]> git.ipfire.org Git - people/ms/linux.git/blob - include/linux/perf_event.h
atomic: use <linux/atomic.h>
[people/ms/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57
58 PERF_COUNT_HW_MAX, /* non-ABI */
59 };
60
61 /*
62 * Generalized hardware cache events:
63 *
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
67 */
68 enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
75 PERF_COUNT_HW_CACHE_NODE = 6,
76
77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
78 };
79
80 enum perf_hw_cache_op_id {
81 PERF_COUNT_HW_CACHE_OP_READ = 0,
82 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
84
85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
86 };
87
88 enum perf_hw_cache_op_result_id {
89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
91
92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
93 };
94
95 /*
96 * Special "software" events provided by the kernel, even if the hardware
97 * does not support performance events. These events measure various
98 * physical and sw events of the kernel (and allow the profiling of them as
99 * well):
100 */
101 enum perf_sw_ids {
102 PERF_COUNT_SW_CPU_CLOCK = 0,
103 PERF_COUNT_SW_TASK_CLOCK = 1,
104 PERF_COUNT_SW_PAGE_FAULTS = 2,
105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
106 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
110 PERF_COUNT_SW_EMULATION_FAULTS = 8,
111
112 PERF_COUNT_SW_MAX, /* non-ABI */
113 };
114
115 /*
116 * Bits that can be set in attr.sample_type to request information
117 * in the overflow packets.
118 */
119 enum perf_event_sample_format {
120 PERF_SAMPLE_IP = 1U << 0,
121 PERF_SAMPLE_TID = 1U << 1,
122 PERF_SAMPLE_TIME = 1U << 2,
123 PERF_SAMPLE_ADDR = 1U << 3,
124 PERF_SAMPLE_READ = 1U << 4,
125 PERF_SAMPLE_CALLCHAIN = 1U << 5,
126 PERF_SAMPLE_ID = 1U << 6,
127 PERF_SAMPLE_CPU = 1U << 7,
128 PERF_SAMPLE_PERIOD = 1U << 8,
129 PERF_SAMPLE_STREAM_ID = 1U << 9,
130 PERF_SAMPLE_RAW = 1U << 10,
131
132 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
133 };
134
135 /*
136 * The format of the data returned by read() on a perf event fd,
137 * as specified by attr.read_format:
138 *
139 * struct read_format {
140 * { u64 value;
141 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
142 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
143 * { u64 id; } && PERF_FORMAT_ID
144 * } && !PERF_FORMAT_GROUP
145 *
146 * { u64 nr;
147 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
148 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
149 * { u64 value;
150 * { u64 id; } && PERF_FORMAT_ID
151 * } cntr[nr];
152 * } && PERF_FORMAT_GROUP
153 * };
154 */
155 enum perf_event_read_format {
156 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
157 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
158 PERF_FORMAT_ID = 1U << 2,
159 PERF_FORMAT_GROUP = 1U << 3,
160
161 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
162 };
163
164 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
165
166 /*
167 * Hardware event_id to monitor via a performance monitoring event:
168 */
169 struct perf_event_attr {
170
171 /*
172 * Major type: hardware/software/tracepoint/etc.
173 */
174 __u32 type;
175
176 /*
177 * Size of the attr structure, for fwd/bwd compat.
178 */
179 __u32 size;
180
181 /*
182 * Type specific configuration information.
183 */
184 __u64 config;
185
186 union {
187 __u64 sample_period;
188 __u64 sample_freq;
189 };
190
191 __u64 sample_type;
192 __u64 read_format;
193
194 __u64 disabled : 1, /* off by default */
195 inherit : 1, /* children inherit it */
196 pinned : 1, /* must always be on PMU */
197 exclusive : 1, /* only group on PMU */
198 exclude_user : 1, /* don't count user */
199 exclude_kernel : 1, /* ditto kernel */
200 exclude_hv : 1, /* ditto hypervisor */
201 exclude_idle : 1, /* don't count when idle */
202 mmap : 1, /* include mmap data */
203 comm : 1, /* include comm data */
204 freq : 1, /* use freq, not period */
205 inherit_stat : 1, /* per task counts */
206 enable_on_exec : 1, /* next exec enables */
207 task : 1, /* trace fork/exit */
208 watermark : 1, /* wakeup_watermark */
209 /*
210 * precise_ip:
211 *
212 * 0 - SAMPLE_IP can have arbitrary skid
213 * 1 - SAMPLE_IP must have constant skid
214 * 2 - SAMPLE_IP requested to have 0 skid
215 * 3 - SAMPLE_IP must have 0 skid
216 *
217 * See also PERF_RECORD_MISC_EXACT_IP
218 */
219 precise_ip : 2, /* skid constraint */
220 mmap_data : 1, /* non-exec mmap data */
221 sample_id_all : 1, /* sample_type all events */
222
223 __reserved_1 : 45;
224
225 union {
226 __u32 wakeup_events; /* wakeup every n events */
227 __u32 wakeup_watermark; /* bytes before wakeup */
228 };
229
230 __u32 bp_type;
231 union {
232 __u64 bp_addr;
233 __u64 config1; /* extension of config */
234 };
235 union {
236 __u64 bp_len;
237 __u64 config2; /* extension of config1 */
238 };
239 };
240
241 /*
242 * Ioctls that can be done on a perf event fd:
243 */
244 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
245 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
246 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
247 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
248 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
249 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
250 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
251
252 enum perf_event_ioc_flags {
253 PERF_IOC_FLAG_GROUP = 1U << 0,
254 };
255
256 /*
257 * Structure of the page that can be mapped via mmap
258 */
259 struct perf_event_mmap_page {
260 __u32 version; /* version number of this structure */
261 __u32 compat_version; /* lowest version this is compat with */
262
263 /*
264 * Bits needed to read the hw events in user-space.
265 *
266 * u32 seq;
267 * s64 count;
268 *
269 * do {
270 * seq = pc->lock;
271 *
272 * barrier()
273 * if (pc->index) {
274 * count = pmc_read(pc->index - 1);
275 * count += pc->offset;
276 * } else
277 * goto regular_read;
278 *
279 * barrier();
280 * } while (pc->lock != seq);
281 *
282 * NOTE: for obvious reason this only works on self-monitoring
283 * processes.
284 */
285 __u32 lock; /* seqlock for synchronization */
286 __u32 index; /* hardware event identifier */
287 __s64 offset; /* add to hardware event value */
288 __u64 time_enabled; /* time event active */
289 __u64 time_running; /* time event on cpu */
290
291 /*
292 * Hole for extension of the self monitor capabilities
293 */
294
295 __u64 __reserved[123]; /* align to 1k */
296
297 /*
298 * Control data for the mmap() data buffer.
299 *
300 * User-space reading the @data_head value should issue an rmb(), on
301 * SMP capable platforms, after reading this value -- see
302 * perf_event_wakeup().
303 *
304 * When the mapping is PROT_WRITE the @data_tail value should be
305 * written by userspace to reflect the last read data. In this case
306 * the kernel will not over-write unread data.
307 */
308 __u64 data_head; /* head in the data section */
309 __u64 data_tail; /* user-space written tail */
310 };
311
312 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
313 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
314 #define PERF_RECORD_MISC_KERNEL (1 << 0)
315 #define PERF_RECORD_MISC_USER (2 << 0)
316 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
317 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
318 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
319
320 /*
321 * Indicates that the content of PERF_SAMPLE_IP points to
322 * the actual instruction that triggered the event. See also
323 * perf_event_attr::precise_ip.
324 */
325 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
326 /*
327 * Reserve the last bit to indicate some extended misc field
328 */
329 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
330
331 struct perf_event_header {
332 __u32 type;
333 __u16 misc;
334 __u16 size;
335 };
336
337 enum perf_event_type {
338
339 /*
340 * If perf_event_attr.sample_id_all is set then all event types will
341 * have the sample_type selected fields related to where/when
342 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
343 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
344 * the perf_event_header and the fields already present for the existing
345 * fields, i.e. at the end of the payload. That way a newer perf.data
346 * file will be supported by older perf tools, with these new optional
347 * fields being ignored.
348 *
349 * The MMAP events record the PROT_EXEC mappings so that we can
350 * correlate userspace IPs to code. They have the following structure:
351 *
352 * struct {
353 * struct perf_event_header header;
354 *
355 * u32 pid, tid;
356 * u64 addr;
357 * u64 len;
358 * u64 pgoff;
359 * char filename[];
360 * };
361 */
362 PERF_RECORD_MMAP = 1,
363
364 /*
365 * struct {
366 * struct perf_event_header header;
367 * u64 id;
368 * u64 lost;
369 * };
370 */
371 PERF_RECORD_LOST = 2,
372
373 /*
374 * struct {
375 * struct perf_event_header header;
376 *
377 * u32 pid, tid;
378 * char comm[];
379 * };
380 */
381 PERF_RECORD_COMM = 3,
382
383 /*
384 * struct {
385 * struct perf_event_header header;
386 * u32 pid, ppid;
387 * u32 tid, ptid;
388 * u64 time;
389 * };
390 */
391 PERF_RECORD_EXIT = 4,
392
393 /*
394 * struct {
395 * struct perf_event_header header;
396 * u64 time;
397 * u64 id;
398 * u64 stream_id;
399 * };
400 */
401 PERF_RECORD_THROTTLE = 5,
402 PERF_RECORD_UNTHROTTLE = 6,
403
404 /*
405 * struct {
406 * struct perf_event_header header;
407 * u32 pid, ppid;
408 * u32 tid, ptid;
409 * u64 time;
410 * };
411 */
412 PERF_RECORD_FORK = 7,
413
414 /*
415 * struct {
416 * struct perf_event_header header;
417 * u32 pid, tid;
418 *
419 * struct read_format values;
420 * };
421 */
422 PERF_RECORD_READ = 8,
423
424 /*
425 * struct {
426 * struct perf_event_header header;
427 *
428 * { u64 ip; } && PERF_SAMPLE_IP
429 * { u32 pid, tid; } && PERF_SAMPLE_TID
430 * { u64 time; } && PERF_SAMPLE_TIME
431 * { u64 addr; } && PERF_SAMPLE_ADDR
432 * { u64 id; } && PERF_SAMPLE_ID
433 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
434 * { u32 cpu, res; } && PERF_SAMPLE_CPU
435 * { u64 period; } && PERF_SAMPLE_PERIOD
436 *
437 * { struct read_format values; } && PERF_SAMPLE_READ
438 *
439 * { u64 nr,
440 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
441 *
442 * #
443 * # The RAW record below is opaque data wrt the ABI
444 * #
445 * # That is, the ABI doesn't make any promises wrt to
446 * # the stability of its content, it may vary depending
447 * # on event, hardware, kernel version and phase of
448 * # the moon.
449 * #
450 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
451 * #
452 *
453 * { u32 size;
454 * char data[size];}&& PERF_SAMPLE_RAW
455 * };
456 */
457 PERF_RECORD_SAMPLE = 9,
458
459 PERF_RECORD_MAX, /* non-ABI */
460 };
461
462 enum perf_callchain_context {
463 PERF_CONTEXT_HV = (__u64)-32,
464 PERF_CONTEXT_KERNEL = (__u64)-128,
465 PERF_CONTEXT_USER = (__u64)-512,
466
467 PERF_CONTEXT_GUEST = (__u64)-2048,
468 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
469 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
470
471 PERF_CONTEXT_MAX = (__u64)-4095,
472 };
473
474 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
475 #define PERF_FLAG_FD_OUTPUT (1U << 1)
476 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
477
478 #ifdef __KERNEL__
479 /*
480 * Kernel-internal data types and definitions:
481 */
482
483 #ifdef CONFIG_PERF_EVENTS
484 # include <linux/cgroup.h>
485 # include <asm/perf_event.h>
486 # include <asm/local64.h>
487 #endif
488
489 struct perf_guest_info_callbacks {
490 int (*is_in_guest)(void);
491 int (*is_user_mode)(void);
492 unsigned long (*get_guest_ip)(void);
493 };
494
495 #ifdef CONFIG_HAVE_HW_BREAKPOINT
496 #include <asm/hw_breakpoint.h>
497 #endif
498
499 #include <linux/list.h>
500 #include <linux/mutex.h>
501 #include <linux/rculist.h>
502 #include <linux/rcupdate.h>
503 #include <linux/spinlock.h>
504 #include <linux/hrtimer.h>
505 #include <linux/fs.h>
506 #include <linux/pid_namespace.h>
507 #include <linux/workqueue.h>
508 #include <linux/ftrace.h>
509 #include <linux/cpu.h>
510 #include <linux/irq_work.h>
511 #include <linux/jump_label.h>
512 #include <linux/atomic.h>
513 #include <asm/local.h>
514
515 #define PERF_MAX_STACK_DEPTH 255
516
517 struct perf_callchain_entry {
518 __u64 nr;
519 __u64 ip[PERF_MAX_STACK_DEPTH];
520 };
521
522 struct perf_raw_record {
523 u32 size;
524 void *data;
525 };
526
527 struct perf_branch_entry {
528 __u64 from;
529 __u64 to;
530 __u64 flags;
531 };
532
533 struct perf_branch_stack {
534 __u64 nr;
535 struct perf_branch_entry entries[0];
536 };
537
538 struct task_struct;
539
540 /*
541 * extra PMU register associated with an event
542 */
543 struct hw_perf_event_extra {
544 u64 config; /* register value */
545 unsigned int reg; /* register address or index */
546 int alloc; /* extra register already allocated */
547 int idx; /* index in shared_regs->regs[] */
548 };
549
550 /**
551 * struct hw_perf_event - performance event hardware details:
552 */
553 struct hw_perf_event {
554 #ifdef CONFIG_PERF_EVENTS
555 union {
556 struct { /* hardware */
557 u64 config;
558 u64 last_tag;
559 unsigned long config_base;
560 unsigned long event_base;
561 int idx;
562 int last_cpu;
563 struct hw_perf_event_extra extra_reg;
564 };
565 struct { /* software */
566 struct hrtimer hrtimer;
567 };
568 #ifdef CONFIG_HAVE_HW_BREAKPOINT
569 struct { /* breakpoint */
570 struct arch_hw_breakpoint info;
571 struct list_head bp_list;
572 /*
573 * Crufty hack to avoid the chicken and egg
574 * problem hw_breakpoint has with context
575 * creation and event initalization.
576 */
577 struct task_struct *bp_target;
578 };
579 #endif
580 };
581 int state;
582 local64_t prev_count;
583 u64 sample_period;
584 u64 last_period;
585 local64_t period_left;
586 u64 interrupts;
587
588 u64 freq_time_stamp;
589 u64 freq_count_stamp;
590 #endif
591 };
592
593 /*
594 * hw_perf_event::state flags
595 */
596 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
597 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
598 #define PERF_HES_ARCH 0x04
599
600 struct perf_event;
601
602 /*
603 * Common implementation detail of pmu::{start,commit,cancel}_txn
604 */
605 #define PERF_EVENT_TXN 0x1
606
607 /**
608 * struct pmu - generic performance monitoring unit
609 */
610 struct pmu {
611 struct list_head entry;
612
613 struct device *dev;
614 char *name;
615 int type;
616
617 int * __percpu pmu_disable_count;
618 struct perf_cpu_context * __percpu pmu_cpu_context;
619 int task_ctx_nr;
620
621 /*
622 * Fully disable/enable this PMU, can be used to protect from the PMI
623 * as well as for lazy/batch writing of the MSRs.
624 */
625 void (*pmu_enable) (struct pmu *pmu); /* optional */
626 void (*pmu_disable) (struct pmu *pmu); /* optional */
627
628 /*
629 * Try and initialize the event for this PMU.
630 * Should return -ENOENT when the @event doesn't match this PMU.
631 */
632 int (*event_init) (struct perf_event *event);
633
634 #define PERF_EF_START 0x01 /* start the counter when adding */
635 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
636 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
637
638 /*
639 * Adds/Removes a counter to/from the PMU, can be done inside
640 * a transaction, see the ->*_txn() methods.
641 */
642 int (*add) (struct perf_event *event, int flags);
643 void (*del) (struct perf_event *event, int flags);
644
645 /*
646 * Starts/Stops a counter present on the PMU. The PMI handler
647 * should stop the counter when perf_event_overflow() returns
648 * !0. ->start() will be used to continue.
649 */
650 void (*start) (struct perf_event *event, int flags);
651 void (*stop) (struct perf_event *event, int flags);
652
653 /*
654 * Updates the counter value of the event.
655 */
656 void (*read) (struct perf_event *event);
657
658 /*
659 * Group events scheduling is treated as a transaction, add
660 * group events as a whole and perform one schedulability test.
661 * If the test fails, roll back the whole group
662 *
663 * Start the transaction, after this ->add() doesn't need to
664 * do schedulability tests.
665 */
666 void (*start_txn) (struct pmu *pmu); /* optional */
667 /*
668 * If ->start_txn() disabled the ->add() schedulability test
669 * then ->commit_txn() is required to perform one. On success
670 * the transaction is closed. On error the transaction is kept
671 * open until ->cancel_txn() is called.
672 */
673 int (*commit_txn) (struct pmu *pmu); /* optional */
674 /*
675 * Will cancel the transaction, assumes ->del() is called
676 * for each successful ->add() during the transaction.
677 */
678 void (*cancel_txn) (struct pmu *pmu); /* optional */
679 };
680
681 /**
682 * enum perf_event_active_state - the states of a event
683 */
684 enum perf_event_active_state {
685 PERF_EVENT_STATE_ERROR = -2,
686 PERF_EVENT_STATE_OFF = -1,
687 PERF_EVENT_STATE_INACTIVE = 0,
688 PERF_EVENT_STATE_ACTIVE = 1,
689 };
690
691 struct file;
692 struct perf_sample_data;
693
694 typedef void (*perf_overflow_handler_t)(struct perf_event *,
695 struct perf_sample_data *,
696 struct pt_regs *regs);
697
698 enum perf_group_flag {
699 PERF_GROUP_SOFTWARE = 0x1,
700 };
701
702 #define SWEVENT_HLIST_BITS 8
703 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
704
705 struct swevent_hlist {
706 struct hlist_head heads[SWEVENT_HLIST_SIZE];
707 struct rcu_head rcu_head;
708 };
709
710 #define PERF_ATTACH_CONTEXT 0x01
711 #define PERF_ATTACH_GROUP 0x02
712 #define PERF_ATTACH_TASK 0x04
713
714 #ifdef CONFIG_CGROUP_PERF
715 /*
716 * perf_cgroup_info keeps track of time_enabled for a cgroup.
717 * This is a per-cpu dynamically allocated data structure.
718 */
719 struct perf_cgroup_info {
720 u64 time;
721 u64 timestamp;
722 };
723
724 struct perf_cgroup {
725 struct cgroup_subsys_state css;
726 struct perf_cgroup_info *info; /* timing info, one per cpu */
727 };
728 #endif
729
730 struct ring_buffer;
731
732 /**
733 * struct perf_event - performance event kernel representation:
734 */
735 struct perf_event {
736 #ifdef CONFIG_PERF_EVENTS
737 struct list_head group_entry;
738 struct list_head event_entry;
739 struct list_head sibling_list;
740 struct hlist_node hlist_entry;
741 int nr_siblings;
742 int group_flags;
743 struct perf_event *group_leader;
744 struct pmu *pmu;
745
746 enum perf_event_active_state state;
747 unsigned int attach_state;
748 local64_t count;
749 atomic64_t child_count;
750
751 /*
752 * These are the total time in nanoseconds that the event
753 * has been enabled (i.e. eligible to run, and the task has
754 * been scheduled in, if this is a per-task event)
755 * and running (scheduled onto the CPU), respectively.
756 *
757 * They are computed from tstamp_enabled, tstamp_running and
758 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
759 */
760 u64 total_time_enabled;
761 u64 total_time_running;
762
763 /*
764 * These are timestamps used for computing total_time_enabled
765 * and total_time_running when the event is in INACTIVE or
766 * ACTIVE state, measured in nanoseconds from an arbitrary point
767 * in time.
768 * tstamp_enabled: the notional time when the event was enabled
769 * tstamp_running: the notional time when the event was scheduled on
770 * tstamp_stopped: in INACTIVE state, the notional time when the
771 * event was scheduled off.
772 */
773 u64 tstamp_enabled;
774 u64 tstamp_running;
775 u64 tstamp_stopped;
776
777 /*
778 * timestamp shadows the actual context timing but it can
779 * be safely used in NMI interrupt context. It reflects the
780 * context time as it was when the event was last scheduled in.
781 *
782 * ctx_time already accounts for ctx->timestamp. Therefore to
783 * compute ctx_time for a sample, simply add perf_clock().
784 */
785 u64 shadow_ctx_time;
786
787 struct perf_event_attr attr;
788 u16 header_size;
789 u16 id_header_size;
790 u16 read_size;
791 struct hw_perf_event hw;
792
793 struct perf_event_context *ctx;
794 struct file *filp;
795
796 /*
797 * These accumulate total time (in nanoseconds) that children
798 * events have been enabled and running, respectively.
799 */
800 atomic64_t child_total_time_enabled;
801 atomic64_t child_total_time_running;
802
803 /*
804 * Protect attach/detach and child_list:
805 */
806 struct mutex child_mutex;
807 struct list_head child_list;
808 struct perf_event *parent;
809
810 int oncpu;
811 int cpu;
812
813 struct list_head owner_entry;
814 struct task_struct *owner;
815
816 /* mmap bits */
817 struct mutex mmap_mutex;
818 atomic_t mmap_count;
819 int mmap_locked;
820 struct user_struct *mmap_user;
821 struct ring_buffer *rb;
822
823 /* poll related */
824 wait_queue_head_t waitq;
825 struct fasync_struct *fasync;
826
827 /* delayed work for NMIs and such */
828 int pending_wakeup;
829 int pending_kill;
830 int pending_disable;
831 struct irq_work pending;
832
833 atomic_t event_limit;
834
835 void (*destroy)(struct perf_event *);
836 struct rcu_head rcu_head;
837
838 struct pid_namespace *ns;
839 u64 id;
840
841 perf_overflow_handler_t overflow_handler;
842 void *overflow_handler_context;
843
844 #ifdef CONFIG_EVENT_TRACING
845 struct ftrace_event_call *tp_event;
846 struct event_filter *filter;
847 #endif
848
849 #ifdef CONFIG_CGROUP_PERF
850 struct perf_cgroup *cgrp; /* cgroup event is attach to */
851 int cgrp_defer_enabled;
852 #endif
853
854 #endif /* CONFIG_PERF_EVENTS */
855 };
856
857 enum perf_event_context_type {
858 task_context,
859 cpu_context,
860 };
861
862 /**
863 * struct perf_event_context - event context structure
864 *
865 * Used as a container for task events and CPU events as well:
866 */
867 struct perf_event_context {
868 struct pmu *pmu;
869 enum perf_event_context_type type;
870 /*
871 * Protect the states of the events in the list,
872 * nr_active, and the list:
873 */
874 raw_spinlock_t lock;
875 /*
876 * Protect the list of events. Locking either mutex or lock
877 * is sufficient to ensure the list doesn't change; to change
878 * the list you need to lock both the mutex and the spinlock.
879 */
880 struct mutex mutex;
881
882 struct list_head pinned_groups;
883 struct list_head flexible_groups;
884 struct list_head event_list;
885 int nr_events;
886 int nr_active;
887 int is_active;
888 int nr_stat;
889 int rotate_disable;
890 atomic_t refcount;
891 struct task_struct *task;
892
893 /*
894 * Context clock, runs when context enabled.
895 */
896 u64 time;
897 u64 timestamp;
898
899 /*
900 * These fields let us detect when two contexts have both
901 * been cloned (inherited) from a common ancestor.
902 */
903 struct perf_event_context *parent_ctx;
904 u64 parent_gen;
905 u64 generation;
906 int pin_count;
907 int nr_cgroups; /* cgroup events present */
908 struct rcu_head rcu_head;
909 };
910
911 /*
912 * Number of contexts where an event can trigger:
913 * task, softirq, hardirq, nmi.
914 */
915 #define PERF_NR_CONTEXTS 4
916
917 /**
918 * struct perf_event_cpu_context - per cpu event context structure
919 */
920 struct perf_cpu_context {
921 struct perf_event_context ctx;
922 struct perf_event_context *task_ctx;
923 int active_oncpu;
924 int exclusive;
925 struct list_head rotation_list;
926 int jiffies_interval;
927 struct pmu *active_pmu;
928 struct perf_cgroup *cgrp;
929 };
930
931 struct perf_output_handle {
932 struct perf_event *event;
933 struct ring_buffer *rb;
934 unsigned long wakeup;
935 unsigned long size;
936 void *addr;
937 int page;
938 };
939
940 #ifdef CONFIG_PERF_EVENTS
941
942 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
943 extern void perf_pmu_unregister(struct pmu *pmu);
944
945 extern int perf_num_counters(void);
946 extern const char *perf_pmu_name(void);
947 extern void __perf_event_task_sched_in(struct task_struct *task);
948 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
949 extern int perf_event_init_task(struct task_struct *child);
950 extern void perf_event_exit_task(struct task_struct *child);
951 extern void perf_event_free_task(struct task_struct *task);
952 extern void perf_event_delayed_put(struct task_struct *task);
953 extern void perf_event_print_debug(void);
954 extern void perf_pmu_disable(struct pmu *pmu);
955 extern void perf_pmu_enable(struct pmu *pmu);
956 extern int perf_event_task_disable(void);
957 extern int perf_event_task_enable(void);
958 extern int perf_event_refresh(struct perf_event *event, int refresh);
959 extern void perf_event_update_userpage(struct perf_event *event);
960 extern int perf_event_release_kernel(struct perf_event *event);
961 extern struct perf_event *
962 perf_event_create_kernel_counter(struct perf_event_attr *attr,
963 int cpu,
964 struct task_struct *task,
965 perf_overflow_handler_t callback,
966 void *context);
967 extern u64 perf_event_read_value(struct perf_event *event,
968 u64 *enabled, u64 *running);
969
970 struct perf_sample_data {
971 u64 type;
972
973 u64 ip;
974 struct {
975 u32 pid;
976 u32 tid;
977 } tid_entry;
978 u64 time;
979 u64 addr;
980 u64 id;
981 u64 stream_id;
982 struct {
983 u32 cpu;
984 u32 reserved;
985 } cpu_entry;
986 u64 period;
987 struct perf_callchain_entry *callchain;
988 struct perf_raw_record *raw;
989 };
990
991 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
992 {
993 data->addr = addr;
994 data->raw = NULL;
995 }
996
997 extern void perf_output_sample(struct perf_output_handle *handle,
998 struct perf_event_header *header,
999 struct perf_sample_data *data,
1000 struct perf_event *event);
1001 extern void perf_prepare_sample(struct perf_event_header *header,
1002 struct perf_sample_data *data,
1003 struct perf_event *event,
1004 struct pt_regs *regs);
1005
1006 extern int perf_event_overflow(struct perf_event *event,
1007 struct perf_sample_data *data,
1008 struct pt_regs *regs);
1009
1010 static inline bool is_sampling_event(struct perf_event *event)
1011 {
1012 return event->attr.sample_period != 0;
1013 }
1014
1015 /*
1016 * Return 1 for a software event, 0 for a hardware event
1017 */
1018 static inline int is_software_event(struct perf_event *event)
1019 {
1020 return event->pmu->task_ctx_nr == perf_sw_context;
1021 }
1022
1023 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1024
1025 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1026
1027 #ifndef perf_arch_fetch_caller_regs
1028 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1029 #endif
1030
1031 /*
1032 * Take a snapshot of the regs. Skip ip and frame pointer to
1033 * the nth caller. We only need a few of the regs:
1034 * - ip for PERF_SAMPLE_IP
1035 * - cs for user_mode() tests
1036 * - bp for callchains
1037 * - eflags, for future purposes, just in case
1038 */
1039 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1040 {
1041 memset(regs, 0, sizeof(*regs));
1042
1043 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1044 }
1045
1046 static __always_inline void
1047 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1048 {
1049 struct pt_regs hot_regs;
1050
1051 if (static_branch(&perf_swevent_enabled[event_id])) {
1052 if (!regs) {
1053 perf_fetch_caller_regs(&hot_regs);
1054 regs = &hot_regs;
1055 }
1056 __perf_sw_event(event_id, nr, regs, addr);
1057 }
1058 }
1059
1060 extern struct jump_label_key perf_sched_events;
1061
1062 static inline void perf_event_task_sched_in(struct task_struct *task)
1063 {
1064 if (static_branch(&perf_sched_events))
1065 __perf_event_task_sched_in(task);
1066 }
1067
1068 static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1069 {
1070 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1071
1072 __perf_event_task_sched_out(task, next);
1073 }
1074
1075 extern void perf_event_mmap(struct vm_area_struct *vma);
1076 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1077 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1078 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1079
1080 extern void perf_event_comm(struct task_struct *tsk);
1081 extern void perf_event_fork(struct task_struct *tsk);
1082
1083 /* Callchains */
1084 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1085
1086 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1087 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1088
1089 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1090 {
1091 if (entry->nr < PERF_MAX_STACK_DEPTH)
1092 entry->ip[entry->nr++] = ip;
1093 }
1094
1095 extern int sysctl_perf_event_paranoid;
1096 extern int sysctl_perf_event_mlock;
1097 extern int sysctl_perf_event_sample_rate;
1098
1099 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1100 void __user *buffer, size_t *lenp,
1101 loff_t *ppos);
1102
1103 static inline bool perf_paranoid_tracepoint_raw(void)
1104 {
1105 return sysctl_perf_event_paranoid > -1;
1106 }
1107
1108 static inline bool perf_paranoid_cpu(void)
1109 {
1110 return sysctl_perf_event_paranoid > 0;
1111 }
1112
1113 static inline bool perf_paranoid_kernel(void)
1114 {
1115 return sysctl_perf_event_paranoid > 1;
1116 }
1117
1118 extern void perf_event_init(void);
1119 extern void perf_tp_event(u64 addr, u64 count, void *record,
1120 int entry_size, struct pt_regs *regs,
1121 struct hlist_head *head, int rctx);
1122 extern void perf_bp_event(struct perf_event *event, void *data);
1123
1124 #ifndef perf_misc_flags
1125 # define perf_misc_flags(regs) \
1126 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1127 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1128 #endif
1129
1130 extern int perf_output_begin(struct perf_output_handle *handle,
1131 struct perf_event *event, unsigned int size);
1132 extern void perf_output_end(struct perf_output_handle *handle);
1133 extern void perf_output_copy(struct perf_output_handle *handle,
1134 const void *buf, unsigned int len);
1135 extern int perf_swevent_get_recursion_context(void);
1136 extern void perf_swevent_put_recursion_context(int rctx);
1137 extern void perf_event_enable(struct perf_event *event);
1138 extern void perf_event_disable(struct perf_event *event);
1139 extern void perf_event_task_tick(void);
1140 #else
1141 static inline void
1142 perf_event_task_sched_in(struct task_struct *task) { }
1143 static inline void
1144 perf_event_task_sched_out(struct task_struct *task,
1145 struct task_struct *next) { }
1146 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1147 static inline void perf_event_exit_task(struct task_struct *child) { }
1148 static inline void perf_event_free_task(struct task_struct *task) { }
1149 static inline void perf_event_delayed_put(struct task_struct *task) { }
1150 static inline void perf_event_print_debug(void) { }
1151 static inline int perf_event_task_disable(void) { return -EINVAL; }
1152 static inline int perf_event_task_enable(void) { return -EINVAL; }
1153 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1154 {
1155 return -EINVAL;
1156 }
1157
1158 static inline void
1159 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1160 static inline void
1161 perf_bp_event(struct perf_event *event, void *data) { }
1162
1163 static inline int perf_register_guest_info_callbacks
1164 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1165 static inline int perf_unregister_guest_info_callbacks
1166 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1167
1168 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1169 static inline void perf_event_comm(struct task_struct *tsk) { }
1170 static inline void perf_event_fork(struct task_struct *tsk) { }
1171 static inline void perf_event_init(void) { }
1172 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1173 static inline void perf_swevent_put_recursion_context(int rctx) { }
1174 static inline void perf_event_enable(struct perf_event *event) { }
1175 static inline void perf_event_disable(struct perf_event *event) { }
1176 static inline void perf_event_task_tick(void) { }
1177 #endif
1178
1179 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1180
1181 /*
1182 * This has to have a higher priority than migration_notifier in sched.c.
1183 */
1184 #define perf_cpu_notifier(fn) \
1185 do { \
1186 static struct notifier_block fn##_nb __cpuinitdata = \
1187 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1188 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1189 (void *)(unsigned long)smp_processor_id()); \
1190 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1191 (void *)(unsigned long)smp_processor_id()); \
1192 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1193 (void *)(unsigned long)smp_processor_id()); \
1194 register_cpu_notifier(&fn##_nb); \
1195 } while (0)
1196
1197 #endif /* __KERNEL__ */
1198 #endif /* _LINUX_PERF_EVENT_H */