]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - include/linux/sched.h
mm: teach mm by current context info to not do I/O during memory allocation
[thirdparty/kernel/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_uninterruptible(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106
107
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110
111 /* Notifier for when a task gets migrated to a new CPU */
112 struct task_migration_notifier {
113 struct task_struct *task;
114 int from_cpu;
115 int to_cpu;
116 };
117 extern void register_task_migration_notifier(struct notifier_block *n);
118
119 extern unsigned long get_parent_ip(unsigned long addr);
120
121 extern void dump_cpu_task(int cpu);
122
123 struct seq_file;
124 struct cfs_rq;
125 struct task_group;
126 #ifdef CONFIG_SCHED_DEBUG
127 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
128 extern void proc_sched_set_task(struct task_struct *p);
129 extern void
130 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
131 #else
132 static inline void
133 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
134 {
135 }
136 static inline void proc_sched_set_task(struct task_struct *p)
137 {
138 }
139 static inline void
140 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
141 {
142 }
143 #endif
144
145 /*
146 * Task state bitmask. NOTE! These bits are also
147 * encoded in fs/proc/array.c: get_task_state().
148 *
149 * We have two separate sets of flags: task->state
150 * is about runnability, while task->exit_state are
151 * about the task exiting. Confusing, but this way
152 * modifying one set can't modify the other one by
153 * mistake.
154 */
155 #define TASK_RUNNING 0
156 #define TASK_INTERRUPTIBLE 1
157 #define TASK_UNINTERRUPTIBLE 2
158 #define __TASK_STOPPED 4
159 #define __TASK_TRACED 8
160 /* in tsk->exit_state */
161 #define EXIT_ZOMBIE 16
162 #define EXIT_DEAD 32
163 /* in tsk->state again */
164 #define TASK_DEAD 64
165 #define TASK_WAKEKILL 128
166 #define TASK_WAKING 256
167 #define TASK_STATE_MAX 512
168
169 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
170
171 extern char ___assert_task_state[1 - 2*!!(
172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
173
174 /* Convenience macros for the sake of set_task_state */
175 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
176 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
177 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
178
179 /* Convenience macros for the sake of wake_up */
180 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
181 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
182
183 /* get_task_state() */
184 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
186 __TASK_TRACED)
187
188 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
189 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
190 #define task_is_dead(task) ((task)->exit_state != 0)
191 #define task_is_stopped_or_traced(task) \
192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
193 #define task_contributes_to_load(task) \
194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
195 (task->flags & PF_FROZEN) == 0)
196
197 #define __set_task_state(tsk, state_value) \
198 do { (tsk)->state = (state_value); } while (0)
199 #define set_task_state(tsk, state_value) \
200 set_mb((tsk)->state, (state_value))
201
202 /*
203 * set_current_state() includes a barrier so that the write of current->state
204 * is correctly serialised wrt the caller's subsequent test of whether to
205 * actually sleep:
206 *
207 * set_current_state(TASK_UNINTERRUPTIBLE);
208 * if (do_i_need_to_sleep())
209 * schedule();
210 *
211 * If the caller does not need such serialisation then use __set_current_state()
212 */
213 #define __set_current_state(state_value) \
214 do { current->state = (state_value); } while (0)
215 #define set_current_state(state_value) \
216 set_mb(current->state, (state_value))
217
218 /* Task command name length */
219 #define TASK_COMM_LEN 16
220
221 #include <linux/spinlock.h>
222
223 /*
224 * This serializes "schedule()" and also protects
225 * the run-queue from deletions/modifications (but
226 * _adding_ to the beginning of the run-queue has
227 * a separate lock).
228 */
229 extern rwlock_t tasklist_lock;
230 extern spinlock_t mmlist_lock;
231
232 struct task_struct;
233
234 #ifdef CONFIG_PROVE_RCU
235 extern int lockdep_tasklist_lock_is_held(void);
236 #endif /* #ifdef CONFIG_PROVE_RCU */
237
238 extern void sched_init(void);
239 extern void sched_init_smp(void);
240 extern asmlinkage void schedule_tail(struct task_struct *prev);
241 extern void init_idle(struct task_struct *idle, int cpu);
242 extern void init_idle_bootup_task(struct task_struct *idle);
243
244 extern int runqueue_is_locked(int cpu);
245
246 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
247 extern void nohz_balance_enter_idle(int cpu);
248 extern void set_cpu_sd_state_idle(void);
249 extern int get_nohz_timer_target(void);
250 #else
251 static inline void nohz_balance_enter_idle(int cpu) { }
252 static inline void set_cpu_sd_state_idle(void) { }
253 #endif
254
255 /*
256 * Only dump TASK_* tasks. (0 for all tasks)
257 */
258 extern void show_state_filter(unsigned long state_filter);
259
260 static inline void show_state(void)
261 {
262 show_state_filter(0);
263 }
264
265 extern void show_regs(struct pt_regs *);
266
267 /*
268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
269 * task), SP is the stack pointer of the first frame that should be shown in the back
270 * trace (or NULL if the entire call-chain of the task should be shown).
271 */
272 extern void show_stack(struct task_struct *task, unsigned long *sp);
273
274 void io_schedule(void);
275 long io_schedule_timeout(long timeout);
276
277 extern void cpu_init (void);
278 extern void trap_init(void);
279 extern void update_process_times(int user);
280 extern void scheduler_tick(void);
281
282 extern void sched_show_task(struct task_struct *p);
283
284 #ifdef CONFIG_LOCKUP_DETECTOR
285 extern void touch_softlockup_watchdog(void);
286 extern void touch_softlockup_watchdog_sync(void);
287 extern void touch_all_softlockup_watchdogs(void);
288 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
289 void __user *buffer,
290 size_t *lenp, loff_t *ppos);
291 extern unsigned int softlockup_panic;
292 void lockup_detector_init(void);
293 #else
294 static inline void touch_softlockup_watchdog(void)
295 {
296 }
297 static inline void touch_softlockup_watchdog_sync(void)
298 {
299 }
300 static inline void touch_all_softlockup_watchdogs(void)
301 {
302 }
303 static inline void lockup_detector_init(void)
304 {
305 }
306 #endif
307
308 /* Attach to any functions which should be ignored in wchan output. */
309 #define __sched __attribute__((__section__(".sched.text")))
310
311 /* Linker adds these: start and end of __sched functions */
312 extern char __sched_text_start[], __sched_text_end[];
313
314 /* Is this address in the __sched functions? */
315 extern int in_sched_functions(unsigned long addr);
316
317 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
318 extern signed long schedule_timeout(signed long timeout);
319 extern signed long schedule_timeout_interruptible(signed long timeout);
320 extern signed long schedule_timeout_killable(signed long timeout);
321 extern signed long schedule_timeout_uninterruptible(signed long timeout);
322 asmlinkage void schedule(void);
323 extern void schedule_preempt_disabled(void);
324 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
325
326 struct nsproxy;
327 struct user_namespace;
328
329 #include <linux/aio.h>
330
331 #ifdef CONFIG_MMU
332 extern void arch_pick_mmap_layout(struct mm_struct *mm);
333 extern unsigned long
334 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
335 unsigned long, unsigned long);
336 extern unsigned long
337 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
338 unsigned long len, unsigned long pgoff,
339 unsigned long flags);
340 extern void arch_unmap_area(struct mm_struct *, unsigned long);
341 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
342 #else
343 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
344 #endif
345
346
347 extern void set_dumpable(struct mm_struct *mm, int value);
348 extern int get_dumpable(struct mm_struct *mm);
349
350 /* get/set_dumpable() values */
351 #define SUID_DUMPABLE_DISABLED 0
352 #define SUID_DUMPABLE_ENABLED 1
353 #define SUID_DUMPABLE_SAFE 2
354
355 /* mm flags */
356 /* dumpable bits */
357 #define MMF_DUMPABLE 0 /* core dump is permitted */
358 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
359
360 #define MMF_DUMPABLE_BITS 2
361 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
362
363 /* coredump filter bits */
364 #define MMF_DUMP_ANON_PRIVATE 2
365 #define MMF_DUMP_ANON_SHARED 3
366 #define MMF_DUMP_MAPPED_PRIVATE 4
367 #define MMF_DUMP_MAPPED_SHARED 5
368 #define MMF_DUMP_ELF_HEADERS 6
369 #define MMF_DUMP_HUGETLB_PRIVATE 7
370 #define MMF_DUMP_HUGETLB_SHARED 8
371
372 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
373 #define MMF_DUMP_FILTER_BITS 7
374 #define MMF_DUMP_FILTER_MASK \
375 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
376 #define MMF_DUMP_FILTER_DEFAULT \
377 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
378 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
379
380 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
381 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
382 #else
383 # define MMF_DUMP_MASK_DEFAULT_ELF 0
384 #endif
385 /* leave room for more dump flags */
386 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
387 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
388 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
389
390 #define MMF_HAS_UPROBES 19 /* has uprobes */
391 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
392
393 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
394
395 struct sighand_struct {
396 atomic_t count;
397 struct k_sigaction action[_NSIG];
398 spinlock_t siglock;
399 wait_queue_head_t signalfd_wqh;
400 };
401
402 struct pacct_struct {
403 int ac_flag;
404 long ac_exitcode;
405 unsigned long ac_mem;
406 cputime_t ac_utime, ac_stime;
407 unsigned long ac_minflt, ac_majflt;
408 };
409
410 struct cpu_itimer {
411 cputime_t expires;
412 cputime_t incr;
413 u32 error;
414 u32 incr_error;
415 };
416
417 /**
418 * struct cputime - snaphsot of system and user cputime
419 * @utime: time spent in user mode
420 * @stime: time spent in system mode
421 *
422 * Gathers a generic snapshot of user and system time.
423 */
424 struct cputime {
425 cputime_t utime;
426 cputime_t stime;
427 };
428
429 /**
430 * struct task_cputime - collected CPU time counts
431 * @utime: time spent in user mode, in &cputime_t units
432 * @stime: time spent in kernel mode, in &cputime_t units
433 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
434 *
435 * This is an extension of struct cputime that includes the total runtime
436 * spent by the task from the scheduler point of view.
437 *
438 * As a result, this structure groups together three kinds of CPU time
439 * that are tracked for threads and thread groups. Most things considering
440 * CPU time want to group these counts together and treat all three
441 * of them in parallel.
442 */
443 struct task_cputime {
444 cputime_t utime;
445 cputime_t stime;
446 unsigned long long sum_exec_runtime;
447 };
448 /* Alternate field names when used to cache expirations. */
449 #define prof_exp stime
450 #define virt_exp utime
451 #define sched_exp sum_exec_runtime
452
453 #define INIT_CPUTIME \
454 (struct task_cputime) { \
455 .utime = 0, \
456 .stime = 0, \
457 .sum_exec_runtime = 0, \
458 }
459
460 /*
461 * Disable preemption until the scheduler is running.
462 * Reset by start_kernel()->sched_init()->init_idle().
463 *
464 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
465 * before the scheduler is active -- see should_resched().
466 */
467 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
468
469 /**
470 * struct thread_group_cputimer - thread group interval timer counts
471 * @cputime: thread group interval timers.
472 * @running: non-zero when there are timers running and
473 * @cputime receives updates.
474 * @lock: lock for fields in this struct.
475 *
476 * This structure contains the version of task_cputime, above, that is
477 * used for thread group CPU timer calculations.
478 */
479 struct thread_group_cputimer {
480 struct task_cputime cputime;
481 int running;
482 raw_spinlock_t lock;
483 };
484
485 #include <linux/rwsem.h>
486 struct autogroup;
487
488 /*
489 * NOTE! "signal_struct" does not have its own
490 * locking, because a shared signal_struct always
491 * implies a shared sighand_struct, so locking
492 * sighand_struct is always a proper superset of
493 * the locking of signal_struct.
494 */
495 struct signal_struct {
496 atomic_t sigcnt;
497 atomic_t live;
498 int nr_threads;
499
500 wait_queue_head_t wait_chldexit; /* for wait4() */
501
502 /* current thread group signal load-balancing target: */
503 struct task_struct *curr_target;
504
505 /* shared signal handling: */
506 struct sigpending shared_pending;
507
508 /* thread group exit support */
509 int group_exit_code;
510 /* overloaded:
511 * - notify group_exit_task when ->count is equal to notify_count
512 * - everyone except group_exit_task is stopped during signal delivery
513 * of fatal signals, group_exit_task processes the signal.
514 */
515 int notify_count;
516 struct task_struct *group_exit_task;
517
518 /* thread group stop support, overloads group_exit_code too */
519 int group_stop_count;
520 unsigned int flags; /* see SIGNAL_* flags below */
521
522 /*
523 * PR_SET_CHILD_SUBREAPER marks a process, like a service
524 * manager, to re-parent orphan (double-forking) child processes
525 * to this process instead of 'init'. The service manager is
526 * able to receive SIGCHLD signals and is able to investigate
527 * the process until it calls wait(). All children of this
528 * process will inherit a flag if they should look for a
529 * child_subreaper process at exit.
530 */
531 unsigned int is_child_subreaper:1;
532 unsigned int has_child_subreaper:1;
533
534 /* POSIX.1b Interval Timers */
535 struct list_head posix_timers;
536
537 /* ITIMER_REAL timer for the process */
538 struct hrtimer real_timer;
539 struct pid *leader_pid;
540 ktime_t it_real_incr;
541
542 /*
543 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
544 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
545 * values are defined to 0 and 1 respectively
546 */
547 struct cpu_itimer it[2];
548
549 /*
550 * Thread group totals for process CPU timers.
551 * See thread_group_cputimer(), et al, for details.
552 */
553 struct thread_group_cputimer cputimer;
554
555 /* Earliest-expiration cache. */
556 struct task_cputime cputime_expires;
557
558 struct list_head cpu_timers[3];
559
560 struct pid *tty_old_pgrp;
561
562 /* boolean value for session group leader */
563 int leader;
564
565 struct tty_struct *tty; /* NULL if no tty */
566
567 #ifdef CONFIG_SCHED_AUTOGROUP
568 struct autogroup *autogroup;
569 #endif
570 /*
571 * Cumulative resource counters for dead threads in the group,
572 * and for reaped dead child processes forked by this group.
573 * Live threads maintain their own counters and add to these
574 * in __exit_signal, except for the group leader.
575 */
576 cputime_t utime, stime, cutime, cstime;
577 cputime_t gtime;
578 cputime_t cgtime;
579 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
580 struct cputime prev_cputime;
581 #endif
582 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
583 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
584 unsigned long inblock, oublock, cinblock, coublock;
585 unsigned long maxrss, cmaxrss;
586 struct task_io_accounting ioac;
587
588 /*
589 * Cumulative ns of schedule CPU time fo dead threads in the
590 * group, not including a zombie group leader, (This only differs
591 * from jiffies_to_ns(utime + stime) if sched_clock uses something
592 * other than jiffies.)
593 */
594 unsigned long long sum_sched_runtime;
595
596 /*
597 * We don't bother to synchronize most readers of this at all,
598 * because there is no reader checking a limit that actually needs
599 * to get both rlim_cur and rlim_max atomically, and either one
600 * alone is a single word that can safely be read normally.
601 * getrlimit/setrlimit use task_lock(current->group_leader) to
602 * protect this instead of the siglock, because they really
603 * have no need to disable irqs.
604 */
605 struct rlimit rlim[RLIM_NLIMITS];
606
607 #ifdef CONFIG_BSD_PROCESS_ACCT
608 struct pacct_struct pacct; /* per-process accounting information */
609 #endif
610 #ifdef CONFIG_TASKSTATS
611 struct taskstats *stats;
612 #endif
613 #ifdef CONFIG_AUDIT
614 unsigned audit_tty;
615 struct tty_audit_buf *tty_audit_buf;
616 #endif
617 #ifdef CONFIG_CGROUPS
618 /*
619 * group_rwsem prevents new tasks from entering the threadgroup and
620 * member tasks from exiting,a more specifically, setting of
621 * PF_EXITING. fork and exit paths are protected with this rwsem
622 * using threadgroup_change_begin/end(). Users which require
623 * threadgroup to remain stable should use threadgroup_[un]lock()
624 * which also takes care of exec path. Currently, cgroup is the
625 * only user.
626 */
627 struct rw_semaphore group_rwsem;
628 #endif
629
630 oom_flags_t oom_flags;
631 short oom_score_adj; /* OOM kill score adjustment */
632 short oom_score_adj_min; /* OOM kill score adjustment min value.
633 * Only settable by CAP_SYS_RESOURCE. */
634
635 struct mutex cred_guard_mutex; /* guard against foreign influences on
636 * credential calculations
637 * (notably. ptrace) */
638 };
639
640 /*
641 * Bits in flags field of signal_struct.
642 */
643 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
644 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
646 /*
647 * Pending notifications to parent.
648 */
649 #define SIGNAL_CLD_STOPPED 0x00000010
650 #define SIGNAL_CLD_CONTINUED 0x00000020
651 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
652
653 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
654
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
657 {
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
660 }
661
662 /*
663 * Some day this will be a full-fledged user tracking system..
664 */
665 struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_FANOTIFY
675 atomic_t fanotify_listeners;
676 #endif
677 #ifdef CONFIG_EPOLL
678 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
679 #endif
680 #ifdef CONFIG_POSIX_MQUEUE
681 /* protected by mq_lock */
682 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
683 #endif
684 unsigned long locked_shm; /* How many pages of mlocked shm ? */
685
686 #ifdef CONFIG_KEYS
687 struct key *uid_keyring; /* UID specific keyring */
688 struct key *session_keyring; /* UID's default session keyring */
689 #endif
690
691 /* Hash table maintenance information */
692 struct hlist_node uidhash_node;
693 kuid_t uid;
694
695 #ifdef CONFIG_PERF_EVENTS
696 atomic_long_t locked_vm;
697 #endif
698 };
699
700 extern int uids_sysfs_init(void);
701
702 extern struct user_struct *find_user(kuid_t);
703
704 extern struct user_struct root_user;
705 #define INIT_USER (&root_user)
706
707
708 struct backing_dev_info;
709 struct reclaim_state;
710
711 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
712 struct sched_info {
713 /* cumulative counters */
714 unsigned long pcount; /* # of times run on this cpu */
715 unsigned long long run_delay; /* time spent waiting on a runqueue */
716
717 /* timestamps */
718 unsigned long long last_arrival,/* when we last ran on a cpu */
719 last_queued; /* when we were last queued to run */
720 };
721 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
722
723 #ifdef CONFIG_TASK_DELAY_ACCT
724 struct task_delay_info {
725 spinlock_t lock;
726 unsigned int flags; /* Private per-task flags */
727
728 /* For each stat XXX, add following, aligned appropriately
729 *
730 * struct timespec XXX_start, XXX_end;
731 * u64 XXX_delay;
732 * u32 XXX_count;
733 *
734 * Atomicity of updates to XXX_delay, XXX_count protected by
735 * single lock above (split into XXX_lock if contention is an issue).
736 */
737
738 /*
739 * XXX_count is incremented on every XXX operation, the delay
740 * associated with the operation is added to XXX_delay.
741 * XXX_delay contains the accumulated delay time in nanoseconds.
742 */
743 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
744 u64 blkio_delay; /* wait for sync block io completion */
745 u64 swapin_delay; /* wait for swapin block io completion */
746 u32 blkio_count; /* total count of the number of sync block */
747 /* io operations performed */
748 u32 swapin_count; /* total count of the number of swapin block */
749 /* io operations performed */
750
751 struct timespec freepages_start, freepages_end;
752 u64 freepages_delay; /* wait for memory reclaim */
753 u32 freepages_count; /* total count of memory reclaim */
754 };
755 #endif /* CONFIG_TASK_DELAY_ACCT */
756
757 static inline int sched_info_on(void)
758 {
759 #ifdef CONFIG_SCHEDSTATS
760 return 1;
761 #elif defined(CONFIG_TASK_DELAY_ACCT)
762 extern int delayacct_on;
763 return delayacct_on;
764 #else
765 return 0;
766 #endif
767 }
768
769 enum cpu_idle_type {
770 CPU_IDLE,
771 CPU_NOT_IDLE,
772 CPU_NEWLY_IDLE,
773 CPU_MAX_IDLE_TYPES
774 };
775
776 /*
777 * Increase resolution of nice-level calculations for 64-bit architectures.
778 * The extra resolution improves shares distribution and load balancing of
779 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
780 * hierarchies, especially on larger systems. This is not a user-visible change
781 * and does not change the user-interface for setting shares/weights.
782 *
783 * We increase resolution only if we have enough bits to allow this increased
784 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
785 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
786 * increased costs.
787 */
788 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
789 # define SCHED_LOAD_RESOLUTION 10
790 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
791 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
792 #else
793 # define SCHED_LOAD_RESOLUTION 0
794 # define scale_load(w) (w)
795 # define scale_load_down(w) (w)
796 #endif
797
798 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
799 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
800
801 /*
802 * Increase resolution of cpu_power calculations
803 */
804 #define SCHED_POWER_SHIFT 10
805 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
806
807 /*
808 * sched-domains (multiprocessor balancing) declarations:
809 */
810 #ifdef CONFIG_SMP
811 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
812 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
813 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
814 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
815 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
816 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
817 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
818 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
819 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
820 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
821 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
822 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
823
824 extern int __weak arch_sd_sibiling_asym_packing(void);
825
826 struct sched_group_power {
827 atomic_t ref;
828 /*
829 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
830 * single CPU.
831 */
832 unsigned int power, power_orig;
833 unsigned long next_update;
834 /*
835 * Number of busy cpus in this group.
836 */
837 atomic_t nr_busy_cpus;
838
839 unsigned long cpumask[0]; /* iteration mask */
840 };
841
842 struct sched_group {
843 struct sched_group *next; /* Must be a circular list */
844 atomic_t ref;
845
846 unsigned int group_weight;
847 struct sched_group_power *sgp;
848
849 /*
850 * The CPUs this group covers.
851 *
852 * NOTE: this field is variable length. (Allocated dynamically
853 * by attaching extra space to the end of the structure,
854 * depending on how many CPUs the kernel has booted up with)
855 */
856 unsigned long cpumask[0];
857 };
858
859 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
860 {
861 return to_cpumask(sg->cpumask);
862 }
863
864 /*
865 * cpumask masking which cpus in the group are allowed to iterate up the domain
866 * tree.
867 */
868 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
869 {
870 return to_cpumask(sg->sgp->cpumask);
871 }
872
873 /**
874 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
875 * @group: The group whose first cpu is to be returned.
876 */
877 static inline unsigned int group_first_cpu(struct sched_group *group)
878 {
879 return cpumask_first(sched_group_cpus(group));
880 }
881
882 struct sched_domain_attr {
883 int relax_domain_level;
884 };
885
886 #define SD_ATTR_INIT (struct sched_domain_attr) { \
887 .relax_domain_level = -1, \
888 }
889
890 extern int sched_domain_level_max;
891
892 struct sched_domain {
893 /* These fields must be setup */
894 struct sched_domain *parent; /* top domain must be null terminated */
895 struct sched_domain *child; /* bottom domain must be null terminated */
896 struct sched_group *groups; /* the balancing groups of the domain */
897 unsigned long min_interval; /* Minimum balance interval ms */
898 unsigned long max_interval; /* Maximum balance interval ms */
899 unsigned int busy_factor; /* less balancing by factor if busy */
900 unsigned int imbalance_pct; /* No balance until over watermark */
901 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
902 unsigned int busy_idx;
903 unsigned int idle_idx;
904 unsigned int newidle_idx;
905 unsigned int wake_idx;
906 unsigned int forkexec_idx;
907 unsigned int smt_gain;
908 int flags; /* See SD_* */
909 int level;
910
911 /* Runtime fields. */
912 unsigned long last_balance; /* init to jiffies. units in jiffies */
913 unsigned int balance_interval; /* initialise to 1. units in ms. */
914 unsigned int nr_balance_failed; /* initialise to 0 */
915
916 u64 last_update;
917
918 #ifdef CONFIG_SCHEDSTATS
919 /* load_balance() stats */
920 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
923 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
928
929 /* Active load balancing */
930 unsigned int alb_count;
931 unsigned int alb_failed;
932 unsigned int alb_pushed;
933
934 /* SD_BALANCE_EXEC stats */
935 unsigned int sbe_count;
936 unsigned int sbe_balanced;
937 unsigned int sbe_pushed;
938
939 /* SD_BALANCE_FORK stats */
940 unsigned int sbf_count;
941 unsigned int sbf_balanced;
942 unsigned int sbf_pushed;
943
944 /* try_to_wake_up() stats */
945 unsigned int ttwu_wake_remote;
946 unsigned int ttwu_move_affine;
947 unsigned int ttwu_move_balance;
948 #endif
949 #ifdef CONFIG_SCHED_DEBUG
950 char *name;
951 #endif
952 union {
953 void *private; /* used during construction */
954 struct rcu_head rcu; /* used during destruction */
955 };
956
957 unsigned int span_weight;
958 /*
959 * Span of all CPUs in this domain.
960 *
961 * NOTE: this field is variable length. (Allocated dynamically
962 * by attaching extra space to the end of the structure,
963 * depending on how many CPUs the kernel has booted up with)
964 */
965 unsigned long span[0];
966 };
967
968 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
969 {
970 return to_cpumask(sd->span);
971 }
972
973 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
974 struct sched_domain_attr *dattr_new);
975
976 /* Allocate an array of sched domains, for partition_sched_domains(). */
977 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
978 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
979
980 /* Test a flag in parent sched domain */
981 static inline int test_sd_parent(struct sched_domain *sd, int flag)
982 {
983 if (sd->parent && (sd->parent->flags & flag))
984 return 1;
985
986 return 0;
987 }
988
989 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
990 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
991
992 bool cpus_share_cache(int this_cpu, int that_cpu);
993
994 #else /* CONFIG_SMP */
995
996 struct sched_domain_attr;
997
998 static inline void
999 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1000 struct sched_domain_attr *dattr_new)
1001 {
1002 }
1003
1004 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1005 {
1006 return true;
1007 }
1008
1009 #endif /* !CONFIG_SMP */
1010
1011
1012 struct io_context; /* See blkdev.h */
1013
1014
1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016 extern void prefetch_stack(struct task_struct *t);
1017 #else
1018 static inline void prefetch_stack(struct task_struct *t) { }
1019 #endif
1020
1021 struct audit_context; /* See audit.c */
1022 struct mempolicy;
1023 struct pipe_inode_info;
1024 struct uts_namespace;
1025
1026 struct rq;
1027 struct sched_domain;
1028
1029 /*
1030 * wake flags
1031 */
1032 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1033 #define WF_FORK 0x02 /* child wakeup after fork */
1034 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1035
1036 #define ENQUEUE_WAKEUP 1
1037 #define ENQUEUE_HEAD 2
1038 #ifdef CONFIG_SMP
1039 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1040 #else
1041 #define ENQUEUE_WAKING 0
1042 #endif
1043
1044 #define DEQUEUE_SLEEP 1
1045
1046 struct sched_class {
1047 const struct sched_class *next;
1048
1049 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1050 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1051 void (*yield_task) (struct rq *rq);
1052 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1053
1054 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1055
1056 struct task_struct * (*pick_next_task) (struct rq *rq);
1057 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1058
1059 #ifdef CONFIG_SMP
1060 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1061 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1062
1063 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1064 void (*post_schedule) (struct rq *this_rq);
1065 void (*task_waking) (struct task_struct *task);
1066 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1067
1068 void (*set_cpus_allowed)(struct task_struct *p,
1069 const struct cpumask *newmask);
1070
1071 void (*rq_online)(struct rq *rq);
1072 void (*rq_offline)(struct rq *rq);
1073 #endif
1074
1075 void (*set_curr_task) (struct rq *rq);
1076 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1077 void (*task_fork) (struct task_struct *p);
1078
1079 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1080 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1081 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1082 int oldprio);
1083
1084 unsigned int (*get_rr_interval) (struct rq *rq,
1085 struct task_struct *task);
1086
1087 #ifdef CONFIG_FAIR_GROUP_SCHED
1088 void (*task_move_group) (struct task_struct *p, int on_rq);
1089 #endif
1090 };
1091
1092 struct load_weight {
1093 unsigned long weight, inv_weight;
1094 };
1095
1096 struct sched_avg {
1097 /*
1098 * These sums represent an infinite geometric series and so are bound
1099 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1100 * choices of y < 1-2^(-32)*1024.
1101 */
1102 u32 runnable_avg_sum, runnable_avg_period;
1103 u64 last_runnable_update;
1104 s64 decay_count;
1105 unsigned long load_avg_contrib;
1106 };
1107
1108 #ifdef CONFIG_SCHEDSTATS
1109 struct sched_statistics {
1110 u64 wait_start;
1111 u64 wait_max;
1112 u64 wait_count;
1113 u64 wait_sum;
1114 u64 iowait_count;
1115 u64 iowait_sum;
1116
1117 u64 sleep_start;
1118 u64 sleep_max;
1119 s64 sum_sleep_runtime;
1120
1121 u64 block_start;
1122 u64 block_max;
1123 u64 exec_max;
1124 u64 slice_max;
1125
1126 u64 nr_migrations_cold;
1127 u64 nr_failed_migrations_affine;
1128 u64 nr_failed_migrations_running;
1129 u64 nr_failed_migrations_hot;
1130 u64 nr_forced_migrations;
1131
1132 u64 nr_wakeups;
1133 u64 nr_wakeups_sync;
1134 u64 nr_wakeups_migrate;
1135 u64 nr_wakeups_local;
1136 u64 nr_wakeups_remote;
1137 u64 nr_wakeups_affine;
1138 u64 nr_wakeups_affine_attempts;
1139 u64 nr_wakeups_passive;
1140 u64 nr_wakeups_idle;
1141 };
1142 #endif
1143
1144 struct sched_entity {
1145 struct load_weight load; /* for load-balancing */
1146 struct rb_node run_node;
1147 struct list_head group_node;
1148 unsigned int on_rq;
1149
1150 u64 exec_start;
1151 u64 sum_exec_runtime;
1152 u64 vruntime;
1153 u64 prev_sum_exec_runtime;
1154
1155 u64 nr_migrations;
1156
1157 #ifdef CONFIG_SCHEDSTATS
1158 struct sched_statistics statistics;
1159 #endif
1160
1161 #ifdef CONFIG_FAIR_GROUP_SCHED
1162 struct sched_entity *parent;
1163 /* rq on which this entity is (to be) queued: */
1164 struct cfs_rq *cfs_rq;
1165 /* rq "owned" by this entity/group: */
1166 struct cfs_rq *my_q;
1167 #endif
1168
1169 /*
1170 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1171 * removed when useful for applications beyond shares distribution (e.g.
1172 * load-balance).
1173 */
1174 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1175 /* Per-entity load-tracking */
1176 struct sched_avg avg;
1177 #endif
1178 };
1179
1180 struct sched_rt_entity {
1181 struct list_head run_list;
1182 unsigned long timeout;
1183 unsigned long watchdog_stamp;
1184 unsigned int time_slice;
1185
1186 struct sched_rt_entity *back;
1187 #ifdef CONFIG_RT_GROUP_SCHED
1188 struct sched_rt_entity *parent;
1189 /* rq on which this entity is (to be) queued: */
1190 struct rt_rq *rt_rq;
1191 /* rq "owned" by this entity/group: */
1192 struct rt_rq *my_q;
1193 #endif
1194 };
1195
1196
1197 struct rcu_node;
1198
1199 enum perf_event_task_context {
1200 perf_invalid_context = -1,
1201 perf_hw_context = 0,
1202 perf_sw_context,
1203 perf_nr_task_contexts,
1204 };
1205
1206 struct task_struct {
1207 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1208 void *stack;
1209 atomic_t usage;
1210 unsigned int flags; /* per process flags, defined below */
1211 unsigned int ptrace;
1212
1213 #ifdef CONFIG_SMP
1214 struct llist_node wake_entry;
1215 int on_cpu;
1216 #endif
1217 int on_rq;
1218
1219 int prio, static_prio, normal_prio;
1220 unsigned int rt_priority;
1221 const struct sched_class *sched_class;
1222 struct sched_entity se;
1223 struct sched_rt_entity rt;
1224 #ifdef CONFIG_CGROUP_SCHED
1225 struct task_group *sched_task_group;
1226 #endif
1227
1228 #ifdef CONFIG_PREEMPT_NOTIFIERS
1229 /* list of struct preempt_notifier: */
1230 struct hlist_head preempt_notifiers;
1231 #endif
1232
1233 /*
1234 * fpu_counter contains the number of consecutive context switches
1235 * that the FPU is used. If this is over a threshold, the lazy fpu
1236 * saving becomes unlazy to save the trap. This is an unsigned char
1237 * so that after 256 times the counter wraps and the behavior turns
1238 * lazy again; this to deal with bursty apps that only use FPU for
1239 * a short time
1240 */
1241 unsigned char fpu_counter;
1242 #ifdef CONFIG_BLK_DEV_IO_TRACE
1243 unsigned int btrace_seq;
1244 #endif
1245
1246 unsigned int policy;
1247 int nr_cpus_allowed;
1248 cpumask_t cpus_allowed;
1249
1250 #ifdef CONFIG_PREEMPT_RCU
1251 int rcu_read_lock_nesting;
1252 char rcu_read_unlock_special;
1253 struct list_head rcu_node_entry;
1254 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1255 #ifdef CONFIG_TREE_PREEMPT_RCU
1256 struct rcu_node *rcu_blocked_node;
1257 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1258 #ifdef CONFIG_RCU_BOOST
1259 struct rt_mutex *rcu_boost_mutex;
1260 #endif /* #ifdef CONFIG_RCU_BOOST */
1261
1262 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1263 struct sched_info sched_info;
1264 #endif
1265
1266 struct list_head tasks;
1267 #ifdef CONFIG_SMP
1268 struct plist_node pushable_tasks;
1269 #endif
1270
1271 struct mm_struct *mm, *active_mm;
1272 #ifdef CONFIG_COMPAT_BRK
1273 unsigned brk_randomized:1;
1274 #endif
1275 #if defined(SPLIT_RSS_COUNTING)
1276 struct task_rss_stat rss_stat;
1277 #endif
1278 /* task state */
1279 int exit_state;
1280 int exit_code, exit_signal;
1281 int pdeath_signal; /* The signal sent when the parent dies */
1282 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1283 /* ??? */
1284 unsigned int personality;
1285 unsigned did_exec:1;
1286 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1287 * execve */
1288 unsigned in_iowait:1;
1289
1290 /* task may not gain privileges */
1291 unsigned no_new_privs:1;
1292
1293 /* Revert to default priority/policy when forking */
1294 unsigned sched_reset_on_fork:1;
1295 unsigned sched_contributes_to_load:1;
1296
1297 pid_t pid;
1298 pid_t tgid;
1299
1300 #ifdef CONFIG_CC_STACKPROTECTOR
1301 /* Canary value for the -fstack-protector gcc feature */
1302 unsigned long stack_canary;
1303 #endif
1304 /*
1305 * pointers to (original) parent process, youngest child, younger sibling,
1306 * older sibling, respectively. (p->father can be replaced with
1307 * p->real_parent->pid)
1308 */
1309 struct task_struct __rcu *real_parent; /* real parent process */
1310 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1311 /*
1312 * children/sibling forms the list of my natural children
1313 */
1314 struct list_head children; /* list of my children */
1315 struct list_head sibling; /* linkage in my parent's children list */
1316 struct task_struct *group_leader; /* threadgroup leader */
1317
1318 /*
1319 * ptraced is the list of tasks this task is using ptrace on.
1320 * This includes both natural children and PTRACE_ATTACH targets.
1321 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1322 */
1323 struct list_head ptraced;
1324 struct list_head ptrace_entry;
1325
1326 /* PID/PID hash table linkage. */
1327 struct pid_link pids[PIDTYPE_MAX];
1328 struct list_head thread_group;
1329
1330 struct completion *vfork_done; /* for vfork() */
1331 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1332 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1333
1334 cputime_t utime, stime, utimescaled, stimescaled;
1335 cputime_t gtime;
1336 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1337 struct cputime prev_cputime;
1338 #endif
1339 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1340 seqlock_t vtime_seqlock;
1341 unsigned long long vtime_snap;
1342 enum {
1343 VTIME_SLEEPING = 0,
1344 VTIME_USER,
1345 VTIME_SYS,
1346 } vtime_snap_whence;
1347 #endif
1348 unsigned long nvcsw, nivcsw; /* context switch counts */
1349 struct timespec start_time; /* monotonic time */
1350 struct timespec real_start_time; /* boot based time */
1351 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1352 unsigned long min_flt, maj_flt;
1353
1354 struct task_cputime cputime_expires;
1355 struct list_head cpu_timers[3];
1356
1357 /* process credentials */
1358 const struct cred __rcu *real_cred; /* objective and real subjective task
1359 * credentials (COW) */
1360 const struct cred __rcu *cred; /* effective (overridable) subjective task
1361 * credentials (COW) */
1362 char comm[TASK_COMM_LEN]; /* executable name excluding path
1363 - access with [gs]et_task_comm (which lock
1364 it with task_lock())
1365 - initialized normally by setup_new_exec */
1366 /* file system info */
1367 int link_count, total_link_count;
1368 #ifdef CONFIG_SYSVIPC
1369 /* ipc stuff */
1370 struct sysv_sem sysvsem;
1371 #endif
1372 #ifdef CONFIG_DETECT_HUNG_TASK
1373 /* hung task detection */
1374 unsigned long last_switch_count;
1375 #endif
1376 /* CPU-specific state of this task */
1377 struct thread_struct thread;
1378 /* filesystem information */
1379 struct fs_struct *fs;
1380 /* open file information */
1381 struct files_struct *files;
1382 /* namespaces */
1383 struct nsproxy *nsproxy;
1384 /* signal handlers */
1385 struct signal_struct *signal;
1386 struct sighand_struct *sighand;
1387
1388 sigset_t blocked, real_blocked;
1389 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1390 struct sigpending pending;
1391
1392 unsigned long sas_ss_sp;
1393 size_t sas_ss_size;
1394 int (*notifier)(void *priv);
1395 void *notifier_data;
1396 sigset_t *notifier_mask;
1397 struct callback_head *task_works;
1398
1399 struct audit_context *audit_context;
1400 #ifdef CONFIG_AUDITSYSCALL
1401 kuid_t loginuid;
1402 unsigned int sessionid;
1403 #endif
1404 struct seccomp seccomp;
1405
1406 /* Thread group tracking */
1407 u32 parent_exec_id;
1408 u32 self_exec_id;
1409 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1410 * mempolicy */
1411 spinlock_t alloc_lock;
1412
1413 /* Protection of the PI data structures: */
1414 raw_spinlock_t pi_lock;
1415
1416 #ifdef CONFIG_RT_MUTEXES
1417 /* PI waiters blocked on a rt_mutex held by this task */
1418 struct plist_head pi_waiters;
1419 /* Deadlock detection and priority inheritance handling */
1420 struct rt_mutex_waiter *pi_blocked_on;
1421 #endif
1422
1423 #ifdef CONFIG_DEBUG_MUTEXES
1424 /* mutex deadlock detection */
1425 struct mutex_waiter *blocked_on;
1426 #endif
1427 #ifdef CONFIG_TRACE_IRQFLAGS
1428 unsigned int irq_events;
1429 unsigned long hardirq_enable_ip;
1430 unsigned long hardirq_disable_ip;
1431 unsigned int hardirq_enable_event;
1432 unsigned int hardirq_disable_event;
1433 int hardirqs_enabled;
1434 int hardirq_context;
1435 unsigned long softirq_disable_ip;
1436 unsigned long softirq_enable_ip;
1437 unsigned int softirq_disable_event;
1438 unsigned int softirq_enable_event;
1439 int softirqs_enabled;
1440 int softirq_context;
1441 #endif
1442 #ifdef CONFIG_LOCKDEP
1443 # define MAX_LOCK_DEPTH 48UL
1444 u64 curr_chain_key;
1445 int lockdep_depth;
1446 unsigned int lockdep_recursion;
1447 struct held_lock held_locks[MAX_LOCK_DEPTH];
1448 gfp_t lockdep_reclaim_gfp;
1449 #endif
1450
1451 /* journalling filesystem info */
1452 void *journal_info;
1453
1454 /* stacked block device info */
1455 struct bio_list *bio_list;
1456
1457 #ifdef CONFIG_BLOCK
1458 /* stack plugging */
1459 struct blk_plug *plug;
1460 #endif
1461
1462 /* VM state */
1463 struct reclaim_state *reclaim_state;
1464
1465 struct backing_dev_info *backing_dev_info;
1466
1467 struct io_context *io_context;
1468
1469 unsigned long ptrace_message;
1470 siginfo_t *last_siginfo; /* For ptrace use. */
1471 struct task_io_accounting ioac;
1472 #if defined(CONFIG_TASK_XACCT)
1473 u64 acct_rss_mem1; /* accumulated rss usage */
1474 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1475 cputime_t acct_timexpd; /* stime + utime since last update */
1476 #endif
1477 #ifdef CONFIG_CPUSETS
1478 nodemask_t mems_allowed; /* Protected by alloc_lock */
1479 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1480 int cpuset_mem_spread_rotor;
1481 int cpuset_slab_spread_rotor;
1482 #endif
1483 #ifdef CONFIG_CGROUPS
1484 /* Control Group info protected by css_set_lock */
1485 struct css_set __rcu *cgroups;
1486 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1487 struct list_head cg_list;
1488 #endif
1489 #ifdef CONFIG_FUTEX
1490 struct robust_list_head __user *robust_list;
1491 #ifdef CONFIG_COMPAT
1492 struct compat_robust_list_head __user *compat_robust_list;
1493 #endif
1494 struct list_head pi_state_list;
1495 struct futex_pi_state *pi_state_cache;
1496 #endif
1497 #ifdef CONFIG_PERF_EVENTS
1498 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1499 struct mutex perf_event_mutex;
1500 struct list_head perf_event_list;
1501 #endif
1502 #ifdef CONFIG_NUMA
1503 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1504 short il_next;
1505 short pref_node_fork;
1506 #endif
1507 #ifdef CONFIG_NUMA_BALANCING
1508 int numa_scan_seq;
1509 int numa_migrate_seq;
1510 unsigned int numa_scan_period;
1511 u64 node_stamp; /* migration stamp */
1512 struct callback_head numa_work;
1513 #endif /* CONFIG_NUMA_BALANCING */
1514
1515 struct rcu_head rcu;
1516
1517 /*
1518 * cache last used pipe for splice
1519 */
1520 struct pipe_inode_info *splice_pipe;
1521
1522 struct page_frag task_frag;
1523
1524 #ifdef CONFIG_TASK_DELAY_ACCT
1525 struct task_delay_info *delays;
1526 #endif
1527 #ifdef CONFIG_FAULT_INJECTION
1528 int make_it_fail;
1529 #endif
1530 /*
1531 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1532 * balance_dirty_pages() for some dirty throttling pause
1533 */
1534 int nr_dirtied;
1535 int nr_dirtied_pause;
1536 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1537
1538 #ifdef CONFIG_LATENCYTOP
1539 int latency_record_count;
1540 struct latency_record latency_record[LT_SAVECOUNT];
1541 #endif
1542 /*
1543 * time slack values; these are used to round up poll() and
1544 * select() etc timeout values. These are in nanoseconds.
1545 */
1546 unsigned long timer_slack_ns;
1547 unsigned long default_timer_slack_ns;
1548
1549 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1550 /* Index of current stored address in ret_stack */
1551 int curr_ret_stack;
1552 /* Stack of return addresses for return function tracing */
1553 struct ftrace_ret_stack *ret_stack;
1554 /* time stamp for last schedule */
1555 unsigned long long ftrace_timestamp;
1556 /*
1557 * Number of functions that haven't been traced
1558 * because of depth overrun.
1559 */
1560 atomic_t trace_overrun;
1561 /* Pause for the tracing */
1562 atomic_t tracing_graph_pause;
1563 #endif
1564 #ifdef CONFIG_TRACING
1565 /* state flags for use by tracers */
1566 unsigned long trace;
1567 /* bitmask and counter of trace recursion */
1568 unsigned long trace_recursion;
1569 #endif /* CONFIG_TRACING */
1570 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1571 struct memcg_batch_info {
1572 int do_batch; /* incremented when batch uncharge started */
1573 struct mem_cgroup *memcg; /* target memcg of uncharge */
1574 unsigned long nr_pages; /* uncharged usage */
1575 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1576 } memcg_batch;
1577 unsigned int memcg_kmem_skip_account;
1578 #endif
1579 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1580 atomic_t ptrace_bp_refcnt;
1581 #endif
1582 #ifdef CONFIG_UPROBES
1583 struct uprobe_task *utask;
1584 #endif
1585 };
1586
1587 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1588 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1589
1590 #ifdef CONFIG_NUMA_BALANCING
1591 extern void task_numa_fault(int node, int pages, bool migrated);
1592 extern void set_numabalancing_state(bool enabled);
1593 #else
1594 static inline void task_numa_fault(int node, int pages, bool migrated)
1595 {
1596 }
1597 static inline void set_numabalancing_state(bool enabled)
1598 {
1599 }
1600 #endif
1601
1602 static inline struct pid *task_pid(struct task_struct *task)
1603 {
1604 return task->pids[PIDTYPE_PID].pid;
1605 }
1606
1607 static inline struct pid *task_tgid(struct task_struct *task)
1608 {
1609 return task->group_leader->pids[PIDTYPE_PID].pid;
1610 }
1611
1612 /*
1613 * Without tasklist or rcu lock it is not safe to dereference
1614 * the result of task_pgrp/task_session even if task == current,
1615 * we can race with another thread doing sys_setsid/sys_setpgid.
1616 */
1617 static inline struct pid *task_pgrp(struct task_struct *task)
1618 {
1619 return task->group_leader->pids[PIDTYPE_PGID].pid;
1620 }
1621
1622 static inline struct pid *task_session(struct task_struct *task)
1623 {
1624 return task->group_leader->pids[PIDTYPE_SID].pid;
1625 }
1626
1627 struct pid_namespace;
1628
1629 /*
1630 * the helpers to get the task's different pids as they are seen
1631 * from various namespaces
1632 *
1633 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1634 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1635 * current.
1636 * task_xid_nr_ns() : id seen from the ns specified;
1637 *
1638 * set_task_vxid() : assigns a virtual id to a task;
1639 *
1640 * see also pid_nr() etc in include/linux/pid.h
1641 */
1642 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1643 struct pid_namespace *ns);
1644
1645 static inline pid_t task_pid_nr(struct task_struct *tsk)
1646 {
1647 return tsk->pid;
1648 }
1649
1650 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1651 struct pid_namespace *ns)
1652 {
1653 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1654 }
1655
1656 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1657 {
1658 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1659 }
1660
1661
1662 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1663 {
1664 return tsk->tgid;
1665 }
1666
1667 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1668
1669 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1670 {
1671 return pid_vnr(task_tgid(tsk));
1672 }
1673
1674
1675 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1676 struct pid_namespace *ns)
1677 {
1678 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1679 }
1680
1681 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1682 {
1683 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1684 }
1685
1686
1687 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1688 struct pid_namespace *ns)
1689 {
1690 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1691 }
1692
1693 static inline pid_t task_session_vnr(struct task_struct *tsk)
1694 {
1695 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1696 }
1697
1698 /* obsolete, do not use */
1699 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1700 {
1701 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1702 }
1703
1704 /**
1705 * pid_alive - check that a task structure is not stale
1706 * @p: Task structure to be checked.
1707 *
1708 * Test if a process is not yet dead (at most zombie state)
1709 * If pid_alive fails, then pointers within the task structure
1710 * can be stale and must not be dereferenced.
1711 */
1712 static inline int pid_alive(struct task_struct *p)
1713 {
1714 return p->pids[PIDTYPE_PID].pid != NULL;
1715 }
1716
1717 /**
1718 * is_global_init - check if a task structure is init
1719 * @tsk: Task structure to be checked.
1720 *
1721 * Check if a task structure is the first user space task the kernel created.
1722 */
1723 static inline int is_global_init(struct task_struct *tsk)
1724 {
1725 return tsk->pid == 1;
1726 }
1727
1728 extern struct pid *cad_pid;
1729
1730 extern void free_task(struct task_struct *tsk);
1731 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1732
1733 extern void __put_task_struct(struct task_struct *t);
1734
1735 static inline void put_task_struct(struct task_struct *t)
1736 {
1737 if (atomic_dec_and_test(&t->usage))
1738 __put_task_struct(t);
1739 }
1740
1741 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1742 extern void task_cputime(struct task_struct *t,
1743 cputime_t *utime, cputime_t *stime);
1744 extern void task_cputime_scaled(struct task_struct *t,
1745 cputime_t *utimescaled, cputime_t *stimescaled);
1746 extern cputime_t task_gtime(struct task_struct *t);
1747 #else
1748 static inline void task_cputime(struct task_struct *t,
1749 cputime_t *utime, cputime_t *stime)
1750 {
1751 if (utime)
1752 *utime = t->utime;
1753 if (stime)
1754 *stime = t->stime;
1755 }
1756
1757 static inline void task_cputime_scaled(struct task_struct *t,
1758 cputime_t *utimescaled,
1759 cputime_t *stimescaled)
1760 {
1761 if (utimescaled)
1762 *utimescaled = t->utimescaled;
1763 if (stimescaled)
1764 *stimescaled = t->stimescaled;
1765 }
1766
1767 static inline cputime_t task_gtime(struct task_struct *t)
1768 {
1769 return t->gtime;
1770 }
1771 #endif
1772 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1773 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1774
1775 /*
1776 * Per process flags
1777 */
1778 #define PF_EXITING 0x00000004 /* getting shut down */
1779 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1780 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1781 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1782 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1783 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1784 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1785 #define PF_DUMPCORE 0x00000200 /* dumped core */
1786 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1787 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1788 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1789 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1790 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1791 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1792 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1793 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1794 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1795 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1796 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1797 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1798 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1799 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1800 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1801 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1802 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1803 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1804 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1805 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1806 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1807
1808 /*
1809 * Only the _current_ task can read/write to tsk->flags, but other
1810 * tasks can access tsk->flags in readonly mode for example
1811 * with tsk_used_math (like during threaded core dumping).
1812 * There is however an exception to this rule during ptrace
1813 * or during fork: the ptracer task is allowed to write to the
1814 * child->flags of its traced child (same goes for fork, the parent
1815 * can write to the child->flags), because we're guaranteed the
1816 * child is not running and in turn not changing child->flags
1817 * at the same time the parent does it.
1818 */
1819 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1820 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1821 #define clear_used_math() clear_stopped_child_used_math(current)
1822 #define set_used_math() set_stopped_child_used_math(current)
1823 #define conditional_stopped_child_used_math(condition, child) \
1824 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1825 #define conditional_used_math(condition) \
1826 conditional_stopped_child_used_math(condition, current)
1827 #define copy_to_stopped_child_used_math(child) \
1828 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1829 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1830 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1831 #define used_math() tsk_used_math(current)
1832
1833 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1834 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1835 {
1836 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1837 flags &= ~__GFP_IO;
1838 return flags;
1839 }
1840
1841 static inline unsigned int memalloc_noio_save(void)
1842 {
1843 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1844 current->flags |= PF_MEMALLOC_NOIO;
1845 return flags;
1846 }
1847
1848 static inline void memalloc_noio_restore(unsigned int flags)
1849 {
1850 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1851 }
1852
1853 /*
1854 * task->jobctl flags
1855 */
1856 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1857
1858 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1859 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1860 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1861 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1862 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1863 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1864 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1865
1866 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1867 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1868 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1869 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1870 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1871 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1872 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1873
1874 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1875 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1876
1877 extern bool task_set_jobctl_pending(struct task_struct *task,
1878 unsigned int mask);
1879 extern void task_clear_jobctl_trapping(struct task_struct *task);
1880 extern void task_clear_jobctl_pending(struct task_struct *task,
1881 unsigned int mask);
1882
1883 #ifdef CONFIG_PREEMPT_RCU
1884
1885 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1886 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1887
1888 static inline void rcu_copy_process(struct task_struct *p)
1889 {
1890 p->rcu_read_lock_nesting = 0;
1891 p->rcu_read_unlock_special = 0;
1892 #ifdef CONFIG_TREE_PREEMPT_RCU
1893 p->rcu_blocked_node = NULL;
1894 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1895 #ifdef CONFIG_RCU_BOOST
1896 p->rcu_boost_mutex = NULL;
1897 #endif /* #ifdef CONFIG_RCU_BOOST */
1898 INIT_LIST_HEAD(&p->rcu_node_entry);
1899 }
1900
1901 #else
1902
1903 static inline void rcu_copy_process(struct task_struct *p)
1904 {
1905 }
1906
1907 #endif
1908
1909 static inline void tsk_restore_flags(struct task_struct *task,
1910 unsigned long orig_flags, unsigned long flags)
1911 {
1912 task->flags &= ~flags;
1913 task->flags |= orig_flags & flags;
1914 }
1915
1916 #ifdef CONFIG_SMP
1917 extern void do_set_cpus_allowed(struct task_struct *p,
1918 const struct cpumask *new_mask);
1919
1920 extern int set_cpus_allowed_ptr(struct task_struct *p,
1921 const struct cpumask *new_mask);
1922 #else
1923 static inline void do_set_cpus_allowed(struct task_struct *p,
1924 const struct cpumask *new_mask)
1925 {
1926 }
1927 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1928 const struct cpumask *new_mask)
1929 {
1930 if (!cpumask_test_cpu(0, new_mask))
1931 return -EINVAL;
1932 return 0;
1933 }
1934 #endif
1935
1936 #ifdef CONFIG_NO_HZ
1937 void calc_load_enter_idle(void);
1938 void calc_load_exit_idle(void);
1939 #else
1940 static inline void calc_load_enter_idle(void) { }
1941 static inline void calc_load_exit_idle(void) { }
1942 #endif /* CONFIG_NO_HZ */
1943
1944 #ifndef CONFIG_CPUMASK_OFFSTACK
1945 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1946 {
1947 return set_cpus_allowed_ptr(p, &new_mask);
1948 }
1949 #endif
1950
1951 /*
1952 * Do not use outside of architecture code which knows its limitations.
1953 *
1954 * sched_clock() has no promise of monotonicity or bounded drift between
1955 * CPUs, use (which you should not) requires disabling IRQs.
1956 *
1957 * Please use one of the three interfaces below.
1958 */
1959 extern unsigned long long notrace sched_clock(void);
1960 /*
1961 * See the comment in kernel/sched/clock.c
1962 */
1963 extern u64 cpu_clock(int cpu);
1964 extern u64 local_clock(void);
1965 extern u64 sched_clock_cpu(int cpu);
1966
1967
1968 extern void sched_clock_init(void);
1969
1970 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1971 static inline void sched_clock_tick(void)
1972 {
1973 }
1974
1975 static inline void sched_clock_idle_sleep_event(void)
1976 {
1977 }
1978
1979 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1980 {
1981 }
1982 #else
1983 /*
1984 * Architectures can set this to 1 if they have specified
1985 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1986 * but then during bootup it turns out that sched_clock()
1987 * is reliable after all:
1988 */
1989 extern int sched_clock_stable;
1990
1991 extern void sched_clock_tick(void);
1992 extern void sched_clock_idle_sleep_event(void);
1993 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1994 #endif
1995
1996 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1997 /*
1998 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1999 * The reason for this explicit opt-in is not to have perf penalty with
2000 * slow sched_clocks.
2001 */
2002 extern void enable_sched_clock_irqtime(void);
2003 extern void disable_sched_clock_irqtime(void);
2004 #else
2005 static inline void enable_sched_clock_irqtime(void) {}
2006 static inline void disable_sched_clock_irqtime(void) {}
2007 #endif
2008
2009 extern unsigned long long
2010 task_sched_runtime(struct task_struct *task);
2011
2012 /* sched_exec is called by processes performing an exec */
2013 #ifdef CONFIG_SMP
2014 extern void sched_exec(void);
2015 #else
2016 #define sched_exec() {}
2017 #endif
2018
2019 extern void sched_clock_idle_sleep_event(void);
2020 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2021
2022 #ifdef CONFIG_HOTPLUG_CPU
2023 extern void idle_task_exit(void);
2024 #else
2025 static inline void idle_task_exit(void) {}
2026 #endif
2027
2028 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2029 extern void wake_up_idle_cpu(int cpu);
2030 #else
2031 static inline void wake_up_idle_cpu(int cpu) { }
2032 #endif
2033
2034 #ifdef CONFIG_SCHED_AUTOGROUP
2035 extern void sched_autogroup_create_attach(struct task_struct *p);
2036 extern void sched_autogroup_detach(struct task_struct *p);
2037 extern void sched_autogroup_fork(struct signal_struct *sig);
2038 extern void sched_autogroup_exit(struct signal_struct *sig);
2039 #ifdef CONFIG_PROC_FS
2040 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2041 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2042 #endif
2043 #else
2044 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2045 static inline void sched_autogroup_detach(struct task_struct *p) { }
2046 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2047 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2048 #endif
2049
2050 extern bool yield_to(struct task_struct *p, bool preempt);
2051 extern void set_user_nice(struct task_struct *p, long nice);
2052 extern int task_prio(const struct task_struct *p);
2053 extern int task_nice(const struct task_struct *p);
2054 extern int can_nice(const struct task_struct *p, const int nice);
2055 extern int task_curr(const struct task_struct *p);
2056 extern int idle_cpu(int cpu);
2057 extern int sched_setscheduler(struct task_struct *, int,
2058 const struct sched_param *);
2059 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2060 const struct sched_param *);
2061 extern struct task_struct *idle_task(int cpu);
2062 /**
2063 * is_idle_task - is the specified task an idle task?
2064 * @p: the task in question.
2065 */
2066 static inline bool is_idle_task(const struct task_struct *p)
2067 {
2068 return p->pid == 0;
2069 }
2070 extern struct task_struct *curr_task(int cpu);
2071 extern void set_curr_task(int cpu, struct task_struct *p);
2072
2073 void yield(void);
2074
2075 /*
2076 * The default (Linux) execution domain.
2077 */
2078 extern struct exec_domain default_exec_domain;
2079
2080 union thread_union {
2081 struct thread_info thread_info;
2082 unsigned long stack[THREAD_SIZE/sizeof(long)];
2083 };
2084
2085 #ifndef __HAVE_ARCH_KSTACK_END
2086 static inline int kstack_end(void *addr)
2087 {
2088 /* Reliable end of stack detection:
2089 * Some APM bios versions misalign the stack
2090 */
2091 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2092 }
2093 #endif
2094
2095 extern union thread_union init_thread_union;
2096 extern struct task_struct init_task;
2097
2098 extern struct mm_struct init_mm;
2099
2100 extern struct pid_namespace init_pid_ns;
2101
2102 /*
2103 * find a task by one of its numerical ids
2104 *
2105 * find_task_by_pid_ns():
2106 * finds a task by its pid in the specified namespace
2107 * find_task_by_vpid():
2108 * finds a task by its virtual pid
2109 *
2110 * see also find_vpid() etc in include/linux/pid.h
2111 */
2112
2113 extern struct task_struct *find_task_by_vpid(pid_t nr);
2114 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2115 struct pid_namespace *ns);
2116
2117 extern void __set_special_pids(struct pid *pid);
2118
2119 /* per-UID process charging. */
2120 extern struct user_struct * alloc_uid(kuid_t);
2121 static inline struct user_struct *get_uid(struct user_struct *u)
2122 {
2123 atomic_inc(&u->__count);
2124 return u;
2125 }
2126 extern void free_uid(struct user_struct *);
2127
2128 #include <asm/current.h>
2129
2130 extern void xtime_update(unsigned long ticks);
2131
2132 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2133 extern int wake_up_process(struct task_struct *tsk);
2134 extern void wake_up_new_task(struct task_struct *tsk);
2135 #ifdef CONFIG_SMP
2136 extern void kick_process(struct task_struct *tsk);
2137 #else
2138 static inline void kick_process(struct task_struct *tsk) { }
2139 #endif
2140 extern void sched_fork(struct task_struct *p);
2141 extern void sched_dead(struct task_struct *p);
2142
2143 extern void proc_caches_init(void);
2144 extern void flush_signals(struct task_struct *);
2145 extern void __flush_signals(struct task_struct *);
2146 extern void ignore_signals(struct task_struct *);
2147 extern void flush_signal_handlers(struct task_struct *, int force_default);
2148 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2149
2150 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2151 {
2152 unsigned long flags;
2153 int ret;
2154
2155 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2156 ret = dequeue_signal(tsk, mask, info);
2157 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2158
2159 return ret;
2160 }
2161
2162 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2163 sigset_t *mask);
2164 extern void unblock_all_signals(void);
2165 extern void release_task(struct task_struct * p);
2166 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2167 extern int force_sigsegv(int, struct task_struct *);
2168 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2169 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2170 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2171 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2172 const struct cred *, u32);
2173 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2174 extern int kill_pid(struct pid *pid, int sig, int priv);
2175 extern int kill_proc_info(int, struct siginfo *, pid_t);
2176 extern __must_check bool do_notify_parent(struct task_struct *, int);
2177 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2178 extern void force_sig(int, struct task_struct *);
2179 extern int send_sig(int, struct task_struct *, int);
2180 extern int zap_other_threads(struct task_struct *p);
2181 extern struct sigqueue *sigqueue_alloc(void);
2182 extern void sigqueue_free(struct sigqueue *);
2183 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2184 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2185 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2186
2187 static inline void restore_saved_sigmask(void)
2188 {
2189 if (test_and_clear_restore_sigmask())
2190 __set_current_blocked(&current->saved_sigmask);
2191 }
2192
2193 static inline sigset_t *sigmask_to_save(void)
2194 {
2195 sigset_t *res = &current->blocked;
2196 if (unlikely(test_restore_sigmask()))
2197 res = &current->saved_sigmask;
2198 return res;
2199 }
2200
2201 static inline int kill_cad_pid(int sig, int priv)
2202 {
2203 return kill_pid(cad_pid, sig, priv);
2204 }
2205
2206 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2207 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2208 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2209 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2210
2211 /*
2212 * True if we are on the alternate signal stack.
2213 */
2214 static inline int on_sig_stack(unsigned long sp)
2215 {
2216 #ifdef CONFIG_STACK_GROWSUP
2217 return sp >= current->sas_ss_sp &&
2218 sp - current->sas_ss_sp < current->sas_ss_size;
2219 #else
2220 return sp > current->sas_ss_sp &&
2221 sp - current->sas_ss_sp <= current->sas_ss_size;
2222 #endif
2223 }
2224
2225 static inline int sas_ss_flags(unsigned long sp)
2226 {
2227 return (current->sas_ss_size == 0 ? SS_DISABLE
2228 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2229 }
2230
2231 /*
2232 * Routines for handling mm_structs
2233 */
2234 extern struct mm_struct * mm_alloc(void);
2235
2236 /* mmdrop drops the mm and the page tables */
2237 extern void __mmdrop(struct mm_struct *);
2238 static inline void mmdrop(struct mm_struct * mm)
2239 {
2240 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2241 __mmdrop(mm);
2242 }
2243
2244 /* mmput gets rid of the mappings and all user-space */
2245 extern void mmput(struct mm_struct *);
2246 /* Grab a reference to a task's mm, if it is not already going away */
2247 extern struct mm_struct *get_task_mm(struct task_struct *task);
2248 /*
2249 * Grab a reference to a task's mm, if it is not already going away
2250 * and ptrace_may_access with the mode parameter passed to it
2251 * succeeds.
2252 */
2253 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2254 /* Remove the current tasks stale references to the old mm_struct */
2255 extern void mm_release(struct task_struct *, struct mm_struct *);
2256 /* Allocate a new mm structure and copy contents from tsk->mm */
2257 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2258
2259 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2260 struct task_struct *);
2261 extern void flush_thread(void);
2262 extern void exit_thread(void);
2263
2264 extern void exit_files(struct task_struct *);
2265 extern void __cleanup_sighand(struct sighand_struct *);
2266
2267 extern void exit_itimers(struct signal_struct *);
2268 extern void flush_itimer_signals(void);
2269
2270 extern void do_group_exit(int);
2271
2272 extern int allow_signal(int);
2273 extern int disallow_signal(int);
2274
2275 extern int do_execve(const char *,
2276 const char __user * const __user *,
2277 const char __user * const __user *);
2278 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2279 struct task_struct *fork_idle(int);
2280 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2281
2282 extern void set_task_comm(struct task_struct *tsk, char *from);
2283 extern char *get_task_comm(char *to, struct task_struct *tsk);
2284
2285 #ifdef CONFIG_SMP
2286 void scheduler_ipi(void);
2287 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2288 #else
2289 static inline void scheduler_ipi(void) { }
2290 static inline unsigned long wait_task_inactive(struct task_struct *p,
2291 long match_state)
2292 {
2293 return 1;
2294 }
2295 #endif
2296
2297 #define next_task(p) \
2298 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2299
2300 #define for_each_process(p) \
2301 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2302
2303 extern bool current_is_single_threaded(void);
2304
2305 /*
2306 * Careful: do_each_thread/while_each_thread is a double loop so
2307 * 'break' will not work as expected - use goto instead.
2308 */
2309 #define do_each_thread(g, t) \
2310 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2311
2312 #define while_each_thread(g, t) \
2313 while ((t = next_thread(t)) != g)
2314
2315 static inline int get_nr_threads(struct task_struct *tsk)
2316 {
2317 return tsk->signal->nr_threads;
2318 }
2319
2320 static inline bool thread_group_leader(struct task_struct *p)
2321 {
2322 return p->exit_signal >= 0;
2323 }
2324
2325 /* Do to the insanities of de_thread it is possible for a process
2326 * to have the pid of the thread group leader without actually being
2327 * the thread group leader. For iteration through the pids in proc
2328 * all we care about is that we have a task with the appropriate
2329 * pid, we don't actually care if we have the right task.
2330 */
2331 static inline int has_group_leader_pid(struct task_struct *p)
2332 {
2333 return p->pid == p->tgid;
2334 }
2335
2336 static inline
2337 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2338 {
2339 return p1->tgid == p2->tgid;
2340 }
2341
2342 static inline struct task_struct *next_thread(const struct task_struct *p)
2343 {
2344 return list_entry_rcu(p->thread_group.next,
2345 struct task_struct, thread_group);
2346 }
2347
2348 static inline int thread_group_empty(struct task_struct *p)
2349 {
2350 return list_empty(&p->thread_group);
2351 }
2352
2353 #define delay_group_leader(p) \
2354 (thread_group_leader(p) && !thread_group_empty(p))
2355
2356 /*
2357 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2358 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2359 * pins the final release of task.io_context. Also protects ->cpuset and
2360 * ->cgroup.subsys[]. And ->vfork_done.
2361 *
2362 * Nests both inside and outside of read_lock(&tasklist_lock).
2363 * It must not be nested with write_lock_irq(&tasklist_lock),
2364 * neither inside nor outside.
2365 */
2366 static inline void task_lock(struct task_struct *p)
2367 {
2368 spin_lock(&p->alloc_lock);
2369 }
2370
2371 static inline void task_unlock(struct task_struct *p)
2372 {
2373 spin_unlock(&p->alloc_lock);
2374 }
2375
2376 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2377 unsigned long *flags);
2378
2379 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2380 unsigned long *flags)
2381 {
2382 struct sighand_struct *ret;
2383
2384 ret = __lock_task_sighand(tsk, flags);
2385 (void)__cond_lock(&tsk->sighand->siglock, ret);
2386 return ret;
2387 }
2388
2389 static inline void unlock_task_sighand(struct task_struct *tsk,
2390 unsigned long *flags)
2391 {
2392 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2393 }
2394
2395 #ifdef CONFIG_CGROUPS
2396 static inline void threadgroup_change_begin(struct task_struct *tsk)
2397 {
2398 down_read(&tsk->signal->group_rwsem);
2399 }
2400 static inline void threadgroup_change_end(struct task_struct *tsk)
2401 {
2402 up_read(&tsk->signal->group_rwsem);
2403 }
2404
2405 /**
2406 * threadgroup_lock - lock threadgroup
2407 * @tsk: member task of the threadgroup to lock
2408 *
2409 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2410 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2411 * perform exec. This is useful for cases where the threadgroup needs to
2412 * stay stable across blockable operations.
2413 *
2414 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2415 * synchronization. While held, no new task will be added to threadgroup
2416 * and no existing live task will have its PF_EXITING set.
2417 *
2418 * During exec, a task goes and puts its thread group through unusual
2419 * changes. After de-threading, exclusive access is assumed to resources
2420 * which are usually shared by tasks in the same group - e.g. sighand may
2421 * be replaced with a new one. Also, the exec'ing task takes over group
2422 * leader role including its pid. Exclude these changes while locked by
2423 * grabbing cred_guard_mutex which is used to synchronize exec path.
2424 */
2425 static inline void threadgroup_lock(struct task_struct *tsk)
2426 {
2427 /*
2428 * exec uses exit for de-threading nesting group_rwsem inside
2429 * cred_guard_mutex. Grab cred_guard_mutex first.
2430 */
2431 mutex_lock(&tsk->signal->cred_guard_mutex);
2432 down_write(&tsk->signal->group_rwsem);
2433 }
2434
2435 /**
2436 * threadgroup_unlock - unlock threadgroup
2437 * @tsk: member task of the threadgroup to unlock
2438 *
2439 * Reverse threadgroup_lock().
2440 */
2441 static inline void threadgroup_unlock(struct task_struct *tsk)
2442 {
2443 up_write(&tsk->signal->group_rwsem);
2444 mutex_unlock(&tsk->signal->cred_guard_mutex);
2445 }
2446 #else
2447 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2448 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2449 static inline void threadgroup_lock(struct task_struct *tsk) {}
2450 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2451 #endif
2452
2453 #ifndef __HAVE_THREAD_FUNCTIONS
2454
2455 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2456 #define task_stack_page(task) ((task)->stack)
2457
2458 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2459 {
2460 *task_thread_info(p) = *task_thread_info(org);
2461 task_thread_info(p)->task = p;
2462 }
2463
2464 static inline unsigned long *end_of_stack(struct task_struct *p)
2465 {
2466 return (unsigned long *)(task_thread_info(p) + 1);
2467 }
2468
2469 #endif
2470
2471 static inline int object_is_on_stack(void *obj)
2472 {
2473 void *stack = task_stack_page(current);
2474
2475 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2476 }
2477
2478 extern void thread_info_cache_init(void);
2479
2480 #ifdef CONFIG_DEBUG_STACK_USAGE
2481 static inline unsigned long stack_not_used(struct task_struct *p)
2482 {
2483 unsigned long *n = end_of_stack(p);
2484
2485 do { /* Skip over canary */
2486 n++;
2487 } while (!*n);
2488
2489 return (unsigned long)n - (unsigned long)end_of_stack(p);
2490 }
2491 #endif
2492
2493 /* set thread flags in other task's structures
2494 * - see asm/thread_info.h for TIF_xxxx flags available
2495 */
2496 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2497 {
2498 set_ti_thread_flag(task_thread_info(tsk), flag);
2499 }
2500
2501 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2502 {
2503 clear_ti_thread_flag(task_thread_info(tsk), flag);
2504 }
2505
2506 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2507 {
2508 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2509 }
2510
2511 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2512 {
2513 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2514 }
2515
2516 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2517 {
2518 return test_ti_thread_flag(task_thread_info(tsk), flag);
2519 }
2520
2521 static inline void set_tsk_need_resched(struct task_struct *tsk)
2522 {
2523 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2524 }
2525
2526 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2527 {
2528 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2529 }
2530
2531 static inline int test_tsk_need_resched(struct task_struct *tsk)
2532 {
2533 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2534 }
2535
2536 static inline int restart_syscall(void)
2537 {
2538 set_tsk_thread_flag(current, TIF_SIGPENDING);
2539 return -ERESTARTNOINTR;
2540 }
2541
2542 static inline int signal_pending(struct task_struct *p)
2543 {
2544 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2545 }
2546
2547 static inline int __fatal_signal_pending(struct task_struct *p)
2548 {
2549 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2550 }
2551
2552 static inline int fatal_signal_pending(struct task_struct *p)
2553 {
2554 return signal_pending(p) && __fatal_signal_pending(p);
2555 }
2556
2557 static inline int signal_pending_state(long state, struct task_struct *p)
2558 {
2559 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2560 return 0;
2561 if (!signal_pending(p))
2562 return 0;
2563
2564 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2565 }
2566
2567 static inline int need_resched(void)
2568 {
2569 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2570 }
2571
2572 /*
2573 * cond_resched() and cond_resched_lock(): latency reduction via
2574 * explicit rescheduling in places that are safe. The return
2575 * value indicates whether a reschedule was done in fact.
2576 * cond_resched_lock() will drop the spinlock before scheduling,
2577 * cond_resched_softirq() will enable bhs before scheduling.
2578 */
2579 extern int _cond_resched(void);
2580
2581 #define cond_resched() ({ \
2582 __might_sleep(__FILE__, __LINE__, 0); \
2583 _cond_resched(); \
2584 })
2585
2586 extern int __cond_resched_lock(spinlock_t *lock);
2587
2588 #ifdef CONFIG_PREEMPT_COUNT
2589 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2590 #else
2591 #define PREEMPT_LOCK_OFFSET 0
2592 #endif
2593
2594 #define cond_resched_lock(lock) ({ \
2595 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2596 __cond_resched_lock(lock); \
2597 })
2598
2599 extern int __cond_resched_softirq(void);
2600
2601 #define cond_resched_softirq() ({ \
2602 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2603 __cond_resched_softirq(); \
2604 })
2605
2606 /*
2607 * Does a critical section need to be broken due to another
2608 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2609 * but a general need for low latency)
2610 */
2611 static inline int spin_needbreak(spinlock_t *lock)
2612 {
2613 #ifdef CONFIG_PREEMPT
2614 return spin_is_contended(lock);
2615 #else
2616 return 0;
2617 #endif
2618 }
2619
2620 /*
2621 * Thread group CPU time accounting.
2622 */
2623 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2624 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2625
2626 static inline void thread_group_cputime_init(struct signal_struct *sig)
2627 {
2628 raw_spin_lock_init(&sig->cputimer.lock);
2629 }
2630
2631 /*
2632 * Reevaluate whether the task has signals pending delivery.
2633 * Wake the task if so.
2634 * This is required every time the blocked sigset_t changes.
2635 * callers must hold sighand->siglock.
2636 */
2637 extern void recalc_sigpending_and_wake(struct task_struct *t);
2638 extern void recalc_sigpending(void);
2639
2640 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2641
2642 static inline void signal_wake_up(struct task_struct *t, bool resume)
2643 {
2644 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2645 }
2646 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2647 {
2648 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2649 }
2650
2651 /*
2652 * Wrappers for p->thread_info->cpu access. No-op on UP.
2653 */
2654 #ifdef CONFIG_SMP
2655
2656 static inline unsigned int task_cpu(const struct task_struct *p)
2657 {
2658 return task_thread_info(p)->cpu;
2659 }
2660
2661 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2662
2663 #else
2664
2665 static inline unsigned int task_cpu(const struct task_struct *p)
2666 {
2667 return 0;
2668 }
2669
2670 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2671 {
2672 }
2673
2674 #endif /* CONFIG_SMP */
2675
2676 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2677 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2678
2679 #ifdef CONFIG_CGROUP_SCHED
2680
2681 extern struct task_group root_task_group;
2682
2683 extern struct task_group *sched_create_group(struct task_group *parent);
2684 extern void sched_online_group(struct task_group *tg,
2685 struct task_group *parent);
2686 extern void sched_destroy_group(struct task_group *tg);
2687 extern void sched_offline_group(struct task_group *tg);
2688 extern void sched_move_task(struct task_struct *tsk);
2689 #ifdef CONFIG_FAIR_GROUP_SCHED
2690 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2691 extern unsigned long sched_group_shares(struct task_group *tg);
2692 #endif
2693 #ifdef CONFIG_RT_GROUP_SCHED
2694 extern int sched_group_set_rt_runtime(struct task_group *tg,
2695 long rt_runtime_us);
2696 extern long sched_group_rt_runtime(struct task_group *tg);
2697 extern int sched_group_set_rt_period(struct task_group *tg,
2698 long rt_period_us);
2699 extern long sched_group_rt_period(struct task_group *tg);
2700 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2701 #endif
2702 #endif /* CONFIG_CGROUP_SCHED */
2703
2704 extern int task_can_switch_user(struct user_struct *up,
2705 struct task_struct *tsk);
2706
2707 #ifdef CONFIG_TASK_XACCT
2708 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2709 {
2710 tsk->ioac.rchar += amt;
2711 }
2712
2713 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2714 {
2715 tsk->ioac.wchar += amt;
2716 }
2717
2718 static inline void inc_syscr(struct task_struct *tsk)
2719 {
2720 tsk->ioac.syscr++;
2721 }
2722
2723 static inline void inc_syscw(struct task_struct *tsk)
2724 {
2725 tsk->ioac.syscw++;
2726 }
2727 #else
2728 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2729 {
2730 }
2731
2732 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2733 {
2734 }
2735
2736 static inline void inc_syscr(struct task_struct *tsk)
2737 {
2738 }
2739
2740 static inline void inc_syscw(struct task_struct *tsk)
2741 {
2742 }
2743 #endif
2744
2745 #ifndef TASK_SIZE_OF
2746 #define TASK_SIZE_OF(tsk) TASK_SIZE
2747 #endif
2748
2749 #ifdef CONFIG_MM_OWNER
2750 extern void mm_update_next_owner(struct mm_struct *mm);
2751 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2752 #else
2753 static inline void mm_update_next_owner(struct mm_struct *mm)
2754 {
2755 }
2756
2757 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2758 {
2759 }
2760 #endif /* CONFIG_MM_OWNER */
2761
2762 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2763 unsigned int limit)
2764 {
2765 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2766 }
2767
2768 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2769 unsigned int limit)
2770 {
2771 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2772 }
2773
2774 static inline unsigned long rlimit(unsigned int limit)
2775 {
2776 return task_rlimit(current, limit);
2777 }
2778
2779 static inline unsigned long rlimit_max(unsigned int limit)
2780 {
2781 return task_rlimit_max(current, limit);
2782 }
2783
2784 #endif