]> git.ipfire.org Git - thirdparty/linux.git/blob - include/net/sock.h
Merge branch 'sh_eth-wol'
[thirdparty/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_padding: unused element for alignment
256 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257 * @sk_no_check_rx: allow zero checksum in RX packets
258 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261 * @sk_gso_max_size: Maximum GSO segment size to build
262 * @sk_gso_max_segs: Maximum number of GSO segments
263 * @sk_lingertime: %SO_LINGER l_linger setting
264 * @sk_backlog: always used with the per-socket spinlock held
265 * @sk_callback_lock: used with the callbacks in the end of this struct
266 * @sk_error_queue: rarely used
267 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268 * IPV6_ADDRFORM for instance)
269 * @sk_err: last error
270 * @sk_err_soft: errors that don't cause failure but are the cause of a
271 * persistent failure not just 'timed out'
272 * @sk_drops: raw/udp drops counter
273 * @sk_ack_backlog: current listen backlog
274 * @sk_max_ack_backlog: listen backlog set in listen()
275 * @sk_priority: %SO_PRIORITY setting
276 * @sk_type: socket type (%SOCK_STREAM, etc)
277 * @sk_protocol: which protocol this socket belongs in this network family
278 * @sk_peer_pid: &struct pid for this socket's peer
279 * @sk_peer_cred: %SO_PEERCRED setting
280 * @sk_rcvlowat: %SO_RCVLOWAT setting
281 * @sk_rcvtimeo: %SO_RCVTIMEO setting
282 * @sk_sndtimeo: %SO_SNDTIMEO setting
283 * @sk_txhash: computed flow hash for use on transmit
284 * @sk_filter: socket filtering instructions
285 * @sk_timer: sock cleanup timer
286 * @sk_stamp: time stamp of last packet received
287 * @sk_tsflags: SO_TIMESTAMPING socket options
288 * @sk_tskey: counter to disambiguate concurrent tstamp requests
289 * @sk_socket: Identd and reporting IO signals
290 * @sk_user_data: RPC layer private data
291 * @sk_frag: cached page frag
292 * @sk_peek_off: current peek_offset value
293 * @sk_send_head: front of stuff to transmit
294 * @sk_security: used by security modules
295 * @sk_mark: generic packet mark
296 * @sk_cgrp_data: cgroup data for this cgroup
297 * @sk_memcg: this socket's memory cgroup association
298 * @sk_write_pending: a write to stream socket waits to start
299 * @sk_state_change: callback to indicate change in the state of the sock
300 * @sk_data_ready: callback to indicate there is data to be processed
301 * @sk_write_space: callback to indicate there is bf sending space available
302 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303 * @sk_backlog_rcv: callback to process the backlog
304 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305 * @sk_reuseport_cb: reuseport group container
306 * @sk_rcu: used during RCU grace period
307 */
308 struct sock {
309 /*
310 * Now struct inet_timewait_sock also uses sock_common, so please just
311 * don't add nothing before this first member (__sk_common) --acme
312 */
313 struct sock_common __sk_common;
314 #define sk_node __sk_common.skc_node
315 #define sk_nulls_node __sk_common.skc_nulls_node
316 #define sk_refcnt __sk_common.skc_refcnt
317 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
318
319 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
321 #define sk_hash __sk_common.skc_hash
322 #define sk_portpair __sk_common.skc_portpair
323 #define sk_num __sk_common.skc_num
324 #define sk_dport __sk_common.skc_dport
325 #define sk_addrpair __sk_common.skc_addrpair
326 #define sk_daddr __sk_common.skc_daddr
327 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
328 #define sk_family __sk_common.skc_family
329 #define sk_state __sk_common.skc_state
330 #define sk_reuse __sk_common.skc_reuse
331 #define sk_reuseport __sk_common.skc_reuseport
332 #define sk_ipv6only __sk_common.skc_ipv6only
333 #define sk_net_refcnt __sk_common.skc_net_refcnt
334 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
335 #define sk_bind_node __sk_common.skc_bind_node
336 #define sk_prot __sk_common.skc_prot
337 #define sk_net __sk_common.skc_net
338 #define sk_v6_daddr __sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
340 #define sk_cookie __sk_common.skc_cookie
341 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
342 #define sk_flags __sk_common.skc_flags
343 #define sk_rxhash __sk_common.skc_rxhash
344
345 socket_lock_t sk_lock;
346 atomic_t sk_drops;
347 int sk_rcvlowat;
348 struct sk_buff_head sk_error_queue;
349 struct sk_buff_head sk_receive_queue;
350 /*
351 * The backlog queue is special, it is always used with
352 * the per-socket spinlock held and requires low latency
353 * access. Therefore we special case it's implementation.
354 * Note : rmem_alloc is in this structure to fill a hole
355 * on 64bit arches, not because its logically part of
356 * backlog.
357 */
358 struct {
359 atomic_t rmem_alloc;
360 int len;
361 struct sk_buff *head;
362 struct sk_buff *tail;
363 } sk_backlog;
364 #define sk_rmem_alloc sk_backlog.rmem_alloc
365
366 int sk_forward_alloc;
367 #ifdef CONFIG_NET_RX_BUSY_POLL
368 unsigned int sk_ll_usec;
369 /* ===== mostly read cache line ===== */
370 unsigned int sk_napi_id;
371 #endif
372 int sk_rcvbuf;
373
374 struct sk_filter __rcu *sk_filter;
375 union {
376 struct socket_wq __rcu *sk_wq;
377 struct socket_wq *sk_wq_raw;
378 };
379 #ifdef CONFIG_XFRM
380 struct xfrm_policy __rcu *sk_policy[2];
381 #endif
382 struct dst_entry *sk_rx_dst;
383 struct dst_entry __rcu *sk_dst_cache;
384 atomic_t sk_omem_alloc;
385 int sk_sndbuf;
386
387 /* ===== cache line for TX ===== */
388 int sk_wmem_queued;
389 atomic_t sk_wmem_alloc;
390 unsigned long sk_tsq_flags;
391 struct sk_buff *sk_send_head;
392 struct sk_buff_head sk_write_queue;
393 __s32 sk_peek_off;
394 int sk_write_pending;
395 long sk_sndtimeo;
396 struct timer_list sk_timer;
397 __u32 sk_priority;
398 __u32 sk_mark;
399 u32 sk_pacing_rate; /* bytes per second */
400 u32 sk_max_pacing_rate;
401 struct page_frag sk_frag;
402 netdev_features_t sk_route_caps;
403 netdev_features_t sk_route_nocaps;
404 int sk_gso_type;
405 unsigned int sk_gso_max_size;
406 gfp_t sk_allocation;
407 __u32 sk_txhash;
408
409 /*
410 * Because of non atomicity rules, all
411 * changes are protected by socket lock.
412 */
413 unsigned int __sk_flags_offset[0];
414 #ifdef __BIG_ENDIAN_BITFIELD
415 #define SK_FL_PROTO_SHIFT 16
416 #define SK_FL_PROTO_MASK 0x00ff0000
417
418 #define SK_FL_TYPE_SHIFT 0
419 #define SK_FL_TYPE_MASK 0x0000ffff
420 #else
421 #define SK_FL_PROTO_SHIFT 8
422 #define SK_FL_PROTO_MASK 0x0000ff00
423
424 #define SK_FL_TYPE_SHIFT 16
425 #define SK_FL_TYPE_MASK 0xffff0000
426 #endif
427
428 kmemcheck_bitfield_begin(flags);
429 unsigned int sk_padding : 2,
430 sk_no_check_tx : 1,
431 sk_no_check_rx : 1,
432 sk_userlocks : 4,
433 sk_protocol : 8,
434 sk_type : 16;
435 #define SK_PROTOCOL_MAX U8_MAX
436 kmemcheck_bitfield_end(flags);
437
438 u16 sk_gso_max_segs;
439 unsigned long sk_lingertime;
440 struct proto *sk_prot_creator;
441 rwlock_t sk_callback_lock;
442 int sk_err,
443 sk_err_soft;
444 u32 sk_ack_backlog;
445 u32 sk_max_ack_backlog;
446 kuid_t sk_uid;
447 struct pid *sk_peer_pid;
448 const struct cred *sk_peer_cred;
449 long sk_rcvtimeo;
450 ktime_t sk_stamp;
451 u16 sk_tsflags;
452 u8 sk_shutdown;
453 u32 sk_tskey;
454 struct socket *sk_socket;
455 void *sk_user_data;
456 #ifdef CONFIG_SECURITY
457 void *sk_security;
458 #endif
459 struct sock_cgroup_data sk_cgrp_data;
460 struct mem_cgroup *sk_memcg;
461 void (*sk_state_change)(struct sock *sk);
462 void (*sk_data_ready)(struct sock *sk);
463 void (*sk_write_space)(struct sock *sk);
464 void (*sk_error_report)(struct sock *sk);
465 int (*sk_backlog_rcv)(struct sock *sk,
466 struct sk_buff *skb);
467 void (*sk_destruct)(struct sock *sk);
468 struct sock_reuseport __rcu *sk_reuseport_cb;
469 struct rcu_head sk_rcu;
470 };
471
472 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
473
474 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
475 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
476
477 /*
478 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
479 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
480 * on a socket means that the socket will reuse everybody else's port
481 * without looking at the other's sk_reuse value.
482 */
483
484 #define SK_NO_REUSE 0
485 #define SK_CAN_REUSE 1
486 #define SK_FORCE_REUSE 2
487
488 int sk_set_peek_off(struct sock *sk, int val);
489
490 static inline int sk_peek_offset(struct sock *sk, int flags)
491 {
492 if (unlikely(flags & MSG_PEEK)) {
493 s32 off = READ_ONCE(sk->sk_peek_off);
494 if (off >= 0)
495 return off;
496 }
497
498 return 0;
499 }
500
501 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
502 {
503 s32 off = READ_ONCE(sk->sk_peek_off);
504
505 if (unlikely(off >= 0)) {
506 off = max_t(s32, off - val, 0);
507 WRITE_ONCE(sk->sk_peek_off, off);
508 }
509 }
510
511 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
512 {
513 sk_peek_offset_bwd(sk, -val);
514 }
515
516 /*
517 * Hashed lists helper routines
518 */
519 static inline struct sock *sk_entry(const struct hlist_node *node)
520 {
521 return hlist_entry(node, struct sock, sk_node);
522 }
523
524 static inline struct sock *__sk_head(const struct hlist_head *head)
525 {
526 return hlist_entry(head->first, struct sock, sk_node);
527 }
528
529 static inline struct sock *sk_head(const struct hlist_head *head)
530 {
531 return hlist_empty(head) ? NULL : __sk_head(head);
532 }
533
534 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
535 {
536 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
537 }
538
539 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
540 {
541 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
542 }
543
544 static inline struct sock *sk_next(const struct sock *sk)
545 {
546 return sk->sk_node.next ?
547 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
548 }
549
550 static inline struct sock *sk_nulls_next(const struct sock *sk)
551 {
552 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
553 hlist_nulls_entry(sk->sk_nulls_node.next,
554 struct sock, sk_nulls_node) :
555 NULL;
556 }
557
558 static inline bool sk_unhashed(const struct sock *sk)
559 {
560 return hlist_unhashed(&sk->sk_node);
561 }
562
563 static inline bool sk_hashed(const struct sock *sk)
564 {
565 return !sk_unhashed(sk);
566 }
567
568 static inline void sk_node_init(struct hlist_node *node)
569 {
570 node->pprev = NULL;
571 }
572
573 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
574 {
575 node->pprev = NULL;
576 }
577
578 static inline void __sk_del_node(struct sock *sk)
579 {
580 __hlist_del(&sk->sk_node);
581 }
582
583 /* NB: equivalent to hlist_del_init_rcu */
584 static inline bool __sk_del_node_init(struct sock *sk)
585 {
586 if (sk_hashed(sk)) {
587 __sk_del_node(sk);
588 sk_node_init(&sk->sk_node);
589 return true;
590 }
591 return false;
592 }
593
594 /* Grab socket reference count. This operation is valid only
595 when sk is ALREADY grabbed f.e. it is found in hash table
596 or a list and the lookup is made under lock preventing hash table
597 modifications.
598 */
599
600 static __always_inline void sock_hold(struct sock *sk)
601 {
602 atomic_inc(&sk->sk_refcnt);
603 }
604
605 /* Ungrab socket in the context, which assumes that socket refcnt
606 cannot hit zero, f.e. it is true in context of any socketcall.
607 */
608 static __always_inline void __sock_put(struct sock *sk)
609 {
610 atomic_dec(&sk->sk_refcnt);
611 }
612
613 static inline bool sk_del_node_init(struct sock *sk)
614 {
615 bool rc = __sk_del_node_init(sk);
616
617 if (rc) {
618 /* paranoid for a while -acme */
619 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
620 __sock_put(sk);
621 }
622 return rc;
623 }
624 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
625
626 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
627 {
628 if (sk_hashed(sk)) {
629 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
630 return true;
631 }
632 return false;
633 }
634
635 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
636 {
637 bool rc = __sk_nulls_del_node_init_rcu(sk);
638
639 if (rc) {
640 /* paranoid for a while -acme */
641 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
642 __sock_put(sk);
643 }
644 return rc;
645 }
646
647 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
648 {
649 hlist_add_head(&sk->sk_node, list);
650 }
651
652 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
653 {
654 sock_hold(sk);
655 __sk_add_node(sk, list);
656 }
657
658 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
659 {
660 sock_hold(sk);
661 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
662 sk->sk_family == AF_INET6)
663 hlist_add_tail_rcu(&sk->sk_node, list);
664 else
665 hlist_add_head_rcu(&sk->sk_node, list);
666 }
667
668 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
669 {
670 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
671 sk->sk_family == AF_INET6)
672 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
673 else
674 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
675 }
676
677 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
678 {
679 sock_hold(sk);
680 __sk_nulls_add_node_rcu(sk, list);
681 }
682
683 static inline void __sk_del_bind_node(struct sock *sk)
684 {
685 __hlist_del(&sk->sk_bind_node);
686 }
687
688 static inline void sk_add_bind_node(struct sock *sk,
689 struct hlist_head *list)
690 {
691 hlist_add_head(&sk->sk_bind_node, list);
692 }
693
694 #define sk_for_each(__sk, list) \
695 hlist_for_each_entry(__sk, list, sk_node)
696 #define sk_for_each_rcu(__sk, list) \
697 hlist_for_each_entry_rcu(__sk, list, sk_node)
698 #define sk_nulls_for_each(__sk, node, list) \
699 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
700 #define sk_nulls_for_each_rcu(__sk, node, list) \
701 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
702 #define sk_for_each_from(__sk) \
703 hlist_for_each_entry_from(__sk, sk_node)
704 #define sk_nulls_for_each_from(__sk, node) \
705 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
706 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
707 #define sk_for_each_safe(__sk, tmp, list) \
708 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
709 #define sk_for_each_bound(__sk, list) \
710 hlist_for_each_entry(__sk, list, sk_bind_node)
711
712 /**
713 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
714 * @tpos: the type * to use as a loop cursor.
715 * @pos: the &struct hlist_node to use as a loop cursor.
716 * @head: the head for your list.
717 * @offset: offset of hlist_node within the struct.
718 *
719 */
720 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
721 for (pos = rcu_dereference((head)->first); \
722 pos != NULL && \
723 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
724 pos = rcu_dereference(pos->next))
725
726 static inline struct user_namespace *sk_user_ns(struct sock *sk)
727 {
728 /* Careful only use this in a context where these parameters
729 * can not change and must all be valid, such as recvmsg from
730 * userspace.
731 */
732 return sk->sk_socket->file->f_cred->user_ns;
733 }
734
735 /* Sock flags */
736 enum sock_flags {
737 SOCK_DEAD,
738 SOCK_DONE,
739 SOCK_URGINLINE,
740 SOCK_KEEPOPEN,
741 SOCK_LINGER,
742 SOCK_DESTROY,
743 SOCK_BROADCAST,
744 SOCK_TIMESTAMP,
745 SOCK_ZAPPED,
746 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
747 SOCK_DBG, /* %SO_DEBUG setting */
748 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
749 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
750 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
751 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
752 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
753 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
754 SOCK_FASYNC, /* fasync() active */
755 SOCK_RXQ_OVFL,
756 SOCK_ZEROCOPY, /* buffers from userspace */
757 SOCK_WIFI_STATUS, /* push wifi status to userspace */
758 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
759 * Will use last 4 bytes of packet sent from
760 * user-space instead.
761 */
762 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
763 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
764 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
765 };
766
767 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
768
769 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
770 {
771 nsk->sk_flags = osk->sk_flags;
772 }
773
774 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
775 {
776 __set_bit(flag, &sk->sk_flags);
777 }
778
779 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
780 {
781 __clear_bit(flag, &sk->sk_flags);
782 }
783
784 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
785 {
786 return test_bit(flag, &sk->sk_flags);
787 }
788
789 #ifdef CONFIG_NET
790 extern struct static_key memalloc_socks;
791 static inline int sk_memalloc_socks(void)
792 {
793 return static_key_false(&memalloc_socks);
794 }
795 #else
796
797 static inline int sk_memalloc_socks(void)
798 {
799 return 0;
800 }
801
802 #endif
803
804 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
805 {
806 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
807 }
808
809 static inline void sk_acceptq_removed(struct sock *sk)
810 {
811 sk->sk_ack_backlog--;
812 }
813
814 static inline void sk_acceptq_added(struct sock *sk)
815 {
816 sk->sk_ack_backlog++;
817 }
818
819 static inline bool sk_acceptq_is_full(const struct sock *sk)
820 {
821 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
822 }
823
824 /*
825 * Compute minimal free write space needed to queue new packets.
826 */
827 static inline int sk_stream_min_wspace(const struct sock *sk)
828 {
829 return sk->sk_wmem_queued >> 1;
830 }
831
832 static inline int sk_stream_wspace(const struct sock *sk)
833 {
834 return sk->sk_sndbuf - sk->sk_wmem_queued;
835 }
836
837 void sk_stream_write_space(struct sock *sk);
838
839 /* OOB backlog add */
840 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
841 {
842 /* dont let skb dst not refcounted, we are going to leave rcu lock */
843 skb_dst_force_safe(skb);
844
845 if (!sk->sk_backlog.tail)
846 sk->sk_backlog.head = skb;
847 else
848 sk->sk_backlog.tail->next = skb;
849
850 sk->sk_backlog.tail = skb;
851 skb->next = NULL;
852 }
853
854 /*
855 * Take into account size of receive queue and backlog queue
856 * Do not take into account this skb truesize,
857 * to allow even a single big packet to come.
858 */
859 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
860 {
861 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
862
863 return qsize > limit;
864 }
865
866 /* The per-socket spinlock must be held here. */
867 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
868 unsigned int limit)
869 {
870 if (sk_rcvqueues_full(sk, limit))
871 return -ENOBUFS;
872
873 /*
874 * If the skb was allocated from pfmemalloc reserves, only
875 * allow SOCK_MEMALLOC sockets to use it as this socket is
876 * helping free memory
877 */
878 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
879 return -ENOMEM;
880
881 __sk_add_backlog(sk, skb);
882 sk->sk_backlog.len += skb->truesize;
883 return 0;
884 }
885
886 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
887
888 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
889 {
890 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
891 return __sk_backlog_rcv(sk, skb);
892
893 return sk->sk_backlog_rcv(sk, skb);
894 }
895
896 static inline void sk_incoming_cpu_update(struct sock *sk)
897 {
898 sk->sk_incoming_cpu = raw_smp_processor_id();
899 }
900
901 static inline void sock_rps_record_flow_hash(__u32 hash)
902 {
903 #ifdef CONFIG_RPS
904 struct rps_sock_flow_table *sock_flow_table;
905
906 rcu_read_lock();
907 sock_flow_table = rcu_dereference(rps_sock_flow_table);
908 rps_record_sock_flow(sock_flow_table, hash);
909 rcu_read_unlock();
910 #endif
911 }
912
913 static inline void sock_rps_record_flow(const struct sock *sk)
914 {
915 #ifdef CONFIG_RPS
916 if (static_key_false(&rfs_needed)) {
917 /* Reading sk->sk_rxhash might incur an expensive cache line
918 * miss.
919 *
920 * TCP_ESTABLISHED does cover almost all states where RFS
921 * might be useful, and is cheaper [1] than testing :
922 * IPv4: inet_sk(sk)->inet_daddr
923 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
924 * OR an additional socket flag
925 * [1] : sk_state and sk_prot are in the same cache line.
926 */
927 if (sk->sk_state == TCP_ESTABLISHED)
928 sock_rps_record_flow_hash(sk->sk_rxhash);
929 }
930 #endif
931 }
932
933 static inline void sock_rps_save_rxhash(struct sock *sk,
934 const struct sk_buff *skb)
935 {
936 #ifdef CONFIG_RPS
937 if (unlikely(sk->sk_rxhash != skb->hash))
938 sk->sk_rxhash = skb->hash;
939 #endif
940 }
941
942 static inline void sock_rps_reset_rxhash(struct sock *sk)
943 {
944 #ifdef CONFIG_RPS
945 sk->sk_rxhash = 0;
946 #endif
947 }
948
949 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
950 ({ int __rc; \
951 release_sock(__sk); \
952 __rc = __condition; \
953 if (!__rc) { \
954 *(__timeo) = wait_woken(__wait, \
955 TASK_INTERRUPTIBLE, \
956 *(__timeo)); \
957 } \
958 sched_annotate_sleep(); \
959 lock_sock(__sk); \
960 __rc = __condition; \
961 __rc; \
962 })
963
964 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
965 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
966 void sk_stream_wait_close(struct sock *sk, long timeo_p);
967 int sk_stream_error(struct sock *sk, int flags, int err);
968 void sk_stream_kill_queues(struct sock *sk);
969 void sk_set_memalloc(struct sock *sk);
970 void sk_clear_memalloc(struct sock *sk);
971
972 void __sk_flush_backlog(struct sock *sk);
973
974 static inline bool sk_flush_backlog(struct sock *sk)
975 {
976 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
977 __sk_flush_backlog(sk);
978 return true;
979 }
980 return false;
981 }
982
983 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
984
985 struct request_sock_ops;
986 struct timewait_sock_ops;
987 struct inet_hashinfo;
988 struct raw_hashinfo;
989 struct module;
990
991 /*
992 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
993 * un-modified. Special care is taken when initializing object to zero.
994 */
995 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
996 {
997 if (offsetof(struct sock, sk_node.next) != 0)
998 memset(sk, 0, offsetof(struct sock, sk_node.next));
999 memset(&sk->sk_node.pprev, 0,
1000 size - offsetof(struct sock, sk_node.pprev));
1001 }
1002
1003 /* Networking protocol blocks we attach to sockets.
1004 * socket layer -> transport layer interface
1005 */
1006 struct proto {
1007 void (*close)(struct sock *sk,
1008 long timeout);
1009 int (*connect)(struct sock *sk,
1010 struct sockaddr *uaddr,
1011 int addr_len);
1012 int (*disconnect)(struct sock *sk, int flags);
1013
1014 struct sock * (*accept)(struct sock *sk, int flags, int *err);
1015
1016 int (*ioctl)(struct sock *sk, int cmd,
1017 unsigned long arg);
1018 int (*init)(struct sock *sk);
1019 void (*destroy)(struct sock *sk);
1020 void (*shutdown)(struct sock *sk, int how);
1021 int (*setsockopt)(struct sock *sk, int level,
1022 int optname, char __user *optval,
1023 unsigned int optlen);
1024 int (*getsockopt)(struct sock *sk, int level,
1025 int optname, char __user *optval,
1026 int __user *option);
1027 #ifdef CONFIG_COMPAT
1028 int (*compat_setsockopt)(struct sock *sk,
1029 int level,
1030 int optname, char __user *optval,
1031 unsigned int optlen);
1032 int (*compat_getsockopt)(struct sock *sk,
1033 int level,
1034 int optname, char __user *optval,
1035 int __user *option);
1036 int (*compat_ioctl)(struct sock *sk,
1037 unsigned int cmd, unsigned long arg);
1038 #endif
1039 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1040 size_t len);
1041 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1042 size_t len, int noblock, int flags,
1043 int *addr_len);
1044 int (*sendpage)(struct sock *sk, struct page *page,
1045 int offset, size_t size, int flags);
1046 int (*bind)(struct sock *sk,
1047 struct sockaddr *uaddr, int addr_len);
1048
1049 int (*backlog_rcv) (struct sock *sk,
1050 struct sk_buff *skb);
1051
1052 void (*release_cb)(struct sock *sk);
1053
1054 /* Keeping track of sk's, looking them up, and port selection methods. */
1055 int (*hash)(struct sock *sk);
1056 void (*unhash)(struct sock *sk);
1057 void (*rehash)(struct sock *sk);
1058 int (*get_port)(struct sock *sk, unsigned short snum);
1059
1060 /* Keeping track of sockets in use */
1061 #ifdef CONFIG_PROC_FS
1062 unsigned int inuse_idx;
1063 #endif
1064
1065 bool (*stream_memory_free)(const struct sock *sk);
1066 /* Memory pressure */
1067 void (*enter_memory_pressure)(struct sock *sk);
1068 atomic_long_t *memory_allocated; /* Current allocated memory. */
1069 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1070 /*
1071 * Pressure flag: try to collapse.
1072 * Technical note: it is used by multiple contexts non atomically.
1073 * All the __sk_mem_schedule() is of this nature: accounting
1074 * is strict, actions are advisory and have some latency.
1075 */
1076 int *memory_pressure;
1077 long *sysctl_mem;
1078 int *sysctl_wmem;
1079 int *sysctl_rmem;
1080 int max_header;
1081 bool no_autobind;
1082
1083 struct kmem_cache *slab;
1084 unsigned int obj_size;
1085 int slab_flags;
1086
1087 struct percpu_counter *orphan_count;
1088
1089 struct request_sock_ops *rsk_prot;
1090 struct timewait_sock_ops *twsk_prot;
1091
1092 union {
1093 struct inet_hashinfo *hashinfo;
1094 struct udp_table *udp_table;
1095 struct raw_hashinfo *raw_hash;
1096 } h;
1097
1098 struct module *owner;
1099
1100 char name[32];
1101
1102 struct list_head node;
1103 #ifdef SOCK_REFCNT_DEBUG
1104 atomic_t socks;
1105 #endif
1106 int (*diag_destroy)(struct sock *sk, int err);
1107 };
1108
1109 int proto_register(struct proto *prot, int alloc_slab);
1110 void proto_unregister(struct proto *prot);
1111
1112 #ifdef SOCK_REFCNT_DEBUG
1113 static inline void sk_refcnt_debug_inc(struct sock *sk)
1114 {
1115 atomic_inc(&sk->sk_prot->socks);
1116 }
1117
1118 static inline void sk_refcnt_debug_dec(struct sock *sk)
1119 {
1120 atomic_dec(&sk->sk_prot->socks);
1121 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1122 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1123 }
1124
1125 static inline void sk_refcnt_debug_release(const struct sock *sk)
1126 {
1127 if (atomic_read(&sk->sk_refcnt) != 1)
1128 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1129 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1130 }
1131 #else /* SOCK_REFCNT_DEBUG */
1132 #define sk_refcnt_debug_inc(sk) do { } while (0)
1133 #define sk_refcnt_debug_dec(sk) do { } while (0)
1134 #define sk_refcnt_debug_release(sk) do { } while (0)
1135 #endif /* SOCK_REFCNT_DEBUG */
1136
1137 static inline bool sk_stream_memory_free(const struct sock *sk)
1138 {
1139 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1140 return false;
1141
1142 return sk->sk_prot->stream_memory_free ?
1143 sk->sk_prot->stream_memory_free(sk) : true;
1144 }
1145
1146 static inline bool sk_stream_is_writeable(const struct sock *sk)
1147 {
1148 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1149 sk_stream_memory_free(sk);
1150 }
1151
1152 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1153 struct cgroup *ancestor)
1154 {
1155 #ifdef CONFIG_SOCK_CGROUP_DATA
1156 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1157 ancestor);
1158 #else
1159 return -ENOTSUPP;
1160 #endif
1161 }
1162
1163 static inline bool sk_has_memory_pressure(const struct sock *sk)
1164 {
1165 return sk->sk_prot->memory_pressure != NULL;
1166 }
1167
1168 static inline bool sk_under_memory_pressure(const struct sock *sk)
1169 {
1170 if (!sk->sk_prot->memory_pressure)
1171 return false;
1172
1173 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1174 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1175 return true;
1176
1177 return !!*sk->sk_prot->memory_pressure;
1178 }
1179
1180 static inline void sk_leave_memory_pressure(struct sock *sk)
1181 {
1182 int *memory_pressure = sk->sk_prot->memory_pressure;
1183
1184 if (!memory_pressure)
1185 return;
1186
1187 if (*memory_pressure)
1188 *memory_pressure = 0;
1189 }
1190
1191 static inline void sk_enter_memory_pressure(struct sock *sk)
1192 {
1193 if (!sk->sk_prot->enter_memory_pressure)
1194 return;
1195
1196 sk->sk_prot->enter_memory_pressure(sk);
1197 }
1198
1199 static inline long
1200 sk_memory_allocated(const struct sock *sk)
1201 {
1202 return atomic_long_read(sk->sk_prot->memory_allocated);
1203 }
1204
1205 static inline long
1206 sk_memory_allocated_add(struct sock *sk, int amt)
1207 {
1208 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1209 }
1210
1211 static inline void
1212 sk_memory_allocated_sub(struct sock *sk, int amt)
1213 {
1214 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1215 }
1216
1217 static inline void sk_sockets_allocated_dec(struct sock *sk)
1218 {
1219 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1220 }
1221
1222 static inline void sk_sockets_allocated_inc(struct sock *sk)
1223 {
1224 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1225 }
1226
1227 static inline int
1228 sk_sockets_allocated_read_positive(struct sock *sk)
1229 {
1230 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1231 }
1232
1233 static inline int
1234 proto_sockets_allocated_sum_positive(struct proto *prot)
1235 {
1236 return percpu_counter_sum_positive(prot->sockets_allocated);
1237 }
1238
1239 static inline long
1240 proto_memory_allocated(struct proto *prot)
1241 {
1242 return atomic_long_read(prot->memory_allocated);
1243 }
1244
1245 static inline bool
1246 proto_memory_pressure(struct proto *prot)
1247 {
1248 if (!prot->memory_pressure)
1249 return false;
1250 return !!*prot->memory_pressure;
1251 }
1252
1253
1254 #ifdef CONFIG_PROC_FS
1255 /* Called with local bh disabled */
1256 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1257 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1258 #else
1259 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1260 int inc)
1261 {
1262 }
1263 #endif
1264
1265
1266 /* With per-bucket locks this operation is not-atomic, so that
1267 * this version is not worse.
1268 */
1269 static inline int __sk_prot_rehash(struct sock *sk)
1270 {
1271 sk->sk_prot->unhash(sk);
1272 return sk->sk_prot->hash(sk);
1273 }
1274
1275 /* About 10 seconds */
1276 #define SOCK_DESTROY_TIME (10*HZ)
1277
1278 /* Sockets 0-1023 can't be bound to unless you are superuser */
1279 #define PROT_SOCK 1024
1280
1281 #define SHUTDOWN_MASK 3
1282 #define RCV_SHUTDOWN 1
1283 #define SEND_SHUTDOWN 2
1284
1285 #define SOCK_SNDBUF_LOCK 1
1286 #define SOCK_RCVBUF_LOCK 2
1287 #define SOCK_BINDADDR_LOCK 4
1288 #define SOCK_BINDPORT_LOCK 8
1289
1290 struct socket_alloc {
1291 struct socket socket;
1292 struct inode vfs_inode;
1293 };
1294
1295 static inline struct socket *SOCKET_I(struct inode *inode)
1296 {
1297 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1298 }
1299
1300 static inline struct inode *SOCK_INODE(struct socket *socket)
1301 {
1302 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1303 }
1304
1305 /*
1306 * Functions for memory accounting
1307 */
1308 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1309 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1310 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1311 void __sk_mem_reclaim(struct sock *sk, int amount);
1312
1313 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1314 * do not necessarily have 16x time more memory than 4KB ones.
1315 */
1316 #define SK_MEM_QUANTUM 4096
1317 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1318 #define SK_MEM_SEND 0
1319 #define SK_MEM_RECV 1
1320
1321 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1322 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1323 {
1324 long val = sk->sk_prot->sysctl_mem[index];
1325
1326 #if PAGE_SIZE > SK_MEM_QUANTUM
1327 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1328 #elif PAGE_SIZE < SK_MEM_QUANTUM
1329 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1330 #endif
1331 return val;
1332 }
1333
1334 static inline int sk_mem_pages(int amt)
1335 {
1336 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1337 }
1338
1339 static inline bool sk_has_account(struct sock *sk)
1340 {
1341 /* return true if protocol supports memory accounting */
1342 return !!sk->sk_prot->memory_allocated;
1343 }
1344
1345 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1346 {
1347 if (!sk_has_account(sk))
1348 return true;
1349 return size <= sk->sk_forward_alloc ||
1350 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1351 }
1352
1353 static inline bool
1354 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1355 {
1356 if (!sk_has_account(sk))
1357 return true;
1358 return size<= sk->sk_forward_alloc ||
1359 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1360 skb_pfmemalloc(skb);
1361 }
1362
1363 static inline void sk_mem_reclaim(struct sock *sk)
1364 {
1365 if (!sk_has_account(sk))
1366 return;
1367 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1368 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1369 }
1370
1371 static inline void sk_mem_reclaim_partial(struct sock *sk)
1372 {
1373 if (!sk_has_account(sk))
1374 return;
1375 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1376 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1377 }
1378
1379 static inline void sk_mem_charge(struct sock *sk, int size)
1380 {
1381 if (!sk_has_account(sk))
1382 return;
1383 sk->sk_forward_alloc -= size;
1384 }
1385
1386 static inline void sk_mem_uncharge(struct sock *sk, int size)
1387 {
1388 if (!sk_has_account(sk))
1389 return;
1390 sk->sk_forward_alloc += size;
1391
1392 /* Avoid a possible overflow.
1393 * TCP send queues can make this happen, if sk_mem_reclaim()
1394 * is not called and more than 2 GBytes are released at once.
1395 *
1396 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1397 * no need to hold that much forward allocation anyway.
1398 */
1399 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1400 __sk_mem_reclaim(sk, 1 << 20);
1401 }
1402
1403 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1404 {
1405 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406 sk->sk_wmem_queued -= skb->truesize;
1407 sk_mem_uncharge(sk, skb->truesize);
1408 __kfree_skb(skb);
1409 }
1410
1411 static inline void sock_release_ownership(struct sock *sk)
1412 {
1413 if (sk->sk_lock.owned) {
1414 sk->sk_lock.owned = 0;
1415
1416 /* The sk_lock has mutex_unlock() semantics: */
1417 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1418 }
1419 }
1420
1421 /*
1422 * Macro so as to not evaluate some arguments when
1423 * lockdep is not enabled.
1424 *
1425 * Mark both the sk_lock and the sk_lock.slock as a
1426 * per-address-family lock class.
1427 */
1428 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1429 do { \
1430 sk->sk_lock.owned = 0; \
1431 init_waitqueue_head(&sk->sk_lock.wq); \
1432 spin_lock_init(&(sk)->sk_lock.slock); \
1433 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1434 sizeof((sk)->sk_lock)); \
1435 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1436 (skey), (sname)); \
1437 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1438 } while (0)
1439
1440 #ifdef CONFIG_LOCKDEP
1441 static inline bool lockdep_sock_is_held(const struct sock *csk)
1442 {
1443 struct sock *sk = (struct sock *)csk;
1444
1445 return lockdep_is_held(&sk->sk_lock) ||
1446 lockdep_is_held(&sk->sk_lock.slock);
1447 }
1448 #endif
1449
1450 void lock_sock_nested(struct sock *sk, int subclass);
1451
1452 static inline void lock_sock(struct sock *sk)
1453 {
1454 lock_sock_nested(sk, 0);
1455 }
1456
1457 void release_sock(struct sock *sk);
1458
1459 /* BH context may only use the following locking interface. */
1460 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1461 #define bh_lock_sock_nested(__sk) \
1462 spin_lock_nested(&((__sk)->sk_lock.slock), \
1463 SINGLE_DEPTH_NESTING)
1464 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1465
1466 bool lock_sock_fast(struct sock *sk);
1467 /**
1468 * unlock_sock_fast - complement of lock_sock_fast
1469 * @sk: socket
1470 * @slow: slow mode
1471 *
1472 * fast unlock socket for user context.
1473 * If slow mode is on, we call regular release_sock()
1474 */
1475 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1476 {
1477 if (slow)
1478 release_sock(sk);
1479 else
1480 spin_unlock_bh(&sk->sk_lock.slock);
1481 }
1482
1483 /* Used by processes to "lock" a socket state, so that
1484 * interrupts and bottom half handlers won't change it
1485 * from under us. It essentially blocks any incoming
1486 * packets, so that we won't get any new data or any
1487 * packets that change the state of the socket.
1488 *
1489 * While locked, BH processing will add new packets to
1490 * the backlog queue. This queue is processed by the
1491 * owner of the socket lock right before it is released.
1492 *
1493 * Since ~2.3.5 it is also exclusive sleep lock serializing
1494 * accesses from user process context.
1495 */
1496
1497 static inline void sock_owned_by_me(const struct sock *sk)
1498 {
1499 #ifdef CONFIG_LOCKDEP
1500 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1501 #endif
1502 }
1503
1504 static inline bool sock_owned_by_user(const struct sock *sk)
1505 {
1506 sock_owned_by_me(sk);
1507 return sk->sk_lock.owned;
1508 }
1509
1510 /* no reclassification while locks are held */
1511 static inline bool sock_allow_reclassification(const struct sock *csk)
1512 {
1513 struct sock *sk = (struct sock *)csk;
1514
1515 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1516 }
1517
1518 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1519 struct proto *prot, int kern);
1520 void sk_free(struct sock *sk);
1521 void sk_destruct(struct sock *sk);
1522 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1523
1524 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1525 gfp_t priority);
1526 void __sock_wfree(struct sk_buff *skb);
1527 void sock_wfree(struct sk_buff *skb);
1528 void skb_orphan_partial(struct sk_buff *skb);
1529 void sock_rfree(struct sk_buff *skb);
1530 void sock_efree(struct sk_buff *skb);
1531 #ifdef CONFIG_INET
1532 void sock_edemux(struct sk_buff *skb);
1533 #else
1534 #define sock_edemux(skb) sock_efree(skb)
1535 #endif
1536
1537 int sock_setsockopt(struct socket *sock, int level, int op,
1538 char __user *optval, unsigned int optlen);
1539
1540 int sock_getsockopt(struct socket *sock, int level, int op,
1541 char __user *optval, int __user *optlen);
1542 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1543 int noblock, int *errcode);
1544 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1545 unsigned long data_len, int noblock,
1546 int *errcode, int max_page_order);
1547 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1548 void sock_kfree_s(struct sock *sk, void *mem, int size);
1549 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1550 void sk_send_sigurg(struct sock *sk);
1551
1552 struct sockcm_cookie {
1553 u32 mark;
1554 u16 tsflags;
1555 };
1556
1557 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1558 struct sockcm_cookie *sockc);
1559 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1560 struct sockcm_cookie *sockc);
1561
1562 /*
1563 * Functions to fill in entries in struct proto_ops when a protocol
1564 * does not implement a particular function.
1565 */
1566 int sock_no_bind(struct socket *, struct sockaddr *, int);
1567 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1568 int sock_no_socketpair(struct socket *, struct socket *);
1569 int sock_no_accept(struct socket *, struct socket *, int);
1570 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1571 unsigned int sock_no_poll(struct file *, struct socket *,
1572 struct poll_table_struct *);
1573 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1574 int sock_no_listen(struct socket *, int);
1575 int sock_no_shutdown(struct socket *, int);
1576 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1577 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1578 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1579 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1580 int sock_no_mmap(struct file *file, struct socket *sock,
1581 struct vm_area_struct *vma);
1582 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1583 size_t size, int flags);
1584
1585 /*
1586 * Functions to fill in entries in struct proto_ops when a protocol
1587 * uses the inet style.
1588 */
1589 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1590 char __user *optval, int __user *optlen);
1591 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1592 int flags);
1593 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1594 char __user *optval, unsigned int optlen);
1595 int compat_sock_common_getsockopt(struct socket *sock, int level,
1596 int optname, char __user *optval, int __user *optlen);
1597 int compat_sock_common_setsockopt(struct socket *sock, int level,
1598 int optname, char __user *optval, unsigned int optlen);
1599
1600 void sk_common_release(struct sock *sk);
1601
1602 /*
1603 * Default socket callbacks and setup code
1604 */
1605
1606 /* Initialise core socket variables */
1607 void sock_init_data(struct socket *sock, struct sock *sk);
1608
1609 /*
1610 * Socket reference counting postulates.
1611 *
1612 * * Each user of socket SHOULD hold a reference count.
1613 * * Each access point to socket (an hash table bucket, reference from a list,
1614 * running timer, skb in flight MUST hold a reference count.
1615 * * When reference count hits 0, it means it will never increase back.
1616 * * When reference count hits 0, it means that no references from
1617 * outside exist to this socket and current process on current CPU
1618 * is last user and may/should destroy this socket.
1619 * * sk_free is called from any context: process, BH, IRQ. When
1620 * it is called, socket has no references from outside -> sk_free
1621 * may release descendant resources allocated by the socket, but
1622 * to the time when it is called, socket is NOT referenced by any
1623 * hash tables, lists etc.
1624 * * Packets, delivered from outside (from network or from another process)
1625 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1626 * when they sit in queue. Otherwise, packets will leak to hole, when
1627 * socket is looked up by one cpu and unhasing is made by another CPU.
1628 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1629 * (leak to backlog). Packet socket does all the processing inside
1630 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1631 * use separate SMP lock, so that they are prone too.
1632 */
1633
1634 /* Ungrab socket and destroy it, if it was the last reference. */
1635 static inline void sock_put(struct sock *sk)
1636 {
1637 if (atomic_dec_and_test(&sk->sk_refcnt))
1638 sk_free(sk);
1639 }
1640 /* Generic version of sock_put(), dealing with all sockets
1641 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1642 */
1643 void sock_gen_put(struct sock *sk);
1644
1645 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1646 unsigned int trim_cap, bool refcounted);
1647 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1648 const int nested)
1649 {
1650 return __sk_receive_skb(sk, skb, nested, 1, true);
1651 }
1652
1653 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1654 {
1655 sk->sk_tx_queue_mapping = tx_queue;
1656 }
1657
1658 static inline void sk_tx_queue_clear(struct sock *sk)
1659 {
1660 sk->sk_tx_queue_mapping = -1;
1661 }
1662
1663 static inline int sk_tx_queue_get(const struct sock *sk)
1664 {
1665 return sk ? sk->sk_tx_queue_mapping : -1;
1666 }
1667
1668 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1669 {
1670 sk_tx_queue_clear(sk);
1671 sk->sk_socket = sock;
1672 }
1673
1674 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1675 {
1676 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1677 return &rcu_dereference_raw(sk->sk_wq)->wait;
1678 }
1679 /* Detach socket from process context.
1680 * Announce socket dead, detach it from wait queue and inode.
1681 * Note that parent inode held reference count on this struct sock,
1682 * we do not release it in this function, because protocol
1683 * probably wants some additional cleanups or even continuing
1684 * to work with this socket (TCP).
1685 */
1686 static inline void sock_orphan(struct sock *sk)
1687 {
1688 write_lock_bh(&sk->sk_callback_lock);
1689 sock_set_flag(sk, SOCK_DEAD);
1690 sk_set_socket(sk, NULL);
1691 sk->sk_wq = NULL;
1692 write_unlock_bh(&sk->sk_callback_lock);
1693 }
1694
1695 static inline void sock_graft(struct sock *sk, struct socket *parent)
1696 {
1697 write_lock_bh(&sk->sk_callback_lock);
1698 sk->sk_wq = parent->wq;
1699 parent->sk = sk;
1700 sk_set_socket(sk, parent);
1701 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1702 security_sock_graft(sk, parent);
1703 write_unlock_bh(&sk->sk_callback_lock);
1704 }
1705
1706 kuid_t sock_i_uid(struct sock *sk);
1707 unsigned long sock_i_ino(struct sock *sk);
1708
1709 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1710 {
1711 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1712 }
1713
1714 static inline u32 net_tx_rndhash(void)
1715 {
1716 u32 v = prandom_u32();
1717
1718 return v ?: 1;
1719 }
1720
1721 static inline void sk_set_txhash(struct sock *sk)
1722 {
1723 sk->sk_txhash = net_tx_rndhash();
1724 }
1725
1726 static inline void sk_rethink_txhash(struct sock *sk)
1727 {
1728 if (sk->sk_txhash)
1729 sk_set_txhash(sk);
1730 }
1731
1732 static inline struct dst_entry *
1733 __sk_dst_get(struct sock *sk)
1734 {
1735 return rcu_dereference_check(sk->sk_dst_cache,
1736 lockdep_sock_is_held(sk));
1737 }
1738
1739 static inline struct dst_entry *
1740 sk_dst_get(struct sock *sk)
1741 {
1742 struct dst_entry *dst;
1743
1744 rcu_read_lock();
1745 dst = rcu_dereference(sk->sk_dst_cache);
1746 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1747 dst = NULL;
1748 rcu_read_unlock();
1749 return dst;
1750 }
1751
1752 static inline void dst_negative_advice(struct sock *sk)
1753 {
1754 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1755
1756 sk_rethink_txhash(sk);
1757
1758 if (dst && dst->ops->negative_advice) {
1759 ndst = dst->ops->negative_advice(dst);
1760
1761 if (ndst != dst) {
1762 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1763 sk_tx_queue_clear(sk);
1764 }
1765 }
1766 }
1767
1768 static inline void
1769 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1770 {
1771 struct dst_entry *old_dst;
1772
1773 sk_tx_queue_clear(sk);
1774 /*
1775 * This can be called while sk is owned by the caller only,
1776 * with no state that can be checked in a rcu_dereference_check() cond
1777 */
1778 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1779 rcu_assign_pointer(sk->sk_dst_cache, dst);
1780 dst_release(old_dst);
1781 }
1782
1783 static inline void
1784 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1785 {
1786 struct dst_entry *old_dst;
1787
1788 sk_tx_queue_clear(sk);
1789 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1790 dst_release(old_dst);
1791 }
1792
1793 static inline void
1794 __sk_dst_reset(struct sock *sk)
1795 {
1796 __sk_dst_set(sk, NULL);
1797 }
1798
1799 static inline void
1800 sk_dst_reset(struct sock *sk)
1801 {
1802 sk_dst_set(sk, NULL);
1803 }
1804
1805 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1806
1807 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1808
1809 bool sk_mc_loop(struct sock *sk);
1810
1811 static inline bool sk_can_gso(const struct sock *sk)
1812 {
1813 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1814 }
1815
1816 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1817
1818 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1819 {
1820 sk->sk_route_nocaps |= flags;
1821 sk->sk_route_caps &= ~flags;
1822 }
1823
1824 static inline bool sk_check_csum_caps(struct sock *sk)
1825 {
1826 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1827 (sk->sk_family == PF_INET &&
1828 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1829 (sk->sk_family == PF_INET6 &&
1830 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1831 }
1832
1833 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1834 struct iov_iter *from, char *to,
1835 int copy, int offset)
1836 {
1837 if (skb->ip_summed == CHECKSUM_NONE) {
1838 __wsum csum = 0;
1839 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1840 return -EFAULT;
1841 skb->csum = csum_block_add(skb->csum, csum, offset);
1842 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1843 if (!copy_from_iter_full_nocache(to, copy, from))
1844 return -EFAULT;
1845 } else if (!copy_from_iter_full(to, copy, from))
1846 return -EFAULT;
1847
1848 return 0;
1849 }
1850
1851 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1852 struct iov_iter *from, int copy)
1853 {
1854 int err, offset = skb->len;
1855
1856 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1857 copy, offset);
1858 if (err)
1859 __skb_trim(skb, offset);
1860
1861 return err;
1862 }
1863
1864 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1865 struct sk_buff *skb,
1866 struct page *page,
1867 int off, int copy)
1868 {
1869 int err;
1870
1871 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1872 copy, skb->len);
1873 if (err)
1874 return err;
1875
1876 skb->len += copy;
1877 skb->data_len += copy;
1878 skb->truesize += copy;
1879 sk->sk_wmem_queued += copy;
1880 sk_mem_charge(sk, copy);
1881 return 0;
1882 }
1883
1884 /**
1885 * sk_wmem_alloc_get - returns write allocations
1886 * @sk: socket
1887 *
1888 * Returns sk_wmem_alloc minus initial offset of one
1889 */
1890 static inline int sk_wmem_alloc_get(const struct sock *sk)
1891 {
1892 return atomic_read(&sk->sk_wmem_alloc) - 1;
1893 }
1894
1895 /**
1896 * sk_rmem_alloc_get - returns read allocations
1897 * @sk: socket
1898 *
1899 * Returns sk_rmem_alloc
1900 */
1901 static inline int sk_rmem_alloc_get(const struct sock *sk)
1902 {
1903 return atomic_read(&sk->sk_rmem_alloc);
1904 }
1905
1906 /**
1907 * sk_has_allocations - check if allocations are outstanding
1908 * @sk: socket
1909 *
1910 * Returns true if socket has write or read allocations
1911 */
1912 static inline bool sk_has_allocations(const struct sock *sk)
1913 {
1914 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915 }
1916
1917 /**
1918 * skwq_has_sleeper - check if there are any waiting processes
1919 * @wq: struct socket_wq
1920 *
1921 * Returns true if socket_wq has waiting processes
1922 *
1923 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1924 * barrier call. They were added due to the race found within the tcp code.
1925 *
1926 * Consider following tcp code paths:
1927 *
1928 * CPU1 CPU2
1929 *
1930 * sys_select receive packet
1931 * ... ...
1932 * __add_wait_queue update tp->rcv_nxt
1933 * ... ...
1934 * tp->rcv_nxt check sock_def_readable
1935 * ... {
1936 * schedule rcu_read_lock();
1937 * wq = rcu_dereference(sk->sk_wq);
1938 * if (wq && waitqueue_active(&wq->wait))
1939 * wake_up_interruptible(&wq->wait)
1940 * ...
1941 * }
1942 *
1943 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1944 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1945 * could then endup calling schedule and sleep forever if there are no more
1946 * data on the socket.
1947 *
1948 */
1949 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1950 {
1951 return wq && wq_has_sleeper(&wq->wait);
1952 }
1953
1954 /**
1955 * sock_poll_wait - place memory barrier behind the poll_wait call.
1956 * @filp: file
1957 * @wait_address: socket wait queue
1958 * @p: poll_table
1959 *
1960 * See the comments in the wq_has_sleeper function.
1961 */
1962 static inline void sock_poll_wait(struct file *filp,
1963 wait_queue_head_t *wait_address, poll_table *p)
1964 {
1965 if (!poll_does_not_wait(p) && wait_address) {
1966 poll_wait(filp, wait_address, p);
1967 /* We need to be sure we are in sync with the
1968 * socket flags modification.
1969 *
1970 * This memory barrier is paired in the wq_has_sleeper.
1971 */
1972 smp_mb();
1973 }
1974 }
1975
1976 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1977 {
1978 if (sk->sk_txhash) {
1979 skb->l4_hash = 1;
1980 skb->hash = sk->sk_txhash;
1981 }
1982 }
1983
1984 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1985
1986 /*
1987 * Queue a received datagram if it will fit. Stream and sequenced
1988 * protocols can't normally use this as they need to fit buffers in
1989 * and play with them.
1990 *
1991 * Inlined as it's very short and called for pretty much every
1992 * packet ever received.
1993 */
1994 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1995 {
1996 skb_orphan(skb);
1997 skb->sk = sk;
1998 skb->destructor = sock_rfree;
1999 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2000 sk_mem_charge(sk, skb->truesize);
2001 }
2002
2003 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2004 unsigned long expires);
2005
2006 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2007
2008 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2009 unsigned int flags);
2010 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2011 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2012
2013 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2014 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2015
2016 /*
2017 * Recover an error report and clear atomically
2018 */
2019
2020 static inline int sock_error(struct sock *sk)
2021 {
2022 int err;
2023 if (likely(!sk->sk_err))
2024 return 0;
2025 err = xchg(&sk->sk_err, 0);
2026 return -err;
2027 }
2028
2029 static inline unsigned long sock_wspace(struct sock *sk)
2030 {
2031 int amt = 0;
2032
2033 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2034 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2035 if (amt < 0)
2036 amt = 0;
2037 }
2038 return amt;
2039 }
2040
2041 /* Note:
2042 * We use sk->sk_wq_raw, from contexts knowing this
2043 * pointer is not NULL and cannot disappear/change.
2044 */
2045 static inline void sk_set_bit(int nr, struct sock *sk)
2046 {
2047 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2048 !sock_flag(sk, SOCK_FASYNC))
2049 return;
2050
2051 set_bit(nr, &sk->sk_wq_raw->flags);
2052 }
2053
2054 static inline void sk_clear_bit(int nr, struct sock *sk)
2055 {
2056 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2057 !sock_flag(sk, SOCK_FASYNC))
2058 return;
2059
2060 clear_bit(nr, &sk->sk_wq_raw->flags);
2061 }
2062
2063 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2064 {
2065 if (sock_flag(sk, SOCK_FASYNC)) {
2066 rcu_read_lock();
2067 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2068 rcu_read_unlock();
2069 }
2070 }
2071
2072 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2073 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2074 * Note: for send buffers, TCP works better if we can build two skbs at
2075 * minimum.
2076 */
2077 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2078
2079 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2080 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2081
2082 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2083 {
2084 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2085 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2086 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2087 }
2088 }
2089
2090 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2091 bool force_schedule);
2092
2093 /**
2094 * sk_page_frag - return an appropriate page_frag
2095 * @sk: socket
2096 *
2097 * If socket allocation mode allows current thread to sleep, it means its
2098 * safe to use the per task page_frag instead of the per socket one.
2099 */
2100 static inline struct page_frag *sk_page_frag(struct sock *sk)
2101 {
2102 if (gfpflags_allow_blocking(sk->sk_allocation))
2103 return &current->task_frag;
2104
2105 return &sk->sk_frag;
2106 }
2107
2108 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2109
2110 /*
2111 * Default write policy as shown to user space via poll/select/SIGIO
2112 */
2113 static inline bool sock_writeable(const struct sock *sk)
2114 {
2115 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2116 }
2117
2118 static inline gfp_t gfp_any(void)
2119 {
2120 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2121 }
2122
2123 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2124 {
2125 return noblock ? 0 : sk->sk_rcvtimeo;
2126 }
2127
2128 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2129 {
2130 return noblock ? 0 : sk->sk_sndtimeo;
2131 }
2132
2133 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2134 {
2135 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2136 }
2137
2138 /* Alas, with timeout socket operations are not restartable.
2139 * Compare this to poll().
2140 */
2141 static inline int sock_intr_errno(long timeo)
2142 {
2143 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2144 }
2145
2146 struct sock_skb_cb {
2147 u32 dropcount;
2148 };
2149
2150 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2151 * using skb->cb[] would keep using it directly and utilize its
2152 * alignement guarantee.
2153 */
2154 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2155 sizeof(struct sock_skb_cb)))
2156
2157 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2158 SOCK_SKB_CB_OFFSET))
2159
2160 #define sock_skb_cb_check_size(size) \
2161 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2162
2163 static inline void
2164 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2165 {
2166 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2167 atomic_read(&sk->sk_drops) : 0;
2168 }
2169
2170 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2171 {
2172 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2173
2174 atomic_add(segs, &sk->sk_drops);
2175 }
2176
2177 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2178 struct sk_buff *skb);
2179 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2180 struct sk_buff *skb);
2181
2182 static inline void
2183 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2184 {
2185 ktime_t kt = skb->tstamp;
2186 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2187
2188 /*
2189 * generate control messages if
2190 * - receive time stamping in software requested
2191 * - software time stamp available and wanted
2192 * - hardware time stamps available and wanted
2193 */
2194 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2195 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2196 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2197 (hwtstamps->hwtstamp &&
2198 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2199 __sock_recv_timestamp(msg, sk, skb);
2200 else
2201 sk->sk_stamp = kt;
2202
2203 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2204 __sock_recv_wifi_status(msg, sk, skb);
2205 }
2206
2207 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2208 struct sk_buff *skb);
2209
2210 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2211 struct sk_buff *skb)
2212 {
2213 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2214 (1UL << SOCK_RCVTSTAMP))
2215 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2216 SOF_TIMESTAMPING_RAW_HARDWARE)
2217
2218 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2219 __sock_recv_ts_and_drops(msg, sk, skb);
2220 else
2221 sk->sk_stamp = skb->tstamp;
2222 }
2223
2224 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2225
2226 /**
2227 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2228 * @sk: socket sending this packet
2229 * @tsflags: timestamping flags to use
2230 * @tx_flags: completed with instructions for time stamping
2231 *
2232 * Note : callers should take care of initial *tx_flags value (usually 0)
2233 */
2234 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2235 __u8 *tx_flags)
2236 {
2237 if (unlikely(tsflags))
2238 __sock_tx_timestamp(tsflags, tx_flags);
2239 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2240 *tx_flags |= SKBTX_WIFI_STATUS;
2241 }
2242
2243 /**
2244 * sk_eat_skb - Release a skb if it is no longer needed
2245 * @sk: socket to eat this skb from
2246 * @skb: socket buffer to eat
2247 *
2248 * This routine must be called with interrupts disabled or with the socket
2249 * locked so that the sk_buff queue operation is ok.
2250 */
2251 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2252 {
2253 __skb_unlink(skb, &sk->sk_receive_queue);
2254 __kfree_skb(skb);
2255 }
2256
2257 static inline
2258 struct net *sock_net(const struct sock *sk)
2259 {
2260 return read_pnet(&sk->sk_net);
2261 }
2262
2263 static inline
2264 void sock_net_set(struct sock *sk, struct net *net)
2265 {
2266 write_pnet(&sk->sk_net, net);
2267 }
2268
2269 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2270 {
2271 if (skb->sk) {
2272 struct sock *sk = skb->sk;
2273
2274 skb->destructor = NULL;
2275 skb->sk = NULL;
2276 return sk;
2277 }
2278 return NULL;
2279 }
2280
2281 /* This helper checks if a socket is a full socket,
2282 * ie _not_ a timewait or request socket.
2283 */
2284 static inline bool sk_fullsock(const struct sock *sk)
2285 {
2286 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2287 }
2288
2289 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2290 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2291 */
2292 static inline bool sk_listener(const struct sock *sk)
2293 {
2294 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2295 }
2296
2297 /**
2298 * sk_state_load - read sk->sk_state for lockless contexts
2299 * @sk: socket pointer
2300 *
2301 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2302 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2303 */
2304 static inline int sk_state_load(const struct sock *sk)
2305 {
2306 return smp_load_acquire(&sk->sk_state);
2307 }
2308
2309 /**
2310 * sk_state_store - update sk->sk_state
2311 * @sk: socket pointer
2312 * @newstate: new state
2313 *
2314 * Paired with sk_state_load(). Should be used in contexts where
2315 * state change might impact lockless readers.
2316 */
2317 static inline void sk_state_store(struct sock *sk, int newstate)
2318 {
2319 smp_store_release(&sk->sk_state, newstate);
2320 }
2321
2322 void sock_enable_timestamp(struct sock *sk, int flag);
2323 int sock_get_timestamp(struct sock *, struct timeval __user *);
2324 int sock_get_timestampns(struct sock *, struct timespec __user *);
2325 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2326 int type);
2327
2328 bool sk_ns_capable(const struct sock *sk,
2329 struct user_namespace *user_ns, int cap);
2330 bool sk_capable(const struct sock *sk, int cap);
2331 bool sk_net_capable(const struct sock *sk, int cap);
2332
2333 extern __u32 sysctl_wmem_max;
2334 extern __u32 sysctl_rmem_max;
2335
2336 extern int sysctl_tstamp_allow_data;
2337 extern int sysctl_optmem_max;
2338
2339 extern __u32 sysctl_wmem_default;
2340 extern __u32 sysctl_rmem_default;
2341
2342 #endif /* _SOCK_H */