674 */
675 unsigned long first_deferred_pfn;
676 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
677
678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 spinlock_t split_queue_lock;
680 struct list_head split_queue;
681 unsigned long split_queue_len;
682 #endif
683
684 /* Fields commonly accessed by the page reclaim scanner */
685 struct lruvec lruvec;
686
687 /*
688 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
689 * this node's LRU. Maintained by the pageout code.
690 */
691 unsigned int inactive_ratio;
692
693 unsigned long flags;
694
695 ZONE_PADDING(_pad2_)
696
697 /* Per-node vmstats */
698 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
699 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
700 } pg_data_t;
701
702 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
703 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
704 #ifdef CONFIG_FLAT_NODE_MEM_MAP
705 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
706 #else
707 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
708 #endif
709 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
710
711 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
712 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
713 static inline spinlock_t *zone_lru_lock(struct zone *zone)
714 {
715 return &zone->zone_pgdat->lru_lock;
716 }
717
718 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
719 {
720 return &pgdat->lruvec;
721 }
722
723 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
724 {
725 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
726 }
727
728 static inline bool pgdat_is_empty(pg_data_t *pgdat)
729 {
730 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
731 }
732
733 static inline int zone_id(const struct zone *zone)
734 {
735 struct pglist_data *pgdat = zone->zone_pgdat;
736
737 return zone - pgdat->node_zones;
738 }
739
740 #ifdef CONFIG_ZONE_DEVICE
741 static inline bool is_dev_zone(const struct zone *zone)
742 {
743 return zone_id(zone) == ZONE_DEVICE;
744 }
745 #else
746 static inline bool is_dev_zone(const struct zone *zone)
747 {
748 return false;
749 }
750 #endif
751
752 #include <linux/memory_hotplug.h>
753
754 extern struct mutex zonelists_mutex;
755 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
756 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
757 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
758 int classzone_idx, unsigned int alloc_flags,
759 long free_pages);
760 bool zone_watermark_ok(struct zone *z, unsigned int order,
761 unsigned long mark, int classzone_idx,
762 unsigned int alloc_flags);
763 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
764 unsigned long mark, int classzone_idx);
765 enum memmap_context {
766 MEMMAP_EARLY,
767 MEMMAP_HOTPLUG,
768 };
769 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
770 unsigned long size);
771
772 extern void lruvec_init(struct lruvec *lruvec);
773
774 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
775 {
776 #ifdef CONFIG_MEMCG
777 return lruvec->pgdat;
778 #else
779 return container_of(lruvec, struct pglist_data, lruvec);
780 #endif
781 }
782
783 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
784
785 #ifdef CONFIG_HAVE_MEMORY_PRESENT
786 void memory_present(int nid, unsigned long start, unsigned long end);
787 #else
788 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
789 #endif
790
791 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
792 int local_memory_node(int node_id);
793 #else
794 static inline int local_memory_node(int node_id) { return node_id; };
795 #endif
796
797 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
798 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
799 #endif
800
801 /*
802 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
803 */
804 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
805
806 /*
807 * Returns true if a zone has pages managed by the buddy allocator.
808 * All the reclaim decisions have to use this function rather than
809 * populated_zone(). If the whole zone is reserved then we can easily
810 * end up with populated_zone() && !managed_zone().
811 */
812 static inline bool managed_zone(struct zone *zone)
813 {
814 return zone->managed_pages;
815 }
816
817 /* Returns true if a zone has memory */
818 static inline bool populated_zone(struct zone *zone)
819 {
820 return zone->present_pages;
821 }
822
823 extern int movable_zone;
824
825 #ifdef CONFIG_HIGHMEM
826 static inline int zone_movable_is_highmem(void)
827 {
828 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
829 return movable_zone == ZONE_HIGHMEM;
830 #else
831 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
832 #endif
833 }
834 #endif
835
836 static inline int is_highmem_idx(enum zone_type idx)
837 {
838 #ifdef CONFIG_HIGHMEM
839 return (idx == ZONE_HIGHMEM ||
840 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
841 #else
842 return 0;
843 #endif
844 }
845
846 /**
847 * is_highmem - helper function to quickly check if a struct zone is a
848 * highmem zone or not. This is an attempt to keep references
849 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
850 * @zone - pointer to struct zone variable
851 */
852 static inline int is_highmem(struct zone *zone)
853 {
854 #ifdef CONFIG_HIGHMEM
855 return is_highmem_idx(zone_idx(zone));
856 #else
857 return 0;
858 #endif
859 }
860
861 /* These two functions are used to setup the per zone pages min values */
862 struct ctl_table;
863 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
864 void __user *, size_t *, loff_t *);
865 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
866 void __user *, size_t *, loff_t *);
867 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
868 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
869 void __user *, size_t *, loff_t *);
870 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
871 void __user *, size_t *, loff_t *);
872 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
873 void __user *, size_t *, loff_t *);
874 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
875 void __user *, size_t *, loff_t *);
876
877 extern int numa_zonelist_order_handler(struct ctl_table *, int,
878 void __user *, size_t *, loff_t *);
879 extern char numa_zonelist_order[];
880 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
881
882 #ifndef CONFIG_NEED_MULTIPLE_NODES
883
884 extern struct pglist_data contig_page_data;
885 #define NODE_DATA(nid) (&contig_page_data)
886 #define NODE_MEM_MAP(nid) mem_map
887
888 #else /* CONFIG_NEED_MULTIPLE_NODES */
889
890 #include <asm/mmzone.h>
891
892 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
893
894 extern struct pglist_data *first_online_pgdat(void);
895 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
896 extern struct zone *next_zone(struct zone *zone);
897
898 /**
899 * for_each_online_pgdat - helper macro to iterate over all online nodes
900 * @pgdat - pointer to a pg_data_t variable
901 */
902 #define for_each_online_pgdat(pgdat) \
903 for (pgdat = first_online_pgdat(); \
904 pgdat; \
905 pgdat = next_online_pgdat(pgdat))
906 /**
907 * for_each_zone - helper macro to iterate over all memory zones
908 * @zone - pointer to struct zone variable
909 *
910 * The user only needs to declare the zone variable, for_each_zone
911 * fills it in.
912 */
913 #define for_each_zone(zone) \
914 for (zone = (first_online_pgdat())->node_zones; \
915 zone; \
916 zone = next_zone(zone))
917
918 #define for_each_populated_zone(zone) \
919 for (zone = (first_online_pgdat())->node_zones; \
920 zone; \
921 zone = next_zone(zone)) \
922 if (!populated_zone(zone)) \
923 ; /* do nothing */ \
924 else
925
926 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
927 {
928 return zoneref->zone;
929 }
930
931 static inline int zonelist_zone_idx(struct zoneref *zoneref)
932 {
933 return zoneref->zone_idx;
934 }
935
936 static inline int zonelist_node_idx(struct zoneref *zoneref)
937 {
938 #ifdef CONFIG_NUMA
939 /* zone_to_nid not available in this context */
940 return zoneref->zone->node;
941 #else
942 return 0;
943 #endif /* CONFIG_NUMA */
944 }
945
946 struct zoneref *__next_zones_zonelist(struct zoneref *z,
947 enum zone_type highest_zoneidx,
948 nodemask_t *nodes);
949
950 /**
951 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
952 * @z - The cursor used as a starting point for the search
953 * @highest_zoneidx - The zone index of the highest zone to return
954 * @nodes - An optional nodemask to filter the zonelist with
955 *
956 * This function returns the next zone at or below a given zone index that is
957 * within the allowed nodemask using a cursor as the starting point for the
958 * search. The zoneref returned is a cursor that represents the current zone
959 * being examined. It should be advanced by one before calling
960 * next_zones_zonelist again.
961 */
962 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
963 enum zone_type highest_zoneidx,
964 nodemask_t *nodes)
965 {
966 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
967 return z;
968 return __next_zones_zonelist(z, highest_zoneidx, nodes);
969 }
970
971 /**
972 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
973 * @zonelist - The zonelist to search for a suitable zone
974 * @highest_zoneidx - The zone index of the highest zone to return
975 * @nodes - An optional nodemask to filter the zonelist with
976 * @return - Zoneref pointer for the first suitable zone found (see below)
977 *
978 * This function returns the first zone at or below a given zone index that is
979 * within the allowed nodemask. The zoneref returned is a cursor that can be
980 * used to iterate the zonelist with next_zones_zonelist by advancing it by
981 * one before calling.
982 *
983 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
984 * never NULL). This may happen either genuinely, or due to concurrent nodemask
985 * update due to cpuset modification.
986 */
987 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
988 enum zone_type highest_zoneidx,
989 nodemask_t *nodes)
990 {
991 return next_zones_zonelist(zonelist->_zonerefs,
992 highest_zoneidx, nodes);
993 }
994
995 /**
996 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
997 * @zone - The current zone in the iterator
998 * @z - The current pointer within zonelist->zones being iterated
999 * @zlist - The zonelist being iterated
1000 * @highidx - The zone index of the highest zone to return
1001 * @nodemask - Nodemask allowed by the allocator
1002 *
1003 * This iterator iterates though all zones at or below a given zone index and
1004 * within a given nodemask
1005 */
1006 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1007 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1008 zone; \
1009 z = next_zones_zonelist(++z, highidx, nodemask), \
1010 zone = zonelist_zone(z))
1011
1012 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1013 for (zone = z->zone; \
1014 zone; \
1015 z = next_zones_zonelist(++z, highidx, nodemask), \
1016 zone = zonelist_zone(z))
1017
1018
1019 /**
1020 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1021 * @zone - The current zone in the iterator
1022 * @z - The current pointer within zonelist->zones being iterated
1023 * @zlist - The zonelist being iterated
1024 * @highidx - The zone index of the highest zone to return
1025 *
1026 * This iterator iterates though all zones at or below a given zone index.
1027 */
1028 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1029 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1030
1031 #ifdef CONFIG_SPARSEMEM
1032 #include <asm/sparsemem.h>
1033 #endif
1034
1035 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1036 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1037 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1038 {
1039 return 0;
1040 }
1041 #endif
1042
1043 #ifdef CONFIG_FLATMEM
1044 #define pfn_to_nid(pfn) (0)
1045 #endif
1046
1047 #ifdef CONFIG_SPARSEMEM
1048
1049 /*
1050 * SECTION_SHIFT #bits space required to store a section #
1051 *
1052 * PA_SECTION_SHIFT physical address to/from section number
1053 * PFN_SECTION_SHIFT pfn to/from section number
1054 */
1055 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1056 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1057
1058 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1059
1060 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1061 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1062
1063 #define SECTION_BLOCKFLAGS_BITS \
1064 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1065
1066 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1067 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1068 #endif
1069
1070 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1071 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1072
1073 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1074 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1075
1076 struct page;
1077 struct page_ext;
1078 struct mem_section {
1079 /*
1080 * This is, logically, a pointer to an array of struct
1081 * pages. However, it is stored with some other magic.
1082 * (see sparse.c::sparse_init_one_section())
1083 *
1084 * Additionally during early boot we encode node id of
1085 * the location of the section here to guide allocation.
1086 * (see sparse.c::memory_present())
1087 *
1088 * Making it a UL at least makes someone do a cast
1089 * before using it wrong.
1090 */
1091 unsigned long section_mem_map;
1092
1093 /* See declaration of similar field in struct zone */
1094 unsigned long *pageblock_flags;
1095 #ifdef CONFIG_PAGE_EXTENSION
1096 /*
1097 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1098 * section. (see page_ext.h about this.)
1099 */
1100 struct page_ext *page_ext;
1101 unsigned long pad;
1102 #endif
1103 /*
1104 * WARNING: mem_section must be a power-of-2 in size for the
1105 * calculation and use of SECTION_ROOT_MASK to make sense.
1106 */
1107 };
1108
1109 #ifdef CONFIG_SPARSEMEM_EXTREME
1110 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1111 #else
1112 #define SECTIONS_PER_ROOT 1
1113 #endif
1114
1115 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1116 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1117 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1118
1119 #ifdef CONFIG_SPARSEMEM_EXTREME
1120 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1121 #else
1122 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1123 #endif
1124
1125 static inline struct mem_section *__nr_to_section(unsigned long nr)
1126 {
1127 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1128 return NULL;
1129 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1130 }
1131 extern int __section_nr(struct mem_section* ms);
1132 extern unsigned long usemap_size(void);
1133
1134 /*
1135 * We use the lower bits of the mem_map pointer to store
1136 * a little bit of information. There should be at least
1137 * 3 bits here due to 32-bit alignment.
1138 */
1139 #define SECTION_MARKED_PRESENT (1UL<<0)
1140 #define SECTION_HAS_MEM_MAP (1UL<<1)
1141 #define SECTION_MAP_LAST_BIT (1UL<<2)
1142 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1143 #define SECTION_NID_SHIFT 2
1144
1145 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1146 {
1147 unsigned long map = section->section_mem_map;
1148 map &= SECTION_MAP_MASK;
1149 return (struct page *)map;
1150 }
1151
1152 static inline int present_section(struct mem_section *section)
1153 {
1154 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1155 }
1156
1157 static inline int present_section_nr(unsigned long nr)
1158 {
1159 return present_section(__nr_to_section(nr));
1160 }
1161
1162 static inline int valid_section(struct mem_section *section)
1163 {
1164 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1165 }
1166
1167 static inline int valid_section_nr(unsigned long nr)
1168 {
1169 return valid_section(__nr_to_section(nr));
1170 }
1171
1172 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1173 {
1174 return __nr_to_section(pfn_to_section_nr(pfn));
1175 }
1176
1177 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1178 static inline int pfn_valid(unsigned long pfn)
1179 {
1180 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1181 return 0;
1182 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1183 }
1184 #endif
1185
1186 static inline int pfn_present(unsigned long pfn)
1187 {
1188 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1189 return 0;
1190 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1191 }
1192
1193 /*
1194 * These are _only_ used during initialisation, therefore they
1195 * can use __initdata ... They could have names to indicate
1196 * this restriction.
1197 */
1198 #ifdef CONFIG_NUMA
1199 #define pfn_to_nid(pfn) \
1200 ({ \
1201 unsigned long __pfn_to_nid_pfn = (pfn); \
1202 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1203 })
1204 #else
1205 #define pfn_to_nid(pfn) (0)
1206 #endif
1207
1208 #define early_pfn_valid(pfn) pfn_valid(pfn)
1209 void sparse_init(void);
1210 #else
1211 #define sparse_init() do {} while (0)
1212 #define sparse_index_init(_sec, _nid) do {} while (0)
1213 #endif /* CONFIG_SPARSEMEM */
1214
1215 /*
1216 * During memory init memblocks map pfns to nids. The search is expensive and
1217 * this caches recent lookups. The implementation of __early_pfn_to_nid
1218 * may treat start/end as pfns or sections.
1219 */
1220 struct mminit_pfnnid_cache {
1221 unsigned long last_start;
1222 unsigned long last_end;
1223 int last_nid;
1224 };
1225
1226 #ifndef early_pfn_valid
1227 #define early_pfn_valid(pfn) (1)
1228 #endif
1229
1230 void memory_present(int nid, unsigned long start, unsigned long end);
1231 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1232
1233 /*
1234 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1235 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1236 * pfn_valid_within() should be used in this case; we optimise this away
1237 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1238 */
1239 #ifdef CONFIG_HOLES_IN_ZONE
1240 #define pfn_valid_within(pfn) pfn_valid(pfn)
1241 #else
1242 #define pfn_valid_within(pfn) (1)
1243 #endif
1244
1245 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1246 /*
1247 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1248 * associated with it or not. In FLATMEM, it is expected that holes always
1249 * have valid memmap as long as there is valid PFNs either side of the hole.
1250 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1251 * entire section.
1252 *
1253 * However, an ARM, and maybe other embedded architectures in the future
1254 * free memmap backing holes to save memory on the assumption the memmap is
1255 * never used. The page_zone linkages are then broken even though pfn_valid()
1256 * returns true. A walker of the full memmap must then do this additional
1257 * check to ensure the memmap they are looking at is sane by making sure
1258 * the zone and PFN linkages are still valid. This is expensive, but walkers
1259 * of the full memmap are extremely rare.
1260 */
1261 bool memmap_valid_within(unsigned long pfn,
1262 struct page *page, struct zone *zone);
1263 #else
1264 static inline bool memmap_valid_within(unsigned long pfn,
1265 struct page *page, struct zone *zone)
1266 {
1267 return true;
1268 }
1269 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1270
1271 #endif /* !__GENERATING_BOUNDS.H */
1272 #endif /* !__ASSEMBLY__ */
1273 #endif /* _LINUX_MMZONE_H */