]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - include/linux/sched.h
sched/tracing: Use common task-state helpers
[thirdparty/kernel/stable.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
8
9 #include <uapi/linux/sched.h>
10
11 #include <asm/current.h>
12
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55
56 /*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
66
67 /* Used in tsk->state: */
68 #define TASK_RUNNING 0x0000
69 #define TASK_INTERRUPTIBLE 0x0001
70 #define TASK_UNINTERRUPTIBLE 0x0002
71 #define __TASK_STOPPED 0x0004
72 #define __TASK_TRACED 0x0008
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD 0x0010
75 #define EXIT_ZOMBIE 0x0020
76 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD 0x0040
79 #define TASK_WAKEKILL 0x0080
80 #define TASK_WAKING 0x0100
81 #define TASK_PARKED 0x0200
82 #define TASK_NOLOAD 0x0400
83 #define TASK_NEW 0x0800
84 #define TASK_STATE_MAX 0x1000
85
86 /* Convenience macros for the sake of set_current_state: */
87 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
88 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
89 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
90
91 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
92
93 /* Convenience macros for the sake of wake_up(): */
94 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
95 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
96
97 /* get_task_state(): */
98 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
100 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE)
101
102 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
103
104 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
105
106 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
107
108 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
109 (task->flags & PF_FROZEN) == 0 && \
110 (task->state & TASK_NOLOAD) == 0)
111
112 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
113
114 #define __set_current_state(state_value) \
115 do { \
116 current->task_state_change = _THIS_IP_; \
117 current->state = (state_value); \
118 } while (0)
119 #define set_current_state(state_value) \
120 do { \
121 current->task_state_change = _THIS_IP_; \
122 smp_store_mb(current->state, (state_value)); \
123 } while (0)
124
125 #else
126 /*
127 * set_current_state() includes a barrier so that the write of current->state
128 * is correctly serialised wrt the caller's subsequent test of whether to
129 * actually sleep:
130 *
131 * for (;;) {
132 * set_current_state(TASK_UNINTERRUPTIBLE);
133 * if (!need_sleep)
134 * break;
135 *
136 * schedule();
137 * }
138 * __set_current_state(TASK_RUNNING);
139 *
140 * If the caller does not need such serialisation (because, for instance, the
141 * condition test and condition change and wakeup are under the same lock) then
142 * use __set_current_state().
143 *
144 * The above is typically ordered against the wakeup, which does:
145 *
146 * need_sleep = false;
147 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
148 *
149 * Where wake_up_state() (and all other wakeup primitives) imply enough
150 * barriers to order the store of the variable against wakeup.
151 *
152 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
153 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
154 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
155 *
156 * This is obviously fine, since they both store the exact same value.
157 *
158 * Also see the comments of try_to_wake_up().
159 */
160 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
161 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
162 #endif
163
164 /* Task command name length: */
165 #define TASK_COMM_LEN 16
166
167 extern cpumask_var_t cpu_isolated_map;
168
169 extern void scheduler_tick(void);
170
171 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
172
173 extern long schedule_timeout(long timeout);
174 extern long schedule_timeout_interruptible(long timeout);
175 extern long schedule_timeout_killable(long timeout);
176 extern long schedule_timeout_uninterruptible(long timeout);
177 extern long schedule_timeout_idle(long timeout);
178 asmlinkage void schedule(void);
179 extern void schedule_preempt_disabled(void);
180
181 extern int __must_check io_schedule_prepare(void);
182 extern void io_schedule_finish(int token);
183 extern long io_schedule_timeout(long timeout);
184 extern void io_schedule(void);
185
186 /**
187 * struct prev_cputime - snapshot of system and user cputime
188 * @utime: time spent in user mode
189 * @stime: time spent in system mode
190 * @lock: protects the above two fields
191 *
192 * Stores previous user/system time values such that we can guarantee
193 * monotonicity.
194 */
195 struct prev_cputime {
196 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
197 u64 utime;
198 u64 stime;
199 raw_spinlock_t lock;
200 #endif
201 };
202
203 /**
204 * struct task_cputime - collected CPU time counts
205 * @utime: time spent in user mode, in nanoseconds
206 * @stime: time spent in kernel mode, in nanoseconds
207 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
208 *
209 * This structure groups together three kinds of CPU time that are tracked for
210 * threads and thread groups. Most things considering CPU time want to group
211 * these counts together and treat all three of them in parallel.
212 */
213 struct task_cputime {
214 u64 utime;
215 u64 stime;
216 unsigned long long sum_exec_runtime;
217 };
218
219 /* Alternate field names when used on cache expirations: */
220 #define virt_exp utime
221 #define prof_exp stime
222 #define sched_exp sum_exec_runtime
223
224 enum vtime_state {
225 /* Task is sleeping or running in a CPU with VTIME inactive: */
226 VTIME_INACTIVE = 0,
227 /* Task runs in userspace in a CPU with VTIME active: */
228 VTIME_USER,
229 /* Task runs in kernelspace in a CPU with VTIME active: */
230 VTIME_SYS,
231 };
232
233 struct vtime {
234 seqcount_t seqcount;
235 unsigned long long starttime;
236 enum vtime_state state;
237 u64 utime;
238 u64 stime;
239 u64 gtime;
240 };
241
242 struct sched_info {
243 #ifdef CONFIG_SCHED_INFO
244 /* Cumulative counters: */
245
246 /* # of times we have run on this CPU: */
247 unsigned long pcount;
248
249 /* Time spent waiting on a runqueue: */
250 unsigned long long run_delay;
251
252 /* Timestamps: */
253
254 /* When did we last run on a CPU? */
255 unsigned long long last_arrival;
256
257 /* When were we last queued to run? */
258 unsigned long long last_queued;
259
260 #endif /* CONFIG_SCHED_INFO */
261 };
262
263 /*
264 * Integer metrics need fixed point arithmetic, e.g., sched/fair
265 * has a few: load, load_avg, util_avg, freq, and capacity.
266 *
267 * We define a basic fixed point arithmetic range, and then formalize
268 * all these metrics based on that basic range.
269 */
270 # define SCHED_FIXEDPOINT_SHIFT 10
271 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
272
273 struct load_weight {
274 unsigned long weight;
275 u32 inv_weight;
276 };
277
278 /*
279 * The load_avg/util_avg accumulates an infinite geometric series
280 * (see __update_load_avg() in kernel/sched/fair.c).
281 *
282 * [load_avg definition]
283 *
284 * load_avg = runnable% * scale_load_down(load)
285 *
286 * where runnable% is the time ratio that a sched_entity is runnable.
287 * For cfs_rq, it is the aggregated load_avg of all runnable and
288 * blocked sched_entities.
289 *
290 * load_avg may also take frequency scaling into account:
291 *
292 * load_avg = runnable% * scale_load_down(load) * freq%
293 *
294 * where freq% is the CPU frequency normalized to the highest frequency.
295 *
296 * [util_avg definition]
297 *
298 * util_avg = running% * SCHED_CAPACITY_SCALE
299 *
300 * where running% is the time ratio that a sched_entity is running on
301 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
302 * and blocked sched_entities.
303 *
304 * util_avg may also factor frequency scaling and CPU capacity scaling:
305 *
306 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
307 *
308 * where freq% is the same as above, and capacity% is the CPU capacity
309 * normalized to the greatest capacity (due to uarch differences, etc).
310 *
311 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
312 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
313 * we therefore scale them to as large a range as necessary. This is for
314 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
315 *
316 * [Overflow issue]
317 *
318 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
319 * with the highest load (=88761), always runnable on a single cfs_rq,
320 * and should not overflow as the number already hits PID_MAX_LIMIT.
321 *
322 * For all other cases (including 32-bit kernels), struct load_weight's
323 * weight will overflow first before we do, because:
324 *
325 * Max(load_avg) <= Max(load.weight)
326 *
327 * Then it is the load_weight's responsibility to consider overflow
328 * issues.
329 */
330 struct sched_avg {
331 u64 last_update_time;
332 u64 load_sum;
333 u32 util_sum;
334 u32 period_contrib;
335 unsigned long load_avg;
336 unsigned long util_avg;
337 };
338
339 struct sched_statistics {
340 #ifdef CONFIG_SCHEDSTATS
341 u64 wait_start;
342 u64 wait_max;
343 u64 wait_count;
344 u64 wait_sum;
345 u64 iowait_count;
346 u64 iowait_sum;
347
348 u64 sleep_start;
349 u64 sleep_max;
350 s64 sum_sleep_runtime;
351
352 u64 block_start;
353 u64 block_max;
354 u64 exec_max;
355 u64 slice_max;
356
357 u64 nr_migrations_cold;
358 u64 nr_failed_migrations_affine;
359 u64 nr_failed_migrations_running;
360 u64 nr_failed_migrations_hot;
361 u64 nr_forced_migrations;
362
363 u64 nr_wakeups;
364 u64 nr_wakeups_sync;
365 u64 nr_wakeups_migrate;
366 u64 nr_wakeups_local;
367 u64 nr_wakeups_remote;
368 u64 nr_wakeups_affine;
369 u64 nr_wakeups_affine_attempts;
370 u64 nr_wakeups_passive;
371 u64 nr_wakeups_idle;
372 #endif
373 };
374
375 struct sched_entity {
376 /* For load-balancing: */
377 struct load_weight load;
378 struct rb_node run_node;
379 struct list_head group_node;
380 unsigned int on_rq;
381
382 u64 exec_start;
383 u64 sum_exec_runtime;
384 u64 vruntime;
385 u64 prev_sum_exec_runtime;
386
387 u64 nr_migrations;
388
389 struct sched_statistics statistics;
390
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 int depth;
393 struct sched_entity *parent;
394 /* rq on which this entity is (to be) queued: */
395 struct cfs_rq *cfs_rq;
396 /* rq "owned" by this entity/group: */
397 struct cfs_rq *my_q;
398 #endif
399
400 #ifdef CONFIG_SMP
401 /*
402 * Per entity load average tracking.
403 *
404 * Put into separate cache line so it does not
405 * collide with read-mostly values above.
406 */
407 struct sched_avg avg ____cacheline_aligned_in_smp;
408 #endif
409 };
410
411 struct sched_rt_entity {
412 struct list_head run_list;
413 unsigned long timeout;
414 unsigned long watchdog_stamp;
415 unsigned int time_slice;
416 unsigned short on_rq;
417 unsigned short on_list;
418
419 struct sched_rt_entity *back;
420 #ifdef CONFIG_RT_GROUP_SCHED
421 struct sched_rt_entity *parent;
422 /* rq on which this entity is (to be) queued: */
423 struct rt_rq *rt_rq;
424 /* rq "owned" by this entity/group: */
425 struct rt_rq *my_q;
426 #endif
427 } __randomize_layout;
428
429 struct sched_dl_entity {
430 struct rb_node rb_node;
431
432 /*
433 * Original scheduling parameters. Copied here from sched_attr
434 * during sched_setattr(), they will remain the same until
435 * the next sched_setattr().
436 */
437 u64 dl_runtime; /* Maximum runtime for each instance */
438 u64 dl_deadline; /* Relative deadline of each instance */
439 u64 dl_period; /* Separation of two instances (period) */
440 u64 dl_bw; /* dl_runtime / dl_period */
441 u64 dl_density; /* dl_runtime / dl_deadline */
442
443 /*
444 * Actual scheduling parameters. Initialized with the values above,
445 * they are continously updated during task execution. Note that
446 * the remaining runtime could be < 0 in case we are in overrun.
447 */
448 s64 runtime; /* Remaining runtime for this instance */
449 u64 deadline; /* Absolute deadline for this instance */
450 unsigned int flags; /* Specifying the scheduler behaviour */
451
452 /*
453 * Some bool flags:
454 *
455 * @dl_throttled tells if we exhausted the runtime. If so, the
456 * task has to wait for a replenishment to be performed at the
457 * next firing of dl_timer.
458 *
459 * @dl_boosted tells if we are boosted due to DI. If so we are
460 * outside bandwidth enforcement mechanism (but only until we
461 * exit the critical section);
462 *
463 * @dl_yielded tells if task gave up the CPU before consuming
464 * all its available runtime during the last job.
465 *
466 * @dl_non_contending tells if the task is inactive while still
467 * contributing to the active utilization. In other words, it
468 * indicates if the inactive timer has been armed and its handler
469 * has not been executed yet. This flag is useful to avoid race
470 * conditions between the inactive timer handler and the wakeup
471 * code.
472 */
473 int dl_throttled;
474 int dl_boosted;
475 int dl_yielded;
476 int dl_non_contending;
477
478 /*
479 * Bandwidth enforcement timer. Each -deadline task has its
480 * own bandwidth to be enforced, thus we need one timer per task.
481 */
482 struct hrtimer dl_timer;
483
484 /*
485 * Inactive timer, responsible for decreasing the active utilization
486 * at the "0-lag time". When a -deadline task blocks, it contributes
487 * to GRUB's active utilization until the "0-lag time", hence a
488 * timer is needed to decrease the active utilization at the correct
489 * time.
490 */
491 struct hrtimer inactive_timer;
492 };
493
494 union rcu_special {
495 struct {
496 u8 blocked;
497 u8 need_qs;
498 u8 exp_need_qs;
499
500 /* Otherwise the compiler can store garbage here: */
501 u8 pad;
502 } b; /* Bits. */
503 u32 s; /* Set of bits. */
504 };
505
506 enum perf_event_task_context {
507 perf_invalid_context = -1,
508 perf_hw_context = 0,
509 perf_sw_context,
510 perf_nr_task_contexts,
511 };
512
513 struct wake_q_node {
514 struct wake_q_node *next;
515 };
516
517 struct task_struct {
518 #ifdef CONFIG_THREAD_INFO_IN_TASK
519 /*
520 * For reasons of header soup (see current_thread_info()), this
521 * must be the first element of task_struct.
522 */
523 struct thread_info thread_info;
524 #endif
525 /* -1 unrunnable, 0 runnable, >0 stopped: */
526 volatile long state;
527
528 /*
529 * This begins the randomizable portion of task_struct. Only
530 * scheduling-critical items should be added above here.
531 */
532 randomized_struct_fields_start
533
534 void *stack;
535 atomic_t usage;
536 /* Per task flags (PF_*), defined further below: */
537 unsigned int flags;
538 unsigned int ptrace;
539
540 #ifdef CONFIG_SMP
541 struct llist_node wake_entry;
542 int on_cpu;
543 #ifdef CONFIG_THREAD_INFO_IN_TASK
544 /* Current CPU: */
545 unsigned int cpu;
546 #endif
547 unsigned int wakee_flips;
548 unsigned long wakee_flip_decay_ts;
549 struct task_struct *last_wakee;
550
551 int wake_cpu;
552 #endif
553 int on_rq;
554
555 int prio;
556 int static_prio;
557 int normal_prio;
558 unsigned int rt_priority;
559
560 const struct sched_class *sched_class;
561 struct sched_entity se;
562 struct sched_rt_entity rt;
563 #ifdef CONFIG_CGROUP_SCHED
564 struct task_group *sched_task_group;
565 #endif
566 struct sched_dl_entity dl;
567
568 #ifdef CONFIG_PREEMPT_NOTIFIERS
569 /* List of struct preempt_notifier: */
570 struct hlist_head preempt_notifiers;
571 #endif
572
573 #ifdef CONFIG_BLK_DEV_IO_TRACE
574 unsigned int btrace_seq;
575 #endif
576
577 unsigned int policy;
578 int nr_cpus_allowed;
579 cpumask_t cpus_allowed;
580
581 #ifdef CONFIG_PREEMPT_RCU
582 int rcu_read_lock_nesting;
583 union rcu_special rcu_read_unlock_special;
584 struct list_head rcu_node_entry;
585 struct rcu_node *rcu_blocked_node;
586 #endif /* #ifdef CONFIG_PREEMPT_RCU */
587
588 #ifdef CONFIG_TASKS_RCU
589 unsigned long rcu_tasks_nvcsw;
590 u8 rcu_tasks_holdout;
591 u8 rcu_tasks_idx;
592 int rcu_tasks_idle_cpu;
593 struct list_head rcu_tasks_holdout_list;
594 #endif /* #ifdef CONFIG_TASKS_RCU */
595
596 struct sched_info sched_info;
597
598 struct list_head tasks;
599 #ifdef CONFIG_SMP
600 struct plist_node pushable_tasks;
601 struct rb_node pushable_dl_tasks;
602 #endif
603
604 struct mm_struct *mm;
605 struct mm_struct *active_mm;
606
607 /* Per-thread vma caching: */
608 struct vmacache vmacache;
609
610 #ifdef SPLIT_RSS_COUNTING
611 struct task_rss_stat rss_stat;
612 #endif
613 int exit_state;
614 int exit_code;
615 int exit_signal;
616 /* The signal sent when the parent dies: */
617 int pdeath_signal;
618 /* JOBCTL_*, siglock protected: */
619 unsigned long jobctl;
620
621 /* Used for emulating ABI behavior of previous Linux versions: */
622 unsigned int personality;
623
624 /* Scheduler bits, serialized by scheduler locks: */
625 unsigned sched_reset_on_fork:1;
626 unsigned sched_contributes_to_load:1;
627 unsigned sched_migrated:1;
628 unsigned sched_remote_wakeup:1;
629 /* Force alignment to the next boundary: */
630 unsigned :0;
631
632 /* Unserialized, strictly 'current' */
633
634 /* Bit to tell LSMs we're in execve(): */
635 unsigned in_execve:1;
636 unsigned in_iowait:1;
637 #ifndef TIF_RESTORE_SIGMASK
638 unsigned restore_sigmask:1;
639 #endif
640 #ifdef CONFIG_MEMCG
641 unsigned memcg_may_oom:1;
642 #ifndef CONFIG_SLOB
643 unsigned memcg_kmem_skip_account:1;
644 #endif
645 #endif
646 #ifdef CONFIG_COMPAT_BRK
647 unsigned brk_randomized:1;
648 #endif
649 #ifdef CONFIG_CGROUPS
650 /* disallow userland-initiated cgroup migration */
651 unsigned no_cgroup_migration:1;
652 #endif
653
654 unsigned long atomic_flags; /* Flags requiring atomic access. */
655
656 struct restart_block restart_block;
657
658 pid_t pid;
659 pid_t tgid;
660
661 #ifdef CONFIG_CC_STACKPROTECTOR
662 /* Canary value for the -fstack-protector GCC feature: */
663 unsigned long stack_canary;
664 #endif
665 /*
666 * Pointers to the (original) parent process, youngest child, younger sibling,
667 * older sibling, respectively. (p->father can be replaced with
668 * p->real_parent->pid)
669 */
670
671 /* Real parent process: */
672 struct task_struct __rcu *real_parent;
673
674 /* Recipient of SIGCHLD, wait4() reports: */
675 struct task_struct __rcu *parent;
676
677 /*
678 * Children/sibling form the list of natural children:
679 */
680 struct list_head children;
681 struct list_head sibling;
682 struct task_struct *group_leader;
683
684 /*
685 * 'ptraced' is the list of tasks this task is using ptrace() on.
686 *
687 * This includes both natural children and PTRACE_ATTACH targets.
688 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
689 */
690 struct list_head ptraced;
691 struct list_head ptrace_entry;
692
693 /* PID/PID hash table linkage. */
694 struct pid_link pids[PIDTYPE_MAX];
695 struct list_head thread_group;
696 struct list_head thread_node;
697
698 struct completion *vfork_done;
699
700 /* CLONE_CHILD_SETTID: */
701 int __user *set_child_tid;
702
703 /* CLONE_CHILD_CLEARTID: */
704 int __user *clear_child_tid;
705
706 u64 utime;
707 u64 stime;
708 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
709 u64 utimescaled;
710 u64 stimescaled;
711 #endif
712 u64 gtime;
713 struct prev_cputime prev_cputime;
714 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
715 struct vtime vtime;
716 #endif
717
718 #ifdef CONFIG_NO_HZ_FULL
719 atomic_t tick_dep_mask;
720 #endif
721 /* Context switch counts: */
722 unsigned long nvcsw;
723 unsigned long nivcsw;
724
725 /* Monotonic time in nsecs: */
726 u64 start_time;
727
728 /* Boot based time in nsecs: */
729 u64 real_start_time;
730
731 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
732 unsigned long min_flt;
733 unsigned long maj_flt;
734
735 #ifdef CONFIG_POSIX_TIMERS
736 struct task_cputime cputime_expires;
737 struct list_head cpu_timers[3];
738 #endif
739
740 /* Process credentials: */
741
742 /* Tracer's credentials at attach: */
743 const struct cred __rcu *ptracer_cred;
744
745 /* Objective and real subjective task credentials (COW): */
746 const struct cred __rcu *real_cred;
747
748 /* Effective (overridable) subjective task credentials (COW): */
749 const struct cred __rcu *cred;
750
751 /*
752 * executable name, excluding path.
753 *
754 * - normally initialized setup_new_exec()
755 * - access it with [gs]et_task_comm()
756 * - lock it with task_lock()
757 */
758 char comm[TASK_COMM_LEN];
759
760 struct nameidata *nameidata;
761
762 #ifdef CONFIG_SYSVIPC
763 struct sysv_sem sysvsem;
764 struct sysv_shm sysvshm;
765 #endif
766 #ifdef CONFIG_DETECT_HUNG_TASK
767 unsigned long last_switch_count;
768 #endif
769 /* Filesystem information: */
770 struct fs_struct *fs;
771
772 /* Open file information: */
773 struct files_struct *files;
774
775 /* Namespaces: */
776 struct nsproxy *nsproxy;
777
778 /* Signal handlers: */
779 struct signal_struct *signal;
780 struct sighand_struct *sighand;
781 sigset_t blocked;
782 sigset_t real_blocked;
783 /* Restored if set_restore_sigmask() was used: */
784 sigset_t saved_sigmask;
785 struct sigpending pending;
786 unsigned long sas_ss_sp;
787 size_t sas_ss_size;
788 unsigned int sas_ss_flags;
789
790 struct callback_head *task_works;
791
792 struct audit_context *audit_context;
793 #ifdef CONFIG_AUDITSYSCALL
794 kuid_t loginuid;
795 unsigned int sessionid;
796 #endif
797 struct seccomp seccomp;
798
799 /* Thread group tracking: */
800 u32 parent_exec_id;
801 u32 self_exec_id;
802
803 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
804 spinlock_t alloc_lock;
805
806 /* Protection of the PI data structures: */
807 raw_spinlock_t pi_lock;
808
809 struct wake_q_node wake_q;
810
811 #ifdef CONFIG_RT_MUTEXES
812 /* PI waiters blocked on a rt_mutex held by this task: */
813 struct rb_root_cached pi_waiters;
814 /* Updated under owner's pi_lock and rq lock */
815 struct task_struct *pi_top_task;
816 /* Deadlock detection and priority inheritance handling: */
817 struct rt_mutex_waiter *pi_blocked_on;
818 #endif
819
820 #ifdef CONFIG_DEBUG_MUTEXES
821 /* Mutex deadlock detection: */
822 struct mutex_waiter *blocked_on;
823 #endif
824
825 #ifdef CONFIG_TRACE_IRQFLAGS
826 unsigned int irq_events;
827 unsigned long hardirq_enable_ip;
828 unsigned long hardirq_disable_ip;
829 unsigned int hardirq_enable_event;
830 unsigned int hardirq_disable_event;
831 int hardirqs_enabled;
832 int hardirq_context;
833 unsigned long softirq_disable_ip;
834 unsigned long softirq_enable_ip;
835 unsigned int softirq_disable_event;
836 unsigned int softirq_enable_event;
837 int softirqs_enabled;
838 int softirq_context;
839 #endif
840
841 #ifdef CONFIG_LOCKDEP
842 # define MAX_LOCK_DEPTH 48UL
843 u64 curr_chain_key;
844 int lockdep_depth;
845 unsigned int lockdep_recursion;
846 struct held_lock held_locks[MAX_LOCK_DEPTH];
847 #endif
848
849 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
850 #define MAX_XHLOCKS_NR 64UL
851 struct hist_lock *xhlocks; /* Crossrelease history locks */
852 unsigned int xhlock_idx;
853 /* For restoring at history boundaries */
854 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
855 unsigned int hist_id;
856 /* For overwrite check at each context exit */
857 unsigned int hist_id_save[XHLOCK_CTX_NR];
858 #endif
859
860 #ifdef CONFIG_UBSAN
861 unsigned int in_ubsan;
862 #endif
863
864 /* Journalling filesystem info: */
865 void *journal_info;
866
867 /* Stacked block device info: */
868 struct bio_list *bio_list;
869
870 #ifdef CONFIG_BLOCK
871 /* Stack plugging: */
872 struct blk_plug *plug;
873 #endif
874
875 /* VM state: */
876 struct reclaim_state *reclaim_state;
877
878 struct backing_dev_info *backing_dev_info;
879
880 struct io_context *io_context;
881
882 /* Ptrace state: */
883 unsigned long ptrace_message;
884 siginfo_t *last_siginfo;
885
886 struct task_io_accounting ioac;
887 #ifdef CONFIG_TASK_XACCT
888 /* Accumulated RSS usage: */
889 u64 acct_rss_mem1;
890 /* Accumulated virtual memory usage: */
891 u64 acct_vm_mem1;
892 /* stime + utime since last update: */
893 u64 acct_timexpd;
894 #endif
895 #ifdef CONFIG_CPUSETS
896 /* Protected by ->alloc_lock: */
897 nodemask_t mems_allowed;
898 /* Seqence number to catch updates: */
899 seqcount_t mems_allowed_seq;
900 int cpuset_mem_spread_rotor;
901 int cpuset_slab_spread_rotor;
902 #endif
903 #ifdef CONFIG_CGROUPS
904 /* Control Group info protected by css_set_lock: */
905 struct css_set __rcu *cgroups;
906 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
907 struct list_head cg_list;
908 #endif
909 #ifdef CONFIG_INTEL_RDT
910 u32 closid;
911 u32 rmid;
912 #endif
913 #ifdef CONFIG_FUTEX
914 struct robust_list_head __user *robust_list;
915 #ifdef CONFIG_COMPAT
916 struct compat_robust_list_head __user *compat_robust_list;
917 #endif
918 struct list_head pi_state_list;
919 struct futex_pi_state *pi_state_cache;
920 #endif
921 #ifdef CONFIG_PERF_EVENTS
922 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
923 struct mutex perf_event_mutex;
924 struct list_head perf_event_list;
925 #endif
926 #ifdef CONFIG_DEBUG_PREEMPT
927 unsigned long preempt_disable_ip;
928 #endif
929 #ifdef CONFIG_NUMA
930 /* Protected by alloc_lock: */
931 struct mempolicy *mempolicy;
932 short il_prev;
933 short pref_node_fork;
934 #endif
935 #ifdef CONFIG_NUMA_BALANCING
936 int numa_scan_seq;
937 unsigned int numa_scan_period;
938 unsigned int numa_scan_period_max;
939 int numa_preferred_nid;
940 unsigned long numa_migrate_retry;
941 /* Migration stamp: */
942 u64 node_stamp;
943 u64 last_task_numa_placement;
944 u64 last_sum_exec_runtime;
945 struct callback_head numa_work;
946
947 struct list_head numa_entry;
948 struct numa_group *numa_group;
949
950 /*
951 * numa_faults is an array split into four regions:
952 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
953 * in this precise order.
954 *
955 * faults_memory: Exponential decaying average of faults on a per-node
956 * basis. Scheduling placement decisions are made based on these
957 * counts. The values remain static for the duration of a PTE scan.
958 * faults_cpu: Track the nodes the process was running on when a NUMA
959 * hinting fault was incurred.
960 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
961 * during the current scan window. When the scan completes, the counts
962 * in faults_memory and faults_cpu decay and these values are copied.
963 */
964 unsigned long *numa_faults;
965 unsigned long total_numa_faults;
966
967 /*
968 * numa_faults_locality tracks if faults recorded during the last
969 * scan window were remote/local or failed to migrate. The task scan
970 * period is adapted based on the locality of the faults with different
971 * weights depending on whether they were shared or private faults
972 */
973 unsigned long numa_faults_locality[3];
974
975 unsigned long numa_pages_migrated;
976 #endif /* CONFIG_NUMA_BALANCING */
977
978 struct tlbflush_unmap_batch tlb_ubc;
979
980 struct rcu_head rcu;
981
982 /* Cache last used pipe for splice(): */
983 struct pipe_inode_info *splice_pipe;
984
985 struct page_frag task_frag;
986
987 #ifdef CONFIG_TASK_DELAY_ACCT
988 struct task_delay_info *delays;
989 #endif
990
991 #ifdef CONFIG_FAULT_INJECTION
992 int make_it_fail;
993 unsigned int fail_nth;
994 #endif
995 /*
996 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
997 * balance_dirty_pages() for a dirty throttling pause:
998 */
999 int nr_dirtied;
1000 int nr_dirtied_pause;
1001 /* Start of a write-and-pause period: */
1002 unsigned long dirty_paused_when;
1003
1004 #ifdef CONFIG_LATENCYTOP
1005 int latency_record_count;
1006 struct latency_record latency_record[LT_SAVECOUNT];
1007 #endif
1008 /*
1009 * Time slack values; these are used to round up poll() and
1010 * select() etc timeout values. These are in nanoseconds.
1011 */
1012 u64 timer_slack_ns;
1013 u64 default_timer_slack_ns;
1014
1015 #ifdef CONFIG_KASAN
1016 unsigned int kasan_depth;
1017 #endif
1018
1019 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1020 /* Index of current stored address in ret_stack: */
1021 int curr_ret_stack;
1022
1023 /* Stack of return addresses for return function tracing: */
1024 struct ftrace_ret_stack *ret_stack;
1025
1026 /* Timestamp for last schedule: */
1027 unsigned long long ftrace_timestamp;
1028
1029 /*
1030 * Number of functions that haven't been traced
1031 * because of depth overrun:
1032 */
1033 atomic_t trace_overrun;
1034
1035 /* Pause tracing: */
1036 atomic_t tracing_graph_pause;
1037 #endif
1038
1039 #ifdef CONFIG_TRACING
1040 /* State flags for use by tracers: */
1041 unsigned long trace;
1042
1043 /* Bitmask and counter of trace recursion: */
1044 unsigned long trace_recursion;
1045 #endif /* CONFIG_TRACING */
1046
1047 #ifdef CONFIG_KCOV
1048 /* Coverage collection mode enabled for this task (0 if disabled): */
1049 enum kcov_mode kcov_mode;
1050
1051 /* Size of the kcov_area: */
1052 unsigned int kcov_size;
1053
1054 /* Buffer for coverage collection: */
1055 void *kcov_area;
1056
1057 /* KCOV descriptor wired with this task or NULL: */
1058 struct kcov *kcov;
1059 #endif
1060
1061 #ifdef CONFIG_MEMCG
1062 struct mem_cgroup *memcg_in_oom;
1063 gfp_t memcg_oom_gfp_mask;
1064 int memcg_oom_order;
1065
1066 /* Number of pages to reclaim on returning to userland: */
1067 unsigned int memcg_nr_pages_over_high;
1068 #endif
1069
1070 #ifdef CONFIG_UPROBES
1071 struct uprobe_task *utask;
1072 #endif
1073 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1074 unsigned int sequential_io;
1075 unsigned int sequential_io_avg;
1076 #endif
1077 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1078 unsigned long task_state_change;
1079 #endif
1080 int pagefault_disabled;
1081 #ifdef CONFIG_MMU
1082 struct task_struct *oom_reaper_list;
1083 #endif
1084 #ifdef CONFIG_VMAP_STACK
1085 struct vm_struct *stack_vm_area;
1086 #endif
1087 #ifdef CONFIG_THREAD_INFO_IN_TASK
1088 /* A live task holds one reference: */
1089 atomic_t stack_refcount;
1090 #endif
1091 #ifdef CONFIG_LIVEPATCH
1092 int patch_state;
1093 #endif
1094 #ifdef CONFIG_SECURITY
1095 /* Used by LSM modules for access restriction: */
1096 void *security;
1097 #endif
1098
1099 /*
1100 * New fields for task_struct should be added above here, so that
1101 * they are included in the randomized portion of task_struct.
1102 */
1103 randomized_struct_fields_end
1104
1105 /* CPU-specific state of this task: */
1106 struct thread_struct thread;
1107
1108 /*
1109 * WARNING: on x86, 'thread_struct' contains a variable-sized
1110 * structure. It *MUST* be at the end of 'task_struct'.
1111 *
1112 * Do not put anything below here!
1113 */
1114 };
1115
1116 static inline struct pid *task_pid(struct task_struct *task)
1117 {
1118 return task->pids[PIDTYPE_PID].pid;
1119 }
1120
1121 static inline struct pid *task_tgid(struct task_struct *task)
1122 {
1123 return task->group_leader->pids[PIDTYPE_PID].pid;
1124 }
1125
1126 /*
1127 * Without tasklist or RCU lock it is not safe to dereference
1128 * the result of task_pgrp/task_session even if task == current,
1129 * we can race with another thread doing sys_setsid/sys_setpgid.
1130 */
1131 static inline struct pid *task_pgrp(struct task_struct *task)
1132 {
1133 return task->group_leader->pids[PIDTYPE_PGID].pid;
1134 }
1135
1136 static inline struct pid *task_session(struct task_struct *task)
1137 {
1138 return task->group_leader->pids[PIDTYPE_SID].pid;
1139 }
1140
1141 /*
1142 * the helpers to get the task's different pids as they are seen
1143 * from various namespaces
1144 *
1145 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1146 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1147 * current.
1148 * task_xid_nr_ns() : id seen from the ns specified;
1149 *
1150 * see also pid_nr() etc in include/linux/pid.h
1151 */
1152 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1153
1154 static inline pid_t task_pid_nr(struct task_struct *tsk)
1155 {
1156 return tsk->pid;
1157 }
1158
1159 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1160 {
1161 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1162 }
1163
1164 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1165 {
1166 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1167 }
1168
1169
1170 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1171 {
1172 return tsk->tgid;
1173 }
1174
1175 /**
1176 * pid_alive - check that a task structure is not stale
1177 * @p: Task structure to be checked.
1178 *
1179 * Test if a process is not yet dead (at most zombie state)
1180 * If pid_alive fails, then pointers within the task structure
1181 * can be stale and must not be dereferenced.
1182 *
1183 * Return: 1 if the process is alive. 0 otherwise.
1184 */
1185 static inline int pid_alive(const struct task_struct *p)
1186 {
1187 return p->pids[PIDTYPE_PID].pid != NULL;
1188 }
1189
1190 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1191 {
1192 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1193 }
1194
1195 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1196 {
1197 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1198 }
1199
1200
1201 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1202 {
1203 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1204 }
1205
1206 static inline pid_t task_session_vnr(struct task_struct *tsk)
1207 {
1208 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1209 }
1210
1211 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1212 {
1213 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1214 }
1215
1216 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1217 {
1218 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1219 }
1220
1221 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1222 {
1223 pid_t pid = 0;
1224
1225 rcu_read_lock();
1226 if (pid_alive(tsk))
1227 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1228 rcu_read_unlock();
1229
1230 return pid;
1231 }
1232
1233 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1234 {
1235 return task_ppid_nr_ns(tsk, &init_pid_ns);
1236 }
1237
1238 /* Obsolete, do not use: */
1239 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1240 {
1241 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1242 }
1243
1244 static inline unsigned int __get_task_state(struct task_struct *tsk)
1245 {
1246 unsigned int tsk_state = READ_ONCE(tsk->state);
1247 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1248
1249 if (tsk_state == TASK_PARKED)
1250 state = TASK_INTERRUPTIBLE;
1251
1252 return fls(state);
1253 }
1254
1255 static inline char __task_state_to_char(unsigned int state)
1256 {
1257 static const char state_char[] = "RSDTtXZ";
1258
1259 BUILD_BUG_ON(1 + ilog2(TASK_REPORT) != sizeof(state_char) - 2);
1260
1261 return state_char[state];
1262 }
1263
1264 static inline char task_state_to_char(struct task_struct *tsk)
1265 {
1266 return __task_state_to_char(__get_task_state(tsk));
1267 }
1268
1269 /**
1270 * is_global_init - check if a task structure is init. Since init
1271 * is free to have sub-threads we need to check tgid.
1272 * @tsk: Task structure to be checked.
1273 *
1274 * Check if a task structure is the first user space task the kernel created.
1275 *
1276 * Return: 1 if the task structure is init. 0 otherwise.
1277 */
1278 static inline int is_global_init(struct task_struct *tsk)
1279 {
1280 return task_tgid_nr(tsk) == 1;
1281 }
1282
1283 extern struct pid *cad_pid;
1284
1285 /*
1286 * Per process flags
1287 */
1288 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1289 #define PF_EXITING 0x00000004 /* Getting shut down */
1290 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1291 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1292 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1293 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1294 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1295 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1296 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1297 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1298 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1299 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1300 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1301 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1302 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1303 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1304 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1305 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1306 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1307 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1308 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1309 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1310 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1311 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1312 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1313 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1314 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1315 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1316
1317 /*
1318 * Only the _current_ task can read/write to tsk->flags, but other
1319 * tasks can access tsk->flags in readonly mode for example
1320 * with tsk_used_math (like during threaded core dumping).
1321 * There is however an exception to this rule during ptrace
1322 * or during fork: the ptracer task is allowed to write to the
1323 * child->flags of its traced child (same goes for fork, the parent
1324 * can write to the child->flags), because we're guaranteed the
1325 * child is not running and in turn not changing child->flags
1326 * at the same time the parent does it.
1327 */
1328 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1329 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1330 #define clear_used_math() clear_stopped_child_used_math(current)
1331 #define set_used_math() set_stopped_child_used_math(current)
1332
1333 #define conditional_stopped_child_used_math(condition, child) \
1334 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1335
1336 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1337
1338 #define copy_to_stopped_child_used_math(child) \
1339 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1340
1341 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1342 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1343 #define used_math() tsk_used_math(current)
1344
1345 static inline bool is_percpu_thread(void)
1346 {
1347 #ifdef CONFIG_SMP
1348 return (current->flags & PF_NO_SETAFFINITY) &&
1349 (current->nr_cpus_allowed == 1);
1350 #else
1351 return true;
1352 #endif
1353 }
1354
1355 /* Per-process atomic flags. */
1356 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1357 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1358 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1359
1360
1361 #define TASK_PFA_TEST(name, func) \
1362 static inline bool task_##func(struct task_struct *p) \
1363 { return test_bit(PFA_##name, &p->atomic_flags); }
1364
1365 #define TASK_PFA_SET(name, func) \
1366 static inline void task_set_##func(struct task_struct *p) \
1367 { set_bit(PFA_##name, &p->atomic_flags); }
1368
1369 #define TASK_PFA_CLEAR(name, func) \
1370 static inline void task_clear_##func(struct task_struct *p) \
1371 { clear_bit(PFA_##name, &p->atomic_flags); }
1372
1373 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1374 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1375
1376 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1377 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1378 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1379
1380 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1381 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1382 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1383
1384 static inline void
1385 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1386 {
1387 current->flags &= ~flags;
1388 current->flags |= orig_flags & flags;
1389 }
1390
1391 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1392 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1393 #ifdef CONFIG_SMP
1394 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1395 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1396 #else
1397 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1398 {
1399 }
1400 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1401 {
1402 if (!cpumask_test_cpu(0, new_mask))
1403 return -EINVAL;
1404 return 0;
1405 }
1406 #endif
1407
1408 #ifndef cpu_relax_yield
1409 #define cpu_relax_yield() cpu_relax()
1410 #endif
1411
1412 extern int yield_to(struct task_struct *p, bool preempt);
1413 extern void set_user_nice(struct task_struct *p, long nice);
1414 extern int task_prio(const struct task_struct *p);
1415
1416 /**
1417 * task_nice - return the nice value of a given task.
1418 * @p: the task in question.
1419 *
1420 * Return: The nice value [ -20 ... 0 ... 19 ].
1421 */
1422 static inline int task_nice(const struct task_struct *p)
1423 {
1424 return PRIO_TO_NICE((p)->static_prio);
1425 }
1426
1427 extern int can_nice(const struct task_struct *p, const int nice);
1428 extern int task_curr(const struct task_struct *p);
1429 extern int idle_cpu(int cpu);
1430 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1431 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1432 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1433 extern struct task_struct *idle_task(int cpu);
1434
1435 /**
1436 * is_idle_task - is the specified task an idle task?
1437 * @p: the task in question.
1438 *
1439 * Return: 1 if @p is an idle task. 0 otherwise.
1440 */
1441 static inline bool is_idle_task(const struct task_struct *p)
1442 {
1443 return !!(p->flags & PF_IDLE);
1444 }
1445
1446 extern struct task_struct *curr_task(int cpu);
1447 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1448
1449 void yield(void);
1450
1451 union thread_union {
1452 #ifndef CONFIG_THREAD_INFO_IN_TASK
1453 struct thread_info thread_info;
1454 #endif
1455 unsigned long stack[THREAD_SIZE/sizeof(long)];
1456 };
1457
1458 #ifdef CONFIG_THREAD_INFO_IN_TASK
1459 static inline struct thread_info *task_thread_info(struct task_struct *task)
1460 {
1461 return &task->thread_info;
1462 }
1463 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1464 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1465 #endif
1466
1467 /*
1468 * find a task by one of its numerical ids
1469 *
1470 * find_task_by_pid_ns():
1471 * finds a task by its pid in the specified namespace
1472 * find_task_by_vpid():
1473 * finds a task by its virtual pid
1474 *
1475 * see also find_vpid() etc in include/linux/pid.h
1476 */
1477
1478 extern struct task_struct *find_task_by_vpid(pid_t nr);
1479 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1480
1481 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1482 extern int wake_up_process(struct task_struct *tsk);
1483 extern void wake_up_new_task(struct task_struct *tsk);
1484
1485 #ifdef CONFIG_SMP
1486 extern void kick_process(struct task_struct *tsk);
1487 #else
1488 static inline void kick_process(struct task_struct *tsk) { }
1489 #endif
1490
1491 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1492
1493 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1494 {
1495 __set_task_comm(tsk, from, false);
1496 }
1497
1498 extern char *get_task_comm(char *to, struct task_struct *tsk);
1499
1500 #ifdef CONFIG_SMP
1501 void scheduler_ipi(void);
1502 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1503 #else
1504 static inline void scheduler_ipi(void) { }
1505 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1506 {
1507 return 1;
1508 }
1509 #endif
1510
1511 /*
1512 * Set thread flags in other task's structures.
1513 * See asm/thread_info.h for TIF_xxxx flags available:
1514 */
1515 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1516 {
1517 set_ti_thread_flag(task_thread_info(tsk), flag);
1518 }
1519
1520 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1521 {
1522 clear_ti_thread_flag(task_thread_info(tsk), flag);
1523 }
1524
1525 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1526 {
1527 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1528 }
1529
1530 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1531 {
1532 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1533 }
1534
1535 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1536 {
1537 return test_ti_thread_flag(task_thread_info(tsk), flag);
1538 }
1539
1540 static inline void set_tsk_need_resched(struct task_struct *tsk)
1541 {
1542 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1543 }
1544
1545 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1546 {
1547 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1548 }
1549
1550 static inline int test_tsk_need_resched(struct task_struct *tsk)
1551 {
1552 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1553 }
1554
1555 /*
1556 * cond_resched() and cond_resched_lock(): latency reduction via
1557 * explicit rescheduling in places that are safe. The return
1558 * value indicates whether a reschedule was done in fact.
1559 * cond_resched_lock() will drop the spinlock before scheduling,
1560 * cond_resched_softirq() will enable bhs before scheduling.
1561 */
1562 #ifndef CONFIG_PREEMPT
1563 extern int _cond_resched(void);
1564 #else
1565 static inline int _cond_resched(void) { return 0; }
1566 #endif
1567
1568 #define cond_resched() ({ \
1569 ___might_sleep(__FILE__, __LINE__, 0); \
1570 _cond_resched(); \
1571 })
1572
1573 extern int __cond_resched_lock(spinlock_t *lock);
1574
1575 #define cond_resched_lock(lock) ({ \
1576 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1577 __cond_resched_lock(lock); \
1578 })
1579
1580 extern int __cond_resched_softirq(void);
1581
1582 #define cond_resched_softirq() ({ \
1583 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1584 __cond_resched_softirq(); \
1585 })
1586
1587 static inline void cond_resched_rcu(void)
1588 {
1589 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1590 rcu_read_unlock();
1591 cond_resched();
1592 rcu_read_lock();
1593 #endif
1594 }
1595
1596 /*
1597 * Does a critical section need to be broken due to another
1598 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1599 * but a general need for low latency)
1600 */
1601 static inline int spin_needbreak(spinlock_t *lock)
1602 {
1603 #ifdef CONFIG_PREEMPT
1604 return spin_is_contended(lock);
1605 #else
1606 return 0;
1607 #endif
1608 }
1609
1610 static __always_inline bool need_resched(void)
1611 {
1612 return unlikely(tif_need_resched());
1613 }
1614
1615 /*
1616 * Wrappers for p->thread_info->cpu access. No-op on UP.
1617 */
1618 #ifdef CONFIG_SMP
1619
1620 static inline unsigned int task_cpu(const struct task_struct *p)
1621 {
1622 #ifdef CONFIG_THREAD_INFO_IN_TASK
1623 return p->cpu;
1624 #else
1625 return task_thread_info(p)->cpu;
1626 #endif
1627 }
1628
1629 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1630
1631 #else
1632
1633 static inline unsigned int task_cpu(const struct task_struct *p)
1634 {
1635 return 0;
1636 }
1637
1638 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1639 {
1640 }
1641
1642 #endif /* CONFIG_SMP */
1643
1644 /*
1645 * In order to reduce various lock holder preemption latencies provide an
1646 * interface to see if a vCPU is currently running or not.
1647 *
1648 * This allows us to terminate optimistic spin loops and block, analogous to
1649 * the native optimistic spin heuristic of testing if the lock owner task is
1650 * running or not.
1651 */
1652 #ifndef vcpu_is_preempted
1653 # define vcpu_is_preempted(cpu) false
1654 #endif
1655
1656 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1657 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1658
1659 #ifndef TASK_SIZE_OF
1660 #define TASK_SIZE_OF(tsk) TASK_SIZE
1661 #endif
1662
1663 #endif