]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/pagemap.h
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 /*
22 * Bits in mapping->flags.
23 */
24 enum mapping_flags {
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
30 /* writeback related tags are not used */
31 AS_NO_WRITEBACK_TAGS = 5,
32 };
33
34 /**
35 * mapping_set_error - record a writeback error in the address_space
36 * @mapping: the mapping in which an error should be set
37 * @error: the error to set in the mapping
38 *
39 * When writeback fails in some way, we must record that error so that
40 * userspace can be informed when fsync and the like are called. We endeavor
41 * to report errors on any file that was open at the time of the error. Some
42 * internal callers also need to know when writeback errors have occurred.
43 *
44 * When a writeback error occurs, most filesystems will want to call
45 * mapping_set_error to record the error in the mapping so that it can be
46 * reported when the application calls fsync(2).
47 */
48 static inline void mapping_set_error(struct address_space *mapping, int error)
49 {
50 if (likely(!error))
51 return;
52
53 /* Record in wb_err for checkers using errseq_t based tracking */
54 __filemap_set_wb_err(mapping, error);
55
56 /* Record it in superblock */
57 errseq_set(&mapping->host->i_sb->s_wb_err, error);
58
59 /* Record it in flags for now, for legacy callers */
60 if (error == -ENOSPC)
61 set_bit(AS_ENOSPC, &mapping->flags);
62 else
63 set_bit(AS_EIO, &mapping->flags);
64 }
65
66 static inline void mapping_set_unevictable(struct address_space *mapping)
67 {
68 set_bit(AS_UNEVICTABLE, &mapping->flags);
69 }
70
71 static inline void mapping_clear_unevictable(struct address_space *mapping)
72 {
73 clear_bit(AS_UNEVICTABLE, &mapping->flags);
74 }
75
76 static inline bool mapping_unevictable(struct address_space *mapping)
77 {
78 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
79 }
80
81 static inline void mapping_set_exiting(struct address_space *mapping)
82 {
83 set_bit(AS_EXITING, &mapping->flags);
84 }
85
86 static inline int mapping_exiting(struct address_space *mapping)
87 {
88 return test_bit(AS_EXITING, &mapping->flags);
89 }
90
91 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
92 {
93 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
94 }
95
96 static inline int mapping_use_writeback_tags(struct address_space *mapping)
97 {
98 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
99 }
100
101 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
102 {
103 return mapping->gfp_mask;
104 }
105
106 /* Restricts the given gfp_mask to what the mapping allows. */
107 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
108 gfp_t gfp_mask)
109 {
110 return mapping_gfp_mask(mapping) & gfp_mask;
111 }
112
113 /*
114 * This is non-atomic. Only to be used before the mapping is activated.
115 * Probably needs a barrier...
116 */
117 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
118 {
119 m->gfp_mask = mask;
120 }
121
122 void release_pages(struct page **pages, int nr);
123
124 /*
125 * speculatively take a reference to a page.
126 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
127 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
128 *
129 * This function must be called inside the same rcu_read_lock() section as has
130 * been used to lookup the page in the pagecache radix-tree (or page table):
131 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
132 *
133 * Unless an RCU grace period has passed, the count of all pages coming out
134 * of the allocator must be considered unstable. page_count may return higher
135 * than expected, and put_page must be able to do the right thing when the
136 * page has been finished with, no matter what it is subsequently allocated
137 * for (because put_page is what is used here to drop an invalid speculative
138 * reference).
139 *
140 * This is the interesting part of the lockless pagecache (and lockless
141 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
142 * has the following pattern:
143 * 1. find page in radix tree
144 * 2. conditionally increment refcount
145 * 3. check the page is still in pagecache (if no, goto 1)
146 *
147 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
148 * following (with the i_pages lock held):
149 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
150 * B. remove page from pagecache
151 * C. free the page
152 *
153 * There are 2 critical interleavings that matter:
154 * - 2 runs before A: in this case, A sees elevated refcount and bails out
155 * - A runs before 2: in this case, 2 sees zero refcount and retries;
156 * subsequently, B will complete and 1 will find no page, causing the
157 * lookup to return NULL.
158 *
159 * It is possible that between 1 and 2, the page is removed then the exact same
160 * page is inserted into the same position in pagecache. That's OK: the
161 * old find_get_page using a lock could equally have run before or after
162 * such a re-insertion, depending on order that locks are granted.
163 *
164 * Lookups racing against pagecache insertion isn't a big problem: either 1
165 * will find the page or it will not. Likewise, the old find_get_page could run
166 * either before the insertion or afterwards, depending on timing.
167 */
168 static inline int __page_cache_add_speculative(struct page *page, int count)
169 {
170 #ifdef CONFIG_TINY_RCU
171 # ifdef CONFIG_PREEMPT_COUNT
172 VM_BUG_ON(!in_atomic() && !irqs_disabled());
173 # endif
174 /*
175 * Preempt must be disabled here - we rely on rcu_read_lock doing
176 * this for us.
177 *
178 * Pagecache won't be truncated from interrupt context, so if we have
179 * found a page in the radix tree here, we have pinned its refcount by
180 * disabling preempt, and hence no need for the "speculative get" that
181 * SMP requires.
182 */
183 VM_BUG_ON_PAGE(page_count(page) == 0, page);
184 page_ref_add(page, count);
185
186 #else
187 if (unlikely(!page_ref_add_unless(page, count, 0))) {
188 /*
189 * Either the page has been freed, or will be freed.
190 * In either case, retry here and the caller should
191 * do the right thing (see comments above).
192 */
193 return 0;
194 }
195 #endif
196 VM_BUG_ON_PAGE(PageTail(page), page);
197
198 return 1;
199 }
200
201 static inline int page_cache_get_speculative(struct page *page)
202 {
203 return __page_cache_add_speculative(page, 1);
204 }
205
206 static inline int page_cache_add_speculative(struct page *page, int count)
207 {
208 return __page_cache_add_speculative(page, count);
209 }
210
211 /**
212 * attach_page_private - Attach private data to a page.
213 * @page: Page to attach data to.
214 * @data: Data to attach to page.
215 *
216 * Attaching private data to a page increments the page's reference count.
217 * The data must be detached before the page will be freed.
218 */
219 static inline void attach_page_private(struct page *page, void *data)
220 {
221 get_page(page);
222 set_page_private(page, (unsigned long)data);
223 SetPagePrivate(page);
224 }
225
226 /**
227 * detach_page_private - Detach private data from a page.
228 * @page: Page to detach data from.
229 *
230 * Removes the data that was previously attached to the page and decrements
231 * the refcount on the page.
232 *
233 * Return: Data that was attached to the page.
234 */
235 static inline void *detach_page_private(struct page *page)
236 {
237 void *data = (void *)page_private(page);
238
239 if (!PagePrivate(page))
240 return NULL;
241 ClearPagePrivate(page);
242 set_page_private(page, 0);
243 put_page(page);
244
245 return data;
246 }
247
248 #ifdef CONFIG_NUMA
249 extern struct page *__page_cache_alloc(gfp_t gfp);
250 #else
251 static inline struct page *__page_cache_alloc(gfp_t gfp)
252 {
253 return alloc_pages(gfp, 0);
254 }
255 #endif
256
257 static inline struct page *page_cache_alloc(struct address_space *x)
258 {
259 return __page_cache_alloc(mapping_gfp_mask(x));
260 }
261
262 static inline gfp_t readahead_gfp_mask(struct address_space *x)
263 {
264 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
265 }
266
267 typedef int filler_t(void *, struct page *);
268
269 pgoff_t page_cache_next_miss(struct address_space *mapping,
270 pgoff_t index, unsigned long max_scan);
271 pgoff_t page_cache_prev_miss(struct address_space *mapping,
272 pgoff_t index, unsigned long max_scan);
273
274 #define FGP_ACCESSED 0x00000001
275 #define FGP_LOCK 0x00000002
276 #define FGP_CREAT 0x00000004
277 #define FGP_WRITE 0x00000008
278 #define FGP_NOFS 0x00000010
279 #define FGP_NOWAIT 0x00000020
280 #define FGP_FOR_MMAP 0x00000040
281
282 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
283 int fgp_flags, gfp_t cache_gfp_mask);
284
285 /**
286 * find_get_page - find and get a page reference
287 * @mapping: the address_space to search
288 * @offset: the page index
289 *
290 * Looks up the page cache slot at @mapping & @offset. If there is a
291 * page cache page, it is returned with an increased refcount.
292 *
293 * Otherwise, %NULL is returned.
294 */
295 static inline struct page *find_get_page(struct address_space *mapping,
296 pgoff_t offset)
297 {
298 return pagecache_get_page(mapping, offset, 0, 0);
299 }
300
301 static inline struct page *find_get_page_flags(struct address_space *mapping,
302 pgoff_t offset, int fgp_flags)
303 {
304 return pagecache_get_page(mapping, offset, fgp_flags, 0);
305 }
306
307 /**
308 * find_lock_page - locate, pin and lock a pagecache page
309 * @mapping: the address_space to search
310 * @offset: the page index
311 *
312 * Looks up the page cache slot at @mapping & @offset. If there is a
313 * page cache page, it is returned locked and with an increased
314 * refcount.
315 *
316 * Otherwise, %NULL is returned.
317 *
318 * find_lock_page() may sleep.
319 */
320 static inline struct page *find_lock_page(struct address_space *mapping,
321 pgoff_t offset)
322 {
323 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
324 }
325
326 /**
327 * find_or_create_page - locate or add a pagecache page
328 * @mapping: the page's address_space
329 * @index: the page's index into the mapping
330 * @gfp_mask: page allocation mode
331 *
332 * Looks up the page cache slot at @mapping & @offset. If there is a
333 * page cache page, it is returned locked and with an increased
334 * refcount.
335 *
336 * If the page is not present, a new page is allocated using @gfp_mask
337 * and added to the page cache and the VM's LRU list. The page is
338 * returned locked and with an increased refcount.
339 *
340 * On memory exhaustion, %NULL is returned.
341 *
342 * find_or_create_page() may sleep, even if @gfp_flags specifies an
343 * atomic allocation!
344 */
345 static inline struct page *find_or_create_page(struct address_space *mapping,
346 pgoff_t index, gfp_t gfp_mask)
347 {
348 return pagecache_get_page(mapping, index,
349 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
350 gfp_mask);
351 }
352
353 /**
354 * grab_cache_page_nowait - returns locked page at given index in given cache
355 * @mapping: target address_space
356 * @index: the page index
357 *
358 * Same as grab_cache_page(), but do not wait if the page is unavailable.
359 * This is intended for speculative data generators, where the data can
360 * be regenerated if the page couldn't be grabbed. This routine should
361 * be safe to call while holding the lock for another page.
362 *
363 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
364 * and deadlock against the caller's locked page.
365 */
366 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
367 pgoff_t index)
368 {
369 return pagecache_get_page(mapping, index,
370 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
371 mapping_gfp_mask(mapping));
372 }
373
374 /*
375 * Given the page we found in the page cache, return the page corresponding
376 * to this index in the file
377 */
378 static inline struct page *find_subpage(struct page *head, pgoff_t index)
379 {
380 /* HugeTLBfs wants the head page regardless */
381 if (PageHuge(head))
382 return head;
383
384 return head + (index & (hpage_nr_pages(head) - 1));
385 }
386
387 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
388 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
389 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
390 unsigned int nr_entries, struct page **entries,
391 pgoff_t *indices);
392 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
393 pgoff_t end, unsigned int nr_pages,
394 struct page **pages);
395 static inline unsigned find_get_pages(struct address_space *mapping,
396 pgoff_t *start, unsigned int nr_pages,
397 struct page **pages)
398 {
399 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
400 pages);
401 }
402 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
403 unsigned int nr_pages, struct page **pages);
404 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
405 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
406 struct page **pages);
407 static inline unsigned find_get_pages_tag(struct address_space *mapping,
408 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
409 struct page **pages)
410 {
411 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
412 nr_pages, pages);
413 }
414
415 struct page *grab_cache_page_write_begin(struct address_space *mapping,
416 pgoff_t index, unsigned flags);
417
418 /*
419 * Returns locked page at given index in given cache, creating it if needed.
420 */
421 static inline struct page *grab_cache_page(struct address_space *mapping,
422 pgoff_t index)
423 {
424 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
425 }
426
427 extern struct page * read_cache_page(struct address_space *mapping,
428 pgoff_t index, filler_t *filler, void *data);
429 extern struct page * read_cache_page_gfp(struct address_space *mapping,
430 pgoff_t index, gfp_t gfp_mask);
431 extern int read_cache_pages(struct address_space *mapping,
432 struct list_head *pages, filler_t *filler, void *data);
433
434 static inline struct page *read_mapping_page(struct address_space *mapping,
435 pgoff_t index, void *data)
436 {
437 return read_cache_page(mapping, index, NULL, data);
438 }
439
440 /*
441 * Get index of the page with in radix-tree
442 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
443 */
444 static inline pgoff_t page_to_index(struct page *page)
445 {
446 pgoff_t pgoff;
447
448 if (likely(!PageTransTail(page)))
449 return page->index;
450
451 /*
452 * We don't initialize ->index for tail pages: calculate based on
453 * head page
454 */
455 pgoff = compound_head(page)->index;
456 pgoff += page - compound_head(page);
457 return pgoff;
458 }
459
460 /*
461 * Get the offset in PAGE_SIZE.
462 * (TODO: hugepage should have ->index in PAGE_SIZE)
463 */
464 static inline pgoff_t page_to_pgoff(struct page *page)
465 {
466 if (unlikely(PageHeadHuge(page)))
467 return page->index << compound_order(page);
468
469 return page_to_index(page);
470 }
471
472 /*
473 * Return byte-offset into filesystem object for page.
474 */
475 static inline loff_t page_offset(struct page *page)
476 {
477 return ((loff_t)page->index) << PAGE_SHIFT;
478 }
479
480 static inline loff_t page_file_offset(struct page *page)
481 {
482 return ((loff_t)page_index(page)) << PAGE_SHIFT;
483 }
484
485 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
486 unsigned long address);
487
488 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
489 unsigned long address)
490 {
491 pgoff_t pgoff;
492 if (unlikely(is_vm_hugetlb_page(vma)))
493 return linear_hugepage_index(vma, address);
494 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
495 pgoff += vma->vm_pgoff;
496 return pgoff;
497 }
498
499 extern void __lock_page(struct page *page);
500 extern int __lock_page_killable(struct page *page);
501 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
502 unsigned int flags);
503 extern void unlock_page(struct page *page);
504
505 /*
506 * Return true if the page was successfully locked
507 */
508 static inline int trylock_page(struct page *page)
509 {
510 page = compound_head(page);
511 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
512 }
513
514 /*
515 * lock_page may only be called if we have the page's inode pinned.
516 */
517 static inline void lock_page(struct page *page)
518 {
519 might_sleep();
520 if (!trylock_page(page))
521 __lock_page(page);
522 }
523
524 /*
525 * lock_page_killable is like lock_page but can be interrupted by fatal
526 * signals. It returns 0 if it locked the page and -EINTR if it was
527 * killed while waiting.
528 */
529 static inline int lock_page_killable(struct page *page)
530 {
531 might_sleep();
532 if (!trylock_page(page))
533 return __lock_page_killable(page);
534 return 0;
535 }
536
537 /*
538 * lock_page_or_retry - Lock the page, unless this would block and the
539 * caller indicated that it can handle a retry.
540 *
541 * Return value and mmap_lock implications depend on flags; see
542 * __lock_page_or_retry().
543 */
544 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
545 unsigned int flags)
546 {
547 might_sleep();
548 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
549 }
550
551 /*
552 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
553 * and should not be used directly.
554 */
555 extern void wait_on_page_bit(struct page *page, int bit_nr);
556 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
557
558 /*
559 * Wait for a page to be unlocked.
560 *
561 * This must be called with the caller "holding" the page,
562 * ie with increased "page->count" so that the page won't
563 * go away during the wait..
564 */
565 static inline void wait_on_page_locked(struct page *page)
566 {
567 if (PageLocked(page))
568 wait_on_page_bit(compound_head(page), PG_locked);
569 }
570
571 static inline int wait_on_page_locked_killable(struct page *page)
572 {
573 if (!PageLocked(page))
574 return 0;
575 return wait_on_page_bit_killable(compound_head(page), PG_locked);
576 }
577
578 extern void put_and_wait_on_page_locked(struct page *page);
579
580 void wait_on_page_writeback(struct page *page);
581 extern void end_page_writeback(struct page *page);
582 void wait_for_stable_page(struct page *page);
583
584 void page_endio(struct page *page, bool is_write, int err);
585
586 /*
587 * Add an arbitrary waiter to a page's wait queue
588 */
589 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
590
591 /*
592 * Fault everything in given userspace address range in.
593 */
594 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
595 {
596 char __user *end = uaddr + size - 1;
597
598 if (unlikely(size == 0))
599 return 0;
600
601 if (unlikely(uaddr > end))
602 return -EFAULT;
603 /*
604 * Writing zeroes into userspace here is OK, because we know that if
605 * the zero gets there, we'll be overwriting it.
606 */
607 do {
608 if (unlikely(__put_user(0, uaddr) != 0))
609 return -EFAULT;
610 uaddr += PAGE_SIZE;
611 } while (uaddr <= end);
612
613 /* Check whether the range spilled into the next page. */
614 if (((unsigned long)uaddr & PAGE_MASK) ==
615 ((unsigned long)end & PAGE_MASK))
616 return __put_user(0, end);
617
618 return 0;
619 }
620
621 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
622 {
623 volatile char c;
624 const char __user *end = uaddr + size - 1;
625
626 if (unlikely(size == 0))
627 return 0;
628
629 if (unlikely(uaddr > end))
630 return -EFAULT;
631
632 do {
633 if (unlikely(__get_user(c, uaddr) != 0))
634 return -EFAULT;
635 uaddr += PAGE_SIZE;
636 } while (uaddr <= end);
637
638 /* Check whether the range spilled into the next page. */
639 if (((unsigned long)uaddr & PAGE_MASK) ==
640 ((unsigned long)end & PAGE_MASK)) {
641 return __get_user(c, end);
642 }
643
644 (void)c;
645 return 0;
646 }
647
648 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
649 pgoff_t index, gfp_t gfp_mask);
650 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
651 pgoff_t index, gfp_t gfp_mask);
652 extern void delete_from_page_cache(struct page *page);
653 extern void __delete_from_page_cache(struct page *page, void *shadow);
654 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
655 void delete_from_page_cache_batch(struct address_space *mapping,
656 struct pagevec *pvec);
657
658 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
659
660 void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
661 struct file *, pgoff_t index, unsigned long req_count);
662 void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
663 struct file *, struct page *, pgoff_t index,
664 unsigned long req_count);
665 void page_cache_readahead_unbounded(struct address_space *, struct file *,
666 pgoff_t index, unsigned long nr_to_read,
667 unsigned long lookahead_count);
668
669 /*
670 * Like add_to_page_cache_locked, but used to add newly allocated pages:
671 * the page is new, so we can just run __SetPageLocked() against it.
672 */
673 static inline int add_to_page_cache(struct page *page,
674 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
675 {
676 int error;
677
678 __SetPageLocked(page);
679 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
680 if (unlikely(error))
681 __ClearPageLocked(page);
682 return error;
683 }
684
685 /**
686 * struct readahead_control - Describes a readahead request.
687 *
688 * A readahead request is for consecutive pages. Filesystems which
689 * implement the ->readahead method should call readahead_page() or
690 * readahead_page_batch() in a loop and attempt to start I/O against
691 * each page in the request.
692 *
693 * Most of the fields in this struct are private and should be accessed
694 * by the functions below.
695 *
696 * @file: The file, used primarily by network filesystems for authentication.
697 * May be NULL if invoked internally by the filesystem.
698 * @mapping: Readahead this filesystem object.
699 */
700 struct readahead_control {
701 struct file *file;
702 struct address_space *mapping;
703 /* private: use the readahead_* accessors instead */
704 pgoff_t _index;
705 unsigned int _nr_pages;
706 unsigned int _batch_count;
707 };
708
709 /**
710 * readahead_page - Get the next page to read.
711 * @rac: The current readahead request.
712 *
713 * Context: The page is locked and has an elevated refcount. The caller
714 * should decreases the refcount once the page has been submitted for I/O
715 * and unlock the page once all I/O to that page has completed.
716 * Return: A pointer to the next page, or %NULL if we are done.
717 */
718 static inline struct page *readahead_page(struct readahead_control *rac)
719 {
720 struct page *page;
721
722 BUG_ON(rac->_batch_count > rac->_nr_pages);
723 rac->_nr_pages -= rac->_batch_count;
724 rac->_index += rac->_batch_count;
725
726 if (!rac->_nr_pages) {
727 rac->_batch_count = 0;
728 return NULL;
729 }
730
731 page = xa_load(&rac->mapping->i_pages, rac->_index);
732 VM_BUG_ON_PAGE(!PageLocked(page), page);
733 rac->_batch_count = hpage_nr_pages(page);
734
735 return page;
736 }
737
738 static inline unsigned int __readahead_batch(struct readahead_control *rac,
739 struct page **array, unsigned int array_sz)
740 {
741 unsigned int i = 0;
742 XA_STATE(xas, &rac->mapping->i_pages, 0);
743 struct page *page;
744
745 BUG_ON(rac->_batch_count > rac->_nr_pages);
746 rac->_nr_pages -= rac->_batch_count;
747 rac->_index += rac->_batch_count;
748 rac->_batch_count = 0;
749
750 xas_set(&xas, rac->_index);
751 rcu_read_lock();
752 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
753 VM_BUG_ON_PAGE(!PageLocked(page), page);
754 VM_BUG_ON_PAGE(PageTail(page), page);
755 array[i++] = page;
756 rac->_batch_count += hpage_nr_pages(page);
757
758 /*
759 * The page cache isn't using multi-index entries yet,
760 * so the xas cursor needs to be manually moved to the
761 * next index. This can be removed once the page cache
762 * is converted.
763 */
764 if (PageHead(page))
765 xas_set(&xas, rac->_index + rac->_batch_count);
766
767 if (i == array_sz)
768 break;
769 }
770 rcu_read_unlock();
771
772 return i;
773 }
774
775 /**
776 * readahead_page_batch - Get a batch of pages to read.
777 * @rac: The current readahead request.
778 * @array: An array of pointers to struct page.
779 *
780 * Context: The pages are locked and have an elevated refcount. The caller
781 * should decreases the refcount once the page has been submitted for I/O
782 * and unlock the page once all I/O to that page has completed.
783 * Return: The number of pages placed in the array. 0 indicates the request
784 * is complete.
785 */
786 #define readahead_page_batch(rac, array) \
787 __readahead_batch(rac, array, ARRAY_SIZE(array))
788
789 /**
790 * readahead_pos - The byte offset into the file of this readahead request.
791 * @rac: The readahead request.
792 */
793 static inline loff_t readahead_pos(struct readahead_control *rac)
794 {
795 return (loff_t)rac->_index * PAGE_SIZE;
796 }
797
798 /**
799 * readahead_length - The number of bytes in this readahead request.
800 * @rac: The readahead request.
801 */
802 static inline loff_t readahead_length(struct readahead_control *rac)
803 {
804 return (loff_t)rac->_nr_pages * PAGE_SIZE;
805 }
806
807 /**
808 * readahead_index - The index of the first page in this readahead request.
809 * @rac: The readahead request.
810 */
811 static inline pgoff_t readahead_index(struct readahead_control *rac)
812 {
813 return rac->_index;
814 }
815
816 /**
817 * readahead_count - The number of pages in this readahead request.
818 * @rac: The readahead request.
819 */
820 static inline unsigned int readahead_count(struct readahead_control *rac)
821 {
822 return rac->_nr_pages;
823 }
824
825 static inline unsigned long dir_pages(struct inode *inode)
826 {
827 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
828 PAGE_SHIFT;
829 }
830
831 /**
832 * page_mkwrite_check_truncate - check if page was truncated
833 * @page: the page to check
834 * @inode: the inode to check the page against
835 *
836 * Returns the number of bytes in the page up to EOF,
837 * or -EFAULT if the page was truncated.
838 */
839 static inline int page_mkwrite_check_truncate(struct page *page,
840 struct inode *inode)
841 {
842 loff_t size = i_size_read(inode);
843 pgoff_t index = size >> PAGE_SHIFT;
844 int offset = offset_in_page(size);
845
846 if (page->mapping != inode->i_mapping)
847 return -EFAULT;
848
849 /* page is wholly inside EOF */
850 if (page->index < index)
851 return PAGE_SIZE;
852 /* page is wholly past EOF */
853 if (page->index > index || !offset)
854 return -EFAULT;
855 /* page is partially inside EOF */
856 return offset;
857 }
858
859 #endif /* _LINUX_PAGEMAP_H */