]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - include/net/sock.h
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229 #endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245 };
246
247 struct bpf_local_storage;
248 struct sk_filter;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
322 * Sockets that can be used under memory reclaim should
323 * set this to false.
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325 * for timestamping
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_security: used by security modules
335 * @sk_mark: generic packet mark
336 * @sk_cgrp_data: cgroup data for this cgroup
337 * @sk_memcg: this socket's memory cgroup association
338 * @sk_write_pending: a write to stream socket waits to start
339 * @sk_wait_pending: number of threads blocked on this socket
340 * @sk_state_change: callback to indicate change in the state of the sock
341 * @sk_data_ready: callback to indicate there is data to be processed
342 * @sk_write_space: callback to indicate there is bf sending space available
343 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344 * @sk_backlog_rcv: callback to process the backlog
345 * @sk_validate_xmit_skb: ptr to an optional validate function
346 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347 * @sk_reuseport_cb: reuseport group container
348 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349 * @sk_rcu: used during RCU grace period
350 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
353 * @sk_txtime_unused: unused txtime flags
354 * @ns_tracker: tracker for netns reference
355 * @sk_bind2_node: bind node in the bhash2 table
356 */
357 struct sock {
358 /*
359 * Now struct inet_timewait_sock also uses sock_common, so please just
360 * don't add nothing before this first member (__sk_common) --acme
361 */
362 struct sock_common __sk_common;
363 #define sk_node __sk_common.skc_node
364 #define sk_nulls_node __sk_common.skc_nulls_node
365 #define sk_refcnt __sk_common.skc_refcnt
366 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
367 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
368 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
369 #endif
370
371 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
372 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
373 #define sk_hash __sk_common.skc_hash
374 #define sk_portpair __sk_common.skc_portpair
375 #define sk_num __sk_common.skc_num
376 #define sk_dport __sk_common.skc_dport
377 #define sk_addrpair __sk_common.skc_addrpair
378 #define sk_daddr __sk_common.skc_daddr
379 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
380 #define sk_family __sk_common.skc_family
381 #define sk_state __sk_common.skc_state
382 #define sk_reuse __sk_common.skc_reuse
383 #define sk_reuseport __sk_common.skc_reuseport
384 #define sk_ipv6only __sk_common.skc_ipv6only
385 #define sk_net_refcnt __sk_common.skc_net_refcnt
386 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
387 #define sk_bind_node __sk_common.skc_bind_node
388 #define sk_prot __sk_common.skc_prot
389 #define sk_net __sk_common.skc_net
390 #define sk_v6_daddr __sk_common.skc_v6_daddr
391 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
392 #define sk_cookie __sk_common.skc_cookie
393 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
394 #define sk_flags __sk_common.skc_flags
395 #define sk_rxhash __sk_common.skc_rxhash
396
397 /* early demux fields */
398 struct dst_entry __rcu *sk_rx_dst;
399 int sk_rx_dst_ifindex;
400 u32 sk_rx_dst_cookie;
401
402 socket_lock_t sk_lock;
403 atomic_t sk_drops;
404 int sk_rcvlowat;
405 struct sk_buff_head sk_error_queue;
406 struct sk_buff_head sk_receive_queue;
407 /*
408 * The backlog queue is special, it is always used with
409 * the per-socket spinlock held and requires low latency
410 * access. Therefore we special case it's implementation.
411 * Note : rmem_alloc is in this structure to fill a hole
412 * on 64bit arches, not because its logically part of
413 * backlog.
414 */
415 struct {
416 atomic_t rmem_alloc;
417 int len;
418 struct sk_buff *head;
419 struct sk_buff *tail;
420 } sk_backlog;
421
422 #define sk_rmem_alloc sk_backlog.rmem_alloc
423
424 int sk_forward_alloc;
425 u32 sk_reserved_mem;
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 unsigned int sk_ll_usec;
428 /* ===== mostly read cache line ===== */
429 unsigned int sk_napi_id;
430 #endif
431 int sk_rcvbuf;
432 int sk_wait_pending;
433
434 struct sk_filter __rcu *sk_filter;
435 union {
436 struct socket_wq __rcu *sk_wq;
437 /* private: */
438 struct socket_wq *sk_wq_raw;
439 /* public: */
440 };
441 #ifdef CONFIG_XFRM
442 struct xfrm_policy __rcu *sk_policy[2];
443 #endif
444
445 struct dst_entry __rcu *sk_dst_cache;
446 atomic_t sk_omem_alloc;
447 int sk_sndbuf;
448
449 /* ===== cache line for TX ===== */
450 int sk_wmem_queued;
451 refcount_t sk_wmem_alloc;
452 unsigned long sk_tsq_flags;
453 union {
454 struct sk_buff *sk_send_head;
455 struct rb_root tcp_rtx_queue;
456 };
457 struct sk_buff_head sk_write_queue;
458 __s32 sk_peek_off;
459 int sk_write_pending;
460 __u32 sk_dst_pending_confirm;
461 u32 sk_pacing_status; /* see enum sk_pacing */
462 long sk_sndtimeo;
463 struct timer_list sk_timer;
464 __u32 sk_priority;
465 __u32 sk_mark;
466 unsigned long sk_pacing_rate; /* bytes per second */
467 unsigned long sk_max_pacing_rate;
468 struct page_frag sk_frag;
469 netdev_features_t sk_route_caps;
470 int sk_gso_type;
471 unsigned int sk_gso_max_size;
472 gfp_t sk_allocation;
473 __u32 sk_txhash;
474
475 /*
476 * Because of non atomicity rules, all
477 * changes are protected by socket lock.
478 */
479 u8 sk_gso_disabled : 1,
480 sk_kern_sock : 1,
481 sk_no_check_tx : 1,
482 sk_no_check_rx : 1,
483 sk_userlocks : 4;
484 u8 sk_pacing_shift;
485 u16 sk_type;
486 u16 sk_protocol;
487 u16 sk_gso_max_segs;
488 unsigned long sk_lingertime;
489 struct proto *sk_prot_creator;
490 rwlock_t sk_callback_lock;
491 int sk_err,
492 sk_err_soft;
493 u32 sk_ack_backlog;
494 u32 sk_max_ack_backlog;
495 kuid_t sk_uid;
496 u8 sk_txrehash;
497 #ifdef CONFIG_NET_RX_BUSY_POLL
498 u8 sk_prefer_busy_poll;
499 u16 sk_busy_poll_budget;
500 #endif
501 spinlock_t sk_peer_lock;
502 int sk_bind_phc;
503 struct pid *sk_peer_pid;
504 const struct cred *sk_peer_cred;
505
506 long sk_rcvtimeo;
507 ktime_t sk_stamp;
508 #if BITS_PER_LONG==32
509 seqlock_t sk_stamp_seq;
510 #endif
511 atomic_t sk_tskey;
512 atomic_t sk_zckey;
513 u32 sk_tsflags;
514 u8 sk_shutdown;
515
516 u8 sk_clockid;
517 u8 sk_txtime_deadline_mode : 1,
518 sk_txtime_report_errors : 1,
519 sk_txtime_unused : 6;
520 bool sk_use_task_frag;
521
522 struct socket *sk_socket;
523 void *sk_user_data;
524 #ifdef CONFIG_SECURITY
525 void *sk_security;
526 #endif
527 struct sock_cgroup_data sk_cgrp_data;
528 struct mem_cgroup *sk_memcg;
529 void (*sk_state_change)(struct sock *sk);
530 void (*sk_data_ready)(struct sock *sk);
531 void (*sk_write_space)(struct sock *sk);
532 void (*sk_error_report)(struct sock *sk);
533 int (*sk_backlog_rcv)(struct sock *sk,
534 struct sk_buff *skb);
535 #ifdef CONFIG_SOCK_VALIDATE_XMIT
536 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
537 struct net_device *dev,
538 struct sk_buff *skb);
539 #endif
540 void (*sk_destruct)(struct sock *sk);
541 struct sock_reuseport __rcu *sk_reuseport_cb;
542 #ifdef CONFIG_BPF_SYSCALL
543 struct bpf_local_storage __rcu *sk_bpf_storage;
544 #endif
545 struct rcu_head sk_rcu;
546 netns_tracker ns_tracker;
547 struct hlist_node sk_bind2_node;
548 };
549
550 enum sk_pacing {
551 SK_PACING_NONE = 0,
552 SK_PACING_NEEDED = 1,
553 SK_PACING_FQ = 2,
554 };
555
556 /* flag bits in sk_user_data
557 *
558 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
559 * not be suitable for copying when cloning the socket. For instance,
560 * it can point to a reference counted object. sk_user_data bottom
561 * bit is set if pointer must not be copied.
562 *
563 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
564 * managed/owned by a BPF reuseport array. This bit should be set
565 * when sk_user_data's sk is added to the bpf's reuseport_array.
566 *
567 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
568 * sk_user_data points to psock type. This bit should be set
569 * when sk_user_data is assigned to a psock object.
570 */
571 #define SK_USER_DATA_NOCOPY 1UL
572 #define SK_USER_DATA_BPF 2UL
573 #define SK_USER_DATA_PSOCK 4UL
574 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
575 SK_USER_DATA_PSOCK)
576
577 /**
578 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
579 * @sk: socket
580 */
581 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
582 {
583 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
584 }
585
586 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
587
588 /**
589 * __locked_read_sk_user_data_with_flags - return the pointer
590 * only if argument flags all has been set in sk_user_data. Otherwise
591 * return NULL
592 *
593 * @sk: socket
594 * @flags: flag bits
595 *
596 * The caller must be holding sk->sk_callback_lock.
597 */
598 static inline void *
599 __locked_read_sk_user_data_with_flags(const struct sock *sk,
600 uintptr_t flags)
601 {
602 uintptr_t sk_user_data =
603 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
604 lockdep_is_held(&sk->sk_callback_lock));
605
606 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
607
608 if ((sk_user_data & flags) == flags)
609 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
610 return NULL;
611 }
612
613 /**
614 * __rcu_dereference_sk_user_data_with_flags - return the pointer
615 * only if argument flags all has been set in sk_user_data. Otherwise
616 * return NULL
617 *
618 * @sk: socket
619 * @flags: flag bits
620 */
621 static inline void *
622 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
623 uintptr_t flags)
624 {
625 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
626
627 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
628
629 if ((sk_user_data & flags) == flags)
630 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
631 return NULL;
632 }
633
634 #define rcu_dereference_sk_user_data(sk) \
635 __rcu_dereference_sk_user_data_with_flags(sk, 0)
636 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
637 ({ \
638 uintptr_t __tmp1 = (uintptr_t)(ptr), \
639 __tmp2 = (uintptr_t)(flags); \
640 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
641 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
642 rcu_assign_pointer(__sk_user_data((sk)), \
643 __tmp1 | __tmp2); \
644 })
645 #define rcu_assign_sk_user_data(sk, ptr) \
646 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
647
648 static inline
649 struct net *sock_net(const struct sock *sk)
650 {
651 return read_pnet(&sk->sk_net);
652 }
653
654 static inline
655 void sock_net_set(struct sock *sk, struct net *net)
656 {
657 write_pnet(&sk->sk_net, net);
658 }
659
660 /*
661 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
662 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
663 * on a socket means that the socket will reuse everybody else's port
664 * without looking at the other's sk_reuse value.
665 */
666
667 #define SK_NO_REUSE 0
668 #define SK_CAN_REUSE 1
669 #define SK_FORCE_REUSE 2
670
671 int sk_set_peek_off(struct sock *sk, int val);
672
673 static inline int sk_peek_offset(const struct sock *sk, int flags)
674 {
675 if (unlikely(flags & MSG_PEEK)) {
676 return READ_ONCE(sk->sk_peek_off);
677 }
678
679 return 0;
680 }
681
682 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
683 {
684 s32 off = READ_ONCE(sk->sk_peek_off);
685
686 if (unlikely(off >= 0)) {
687 off = max_t(s32, off - val, 0);
688 WRITE_ONCE(sk->sk_peek_off, off);
689 }
690 }
691
692 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
693 {
694 sk_peek_offset_bwd(sk, -val);
695 }
696
697 /*
698 * Hashed lists helper routines
699 */
700 static inline struct sock *sk_entry(const struct hlist_node *node)
701 {
702 return hlist_entry(node, struct sock, sk_node);
703 }
704
705 static inline struct sock *__sk_head(const struct hlist_head *head)
706 {
707 return hlist_entry(head->first, struct sock, sk_node);
708 }
709
710 static inline struct sock *sk_head(const struct hlist_head *head)
711 {
712 return hlist_empty(head) ? NULL : __sk_head(head);
713 }
714
715 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
716 {
717 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
718 }
719
720 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
721 {
722 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
723 }
724
725 static inline struct sock *sk_next(const struct sock *sk)
726 {
727 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
728 }
729
730 static inline struct sock *sk_nulls_next(const struct sock *sk)
731 {
732 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
733 hlist_nulls_entry(sk->sk_nulls_node.next,
734 struct sock, sk_nulls_node) :
735 NULL;
736 }
737
738 static inline bool sk_unhashed(const struct sock *sk)
739 {
740 return hlist_unhashed(&sk->sk_node);
741 }
742
743 static inline bool sk_hashed(const struct sock *sk)
744 {
745 return !sk_unhashed(sk);
746 }
747
748 static inline void sk_node_init(struct hlist_node *node)
749 {
750 node->pprev = NULL;
751 }
752
753 static inline void __sk_del_node(struct sock *sk)
754 {
755 __hlist_del(&sk->sk_node);
756 }
757
758 /* NB: equivalent to hlist_del_init_rcu */
759 static inline bool __sk_del_node_init(struct sock *sk)
760 {
761 if (sk_hashed(sk)) {
762 __sk_del_node(sk);
763 sk_node_init(&sk->sk_node);
764 return true;
765 }
766 return false;
767 }
768
769 /* Grab socket reference count. This operation is valid only
770 when sk is ALREADY grabbed f.e. it is found in hash table
771 or a list and the lookup is made under lock preventing hash table
772 modifications.
773 */
774
775 static __always_inline void sock_hold(struct sock *sk)
776 {
777 refcount_inc(&sk->sk_refcnt);
778 }
779
780 /* Ungrab socket in the context, which assumes that socket refcnt
781 cannot hit zero, f.e. it is true in context of any socketcall.
782 */
783 static __always_inline void __sock_put(struct sock *sk)
784 {
785 refcount_dec(&sk->sk_refcnt);
786 }
787
788 static inline bool sk_del_node_init(struct sock *sk)
789 {
790 bool rc = __sk_del_node_init(sk);
791
792 if (rc) {
793 /* paranoid for a while -acme */
794 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
795 __sock_put(sk);
796 }
797 return rc;
798 }
799 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
800
801 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
802 {
803 if (sk_hashed(sk)) {
804 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
805 return true;
806 }
807 return false;
808 }
809
810 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
811 {
812 bool rc = __sk_nulls_del_node_init_rcu(sk);
813
814 if (rc) {
815 /* paranoid for a while -acme */
816 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
817 __sock_put(sk);
818 }
819 return rc;
820 }
821
822 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
823 {
824 hlist_add_head(&sk->sk_node, list);
825 }
826
827 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
828 {
829 sock_hold(sk);
830 __sk_add_node(sk, list);
831 }
832
833 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
834 {
835 sock_hold(sk);
836 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
837 sk->sk_family == AF_INET6)
838 hlist_add_tail_rcu(&sk->sk_node, list);
839 else
840 hlist_add_head_rcu(&sk->sk_node, list);
841 }
842
843 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
844 {
845 sock_hold(sk);
846 hlist_add_tail_rcu(&sk->sk_node, list);
847 }
848
849 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
850 {
851 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
852 }
853
854 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
855 {
856 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
857 }
858
859 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
860 {
861 sock_hold(sk);
862 __sk_nulls_add_node_rcu(sk, list);
863 }
864
865 static inline void __sk_del_bind_node(struct sock *sk)
866 {
867 __hlist_del(&sk->sk_bind_node);
868 }
869
870 static inline void sk_add_bind_node(struct sock *sk,
871 struct hlist_head *list)
872 {
873 hlist_add_head(&sk->sk_bind_node, list);
874 }
875
876 static inline void __sk_del_bind2_node(struct sock *sk)
877 {
878 __hlist_del(&sk->sk_bind2_node);
879 }
880
881 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
882 {
883 hlist_add_head(&sk->sk_bind2_node, list);
884 }
885
886 #define sk_for_each(__sk, list) \
887 hlist_for_each_entry(__sk, list, sk_node)
888 #define sk_for_each_rcu(__sk, list) \
889 hlist_for_each_entry_rcu(__sk, list, sk_node)
890 #define sk_nulls_for_each(__sk, node, list) \
891 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
892 #define sk_nulls_for_each_rcu(__sk, node, list) \
893 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
894 #define sk_for_each_from(__sk) \
895 hlist_for_each_entry_from(__sk, sk_node)
896 #define sk_nulls_for_each_from(__sk, node) \
897 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
898 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
899 #define sk_for_each_safe(__sk, tmp, list) \
900 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
901 #define sk_for_each_bound(__sk, list) \
902 hlist_for_each_entry(__sk, list, sk_bind_node)
903 #define sk_for_each_bound_bhash2(__sk, list) \
904 hlist_for_each_entry(__sk, list, sk_bind2_node)
905
906 /**
907 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
908 * @tpos: the type * to use as a loop cursor.
909 * @pos: the &struct hlist_node to use as a loop cursor.
910 * @head: the head for your list.
911 * @offset: offset of hlist_node within the struct.
912 *
913 */
914 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
915 for (pos = rcu_dereference(hlist_first_rcu(head)); \
916 pos != NULL && \
917 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
918 pos = rcu_dereference(hlist_next_rcu(pos)))
919
920 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
921 {
922 /* Careful only use this in a context where these parameters
923 * can not change and must all be valid, such as recvmsg from
924 * userspace.
925 */
926 return sk->sk_socket->file->f_cred->user_ns;
927 }
928
929 /* Sock flags */
930 enum sock_flags {
931 SOCK_DEAD,
932 SOCK_DONE,
933 SOCK_URGINLINE,
934 SOCK_KEEPOPEN,
935 SOCK_LINGER,
936 SOCK_DESTROY,
937 SOCK_BROADCAST,
938 SOCK_TIMESTAMP,
939 SOCK_ZAPPED,
940 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
941 SOCK_DBG, /* %SO_DEBUG setting */
942 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
943 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
944 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
945 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
946 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
947 SOCK_FASYNC, /* fasync() active */
948 SOCK_RXQ_OVFL,
949 SOCK_ZEROCOPY, /* buffers from userspace */
950 SOCK_WIFI_STATUS, /* push wifi status to userspace */
951 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
952 * Will use last 4 bytes of packet sent from
953 * user-space instead.
954 */
955 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
956 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
957 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
958 SOCK_TXTIME,
959 SOCK_XDP, /* XDP is attached */
960 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
961 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
962 };
963
964 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
965
966 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
967 {
968 nsk->sk_flags = osk->sk_flags;
969 }
970
971 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
972 {
973 __set_bit(flag, &sk->sk_flags);
974 }
975
976 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
977 {
978 __clear_bit(flag, &sk->sk_flags);
979 }
980
981 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
982 int valbool)
983 {
984 if (valbool)
985 sock_set_flag(sk, bit);
986 else
987 sock_reset_flag(sk, bit);
988 }
989
990 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
991 {
992 return test_bit(flag, &sk->sk_flags);
993 }
994
995 #ifdef CONFIG_NET
996 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
997 static inline int sk_memalloc_socks(void)
998 {
999 return static_branch_unlikely(&memalloc_socks_key);
1000 }
1001
1002 void __receive_sock(struct file *file);
1003 #else
1004
1005 static inline int sk_memalloc_socks(void)
1006 {
1007 return 0;
1008 }
1009
1010 static inline void __receive_sock(struct file *file)
1011 { }
1012 #endif
1013
1014 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1015 {
1016 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1017 }
1018
1019 static inline void sk_acceptq_removed(struct sock *sk)
1020 {
1021 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1022 }
1023
1024 static inline void sk_acceptq_added(struct sock *sk)
1025 {
1026 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1027 }
1028
1029 /* Note: If you think the test should be:
1030 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1031 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1032 */
1033 static inline bool sk_acceptq_is_full(const struct sock *sk)
1034 {
1035 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1036 }
1037
1038 /*
1039 * Compute minimal free write space needed to queue new packets.
1040 */
1041 static inline int sk_stream_min_wspace(const struct sock *sk)
1042 {
1043 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1044 }
1045
1046 static inline int sk_stream_wspace(const struct sock *sk)
1047 {
1048 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1049 }
1050
1051 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1052 {
1053 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1054 }
1055
1056 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1057 {
1058 /* Paired with lockless reads of sk->sk_forward_alloc */
1059 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1060 }
1061
1062 void sk_stream_write_space(struct sock *sk);
1063
1064 /* OOB backlog add */
1065 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1066 {
1067 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1068 skb_dst_force(skb);
1069
1070 if (!sk->sk_backlog.tail)
1071 WRITE_ONCE(sk->sk_backlog.head, skb);
1072 else
1073 sk->sk_backlog.tail->next = skb;
1074
1075 WRITE_ONCE(sk->sk_backlog.tail, skb);
1076 skb->next = NULL;
1077 }
1078
1079 /*
1080 * Take into account size of receive queue and backlog queue
1081 * Do not take into account this skb truesize,
1082 * to allow even a single big packet to come.
1083 */
1084 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1085 {
1086 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1087
1088 return qsize > limit;
1089 }
1090
1091 /* The per-socket spinlock must be held here. */
1092 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1093 unsigned int limit)
1094 {
1095 if (sk_rcvqueues_full(sk, limit))
1096 return -ENOBUFS;
1097
1098 /*
1099 * If the skb was allocated from pfmemalloc reserves, only
1100 * allow SOCK_MEMALLOC sockets to use it as this socket is
1101 * helping free memory
1102 */
1103 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1104 return -ENOMEM;
1105
1106 __sk_add_backlog(sk, skb);
1107 sk->sk_backlog.len += skb->truesize;
1108 return 0;
1109 }
1110
1111 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1112
1113 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1114 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1115
1116 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1117 {
1118 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1119 return __sk_backlog_rcv(sk, skb);
1120
1121 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1122 tcp_v6_do_rcv,
1123 tcp_v4_do_rcv,
1124 sk, skb);
1125 }
1126
1127 static inline void sk_incoming_cpu_update(struct sock *sk)
1128 {
1129 int cpu = raw_smp_processor_id();
1130
1131 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1132 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1133 }
1134
1135 static inline void sock_rps_record_flow_hash(__u32 hash)
1136 {
1137 #ifdef CONFIG_RPS
1138 struct rps_sock_flow_table *sock_flow_table;
1139
1140 rcu_read_lock();
1141 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1142 rps_record_sock_flow(sock_flow_table, hash);
1143 rcu_read_unlock();
1144 #endif
1145 }
1146
1147 static inline void sock_rps_record_flow(const struct sock *sk)
1148 {
1149 #ifdef CONFIG_RPS
1150 if (static_branch_unlikely(&rfs_needed)) {
1151 /* Reading sk->sk_rxhash might incur an expensive cache line
1152 * miss.
1153 *
1154 * TCP_ESTABLISHED does cover almost all states where RFS
1155 * might be useful, and is cheaper [1] than testing :
1156 * IPv4: inet_sk(sk)->inet_daddr
1157 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1158 * OR an additional socket flag
1159 * [1] : sk_state and sk_prot are in the same cache line.
1160 */
1161 if (sk->sk_state == TCP_ESTABLISHED) {
1162 /* This READ_ONCE() is paired with the WRITE_ONCE()
1163 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1164 */
1165 sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1166 }
1167 }
1168 #endif
1169 }
1170
1171 static inline void sock_rps_save_rxhash(struct sock *sk,
1172 const struct sk_buff *skb)
1173 {
1174 #ifdef CONFIG_RPS
1175 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1176 * here, and another one in sock_rps_record_flow().
1177 */
1178 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1179 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1180 #endif
1181 }
1182
1183 static inline void sock_rps_reset_rxhash(struct sock *sk)
1184 {
1185 #ifdef CONFIG_RPS
1186 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1187 WRITE_ONCE(sk->sk_rxhash, 0);
1188 #endif
1189 }
1190
1191 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1192 ({ int __rc; \
1193 __sk->sk_wait_pending++; \
1194 release_sock(__sk); \
1195 __rc = __condition; \
1196 if (!__rc) { \
1197 *(__timeo) = wait_woken(__wait, \
1198 TASK_INTERRUPTIBLE, \
1199 *(__timeo)); \
1200 } \
1201 sched_annotate_sleep(); \
1202 lock_sock(__sk); \
1203 __sk->sk_wait_pending--; \
1204 __rc = __condition; \
1205 __rc; \
1206 })
1207
1208 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1209 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1210 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1211 int sk_stream_error(struct sock *sk, int flags, int err);
1212 void sk_stream_kill_queues(struct sock *sk);
1213 void sk_set_memalloc(struct sock *sk);
1214 void sk_clear_memalloc(struct sock *sk);
1215
1216 void __sk_flush_backlog(struct sock *sk);
1217
1218 static inline bool sk_flush_backlog(struct sock *sk)
1219 {
1220 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1221 __sk_flush_backlog(sk);
1222 return true;
1223 }
1224 return false;
1225 }
1226
1227 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1228
1229 struct request_sock_ops;
1230 struct timewait_sock_ops;
1231 struct inet_hashinfo;
1232 struct raw_hashinfo;
1233 struct smc_hashinfo;
1234 struct module;
1235 struct sk_psock;
1236
1237 /*
1238 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1239 * un-modified. Special care is taken when initializing object to zero.
1240 */
1241 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1242 {
1243 if (offsetof(struct sock, sk_node.next) != 0)
1244 memset(sk, 0, offsetof(struct sock, sk_node.next));
1245 memset(&sk->sk_node.pprev, 0,
1246 size - offsetof(struct sock, sk_node.pprev));
1247 }
1248
1249 /* Networking protocol blocks we attach to sockets.
1250 * socket layer -> transport layer interface
1251 */
1252 struct proto {
1253 void (*close)(struct sock *sk,
1254 long timeout);
1255 int (*pre_connect)(struct sock *sk,
1256 struct sockaddr *uaddr,
1257 int addr_len);
1258 int (*connect)(struct sock *sk,
1259 struct sockaddr *uaddr,
1260 int addr_len);
1261 int (*disconnect)(struct sock *sk, int flags);
1262
1263 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1264 bool kern);
1265
1266 int (*ioctl)(struct sock *sk, int cmd,
1267 int *karg);
1268 int (*init)(struct sock *sk);
1269 void (*destroy)(struct sock *sk);
1270 void (*shutdown)(struct sock *sk, int how);
1271 int (*setsockopt)(struct sock *sk, int level,
1272 int optname, sockptr_t optval,
1273 unsigned int optlen);
1274 int (*getsockopt)(struct sock *sk, int level,
1275 int optname, char __user *optval,
1276 int __user *option);
1277 void (*keepalive)(struct sock *sk, int valbool);
1278 #ifdef CONFIG_COMPAT
1279 int (*compat_ioctl)(struct sock *sk,
1280 unsigned int cmd, unsigned long arg);
1281 #endif
1282 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1283 size_t len);
1284 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1285 size_t len, int flags, int *addr_len);
1286 void (*splice_eof)(struct socket *sock);
1287 int (*bind)(struct sock *sk,
1288 struct sockaddr *addr, int addr_len);
1289 int (*bind_add)(struct sock *sk,
1290 struct sockaddr *addr, int addr_len);
1291
1292 int (*backlog_rcv) (struct sock *sk,
1293 struct sk_buff *skb);
1294 bool (*bpf_bypass_getsockopt)(int level,
1295 int optname);
1296
1297 void (*release_cb)(struct sock *sk);
1298
1299 /* Keeping track of sk's, looking them up, and port selection methods. */
1300 int (*hash)(struct sock *sk);
1301 void (*unhash)(struct sock *sk);
1302 void (*rehash)(struct sock *sk);
1303 int (*get_port)(struct sock *sk, unsigned short snum);
1304 void (*put_port)(struct sock *sk);
1305 #ifdef CONFIG_BPF_SYSCALL
1306 int (*psock_update_sk_prot)(struct sock *sk,
1307 struct sk_psock *psock,
1308 bool restore);
1309 #endif
1310
1311 /* Keeping track of sockets in use */
1312 #ifdef CONFIG_PROC_FS
1313 unsigned int inuse_idx;
1314 #endif
1315
1316 #if IS_ENABLED(CONFIG_MPTCP)
1317 int (*forward_alloc_get)(const struct sock *sk);
1318 #endif
1319
1320 bool (*stream_memory_free)(const struct sock *sk, int wake);
1321 bool (*sock_is_readable)(struct sock *sk);
1322 /* Memory pressure */
1323 void (*enter_memory_pressure)(struct sock *sk);
1324 void (*leave_memory_pressure)(struct sock *sk);
1325 atomic_long_t *memory_allocated; /* Current allocated memory. */
1326 int __percpu *per_cpu_fw_alloc;
1327 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1328
1329 /*
1330 * Pressure flag: try to collapse.
1331 * Technical note: it is used by multiple contexts non atomically.
1332 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1333 * All the __sk_mem_schedule() is of this nature: accounting
1334 * is strict, actions are advisory and have some latency.
1335 */
1336 unsigned long *memory_pressure;
1337 long *sysctl_mem;
1338
1339 int *sysctl_wmem;
1340 int *sysctl_rmem;
1341 u32 sysctl_wmem_offset;
1342 u32 sysctl_rmem_offset;
1343
1344 int max_header;
1345 bool no_autobind;
1346
1347 struct kmem_cache *slab;
1348 unsigned int obj_size;
1349 unsigned int ipv6_pinfo_offset;
1350 slab_flags_t slab_flags;
1351 unsigned int useroffset; /* Usercopy region offset */
1352 unsigned int usersize; /* Usercopy region size */
1353
1354 unsigned int __percpu *orphan_count;
1355
1356 struct request_sock_ops *rsk_prot;
1357 struct timewait_sock_ops *twsk_prot;
1358
1359 union {
1360 struct inet_hashinfo *hashinfo;
1361 struct udp_table *udp_table;
1362 struct raw_hashinfo *raw_hash;
1363 struct smc_hashinfo *smc_hash;
1364 } h;
1365
1366 struct module *owner;
1367
1368 char name[32];
1369
1370 struct list_head node;
1371 int (*diag_destroy)(struct sock *sk, int err);
1372 } __randomize_layout;
1373
1374 int proto_register(struct proto *prot, int alloc_slab);
1375 void proto_unregister(struct proto *prot);
1376 int sock_load_diag_module(int family, int protocol);
1377
1378 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1379
1380 static inline int sk_forward_alloc_get(const struct sock *sk)
1381 {
1382 #if IS_ENABLED(CONFIG_MPTCP)
1383 if (sk->sk_prot->forward_alloc_get)
1384 return sk->sk_prot->forward_alloc_get(sk);
1385 #endif
1386 return READ_ONCE(sk->sk_forward_alloc);
1387 }
1388
1389 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1390 {
1391 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1392 return false;
1393
1394 return sk->sk_prot->stream_memory_free ?
1395 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1396 tcp_stream_memory_free, sk, wake) : true;
1397 }
1398
1399 static inline bool sk_stream_memory_free(const struct sock *sk)
1400 {
1401 return __sk_stream_memory_free(sk, 0);
1402 }
1403
1404 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1405 {
1406 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1407 __sk_stream_memory_free(sk, wake);
1408 }
1409
1410 static inline bool sk_stream_is_writeable(const struct sock *sk)
1411 {
1412 return __sk_stream_is_writeable(sk, 0);
1413 }
1414
1415 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1416 struct cgroup *ancestor)
1417 {
1418 #ifdef CONFIG_SOCK_CGROUP_DATA
1419 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1420 ancestor);
1421 #else
1422 return -ENOTSUPP;
1423 #endif
1424 }
1425
1426 static inline bool sk_has_memory_pressure(const struct sock *sk)
1427 {
1428 return sk->sk_prot->memory_pressure != NULL;
1429 }
1430
1431 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1432 {
1433 return sk->sk_prot->memory_pressure &&
1434 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1435 }
1436
1437 static inline bool sk_under_memory_pressure(const struct sock *sk)
1438 {
1439 if (!sk->sk_prot->memory_pressure)
1440 return false;
1441
1442 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1443 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1444 return true;
1445
1446 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1447 }
1448
1449 static inline long
1450 proto_memory_allocated(const struct proto *prot)
1451 {
1452 return max(0L, atomic_long_read(prot->memory_allocated));
1453 }
1454
1455 static inline long
1456 sk_memory_allocated(const struct sock *sk)
1457 {
1458 return proto_memory_allocated(sk->sk_prot);
1459 }
1460
1461 /* 1 MB per cpu, in page units */
1462 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1463
1464 static inline void
1465 sk_memory_allocated_add(struct sock *sk, int amt)
1466 {
1467 int local_reserve;
1468
1469 preempt_disable();
1470 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1471 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1472 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1473 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1474 }
1475 preempt_enable();
1476 }
1477
1478 static inline void
1479 sk_memory_allocated_sub(struct sock *sk, int amt)
1480 {
1481 int local_reserve;
1482
1483 preempt_disable();
1484 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1485 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1486 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1487 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1488 }
1489 preempt_enable();
1490 }
1491
1492 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1493
1494 static inline void sk_sockets_allocated_dec(struct sock *sk)
1495 {
1496 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1497 SK_ALLOC_PERCPU_COUNTER_BATCH);
1498 }
1499
1500 static inline void sk_sockets_allocated_inc(struct sock *sk)
1501 {
1502 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1503 SK_ALLOC_PERCPU_COUNTER_BATCH);
1504 }
1505
1506 static inline u64
1507 sk_sockets_allocated_read_positive(struct sock *sk)
1508 {
1509 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1510 }
1511
1512 static inline int
1513 proto_sockets_allocated_sum_positive(struct proto *prot)
1514 {
1515 return percpu_counter_sum_positive(prot->sockets_allocated);
1516 }
1517
1518 static inline bool
1519 proto_memory_pressure(struct proto *prot)
1520 {
1521 if (!prot->memory_pressure)
1522 return false;
1523 return !!READ_ONCE(*prot->memory_pressure);
1524 }
1525
1526
1527 #ifdef CONFIG_PROC_FS
1528 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1529 struct prot_inuse {
1530 int all;
1531 int val[PROTO_INUSE_NR];
1532 };
1533
1534 static inline void sock_prot_inuse_add(const struct net *net,
1535 const struct proto *prot, int val)
1536 {
1537 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1538 }
1539
1540 static inline void sock_inuse_add(const struct net *net, int val)
1541 {
1542 this_cpu_add(net->core.prot_inuse->all, val);
1543 }
1544
1545 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1546 int sock_inuse_get(struct net *net);
1547 #else
1548 static inline void sock_prot_inuse_add(const struct net *net,
1549 const struct proto *prot, int val)
1550 {
1551 }
1552
1553 static inline void sock_inuse_add(const struct net *net, int val)
1554 {
1555 }
1556 #endif
1557
1558
1559 /* With per-bucket locks this operation is not-atomic, so that
1560 * this version is not worse.
1561 */
1562 static inline int __sk_prot_rehash(struct sock *sk)
1563 {
1564 sk->sk_prot->unhash(sk);
1565 return sk->sk_prot->hash(sk);
1566 }
1567
1568 /* About 10 seconds */
1569 #define SOCK_DESTROY_TIME (10*HZ)
1570
1571 /* Sockets 0-1023 can't be bound to unless you are superuser */
1572 #define PROT_SOCK 1024
1573
1574 #define SHUTDOWN_MASK 3
1575 #define RCV_SHUTDOWN 1
1576 #define SEND_SHUTDOWN 2
1577
1578 #define SOCK_BINDADDR_LOCK 4
1579 #define SOCK_BINDPORT_LOCK 8
1580
1581 struct socket_alloc {
1582 struct socket socket;
1583 struct inode vfs_inode;
1584 };
1585
1586 static inline struct socket *SOCKET_I(struct inode *inode)
1587 {
1588 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1589 }
1590
1591 static inline struct inode *SOCK_INODE(struct socket *socket)
1592 {
1593 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1594 }
1595
1596 /*
1597 * Functions for memory accounting
1598 */
1599 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1600 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1601 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1602 void __sk_mem_reclaim(struct sock *sk, int amount);
1603
1604 #define SK_MEM_SEND 0
1605 #define SK_MEM_RECV 1
1606
1607 /* sysctl_mem values are in pages */
1608 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1609 {
1610 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1611 }
1612
1613 static inline int sk_mem_pages(int amt)
1614 {
1615 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1616 }
1617
1618 static inline bool sk_has_account(struct sock *sk)
1619 {
1620 /* return true if protocol supports memory accounting */
1621 return !!sk->sk_prot->memory_allocated;
1622 }
1623
1624 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1625 {
1626 int delta;
1627
1628 if (!sk_has_account(sk))
1629 return true;
1630 delta = size - sk->sk_forward_alloc;
1631 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1632 }
1633
1634 static inline bool
1635 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1636 {
1637 int delta;
1638
1639 if (!sk_has_account(sk))
1640 return true;
1641 delta = size - sk->sk_forward_alloc;
1642 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1643 skb_pfmemalloc(skb);
1644 }
1645
1646 static inline int sk_unused_reserved_mem(const struct sock *sk)
1647 {
1648 int unused_mem;
1649
1650 if (likely(!sk->sk_reserved_mem))
1651 return 0;
1652
1653 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1654 atomic_read(&sk->sk_rmem_alloc);
1655
1656 return unused_mem > 0 ? unused_mem : 0;
1657 }
1658
1659 static inline void sk_mem_reclaim(struct sock *sk)
1660 {
1661 int reclaimable;
1662
1663 if (!sk_has_account(sk))
1664 return;
1665
1666 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1667
1668 if (reclaimable >= (int)PAGE_SIZE)
1669 __sk_mem_reclaim(sk, reclaimable);
1670 }
1671
1672 static inline void sk_mem_reclaim_final(struct sock *sk)
1673 {
1674 sk->sk_reserved_mem = 0;
1675 sk_mem_reclaim(sk);
1676 }
1677
1678 static inline void sk_mem_charge(struct sock *sk, int size)
1679 {
1680 if (!sk_has_account(sk))
1681 return;
1682 sk_forward_alloc_add(sk, -size);
1683 }
1684
1685 static inline void sk_mem_uncharge(struct sock *sk, int size)
1686 {
1687 if (!sk_has_account(sk))
1688 return;
1689 sk_forward_alloc_add(sk, size);
1690 sk_mem_reclaim(sk);
1691 }
1692
1693 /*
1694 * Macro so as to not evaluate some arguments when
1695 * lockdep is not enabled.
1696 *
1697 * Mark both the sk_lock and the sk_lock.slock as a
1698 * per-address-family lock class.
1699 */
1700 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1701 do { \
1702 sk->sk_lock.owned = 0; \
1703 init_waitqueue_head(&sk->sk_lock.wq); \
1704 spin_lock_init(&(sk)->sk_lock.slock); \
1705 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1706 sizeof((sk)->sk_lock)); \
1707 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1708 (skey), (sname)); \
1709 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1710 } while (0)
1711
1712 static inline bool lockdep_sock_is_held(const struct sock *sk)
1713 {
1714 return lockdep_is_held(&sk->sk_lock) ||
1715 lockdep_is_held(&sk->sk_lock.slock);
1716 }
1717
1718 void lock_sock_nested(struct sock *sk, int subclass);
1719
1720 static inline void lock_sock(struct sock *sk)
1721 {
1722 lock_sock_nested(sk, 0);
1723 }
1724
1725 void __lock_sock(struct sock *sk);
1726 void __release_sock(struct sock *sk);
1727 void release_sock(struct sock *sk);
1728
1729 /* BH context may only use the following locking interface. */
1730 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1731 #define bh_lock_sock_nested(__sk) \
1732 spin_lock_nested(&((__sk)->sk_lock.slock), \
1733 SINGLE_DEPTH_NESTING)
1734 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1735
1736 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1737
1738 /**
1739 * lock_sock_fast - fast version of lock_sock
1740 * @sk: socket
1741 *
1742 * This version should be used for very small section, where process wont block
1743 * return false if fast path is taken:
1744 *
1745 * sk_lock.slock locked, owned = 0, BH disabled
1746 *
1747 * return true if slow path is taken:
1748 *
1749 * sk_lock.slock unlocked, owned = 1, BH enabled
1750 */
1751 static inline bool lock_sock_fast(struct sock *sk)
1752 {
1753 /* The sk_lock has mutex_lock() semantics here. */
1754 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1755
1756 return __lock_sock_fast(sk);
1757 }
1758
1759 /* fast socket lock variant for caller already holding a [different] socket lock */
1760 static inline bool lock_sock_fast_nested(struct sock *sk)
1761 {
1762 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1763
1764 return __lock_sock_fast(sk);
1765 }
1766
1767 /**
1768 * unlock_sock_fast - complement of lock_sock_fast
1769 * @sk: socket
1770 * @slow: slow mode
1771 *
1772 * fast unlock socket for user context.
1773 * If slow mode is on, we call regular release_sock()
1774 */
1775 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1776 __releases(&sk->sk_lock.slock)
1777 {
1778 if (slow) {
1779 release_sock(sk);
1780 __release(&sk->sk_lock.slock);
1781 } else {
1782 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1783 spin_unlock_bh(&sk->sk_lock.slock);
1784 }
1785 }
1786
1787 void sockopt_lock_sock(struct sock *sk);
1788 void sockopt_release_sock(struct sock *sk);
1789 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1790 bool sockopt_capable(int cap);
1791
1792 /* Used by processes to "lock" a socket state, so that
1793 * interrupts and bottom half handlers won't change it
1794 * from under us. It essentially blocks any incoming
1795 * packets, so that we won't get any new data or any
1796 * packets that change the state of the socket.
1797 *
1798 * While locked, BH processing will add new packets to
1799 * the backlog queue. This queue is processed by the
1800 * owner of the socket lock right before it is released.
1801 *
1802 * Since ~2.3.5 it is also exclusive sleep lock serializing
1803 * accesses from user process context.
1804 */
1805
1806 static inline void sock_owned_by_me(const struct sock *sk)
1807 {
1808 #ifdef CONFIG_LOCKDEP
1809 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1810 #endif
1811 }
1812
1813 static inline bool sock_owned_by_user(const struct sock *sk)
1814 {
1815 sock_owned_by_me(sk);
1816 return sk->sk_lock.owned;
1817 }
1818
1819 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1820 {
1821 return sk->sk_lock.owned;
1822 }
1823
1824 static inline void sock_release_ownership(struct sock *sk)
1825 {
1826 if (sock_owned_by_user_nocheck(sk)) {
1827 sk->sk_lock.owned = 0;
1828
1829 /* The sk_lock has mutex_unlock() semantics: */
1830 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1831 }
1832 }
1833
1834 /* no reclassification while locks are held */
1835 static inline bool sock_allow_reclassification(const struct sock *csk)
1836 {
1837 struct sock *sk = (struct sock *)csk;
1838
1839 return !sock_owned_by_user_nocheck(sk) &&
1840 !spin_is_locked(&sk->sk_lock.slock);
1841 }
1842
1843 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1844 struct proto *prot, int kern);
1845 void sk_free(struct sock *sk);
1846 void sk_destruct(struct sock *sk);
1847 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1848 void sk_free_unlock_clone(struct sock *sk);
1849
1850 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1851 gfp_t priority);
1852 void __sock_wfree(struct sk_buff *skb);
1853 void sock_wfree(struct sk_buff *skb);
1854 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1855 gfp_t priority);
1856 void skb_orphan_partial(struct sk_buff *skb);
1857 void sock_rfree(struct sk_buff *skb);
1858 void sock_efree(struct sk_buff *skb);
1859 #ifdef CONFIG_INET
1860 void sock_edemux(struct sk_buff *skb);
1861 void sock_pfree(struct sk_buff *skb);
1862 #else
1863 #define sock_edemux sock_efree
1864 #endif
1865
1866 int sk_setsockopt(struct sock *sk, int level, int optname,
1867 sockptr_t optval, unsigned int optlen);
1868 int sock_setsockopt(struct socket *sock, int level, int op,
1869 sockptr_t optval, unsigned int optlen);
1870
1871 int sk_getsockopt(struct sock *sk, int level, int optname,
1872 sockptr_t optval, sockptr_t optlen);
1873 int sock_getsockopt(struct socket *sock, int level, int op,
1874 char __user *optval, int __user *optlen);
1875 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1876 bool timeval, bool time32);
1877 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1878 unsigned long data_len, int noblock,
1879 int *errcode, int max_page_order);
1880
1881 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1882 unsigned long size,
1883 int noblock, int *errcode)
1884 {
1885 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1886 }
1887
1888 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1889 void sock_kfree_s(struct sock *sk, void *mem, int size);
1890 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1891 void sk_send_sigurg(struct sock *sk);
1892
1893 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1894 {
1895 if (sk->sk_socket)
1896 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1897 WRITE_ONCE(sk->sk_prot, proto);
1898 }
1899
1900 struct sockcm_cookie {
1901 u64 transmit_time;
1902 u32 mark;
1903 u32 tsflags;
1904 };
1905
1906 static inline void sockcm_init(struct sockcm_cookie *sockc,
1907 const struct sock *sk)
1908 {
1909 *sockc = (struct sockcm_cookie) {
1910 .tsflags = READ_ONCE(sk->sk_tsflags)
1911 };
1912 }
1913
1914 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1915 struct sockcm_cookie *sockc);
1916 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1917 struct sockcm_cookie *sockc);
1918
1919 /*
1920 * Functions to fill in entries in struct proto_ops when a protocol
1921 * does not implement a particular function.
1922 */
1923 int sock_no_bind(struct socket *, struct sockaddr *, int);
1924 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1925 int sock_no_socketpair(struct socket *, struct socket *);
1926 int sock_no_accept(struct socket *, struct socket *, int, bool);
1927 int sock_no_getname(struct socket *, struct sockaddr *, int);
1928 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1929 int sock_no_listen(struct socket *, int);
1930 int sock_no_shutdown(struct socket *, int);
1931 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1932 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1933 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1934 int sock_no_mmap(struct file *file, struct socket *sock,
1935 struct vm_area_struct *vma);
1936
1937 /*
1938 * Functions to fill in entries in struct proto_ops when a protocol
1939 * uses the inet style.
1940 */
1941 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1942 char __user *optval, int __user *optlen);
1943 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1944 int flags);
1945 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1946 sockptr_t optval, unsigned int optlen);
1947
1948 void sk_common_release(struct sock *sk);
1949
1950 /*
1951 * Default socket callbacks and setup code
1952 */
1953
1954 /* Initialise core socket variables using an explicit uid. */
1955 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1956
1957 /* Initialise core socket variables.
1958 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1959 */
1960 void sock_init_data(struct socket *sock, struct sock *sk);
1961
1962 /*
1963 * Socket reference counting postulates.
1964 *
1965 * * Each user of socket SHOULD hold a reference count.
1966 * * Each access point to socket (an hash table bucket, reference from a list,
1967 * running timer, skb in flight MUST hold a reference count.
1968 * * When reference count hits 0, it means it will never increase back.
1969 * * When reference count hits 0, it means that no references from
1970 * outside exist to this socket and current process on current CPU
1971 * is last user and may/should destroy this socket.
1972 * * sk_free is called from any context: process, BH, IRQ. When
1973 * it is called, socket has no references from outside -> sk_free
1974 * may release descendant resources allocated by the socket, but
1975 * to the time when it is called, socket is NOT referenced by any
1976 * hash tables, lists etc.
1977 * * Packets, delivered from outside (from network or from another process)
1978 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1979 * when they sit in queue. Otherwise, packets will leak to hole, when
1980 * socket is looked up by one cpu and unhasing is made by another CPU.
1981 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1982 * (leak to backlog). Packet socket does all the processing inside
1983 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1984 * use separate SMP lock, so that they are prone too.
1985 */
1986
1987 /* Ungrab socket and destroy it, if it was the last reference. */
1988 static inline void sock_put(struct sock *sk)
1989 {
1990 if (refcount_dec_and_test(&sk->sk_refcnt))
1991 sk_free(sk);
1992 }
1993 /* Generic version of sock_put(), dealing with all sockets
1994 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1995 */
1996 void sock_gen_put(struct sock *sk);
1997
1998 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1999 unsigned int trim_cap, bool refcounted);
2000 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2001 const int nested)
2002 {
2003 return __sk_receive_skb(sk, skb, nested, 1, true);
2004 }
2005
2006 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2007 {
2008 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2009 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2010 return;
2011 sk->sk_tx_queue_mapping = tx_queue;
2012 }
2013
2014 #define NO_QUEUE_MAPPING USHRT_MAX
2015
2016 static inline void sk_tx_queue_clear(struct sock *sk)
2017 {
2018 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
2019 }
2020
2021 static inline int sk_tx_queue_get(const struct sock *sk)
2022 {
2023 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2024 return sk->sk_tx_queue_mapping;
2025
2026 return -1;
2027 }
2028
2029 static inline void __sk_rx_queue_set(struct sock *sk,
2030 const struct sk_buff *skb,
2031 bool force_set)
2032 {
2033 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2034 if (skb_rx_queue_recorded(skb)) {
2035 u16 rx_queue = skb_get_rx_queue(skb);
2036
2037 if (force_set ||
2038 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2039 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2040 }
2041 #endif
2042 }
2043
2044 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2045 {
2046 __sk_rx_queue_set(sk, skb, true);
2047 }
2048
2049 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2050 {
2051 __sk_rx_queue_set(sk, skb, false);
2052 }
2053
2054 static inline void sk_rx_queue_clear(struct sock *sk)
2055 {
2056 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2057 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2058 #endif
2059 }
2060
2061 static inline int sk_rx_queue_get(const struct sock *sk)
2062 {
2063 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2064 if (sk) {
2065 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2066
2067 if (res != NO_QUEUE_MAPPING)
2068 return res;
2069 }
2070 #endif
2071
2072 return -1;
2073 }
2074
2075 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2076 {
2077 sk->sk_socket = sock;
2078 }
2079
2080 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2081 {
2082 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2083 return &rcu_dereference_raw(sk->sk_wq)->wait;
2084 }
2085 /* Detach socket from process context.
2086 * Announce socket dead, detach it from wait queue and inode.
2087 * Note that parent inode held reference count on this struct sock,
2088 * we do not release it in this function, because protocol
2089 * probably wants some additional cleanups or even continuing
2090 * to work with this socket (TCP).
2091 */
2092 static inline void sock_orphan(struct sock *sk)
2093 {
2094 write_lock_bh(&sk->sk_callback_lock);
2095 sock_set_flag(sk, SOCK_DEAD);
2096 sk_set_socket(sk, NULL);
2097 sk->sk_wq = NULL;
2098 write_unlock_bh(&sk->sk_callback_lock);
2099 }
2100
2101 static inline void sock_graft(struct sock *sk, struct socket *parent)
2102 {
2103 WARN_ON(parent->sk);
2104 write_lock_bh(&sk->sk_callback_lock);
2105 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2106 parent->sk = sk;
2107 sk_set_socket(sk, parent);
2108 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2109 security_sock_graft(sk, parent);
2110 write_unlock_bh(&sk->sk_callback_lock);
2111 }
2112
2113 kuid_t sock_i_uid(struct sock *sk);
2114 unsigned long __sock_i_ino(struct sock *sk);
2115 unsigned long sock_i_ino(struct sock *sk);
2116
2117 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2118 {
2119 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2120 }
2121
2122 static inline u32 net_tx_rndhash(void)
2123 {
2124 u32 v = get_random_u32();
2125
2126 return v ?: 1;
2127 }
2128
2129 static inline void sk_set_txhash(struct sock *sk)
2130 {
2131 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2132 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2133 }
2134
2135 static inline bool sk_rethink_txhash(struct sock *sk)
2136 {
2137 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2138 sk_set_txhash(sk);
2139 return true;
2140 }
2141 return false;
2142 }
2143
2144 static inline struct dst_entry *
2145 __sk_dst_get(struct sock *sk)
2146 {
2147 return rcu_dereference_check(sk->sk_dst_cache,
2148 lockdep_sock_is_held(sk));
2149 }
2150
2151 static inline struct dst_entry *
2152 sk_dst_get(struct sock *sk)
2153 {
2154 struct dst_entry *dst;
2155
2156 rcu_read_lock();
2157 dst = rcu_dereference(sk->sk_dst_cache);
2158 if (dst && !rcuref_get(&dst->__rcuref))
2159 dst = NULL;
2160 rcu_read_unlock();
2161 return dst;
2162 }
2163
2164 static inline void __dst_negative_advice(struct sock *sk)
2165 {
2166 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2167
2168 if (dst && dst->ops->negative_advice) {
2169 ndst = dst->ops->negative_advice(dst);
2170
2171 if (ndst != dst) {
2172 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2173 sk_tx_queue_clear(sk);
2174 sk->sk_dst_pending_confirm = 0;
2175 }
2176 }
2177 }
2178
2179 static inline void dst_negative_advice(struct sock *sk)
2180 {
2181 sk_rethink_txhash(sk);
2182 __dst_negative_advice(sk);
2183 }
2184
2185 static inline void
2186 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2187 {
2188 struct dst_entry *old_dst;
2189
2190 sk_tx_queue_clear(sk);
2191 sk->sk_dst_pending_confirm = 0;
2192 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2193 lockdep_sock_is_held(sk));
2194 rcu_assign_pointer(sk->sk_dst_cache, dst);
2195 dst_release(old_dst);
2196 }
2197
2198 static inline void
2199 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2200 {
2201 struct dst_entry *old_dst;
2202
2203 sk_tx_queue_clear(sk);
2204 sk->sk_dst_pending_confirm = 0;
2205 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2206 dst_release(old_dst);
2207 }
2208
2209 static inline void
2210 __sk_dst_reset(struct sock *sk)
2211 {
2212 __sk_dst_set(sk, NULL);
2213 }
2214
2215 static inline void
2216 sk_dst_reset(struct sock *sk)
2217 {
2218 sk_dst_set(sk, NULL);
2219 }
2220
2221 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2222
2223 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2224
2225 static inline void sk_dst_confirm(struct sock *sk)
2226 {
2227 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2228 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2229 }
2230
2231 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2232 {
2233 if (skb_get_dst_pending_confirm(skb)) {
2234 struct sock *sk = skb->sk;
2235
2236 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2237 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2238 neigh_confirm(n);
2239 }
2240 }
2241
2242 bool sk_mc_loop(struct sock *sk);
2243
2244 static inline bool sk_can_gso(const struct sock *sk)
2245 {
2246 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2247 }
2248
2249 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2250
2251 static inline void sk_gso_disable(struct sock *sk)
2252 {
2253 sk->sk_gso_disabled = 1;
2254 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2255 }
2256
2257 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2258 struct iov_iter *from, char *to,
2259 int copy, int offset)
2260 {
2261 if (skb->ip_summed == CHECKSUM_NONE) {
2262 __wsum csum = 0;
2263 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2264 return -EFAULT;
2265 skb->csum = csum_block_add(skb->csum, csum, offset);
2266 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2267 if (!copy_from_iter_full_nocache(to, copy, from))
2268 return -EFAULT;
2269 } else if (!copy_from_iter_full(to, copy, from))
2270 return -EFAULT;
2271
2272 return 0;
2273 }
2274
2275 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2276 struct iov_iter *from, int copy)
2277 {
2278 int err, offset = skb->len;
2279
2280 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2281 copy, offset);
2282 if (err)
2283 __skb_trim(skb, offset);
2284
2285 return err;
2286 }
2287
2288 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2289 struct sk_buff *skb,
2290 struct page *page,
2291 int off, int copy)
2292 {
2293 int err;
2294
2295 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2296 copy, skb->len);
2297 if (err)
2298 return err;
2299
2300 skb_len_add(skb, copy);
2301 sk_wmem_queued_add(sk, copy);
2302 sk_mem_charge(sk, copy);
2303 return 0;
2304 }
2305
2306 /**
2307 * sk_wmem_alloc_get - returns write allocations
2308 * @sk: socket
2309 *
2310 * Return: sk_wmem_alloc minus initial offset of one
2311 */
2312 static inline int sk_wmem_alloc_get(const struct sock *sk)
2313 {
2314 return refcount_read(&sk->sk_wmem_alloc) - 1;
2315 }
2316
2317 /**
2318 * sk_rmem_alloc_get - returns read allocations
2319 * @sk: socket
2320 *
2321 * Return: sk_rmem_alloc
2322 */
2323 static inline int sk_rmem_alloc_get(const struct sock *sk)
2324 {
2325 return atomic_read(&sk->sk_rmem_alloc);
2326 }
2327
2328 /**
2329 * sk_has_allocations - check if allocations are outstanding
2330 * @sk: socket
2331 *
2332 * Return: true if socket has write or read allocations
2333 */
2334 static inline bool sk_has_allocations(const struct sock *sk)
2335 {
2336 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2337 }
2338
2339 /**
2340 * skwq_has_sleeper - check if there are any waiting processes
2341 * @wq: struct socket_wq
2342 *
2343 * Return: true if socket_wq has waiting processes
2344 *
2345 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2346 * barrier call. They were added due to the race found within the tcp code.
2347 *
2348 * Consider following tcp code paths::
2349 *
2350 * CPU1 CPU2
2351 * sys_select receive packet
2352 * ... ...
2353 * __add_wait_queue update tp->rcv_nxt
2354 * ... ...
2355 * tp->rcv_nxt check sock_def_readable
2356 * ... {
2357 * schedule rcu_read_lock();
2358 * wq = rcu_dereference(sk->sk_wq);
2359 * if (wq && waitqueue_active(&wq->wait))
2360 * wake_up_interruptible(&wq->wait)
2361 * ...
2362 * }
2363 *
2364 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2365 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2366 * could then endup calling schedule and sleep forever if there are no more
2367 * data on the socket.
2368 *
2369 */
2370 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2371 {
2372 return wq && wq_has_sleeper(&wq->wait);
2373 }
2374
2375 /**
2376 * sock_poll_wait - place memory barrier behind the poll_wait call.
2377 * @filp: file
2378 * @sock: socket to wait on
2379 * @p: poll_table
2380 *
2381 * See the comments in the wq_has_sleeper function.
2382 */
2383 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2384 poll_table *p)
2385 {
2386 if (!poll_does_not_wait(p)) {
2387 poll_wait(filp, &sock->wq.wait, p);
2388 /* We need to be sure we are in sync with the
2389 * socket flags modification.
2390 *
2391 * This memory barrier is paired in the wq_has_sleeper.
2392 */
2393 smp_mb();
2394 }
2395 }
2396
2397 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2398 {
2399 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2400 u32 txhash = READ_ONCE(sk->sk_txhash);
2401
2402 if (txhash) {
2403 skb->l4_hash = 1;
2404 skb->hash = txhash;
2405 }
2406 }
2407
2408 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2409
2410 /*
2411 * Queue a received datagram if it will fit. Stream and sequenced
2412 * protocols can't normally use this as they need to fit buffers in
2413 * and play with them.
2414 *
2415 * Inlined as it's very short and called for pretty much every
2416 * packet ever received.
2417 */
2418 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2419 {
2420 skb_orphan(skb);
2421 skb->sk = sk;
2422 skb->destructor = sock_rfree;
2423 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2424 sk_mem_charge(sk, skb->truesize);
2425 }
2426
2427 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2428 {
2429 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2430 skb_orphan(skb);
2431 skb->destructor = sock_efree;
2432 skb->sk = sk;
2433 return true;
2434 }
2435 return false;
2436 }
2437
2438 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2439 {
2440 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2441 if (skb) {
2442 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2443 skb_set_owner_r(skb, sk);
2444 return skb;
2445 }
2446 __kfree_skb(skb);
2447 }
2448 return NULL;
2449 }
2450
2451 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2452 {
2453 if (skb->destructor != sock_wfree) {
2454 skb_orphan(skb);
2455 return;
2456 }
2457 skb->slow_gro = 1;
2458 }
2459
2460 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2461 unsigned long expires);
2462
2463 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2464
2465 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2466
2467 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2468 struct sk_buff *skb, unsigned int flags,
2469 void (*destructor)(struct sock *sk,
2470 struct sk_buff *skb));
2471 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2472
2473 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2474 enum skb_drop_reason *reason);
2475
2476 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2477 {
2478 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2479 }
2480
2481 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2482 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2483
2484 /*
2485 * Recover an error report and clear atomically
2486 */
2487
2488 static inline int sock_error(struct sock *sk)
2489 {
2490 int err;
2491
2492 /* Avoid an atomic operation for the common case.
2493 * This is racy since another cpu/thread can change sk_err under us.
2494 */
2495 if (likely(data_race(!sk->sk_err)))
2496 return 0;
2497
2498 err = xchg(&sk->sk_err, 0);
2499 return -err;
2500 }
2501
2502 void sk_error_report(struct sock *sk);
2503
2504 static inline unsigned long sock_wspace(struct sock *sk)
2505 {
2506 int amt = 0;
2507
2508 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2509 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2510 if (amt < 0)
2511 amt = 0;
2512 }
2513 return amt;
2514 }
2515
2516 /* Note:
2517 * We use sk->sk_wq_raw, from contexts knowing this
2518 * pointer is not NULL and cannot disappear/change.
2519 */
2520 static inline void sk_set_bit(int nr, struct sock *sk)
2521 {
2522 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2523 !sock_flag(sk, SOCK_FASYNC))
2524 return;
2525
2526 set_bit(nr, &sk->sk_wq_raw->flags);
2527 }
2528
2529 static inline void sk_clear_bit(int nr, struct sock *sk)
2530 {
2531 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2532 !sock_flag(sk, SOCK_FASYNC))
2533 return;
2534
2535 clear_bit(nr, &sk->sk_wq_raw->flags);
2536 }
2537
2538 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2539 {
2540 if (sock_flag(sk, SOCK_FASYNC)) {
2541 rcu_read_lock();
2542 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2543 rcu_read_unlock();
2544 }
2545 }
2546
2547 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2548 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2549 * Note: for send buffers, TCP works better if we can build two skbs at
2550 * minimum.
2551 */
2552 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2553
2554 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2555 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2556
2557 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2558 {
2559 u32 val;
2560
2561 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2562 return;
2563
2564 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2565 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2566
2567 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2568 }
2569
2570 /**
2571 * sk_page_frag - return an appropriate page_frag
2572 * @sk: socket
2573 *
2574 * Use the per task page_frag instead of the per socket one for
2575 * optimization when we know that we're in process context and own
2576 * everything that's associated with %current.
2577 *
2578 * Both direct reclaim and page faults can nest inside other
2579 * socket operations and end up recursing into sk_page_frag()
2580 * while it's already in use: explicitly avoid task page_frag
2581 * when users disable sk_use_task_frag.
2582 *
2583 * Return: a per task page_frag if context allows that,
2584 * otherwise a per socket one.
2585 */
2586 static inline struct page_frag *sk_page_frag(struct sock *sk)
2587 {
2588 if (sk->sk_use_task_frag)
2589 return &current->task_frag;
2590
2591 return &sk->sk_frag;
2592 }
2593
2594 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2595
2596 /*
2597 * Default write policy as shown to user space via poll/select/SIGIO
2598 */
2599 static inline bool sock_writeable(const struct sock *sk)
2600 {
2601 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2602 }
2603
2604 static inline gfp_t gfp_any(void)
2605 {
2606 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2607 }
2608
2609 static inline gfp_t gfp_memcg_charge(void)
2610 {
2611 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2612 }
2613
2614 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2615 {
2616 return noblock ? 0 : sk->sk_rcvtimeo;
2617 }
2618
2619 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2620 {
2621 return noblock ? 0 : sk->sk_sndtimeo;
2622 }
2623
2624 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2625 {
2626 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2627
2628 return v ?: 1;
2629 }
2630
2631 /* Alas, with timeout socket operations are not restartable.
2632 * Compare this to poll().
2633 */
2634 static inline int sock_intr_errno(long timeo)
2635 {
2636 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2637 }
2638
2639 struct sock_skb_cb {
2640 u32 dropcount;
2641 };
2642
2643 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2644 * using skb->cb[] would keep using it directly and utilize its
2645 * alignement guarantee.
2646 */
2647 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2648 sizeof(struct sock_skb_cb)))
2649
2650 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2651 SOCK_SKB_CB_OFFSET))
2652
2653 #define sock_skb_cb_check_size(size) \
2654 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2655
2656 static inline void
2657 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2658 {
2659 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2660 atomic_read(&sk->sk_drops) : 0;
2661 }
2662
2663 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2664 {
2665 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2666
2667 atomic_add(segs, &sk->sk_drops);
2668 }
2669
2670 static inline ktime_t sock_read_timestamp(struct sock *sk)
2671 {
2672 #if BITS_PER_LONG==32
2673 unsigned int seq;
2674 ktime_t kt;
2675
2676 do {
2677 seq = read_seqbegin(&sk->sk_stamp_seq);
2678 kt = sk->sk_stamp;
2679 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2680
2681 return kt;
2682 #else
2683 return READ_ONCE(sk->sk_stamp);
2684 #endif
2685 }
2686
2687 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2688 {
2689 #if BITS_PER_LONG==32
2690 write_seqlock(&sk->sk_stamp_seq);
2691 sk->sk_stamp = kt;
2692 write_sequnlock(&sk->sk_stamp_seq);
2693 #else
2694 WRITE_ONCE(sk->sk_stamp, kt);
2695 #endif
2696 }
2697
2698 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2699 struct sk_buff *skb);
2700 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2701 struct sk_buff *skb);
2702
2703 static inline void
2704 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2705 {
2706 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2707 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2708 ktime_t kt = skb->tstamp;
2709 /*
2710 * generate control messages if
2711 * - receive time stamping in software requested
2712 * - software time stamp available and wanted
2713 * - hardware time stamps available and wanted
2714 */
2715 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2716 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2717 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2718 (hwtstamps->hwtstamp &&
2719 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2720 __sock_recv_timestamp(msg, sk, skb);
2721 else
2722 sock_write_timestamp(sk, kt);
2723
2724 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2725 __sock_recv_wifi_status(msg, sk, skb);
2726 }
2727
2728 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2729 struct sk_buff *skb);
2730
2731 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2732 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2733 struct sk_buff *skb)
2734 {
2735 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2736 (1UL << SOCK_RCVTSTAMP) | \
2737 (1UL << SOCK_RCVMARK))
2738 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2739 SOF_TIMESTAMPING_RAW_HARDWARE)
2740
2741 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2742 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2743 __sock_recv_cmsgs(msg, sk, skb);
2744 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2745 sock_write_timestamp(sk, skb->tstamp);
2746 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2747 sock_write_timestamp(sk, 0);
2748 }
2749
2750 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2751
2752 /**
2753 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2754 * @sk: socket sending this packet
2755 * @tsflags: timestamping flags to use
2756 * @tx_flags: completed with instructions for time stamping
2757 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2758 *
2759 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2760 */
2761 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2762 __u8 *tx_flags, __u32 *tskey)
2763 {
2764 if (unlikely(tsflags)) {
2765 __sock_tx_timestamp(tsflags, tx_flags);
2766 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2767 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2768 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2769 }
2770 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2771 *tx_flags |= SKBTX_WIFI_STATUS;
2772 }
2773
2774 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2775 __u8 *tx_flags)
2776 {
2777 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2778 }
2779
2780 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2781 {
2782 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2783 &skb_shinfo(skb)->tskey);
2784 }
2785
2786 static inline bool sk_is_tcp(const struct sock *sk)
2787 {
2788 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2789 }
2790
2791 /**
2792 * sk_eat_skb - Release a skb if it is no longer needed
2793 * @sk: socket to eat this skb from
2794 * @skb: socket buffer to eat
2795 *
2796 * This routine must be called with interrupts disabled or with the socket
2797 * locked so that the sk_buff queue operation is ok.
2798 */
2799 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2800 {
2801 __skb_unlink(skb, &sk->sk_receive_queue);
2802 __kfree_skb(skb);
2803 }
2804
2805 static inline bool
2806 skb_sk_is_prefetched(struct sk_buff *skb)
2807 {
2808 #ifdef CONFIG_INET
2809 return skb->destructor == sock_pfree;
2810 #else
2811 return false;
2812 #endif /* CONFIG_INET */
2813 }
2814
2815 /* This helper checks if a socket is a full socket,
2816 * ie _not_ a timewait or request socket.
2817 */
2818 static inline bool sk_fullsock(const struct sock *sk)
2819 {
2820 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2821 }
2822
2823 static inline bool
2824 sk_is_refcounted(struct sock *sk)
2825 {
2826 /* Only full sockets have sk->sk_flags. */
2827 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2828 }
2829
2830 /**
2831 * skb_steal_sock - steal a socket from an sk_buff
2832 * @skb: sk_buff to steal the socket from
2833 * @refcounted: is set to true if the socket is reference-counted
2834 * @prefetched: is set to true if the socket was assigned from bpf
2835 */
2836 static inline struct sock *
2837 skb_steal_sock(struct sk_buff *skb, bool *refcounted, bool *prefetched)
2838 {
2839 if (skb->sk) {
2840 struct sock *sk = skb->sk;
2841
2842 *refcounted = true;
2843 *prefetched = skb_sk_is_prefetched(skb);
2844 if (*prefetched)
2845 *refcounted = sk_is_refcounted(sk);
2846 skb->destructor = NULL;
2847 skb->sk = NULL;
2848 return sk;
2849 }
2850 *prefetched = false;
2851 *refcounted = false;
2852 return NULL;
2853 }
2854
2855 /* Checks if this SKB belongs to an HW offloaded socket
2856 * and whether any SW fallbacks are required based on dev.
2857 * Check decrypted mark in case skb_orphan() cleared socket.
2858 */
2859 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2860 struct net_device *dev)
2861 {
2862 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2863 struct sock *sk = skb->sk;
2864
2865 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2866 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2867 #ifdef CONFIG_TLS_DEVICE
2868 } else if (unlikely(skb->decrypted)) {
2869 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2870 kfree_skb(skb);
2871 skb = NULL;
2872 #endif
2873 }
2874 #endif
2875
2876 return skb;
2877 }
2878
2879 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2880 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2881 */
2882 static inline bool sk_listener(const struct sock *sk)
2883 {
2884 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2885 }
2886
2887 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2888 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2889 int type);
2890
2891 bool sk_ns_capable(const struct sock *sk,
2892 struct user_namespace *user_ns, int cap);
2893 bool sk_capable(const struct sock *sk, int cap);
2894 bool sk_net_capable(const struct sock *sk, int cap);
2895
2896 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2897
2898 /* Take into consideration the size of the struct sk_buff overhead in the
2899 * determination of these values, since that is non-constant across
2900 * platforms. This makes socket queueing behavior and performance
2901 * not depend upon such differences.
2902 */
2903 #define _SK_MEM_PACKETS 256
2904 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2905 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2906 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2907
2908 extern __u32 sysctl_wmem_max;
2909 extern __u32 sysctl_rmem_max;
2910
2911 extern int sysctl_tstamp_allow_data;
2912 extern int sysctl_optmem_max;
2913
2914 extern __u32 sysctl_wmem_default;
2915 extern __u32 sysctl_rmem_default;
2916
2917 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2918 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2919
2920 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2921 {
2922 /* Does this proto have per netns sysctl_wmem ? */
2923 if (proto->sysctl_wmem_offset)
2924 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2925
2926 return READ_ONCE(*proto->sysctl_wmem);
2927 }
2928
2929 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2930 {
2931 /* Does this proto have per netns sysctl_rmem ? */
2932 if (proto->sysctl_rmem_offset)
2933 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2934
2935 return READ_ONCE(*proto->sysctl_rmem);
2936 }
2937
2938 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2939 * Some wifi drivers need to tweak it to get more chunks.
2940 * They can use this helper from their ndo_start_xmit()
2941 */
2942 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2943 {
2944 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2945 return;
2946 WRITE_ONCE(sk->sk_pacing_shift, val);
2947 }
2948
2949 /* if a socket is bound to a device, check that the given device
2950 * index is either the same or that the socket is bound to an L3
2951 * master device and the given device index is also enslaved to
2952 * that L3 master
2953 */
2954 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2955 {
2956 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2957 int mdif;
2958
2959 if (!bound_dev_if || bound_dev_if == dif)
2960 return true;
2961
2962 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2963 if (mdif && mdif == bound_dev_if)
2964 return true;
2965
2966 return false;
2967 }
2968
2969 void sock_def_readable(struct sock *sk);
2970
2971 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2972 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2973 int sock_set_timestamping(struct sock *sk, int optname,
2974 struct so_timestamping timestamping);
2975
2976 void sock_enable_timestamps(struct sock *sk);
2977 void sock_no_linger(struct sock *sk);
2978 void sock_set_keepalive(struct sock *sk);
2979 void sock_set_priority(struct sock *sk, u32 priority);
2980 void sock_set_rcvbuf(struct sock *sk, int val);
2981 void sock_set_mark(struct sock *sk, u32 val);
2982 void sock_set_reuseaddr(struct sock *sk);
2983 void sock_set_reuseport(struct sock *sk);
2984 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2985
2986 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2987
2988 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2989 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2990 sockptr_t optval, int optlen, bool old_timeval);
2991
2992 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2993 void __user *arg, void *karg, size_t size);
2994 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2995 static inline bool sk_is_readable(struct sock *sk)
2996 {
2997 if (sk->sk_prot->sock_is_readable)
2998 return sk->sk_prot->sock_is_readable(sk);
2999 return false;
3000 }
3001 #endif /* _SOCK_H */