]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - include/linux/ptr_ring.h
bpf: move tmp variable into ax register in interpreter
[thirdparty/kernel/stable.git] / include / linux / ptr_ring.h
1 /*
2 * Definitions for the 'struct ptr_ring' datastructure.
3 *
4 * Author:
5 * Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Copyright (C) 2016 Red Hat, Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * This is a limited-size FIFO maintaining pointers in FIFO order, with
15 * one CPU producing entries and another consuming entries from a FIFO.
16 *
17 * This implementation tries to minimize cache-contention when there is a
18 * single producer and a single consumer CPU.
19 */
20
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33
34 struct ptr_ring {
35 int producer ____cacheline_aligned_in_smp;
36 spinlock_t producer_lock;
37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 int consumer_tail; /* next entry to invalidate */
39 spinlock_t consumer_lock;
40 /* Shared consumer/producer data */
41 /* Read-only by both the producer and the consumer */
42 int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 int batch; /* number of entries to consume in a batch */
44 void **queue;
45 };
46
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48 * for example cpu_relax(). If ring is ever resized, callers must hold
49 * producer_lock - see e.g. ptr_ring_full. Otherwise, if callers don't hold
50 * producer_lock, the next call to __ptr_ring_produce may fail.
51 */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 return r->queue[r->producer];
55 }
56
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 bool ret;
60
61 spin_lock(&r->producer_lock);
62 ret = __ptr_ring_full(r);
63 spin_unlock(&r->producer_lock);
64
65 return ret;
66 }
67
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 bool ret;
71
72 spin_lock_irq(&r->producer_lock);
73 ret = __ptr_ring_full(r);
74 spin_unlock_irq(&r->producer_lock);
75
76 return ret;
77 }
78
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 unsigned long flags;
82 bool ret;
83
84 spin_lock_irqsave(&r->producer_lock, flags);
85 ret = __ptr_ring_full(r);
86 spin_unlock_irqrestore(&r->producer_lock, flags);
87
88 return ret;
89 }
90
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 bool ret;
94
95 spin_lock_bh(&r->producer_lock);
96 ret = __ptr_ring_full(r);
97 spin_unlock_bh(&r->producer_lock);
98
99 return ret;
100 }
101
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103 * for example cpu_relax(). Callers must hold producer_lock.
104 * Callers are responsible for making sure pointer that is being queued
105 * points to a valid data.
106 */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 if (unlikely(!r->size) || r->queue[r->producer])
110 return -ENOSPC;
111
112 /* Make sure the pointer we are storing points to a valid data. */
113 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 smp_wmb();
115
116 r->queue[r->producer++] = ptr;
117 if (unlikely(r->producer >= r->size))
118 r->producer = 0;
119 return 0;
120 }
121
122 /*
123 * Note: resize (below) nests producer lock within consumer lock, so if you
124 * consume in interrupt or BH context, you must disable interrupts/BH when
125 * calling this.
126 */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 int ret;
130
131 spin_lock(&r->producer_lock);
132 ret = __ptr_ring_produce(r, ptr);
133 spin_unlock(&r->producer_lock);
134
135 return ret;
136 }
137
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 int ret;
141
142 spin_lock_irq(&r->producer_lock);
143 ret = __ptr_ring_produce(r, ptr);
144 spin_unlock_irq(&r->producer_lock);
145
146 return ret;
147 }
148
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 unsigned long flags;
152 int ret;
153
154 spin_lock_irqsave(&r->producer_lock, flags);
155 ret = __ptr_ring_produce(r, ptr);
156 spin_unlock_irqrestore(&r->producer_lock, flags);
157
158 return ret;
159 }
160
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 int ret;
164
165 spin_lock_bh(&r->producer_lock);
166 ret = __ptr_ring_produce(r, ptr);
167 spin_unlock_bh(&r->producer_lock);
168
169 return ret;
170 }
171
172 /* Note: callers invoking this in a loop must use a compiler barrier,
173 * for example cpu_relax(). Callers must take consumer_lock
174 * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
175 * If ring is never resized, and if the pointer is merely
176 * tested, there's no need to take the lock - see e.g. __ptr_ring_empty.
177 */
178 static inline void *__ptr_ring_peek(struct ptr_ring *r)
179 {
180 if (likely(r->size))
181 return r->queue[r->consumer_head];
182 return NULL;
183 }
184
185 /* Note: callers invoking this in a loop must use a compiler barrier,
186 * for example cpu_relax(). Callers must take consumer_lock
187 * if the ring is ever resized - see e.g. ptr_ring_empty.
188 */
189 static inline bool __ptr_ring_empty(struct ptr_ring *r)
190 {
191 return !__ptr_ring_peek(r);
192 }
193
194 static inline bool ptr_ring_empty(struct ptr_ring *r)
195 {
196 bool ret;
197
198 spin_lock(&r->consumer_lock);
199 ret = __ptr_ring_empty(r);
200 spin_unlock(&r->consumer_lock);
201
202 return ret;
203 }
204
205 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
206 {
207 bool ret;
208
209 spin_lock_irq(&r->consumer_lock);
210 ret = __ptr_ring_empty(r);
211 spin_unlock_irq(&r->consumer_lock);
212
213 return ret;
214 }
215
216 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
217 {
218 unsigned long flags;
219 bool ret;
220
221 spin_lock_irqsave(&r->consumer_lock, flags);
222 ret = __ptr_ring_empty(r);
223 spin_unlock_irqrestore(&r->consumer_lock, flags);
224
225 return ret;
226 }
227
228 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
229 {
230 bool ret;
231
232 spin_lock_bh(&r->consumer_lock);
233 ret = __ptr_ring_empty(r);
234 spin_unlock_bh(&r->consumer_lock);
235
236 return ret;
237 }
238
239 /* Must only be called after __ptr_ring_peek returned !NULL */
240 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
241 {
242 /* Fundamentally, what we want to do is update consumer
243 * index and zero out the entry so producer can reuse it.
244 * Doing it naively at each consume would be as simple as:
245 * r->queue[r->consumer++] = NULL;
246 * if (unlikely(r->consumer >= r->size))
247 * r->consumer = 0;
248 * but that is suboptimal when the ring is full as producer is writing
249 * out new entries in the same cache line. Defer these updates until a
250 * batch of entries has been consumed.
251 */
252 int head = r->consumer_head++;
253
254 /* Once we have processed enough entries invalidate them in
255 * the ring all at once so producer can reuse their space in the ring.
256 * We also do this when we reach end of the ring - not mandatory
257 * but helps keep the implementation simple.
258 */
259 if (unlikely(r->consumer_head - r->consumer_tail >= r->batch ||
260 r->consumer_head >= r->size)) {
261 /* Zero out entries in the reverse order: this way we touch the
262 * cache line that producer might currently be reading the last;
263 * producer won't make progress and touch other cache lines
264 * besides the first one until we write out all entries.
265 */
266 while (likely(head >= r->consumer_tail))
267 r->queue[head--] = NULL;
268 r->consumer_tail = r->consumer_head;
269 }
270 if (unlikely(r->consumer_head >= r->size)) {
271 r->consumer_head = 0;
272 r->consumer_tail = 0;
273 }
274 }
275
276 static inline void *__ptr_ring_consume(struct ptr_ring *r)
277 {
278 void *ptr;
279
280 ptr = __ptr_ring_peek(r);
281 if (ptr)
282 __ptr_ring_discard_one(r);
283
284 /* Make sure anyone accessing data through the pointer is up to date. */
285 /* Pairs with smp_wmb in __ptr_ring_produce. */
286 smp_read_barrier_depends();
287 return ptr;
288 }
289
290 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
291 void **array, int n)
292 {
293 void *ptr;
294 int i;
295
296 for (i = 0; i < n; i++) {
297 ptr = __ptr_ring_consume(r);
298 if (!ptr)
299 break;
300 array[i] = ptr;
301 }
302
303 return i;
304 }
305
306 /*
307 * Note: resize (below) nests producer lock within consumer lock, so if you
308 * call this in interrupt or BH context, you must disable interrupts/BH when
309 * producing.
310 */
311 static inline void *ptr_ring_consume(struct ptr_ring *r)
312 {
313 void *ptr;
314
315 spin_lock(&r->consumer_lock);
316 ptr = __ptr_ring_consume(r);
317 spin_unlock(&r->consumer_lock);
318
319 return ptr;
320 }
321
322 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
323 {
324 void *ptr;
325
326 spin_lock_irq(&r->consumer_lock);
327 ptr = __ptr_ring_consume(r);
328 spin_unlock_irq(&r->consumer_lock);
329
330 return ptr;
331 }
332
333 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
334 {
335 unsigned long flags;
336 void *ptr;
337
338 spin_lock_irqsave(&r->consumer_lock, flags);
339 ptr = __ptr_ring_consume(r);
340 spin_unlock_irqrestore(&r->consumer_lock, flags);
341
342 return ptr;
343 }
344
345 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
346 {
347 void *ptr;
348
349 spin_lock_bh(&r->consumer_lock);
350 ptr = __ptr_ring_consume(r);
351 spin_unlock_bh(&r->consumer_lock);
352
353 return ptr;
354 }
355
356 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
357 void **array, int n)
358 {
359 int ret;
360
361 spin_lock(&r->consumer_lock);
362 ret = __ptr_ring_consume_batched(r, array, n);
363 spin_unlock(&r->consumer_lock);
364
365 return ret;
366 }
367
368 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
369 void **array, int n)
370 {
371 int ret;
372
373 spin_lock_irq(&r->consumer_lock);
374 ret = __ptr_ring_consume_batched(r, array, n);
375 spin_unlock_irq(&r->consumer_lock);
376
377 return ret;
378 }
379
380 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
381 void **array, int n)
382 {
383 unsigned long flags;
384 int ret;
385
386 spin_lock_irqsave(&r->consumer_lock, flags);
387 ret = __ptr_ring_consume_batched(r, array, n);
388 spin_unlock_irqrestore(&r->consumer_lock, flags);
389
390 return ret;
391 }
392
393 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
394 void **array, int n)
395 {
396 int ret;
397
398 spin_lock_bh(&r->consumer_lock);
399 ret = __ptr_ring_consume_batched(r, array, n);
400 spin_unlock_bh(&r->consumer_lock);
401
402 return ret;
403 }
404
405 /* Cast to structure type and call a function without discarding from FIFO.
406 * Function must return a value.
407 * Callers must take consumer_lock.
408 */
409 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
410
411 #define PTR_RING_PEEK_CALL(r, f) ({ \
412 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
413 \
414 spin_lock(&(r)->consumer_lock); \
415 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
416 spin_unlock(&(r)->consumer_lock); \
417 __PTR_RING_PEEK_CALL_v; \
418 })
419
420 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
421 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
422 \
423 spin_lock_irq(&(r)->consumer_lock); \
424 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
425 spin_unlock_irq(&(r)->consumer_lock); \
426 __PTR_RING_PEEK_CALL_v; \
427 })
428
429 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
430 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
431 \
432 spin_lock_bh(&(r)->consumer_lock); \
433 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
434 spin_unlock_bh(&(r)->consumer_lock); \
435 __PTR_RING_PEEK_CALL_v; \
436 })
437
438 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
439 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
440 unsigned long __PTR_RING_PEEK_CALL_f;\
441 \
442 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
443 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
444 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
445 __PTR_RING_PEEK_CALL_v; \
446 })
447
448 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
449 * documentation for vmalloc for which of them are legal.
450 */
451 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
452 {
453 if (size > KMALLOC_MAX_SIZE / sizeof(void *))
454 return NULL;
455 return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
456 }
457
458 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
459 {
460 r->size = size;
461 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
462 /* We need to set batch at least to 1 to make logic
463 * in __ptr_ring_discard_one work correctly.
464 * Batching too much (because ring is small) would cause a lot of
465 * burstiness. Needs tuning, for now disable batching.
466 */
467 if (r->batch > r->size / 2 || !r->batch)
468 r->batch = 1;
469 }
470
471 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
472 {
473 r->queue = __ptr_ring_init_queue_alloc(size, gfp);
474 if (!r->queue)
475 return -ENOMEM;
476
477 __ptr_ring_set_size(r, size);
478 r->producer = r->consumer_head = r->consumer_tail = 0;
479 spin_lock_init(&r->producer_lock);
480 spin_lock_init(&r->consumer_lock);
481
482 return 0;
483 }
484
485 /*
486 * Return entries into ring. Destroy entries that don't fit.
487 *
488 * Note: this is expected to be a rare slow path operation.
489 *
490 * Note: producer lock is nested within consumer lock, so if you
491 * resize you must make sure all uses nest correctly.
492 * In particular if you consume ring in interrupt or BH context, you must
493 * disable interrupts/BH when doing so.
494 */
495 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
496 void (*destroy)(void *))
497 {
498 unsigned long flags;
499 int head;
500
501 spin_lock_irqsave(&r->consumer_lock, flags);
502 spin_lock(&r->producer_lock);
503
504 if (!r->size)
505 goto done;
506
507 /*
508 * Clean out buffered entries (for simplicity). This way following code
509 * can test entries for NULL and if not assume they are valid.
510 */
511 head = r->consumer_head - 1;
512 while (likely(head >= r->consumer_tail))
513 r->queue[head--] = NULL;
514 r->consumer_tail = r->consumer_head;
515
516 /*
517 * Go over entries in batch, start moving head back and copy entries.
518 * Stop when we run into previously unconsumed entries.
519 */
520 while (n) {
521 head = r->consumer_head - 1;
522 if (head < 0)
523 head = r->size - 1;
524 if (r->queue[head]) {
525 /* This batch entry will have to be destroyed. */
526 goto done;
527 }
528 r->queue[head] = batch[--n];
529 r->consumer_tail = r->consumer_head = head;
530 }
531
532 done:
533 /* Destroy all entries left in the batch. */
534 while (n)
535 destroy(batch[--n]);
536 spin_unlock(&r->producer_lock);
537 spin_unlock_irqrestore(&r->consumer_lock, flags);
538 }
539
540 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
541 int size, gfp_t gfp,
542 void (*destroy)(void *))
543 {
544 int producer = 0;
545 void **old;
546 void *ptr;
547
548 while ((ptr = __ptr_ring_consume(r)))
549 if (producer < size)
550 queue[producer++] = ptr;
551 else if (destroy)
552 destroy(ptr);
553
554 if (producer >= size)
555 producer = 0;
556 __ptr_ring_set_size(r, size);
557 r->producer = producer;
558 r->consumer_head = 0;
559 r->consumer_tail = 0;
560 old = r->queue;
561 r->queue = queue;
562
563 return old;
564 }
565
566 /*
567 * Note: producer lock is nested within consumer lock, so if you
568 * resize you must make sure all uses nest correctly.
569 * In particular if you consume ring in interrupt or BH context, you must
570 * disable interrupts/BH when doing so.
571 */
572 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
573 void (*destroy)(void *))
574 {
575 unsigned long flags;
576 void **queue = __ptr_ring_init_queue_alloc(size, gfp);
577 void **old;
578
579 if (!queue)
580 return -ENOMEM;
581
582 spin_lock_irqsave(&(r)->consumer_lock, flags);
583 spin_lock(&(r)->producer_lock);
584
585 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
586
587 spin_unlock(&(r)->producer_lock);
588 spin_unlock_irqrestore(&(r)->consumer_lock, flags);
589
590 kvfree(old);
591
592 return 0;
593 }
594
595 /*
596 * Note: producer lock is nested within consumer lock, so if you
597 * resize you must make sure all uses nest correctly.
598 * In particular if you consume ring in interrupt or BH context, you must
599 * disable interrupts/BH when doing so.
600 */
601 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
602 unsigned int nrings,
603 int size,
604 gfp_t gfp, void (*destroy)(void *))
605 {
606 unsigned long flags;
607 void ***queues;
608 int i;
609
610 queues = kmalloc_array(nrings, sizeof(*queues), gfp);
611 if (!queues)
612 goto noqueues;
613
614 for (i = 0; i < nrings; ++i) {
615 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
616 if (!queues[i])
617 goto nomem;
618 }
619
620 for (i = 0; i < nrings; ++i) {
621 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
622 spin_lock(&(rings[i])->producer_lock);
623 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
624 size, gfp, destroy);
625 spin_unlock(&(rings[i])->producer_lock);
626 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
627 }
628
629 for (i = 0; i < nrings; ++i)
630 kvfree(queues[i]);
631
632 kfree(queues);
633
634 return 0;
635
636 nomem:
637 while (--i >= 0)
638 kvfree(queues[i]);
639
640 kfree(queues);
641
642 noqueues:
643 return -ENOMEM;
644 }
645
646 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
647 {
648 void *ptr;
649
650 if (destroy)
651 while ((ptr = ptr_ring_consume(r)))
652 destroy(ptr);
653 kvfree(r->queue);
654 }
655
656 #endif /* _LINUX_PTR_RING_H */