1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the AF_INET socket handler.
9 * Version: @(#)sock.h 1.0.4 05/13/93
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map
;
102 typedef __u32 __bitwise __portpair
;
103 typedef __u64 __bitwise __addrpair
;
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
152 __addrpair skc_addrpair
;
155 __be32 skc_rcv_saddr
;
159 unsigned int skc_hash
;
160 __u16 skc_u16hashes
[2];
162 /* skc_dport && skc_num must be grouped as well */
164 __portpair skc_portpair
;
171 unsigned short skc_family
;
172 volatile unsigned char skc_state
;
173 unsigned char skc_reuse
:4;
174 unsigned char skc_reuseport
:1;
175 unsigned char skc_ipv6only
:1;
176 unsigned char skc_net_refcnt
:1;
177 int skc_bound_dev_if
;
179 struct hlist_node skc_bind_node
;
180 struct hlist_node skc_portaddr_node
;
182 struct proto
*skc_prot
;
183 possible_net_t skc_net
;
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr
;
187 struct in6_addr skc_v6_rcv_saddr
;
190 atomic64_t skc_cookie
;
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
198 unsigned long skc_flags
;
199 struct sock
*skc_listener
; /* request_sock */
200 struct inet_timewait_death_row
*skc_tw_dr
; /* inet_timewait_sock */
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
207 int skc_dontcopy_begin
[0];
210 struct hlist_node skc_node
;
211 struct hlist_nulls_node skc_nulls_node
;
213 unsigned short skc_tx_queue_mapping
;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping
;
218 int skc_incoming_cpu
;
220 u32 skc_tw_rcv_nxt
; /* struct tcp_timewait_sock */
223 refcount_t skc_refcnt
;
225 int skc_dontcopy_end
[0];
228 u32 skc_window_clamp
;
229 u32 skc_tw_snd_nxt
; /* struct tcp_timewait_sock */
234 struct bpf_local_storage
;
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_bpf_cb_flags: used in bpf_setsockopt()
307 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
308 * Sockets that can be used under memory reclaim should
310 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
312 * @sk_tskey: counter to disambiguate concurrent tstamp requests
313 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
314 * @sk_socket: Identd and reporting IO signals
315 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
316 * @sk_frag: cached page frag
317 * @sk_peek_off: current peek_offset value
318 * @sk_send_head: front of stuff to transmit
319 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
320 * @sk_security: used by security modules
321 * @sk_mark: generic packet mark
322 * @sk_cgrp_data: cgroup data for this cgroup
323 * @sk_memcg: this socket's memory cgroup association
324 * @sk_write_pending: a write to stream socket waits to start
325 * @sk_disconnects: number of disconnect operations performed on this sock
326 * @sk_state_change: callback to indicate change in the state of the sock
327 * @sk_data_ready: callback to indicate there is data to be processed
328 * @sk_write_space: callback to indicate there is bf sending space available
329 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
330 * @sk_backlog_rcv: callback to process the backlog
331 * @sk_validate_xmit_skb: ptr to an optional validate function
332 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
333 * @sk_reuseport_cb: reuseport group container
334 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
335 * @sk_rcu: used during RCU grace period
336 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
337 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
338 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
339 * @sk_txtime_unused: unused txtime flags
340 * @sk_scm_recv_flags: all flags used by scm_recv()
341 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
342 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
343 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
344 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
345 * @sk_scm_unused: unused flags for scm_recv()
346 * @ns_tracker: tracker for netns reference
347 * @sk_user_frags: xarray of pages the user is holding a reference on.
348 * @sk_owner: reference to the real owner of the socket that calls
349 * sock_lock_init_class_and_name().
353 * Now struct inet_timewait_sock also uses sock_common, so please just
354 * don't add nothing before this first member (__sk_common) --acme
356 struct sock_common __sk_common
;
357 #define sk_node __sk_common.skc_node
358 #define sk_nulls_node __sk_common.skc_nulls_node
359 #define sk_refcnt __sk_common.skc_refcnt
360 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
361 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
362 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
365 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
366 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
367 #define sk_hash __sk_common.skc_hash
368 #define sk_portpair __sk_common.skc_portpair
369 #define sk_num __sk_common.skc_num
370 #define sk_dport __sk_common.skc_dport
371 #define sk_addrpair __sk_common.skc_addrpair
372 #define sk_daddr __sk_common.skc_daddr
373 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
374 #define sk_family __sk_common.skc_family
375 #define sk_state __sk_common.skc_state
376 #define sk_reuse __sk_common.skc_reuse
377 #define sk_reuseport __sk_common.skc_reuseport
378 #define sk_ipv6only __sk_common.skc_ipv6only
379 #define sk_net_refcnt __sk_common.skc_net_refcnt
380 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
381 #define sk_bind_node __sk_common.skc_bind_node
382 #define sk_prot __sk_common.skc_prot
383 #define sk_net __sk_common.skc_net
384 #define sk_v6_daddr __sk_common.skc_v6_daddr
385 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
386 #define sk_cookie __sk_common.skc_cookie
387 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
388 #define sk_flags __sk_common.skc_flags
389 #define sk_rxhash __sk_common.skc_rxhash
391 __cacheline_group_begin(sock_write_rx
);
395 struct sk_buff_head sk_error_queue
;
396 struct sk_buff_head sk_receive_queue
;
398 * The backlog queue is special, it is always used with
399 * the per-socket spinlock held and requires low latency
400 * access. Therefore we special case it's implementation.
401 * Note : rmem_alloc is in this structure to fill a hole
402 * on 64bit arches, not because its logically part of
408 struct sk_buff
*head
;
409 struct sk_buff
*tail
;
411 #define sk_rmem_alloc sk_backlog.rmem_alloc
413 __cacheline_group_end(sock_write_rx
);
415 __cacheline_group_begin(sock_read_rx
);
416 /* early demux fields */
417 struct dst_entry __rcu
*sk_rx_dst
;
418 int sk_rx_dst_ifindex
;
419 u32 sk_rx_dst_cookie
;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 unsigned int sk_ll_usec
;
423 unsigned int sk_napi_id
;
424 u16 sk_busy_poll_budget
;
425 u8 sk_prefer_busy_poll
;
430 struct sk_filter __rcu
*sk_filter
;
432 struct socket_wq __rcu
*sk_wq
;
434 struct socket_wq
*sk_wq_raw
;
438 void (*sk_data_ready
)(struct sock
*sk
);
441 __cacheline_group_end(sock_read_rx
);
443 __cacheline_group_begin(sock_read_rxtx
);
445 struct socket
*sk_socket
;
446 struct mem_cgroup
*sk_memcg
;
448 struct xfrm_policy __rcu
*sk_policy
[2];
450 __cacheline_group_end(sock_read_rxtx
);
452 __cacheline_group_begin(sock_write_rxtx
);
453 socket_lock_t sk_lock
;
455 int sk_forward_alloc
;
457 __cacheline_group_end(sock_write_rxtx
);
459 __cacheline_group_begin(sock_write_tx
);
460 int sk_write_pending
;
461 atomic_t sk_omem_alloc
;
465 refcount_t sk_wmem_alloc
;
466 unsigned long sk_tsq_flags
;
468 struct sk_buff
*sk_send_head
;
469 struct rb_root tcp_rtx_queue
;
471 struct sk_buff_head sk_write_queue
;
472 u32 sk_dst_pending_confirm
;
473 u32 sk_pacing_status
; /* see enum sk_pacing */
474 struct page_frag sk_frag
;
475 struct timer_list sk_timer
;
477 unsigned long sk_pacing_rate
; /* bytes per second */
480 __cacheline_group_end(sock_write_tx
);
482 __cacheline_group_begin(sock_read_tx
);
483 unsigned long sk_max_pacing_rate
;
487 struct dst_entry __rcu
*sk_dst_cache
;
488 netdev_features_t sk_route_caps
;
489 #ifdef CONFIG_SOCK_VALIDATE_XMIT
490 struct sk_buff
* (*sk_validate_xmit_skb
)(struct sock
*sk
,
491 struct net_device
*dev
,
492 struct sk_buff
*skb
);
496 unsigned int sk_gso_max_size
;
500 bool sk_use_task_frag
;
501 __cacheline_group_end(sock_read_tx
);
504 * Because of non atomicity rules, all
505 * changes are protected by socket lock.
507 u8 sk_gso_disabled
: 1,
514 unsigned long sk_lingertime
;
515 struct proto
*sk_prot_creator
;
516 rwlock_t sk_callback_lock
;
519 u32 sk_max_ack_backlog
;
521 spinlock_t sk_peer_lock
;
523 struct pid
*sk_peer_pid
;
524 const struct cred
*sk_peer_cred
;
527 #if BITS_PER_LONG==32
528 seqlock_t sk_stamp_seq
;
534 u8 sk_scm_recv_flags
;
536 u8 sk_scm_credentials
: 1,
544 u8 sk_txtime_deadline_mode
: 1,
545 sk_txtime_report_errors
: 1,
546 sk_txtime_unused
: 6;
547 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
551 #ifdef CONFIG_SECURITY
554 struct sock_cgroup_data sk_cgrp_data
;
555 void (*sk_state_change
)(struct sock
*sk
);
556 void (*sk_write_space
)(struct sock
*sk
);
557 void (*sk_error_report
)(struct sock
*sk
);
558 int (*sk_backlog_rcv
)(struct sock
*sk
,
559 struct sk_buff
*skb
);
560 void (*sk_destruct
)(struct sock
*sk
);
561 struct sock_reuseport __rcu
*sk_reuseport_cb
;
562 #ifdef CONFIG_BPF_SYSCALL
563 struct bpf_local_storage __rcu
*sk_bpf_storage
;
565 struct rcu_head sk_rcu
;
566 netns_tracker ns_tracker
;
567 struct xarray sk_user_frags
;
569 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
570 struct module
*sk_owner
;
574 struct sock_bh_locked
{
576 local_lock_t bh_lock
;
581 SK_PACING_NEEDED
= 1,
585 /* flag bits in sk_user_data
587 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
588 * not be suitable for copying when cloning the socket. For instance,
589 * it can point to a reference counted object. sk_user_data bottom
590 * bit is set if pointer must not be copied.
592 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
593 * managed/owned by a BPF reuseport array. This bit should be set
594 * when sk_user_data's sk is added to the bpf's reuseport_array.
596 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
597 * sk_user_data points to psock type. This bit should be set
598 * when sk_user_data is assigned to a psock object.
600 #define SK_USER_DATA_NOCOPY 1UL
601 #define SK_USER_DATA_BPF 2UL
602 #define SK_USER_DATA_PSOCK 4UL
603 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
607 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
610 static inline bool sk_user_data_is_nocopy(const struct sock
*sk
)
612 return ((uintptr_t)sk
->sk_user_data
& SK_USER_DATA_NOCOPY
);
615 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
618 * __locked_read_sk_user_data_with_flags - return the pointer
619 * only if argument flags all has been set in sk_user_data. Otherwise
625 * The caller must be holding sk->sk_callback_lock.
628 __locked_read_sk_user_data_with_flags(const struct sock
*sk
,
631 uintptr_t sk_user_data
=
632 (uintptr_t)rcu_dereference_check(__sk_user_data(sk
),
633 lockdep_is_held(&sk
->sk_callback_lock
));
635 WARN_ON_ONCE(flags
& SK_USER_DATA_PTRMASK
);
637 if ((sk_user_data
& flags
) == flags
)
638 return (void *)(sk_user_data
& SK_USER_DATA_PTRMASK
);
643 * __rcu_dereference_sk_user_data_with_flags - return the pointer
644 * only if argument flags all has been set in sk_user_data. Otherwise
651 __rcu_dereference_sk_user_data_with_flags(const struct sock
*sk
,
654 uintptr_t sk_user_data
= (uintptr_t)rcu_dereference(__sk_user_data(sk
));
656 WARN_ON_ONCE(flags
& SK_USER_DATA_PTRMASK
);
658 if ((sk_user_data
& flags
) == flags
)
659 return (void *)(sk_user_data
& SK_USER_DATA_PTRMASK
);
663 #define rcu_dereference_sk_user_data(sk) \
664 __rcu_dereference_sk_user_data_with_flags(sk, 0)
665 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
667 uintptr_t __tmp1 = (uintptr_t)(ptr), \
668 __tmp2 = (uintptr_t)(flags); \
669 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
670 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
671 rcu_assign_pointer(__sk_user_data((sk)), \
674 #define rcu_assign_sk_user_data(sk, ptr) \
675 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
678 struct net
*sock_net(const struct sock
*sk
)
680 return read_pnet(&sk
->sk_net
);
684 void sock_net_set(struct sock
*sk
, struct net
*net
)
686 write_pnet(&sk
->sk_net
, net
);
690 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
691 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
692 * on a socket means that the socket will reuse everybody else's port
693 * without looking at the other's sk_reuse value.
696 #define SK_NO_REUSE 0
697 #define SK_CAN_REUSE 1
698 #define SK_FORCE_REUSE 2
700 int sk_set_peek_off(struct sock
*sk
, int val
);
702 static inline int sk_peek_offset(const struct sock
*sk
, int flags
)
704 if (unlikely(flags
& MSG_PEEK
)) {
705 return READ_ONCE(sk
->sk_peek_off
);
711 static inline void sk_peek_offset_bwd(struct sock
*sk
, int val
)
713 s32 off
= READ_ONCE(sk
->sk_peek_off
);
715 if (unlikely(off
>= 0)) {
716 off
= max_t(s32
, off
- val
, 0);
717 WRITE_ONCE(sk
->sk_peek_off
, off
);
721 static inline void sk_peek_offset_fwd(struct sock
*sk
, int val
)
723 sk_peek_offset_bwd(sk
, -val
);
727 * Hashed lists helper routines
729 static inline struct sock
*sk_entry(const struct hlist_node
*node
)
731 return hlist_entry(node
, struct sock
, sk_node
);
734 static inline struct sock
*__sk_head(const struct hlist_head
*head
)
736 return hlist_entry(head
->first
, struct sock
, sk_node
);
739 static inline struct sock
*sk_head(const struct hlist_head
*head
)
741 return hlist_empty(head
) ? NULL
: __sk_head(head
);
744 static inline struct sock
*__sk_nulls_head(const struct hlist_nulls_head
*head
)
746 return hlist_nulls_entry(head
->first
, struct sock
, sk_nulls_node
);
749 static inline struct sock
*sk_nulls_head(const struct hlist_nulls_head
*head
)
751 return hlist_nulls_empty(head
) ? NULL
: __sk_nulls_head(head
);
754 static inline struct sock
*sk_next(const struct sock
*sk
)
756 return hlist_entry_safe(sk
->sk_node
.next
, struct sock
, sk_node
);
759 static inline struct sock
*sk_nulls_next(const struct sock
*sk
)
761 return (!is_a_nulls(sk
->sk_nulls_node
.next
)) ?
762 hlist_nulls_entry(sk
->sk_nulls_node
.next
,
763 struct sock
, sk_nulls_node
) :
767 static inline bool sk_unhashed(const struct sock
*sk
)
769 return hlist_unhashed(&sk
->sk_node
);
772 static inline bool sk_hashed(const struct sock
*sk
)
774 return !sk_unhashed(sk
);
777 static inline void sk_node_init(struct hlist_node
*node
)
782 static inline void __sk_del_node(struct sock
*sk
)
784 __hlist_del(&sk
->sk_node
);
787 /* NB: equivalent to hlist_del_init_rcu */
788 static inline bool __sk_del_node_init(struct sock
*sk
)
792 sk_node_init(&sk
->sk_node
);
798 /* Grab socket reference count. This operation is valid only
799 when sk is ALREADY grabbed f.e. it is found in hash table
800 or a list and the lookup is made under lock preventing hash table
804 static __always_inline
void sock_hold(struct sock
*sk
)
806 refcount_inc(&sk
->sk_refcnt
);
809 /* Ungrab socket in the context, which assumes that socket refcnt
810 cannot hit zero, f.e. it is true in context of any socketcall.
812 static __always_inline
void __sock_put(struct sock
*sk
)
814 refcount_dec(&sk
->sk_refcnt
);
817 static inline bool sk_del_node_init(struct sock
*sk
)
819 bool rc
= __sk_del_node_init(sk
);
822 /* paranoid for a while -acme */
823 WARN_ON(refcount_read(&sk
->sk_refcnt
) == 1);
828 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
830 static inline bool __sk_nulls_del_node_init_rcu(struct sock
*sk
)
833 hlist_nulls_del_init_rcu(&sk
->sk_nulls_node
);
839 static inline bool sk_nulls_del_node_init_rcu(struct sock
*sk
)
841 bool rc
= __sk_nulls_del_node_init_rcu(sk
);
844 /* paranoid for a while -acme */
845 WARN_ON(refcount_read(&sk
->sk_refcnt
) == 1);
851 static inline void __sk_add_node(struct sock
*sk
, struct hlist_head
*list
)
853 hlist_add_head(&sk
->sk_node
, list
);
856 static inline void sk_add_node(struct sock
*sk
, struct hlist_head
*list
)
859 __sk_add_node(sk
, list
);
862 static inline void sk_add_node_rcu(struct sock
*sk
, struct hlist_head
*list
)
865 if (IS_ENABLED(CONFIG_IPV6
) && sk
->sk_reuseport
&&
866 sk
->sk_family
== AF_INET6
)
867 hlist_add_tail_rcu(&sk
->sk_node
, list
);
869 hlist_add_head_rcu(&sk
->sk_node
, list
);
872 static inline void sk_add_node_tail_rcu(struct sock
*sk
, struct hlist_head
*list
)
875 hlist_add_tail_rcu(&sk
->sk_node
, list
);
878 static inline void __sk_nulls_add_node_rcu(struct sock
*sk
, struct hlist_nulls_head
*list
)
880 hlist_nulls_add_head_rcu(&sk
->sk_nulls_node
, list
);
883 static inline void __sk_nulls_add_node_tail_rcu(struct sock
*sk
, struct hlist_nulls_head
*list
)
885 hlist_nulls_add_tail_rcu(&sk
->sk_nulls_node
, list
);
888 static inline void sk_nulls_add_node_rcu(struct sock
*sk
, struct hlist_nulls_head
*list
)
891 __sk_nulls_add_node_rcu(sk
, list
);
894 static inline void __sk_del_bind_node(struct sock
*sk
)
896 __hlist_del(&sk
->sk_bind_node
);
899 static inline void sk_add_bind_node(struct sock
*sk
,
900 struct hlist_head
*list
)
902 hlist_add_head(&sk
->sk_bind_node
, list
);
905 #define sk_for_each(__sk, list) \
906 hlist_for_each_entry(__sk, list, sk_node)
907 #define sk_for_each_rcu(__sk, list) \
908 hlist_for_each_entry_rcu(__sk, list, sk_node)
909 #define sk_nulls_for_each(__sk, node, list) \
910 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
911 #define sk_nulls_for_each_rcu(__sk, node, list) \
912 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
913 #define sk_for_each_from(__sk) \
914 hlist_for_each_entry_from(__sk, sk_node)
915 #define sk_nulls_for_each_from(__sk, node) \
916 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
917 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
918 #define sk_for_each_safe(__sk, tmp, list) \
919 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
920 #define sk_for_each_bound(__sk, list) \
921 hlist_for_each_entry(__sk, list, sk_bind_node)
922 #define sk_for_each_bound_safe(__sk, tmp, list) \
923 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
926 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
927 * @tpos: the type * to use as a loop cursor.
928 * @pos: the &struct hlist_node to use as a loop cursor.
929 * @head: the head for your list.
930 * @offset: offset of hlist_node within the struct.
933 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
934 for (pos = rcu_dereference(hlist_first_rcu(head)); \
936 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
937 pos = rcu_dereference(hlist_next_rcu(pos)))
939 static inline struct user_namespace
*sk_user_ns(const struct sock
*sk
)
941 /* Careful only use this in a context where these parameters
942 * can not change and must all be valid, such as recvmsg from
945 return sk
->sk_socket
->file
->f_cred
->user_ns
;
959 SOCK_USE_WRITE_QUEUE
, /* whether to call sk->sk_write_space in sock_wfree */
960 SOCK_DBG
, /* %SO_DEBUG setting */
961 SOCK_RCVTSTAMP
, /* %SO_TIMESTAMP setting */
962 SOCK_RCVTSTAMPNS
, /* %SO_TIMESTAMPNS setting */
963 SOCK_LOCALROUTE
, /* route locally only, %SO_DONTROUTE setting */
964 SOCK_MEMALLOC
, /* VM depends on this socket for swapping */
965 SOCK_TIMESTAMPING_RX_SOFTWARE
, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
966 SOCK_FASYNC
, /* fasync() active */
968 SOCK_ZEROCOPY
, /* buffers from userspace */
969 SOCK_WIFI_STATUS
, /* push wifi status to userspace */
970 SOCK_NOFCS
, /* Tell NIC not to do the Ethernet FCS.
971 * Will use last 4 bytes of packet sent from
972 * user-space instead.
974 SOCK_FILTER_LOCKED
, /* Filter cannot be changed anymore */
975 SOCK_SELECT_ERR_QUEUE
, /* Wake select on error queue */
976 SOCK_RCU_FREE
, /* wait rcu grace period in sk_destruct() */
978 SOCK_XDP
, /* XDP is attached */
979 SOCK_TSTAMP_NEW
, /* Indicates 64 bit timestamps always */
980 SOCK_RCVMARK
, /* Receive SO_MARK ancillary data with packet */
981 SOCK_RCVPRIORITY
, /* Receive SO_PRIORITY ancillary data with packet */
982 SOCK_TIMESTAMPING_ANY
, /* Copy of sk_tsflags & TSFLAGS_ANY */
985 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
987 * The highest bit of sk_tsflags is reserved for kernel-internal
988 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
989 * SOF_TIMESTAMPING* values do not reach this reserved area
991 #define SOCKCM_FLAG_TS_OPT_ID BIT(31)
993 static inline void sock_copy_flags(struct sock
*nsk
, const struct sock
*osk
)
995 nsk
->sk_flags
= osk
->sk_flags
;
998 static inline void sock_set_flag(struct sock
*sk
, enum sock_flags flag
)
1000 __set_bit(flag
, &sk
->sk_flags
);
1003 static inline void sock_reset_flag(struct sock
*sk
, enum sock_flags flag
)
1005 __clear_bit(flag
, &sk
->sk_flags
);
1008 static inline void sock_valbool_flag(struct sock
*sk
, enum sock_flags bit
,
1012 sock_set_flag(sk
, bit
);
1014 sock_reset_flag(sk
, bit
);
1017 static inline bool sock_flag(const struct sock
*sk
, enum sock_flags flag
)
1019 return test_bit(flag
, &sk
->sk_flags
);
1023 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key
);
1024 static inline int sk_memalloc_socks(void)
1026 return static_branch_unlikely(&memalloc_socks_key
);
1029 void __receive_sock(struct file
*file
);
1032 static inline int sk_memalloc_socks(void)
1037 static inline void __receive_sock(struct file
*file
)
1041 static inline gfp_t
sk_gfp_mask(const struct sock
*sk
, gfp_t gfp_mask
)
1043 return gfp_mask
| (sk
->sk_allocation
& __GFP_MEMALLOC
);
1046 static inline void sk_acceptq_removed(struct sock
*sk
)
1048 WRITE_ONCE(sk
->sk_ack_backlog
, sk
->sk_ack_backlog
- 1);
1051 static inline void sk_acceptq_added(struct sock
*sk
)
1053 WRITE_ONCE(sk
->sk_ack_backlog
, sk
->sk_ack_backlog
+ 1);
1056 /* Note: If you think the test should be:
1057 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1058 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1060 static inline bool sk_acceptq_is_full(const struct sock
*sk
)
1062 return READ_ONCE(sk
->sk_ack_backlog
) > READ_ONCE(sk
->sk_max_ack_backlog
);
1066 * Compute minimal free write space needed to queue new packets.
1068 static inline int sk_stream_min_wspace(const struct sock
*sk
)
1070 return READ_ONCE(sk
->sk_wmem_queued
) >> 1;
1073 static inline int sk_stream_wspace(const struct sock
*sk
)
1075 return READ_ONCE(sk
->sk_sndbuf
) - READ_ONCE(sk
->sk_wmem_queued
);
1078 static inline void sk_wmem_queued_add(struct sock
*sk
, int val
)
1080 WRITE_ONCE(sk
->sk_wmem_queued
, sk
->sk_wmem_queued
+ val
);
1083 static inline void sk_forward_alloc_add(struct sock
*sk
, int val
)
1085 /* Paired with lockless reads of sk->sk_forward_alloc */
1086 WRITE_ONCE(sk
->sk_forward_alloc
, sk
->sk_forward_alloc
+ val
);
1089 void sk_stream_write_space(struct sock
*sk
);
1091 /* OOB backlog add */
1092 static inline void __sk_add_backlog(struct sock
*sk
, struct sk_buff
*skb
)
1094 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1097 if (!sk
->sk_backlog
.tail
)
1098 WRITE_ONCE(sk
->sk_backlog
.head
, skb
);
1100 sk
->sk_backlog
.tail
->next
= skb
;
1102 WRITE_ONCE(sk
->sk_backlog
.tail
, skb
);
1107 * Take into account size of receive queue and backlog queue
1108 * Do not take into account this skb truesize,
1109 * to allow even a single big packet to come.
1111 static inline bool sk_rcvqueues_full(const struct sock
*sk
, unsigned int limit
)
1113 unsigned int qsize
= sk
->sk_backlog
.len
+ atomic_read(&sk
->sk_rmem_alloc
);
1115 return qsize
> limit
;
1118 /* The per-socket spinlock must be held here. */
1119 static inline __must_check
int sk_add_backlog(struct sock
*sk
, struct sk_buff
*skb
,
1122 if (sk_rcvqueues_full(sk
, limit
))
1126 * If the skb was allocated from pfmemalloc reserves, only
1127 * allow SOCK_MEMALLOC sockets to use it as this socket is
1128 * helping free memory
1130 if (skb_pfmemalloc(skb
) && !sock_flag(sk
, SOCK_MEMALLOC
))
1133 __sk_add_backlog(sk
, skb
);
1134 sk
->sk_backlog
.len
+= skb
->truesize
;
1138 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
);
1140 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
));
1141 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock
*sk
, struct sk_buff
*skb
));
1143 static inline int sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1145 if (sk_memalloc_socks() && skb_pfmemalloc(skb
))
1146 return __sk_backlog_rcv(sk
, skb
);
1148 return INDIRECT_CALL_INET(sk
->sk_backlog_rcv
,
1154 static inline void sk_incoming_cpu_update(struct sock
*sk
)
1156 int cpu
= raw_smp_processor_id();
1158 if (unlikely(READ_ONCE(sk
->sk_incoming_cpu
) != cpu
))
1159 WRITE_ONCE(sk
->sk_incoming_cpu
, cpu
);
1163 static inline void sock_rps_save_rxhash(struct sock
*sk
,
1164 const struct sk_buff
*skb
)
1167 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1168 * here, and another one in sock_rps_record_flow().
1170 if (unlikely(READ_ONCE(sk
->sk_rxhash
) != skb
->hash
))
1171 WRITE_ONCE(sk
->sk_rxhash
, skb
->hash
);
1175 static inline void sock_rps_reset_rxhash(struct sock
*sk
)
1178 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1179 WRITE_ONCE(sk
->sk_rxhash
, 0);
1183 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1184 ({ int __rc, __dis = __sk->sk_disconnects; \
1185 release_sock(__sk); \
1186 __rc = __condition; \
1188 *(__timeo) = wait_woken(__wait, \
1189 TASK_INTERRUPTIBLE, \
1192 sched_annotate_sleep(); \
1194 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1198 int sk_stream_wait_connect(struct sock
*sk
, long *timeo_p
);
1199 int sk_stream_wait_memory(struct sock
*sk
, long *timeo_p
);
1200 void sk_stream_wait_close(struct sock
*sk
, long timeo_p
);
1201 int sk_stream_error(struct sock
*sk
, int flags
, int err
);
1202 void sk_stream_kill_queues(struct sock
*sk
);
1203 void sk_set_memalloc(struct sock
*sk
);
1204 void sk_clear_memalloc(struct sock
*sk
);
1206 void __sk_flush_backlog(struct sock
*sk
);
1208 static inline bool sk_flush_backlog(struct sock
*sk
)
1210 if (unlikely(READ_ONCE(sk
->sk_backlog
.tail
))) {
1211 __sk_flush_backlog(sk
);
1217 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
);
1219 struct request_sock_ops
;
1220 struct timewait_sock_ops
;
1221 struct inet_hashinfo
;
1222 struct raw_hashinfo
;
1223 struct smc_hashinfo
;
1228 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1229 * un-modified. Special care is taken when initializing object to zero.
1231 static inline void sk_prot_clear_nulls(struct sock
*sk
, int size
)
1233 if (offsetof(struct sock
, sk_node
.next
) != 0)
1234 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
1235 memset(&sk
->sk_node
.pprev
, 0,
1236 size
- offsetof(struct sock
, sk_node
.pprev
));
1239 struct proto_accept_arg
{
1246 /* Networking protocol blocks we attach to sockets.
1247 * socket layer -> transport layer interface
1250 void (*close
)(struct sock
*sk
,
1252 int (*pre_connect
)(struct sock
*sk
,
1253 struct sockaddr
*uaddr
,
1255 int (*connect
)(struct sock
*sk
,
1256 struct sockaddr
*uaddr
,
1258 int (*disconnect
)(struct sock
*sk
, int flags
);
1260 struct sock
* (*accept
)(struct sock
*sk
,
1261 struct proto_accept_arg
*arg
);
1263 int (*ioctl
)(struct sock
*sk
, int cmd
,
1265 int (*init
)(struct sock
*sk
);
1266 void (*destroy
)(struct sock
*sk
);
1267 void (*shutdown
)(struct sock
*sk
, int how
);
1268 int (*setsockopt
)(struct sock
*sk
, int level
,
1269 int optname
, sockptr_t optval
,
1270 unsigned int optlen
);
1271 int (*getsockopt
)(struct sock
*sk
, int level
,
1272 int optname
, char __user
*optval
,
1273 int __user
*option
);
1274 void (*keepalive
)(struct sock
*sk
, int valbool
);
1275 #ifdef CONFIG_COMPAT
1276 int (*compat_ioctl
)(struct sock
*sk
,
1277 unsigned int cmd
, unsigned long arg
);
1279 int (*sendmsg
)(struct sock
*sk
, struct msghdr
*msg
,
1281 int (*recvmsg
)(struct sock
*sk
, struct msghdr
*msg
,
1282 size_t len
, int flags
, int *addr_len
);
1283 void (*splice_eof
)(struct socket
*sock
);
1284 int (*bind
)(struct sock
*sk
,
1285 struct sockaddr
*addr
, int addr_len
);
1286 int (*bind_add
)(struct sock
*sk
,
1287 struct sockaddr
*addr
, int addr_len
);
1289 int (*backlog_rcv
) (struct sock
*sk
,
1290 struct sk_buff
*skb
);
1291 bool (*bpf_bypass_getsockopt
)(int level
,
1294 void (*release_cb
)(struct sock
*sk
);
1296 /* Keeping track of sk's, looking them up, and port selection methods. */
1297 int (*hash
)(struct sock
*sk
);
1298 void (*unhash
)(struct sock
*sk
);
1299 void (*rehash
)(struct sock
*sk
);
1300 int (*get_port
)(struct sock
*sk
, unsigned short snum
);
1301 void (*put_port
)(struct sock
*sk
);
1302 #ifdef CONFIG_BPF_SYSCALL
1303 int (*psock_update_sk_prot
)(struct sock
*sk
,
1304 struct sk_psock
*psock
,
1308 /* Keeping track of sockets in use */
1309 #ifdef CONFIG_PROC_FS
1310 unsigned int inuse_idx
;
1313 bool (*stream_memory_free
)(const struct sock
*sk
, int wake
);
1314 bool (*sock_is_readable
)(struct sock
*sk
);
1315 /* Memory pressure */
1316 void (*enter_memory_pressure
)(struct sock
*sk
);
1317 void (*leave_memory_pressure
)(struct sock
*sk
);
1318 atomic_long_t
*memory_allocated
; /* Current allocated memory. */
1319 int __percpu
*per_cpu_fw_alloc
;
1320 struct percpu_counter
*sockets_allocated
; /* Current number of sockets. */
1323 * Pressure flag: try to collapse.
1324 * Technical note: it is used by multiple contexts non atomically.
1325 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1326 * All the __sk_mem_schedule() is of this nature: accounting
1327 * is strict, actions are advisory and have some latency.
1329 unsigned long *memory_pressure
;
1334 u32 sysctl_wmem_offset
;
1335 u32 sysctl_rmem_offset
;
1340 struct kmem_cache
*slab
;
1341 unsigned int obj_size
;
1342 unsigned int ipv6_pinfo_offset
;
1343 slab_flags_t slab_flags
;
1344 unsigned int useroffset
; /* Usercopy region offset */
1345 unsigned int usersize
; /* Usercopy region size */
1347 unsigned int __percpu
*orphan_count
;
1349 struct request_sock_ops
*rsk_prot
;
1350 struct timewait_sock_ops
*twsk_prot
;
1353 struct inet_hashinfo
*hashinfo
;
1354 struct udp_table
*udp_table
;
1355 struct raw_hashinfo
*raw_hash
;
1356 struct smc_hashinfo
*smc_hash
;
1359 struct module
*owner
;
1363 struct list_head node
;
1364 int (*diag_destroy
)(struct sock
*sk
, int err
);
1365 } __randomize_layout
;
1367 int proto_register(struct proto
*prot
, int alloc_slab
);
1368 void proto_unregister(struct proto
*prot
);
1369 int sock_load_diag_module(int family
, int protocol
);
1371 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock
*sk
, int wake
));
1373 static inline bool __sk_stream_memory_free(const struct sock
*sk
, int wake
)
1375 if (READ_ONCE(sk
->sk_wmem_queued
) >= READ_ONCE(sk
->sk_sndbuf
))
1378 return sk
->sk_prot
->stream_memory_free
?
1379 INDIRECT_CALL_INET_1(sk
->sk_prot
->stream_memory_free
,
1380 tcp_stream_memory_free
, sk
, wake
) : true;
1383 static inline bool sk_stream_memory_free(const struct sock
*sk
)
1385 return __sk_stream_memory_free(sk
, 0);
1388 static inline bool __sk_stream_is_writeable(const struct sock
*sk
, int wake
)
1390 return sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
) &&
1391 __sk_stream_memory_free(sk
, wake
);
1394 static inline bool sk_stream_is_writeable(const struct sock
*sk
)
1396 return __sk_stream_is_writeable(sk
, 0);
1399 static inline int sk_under_cgroup_hierarchy(struct sock
*sk
,
1400 struct cgroup
*ancestor
)
1402 #ifdef CONFIG_SOCK_CGROUP_DATA
1403 return cgroup_is_descendant(sock_cgroup_ptr(&sk
->sk_cgrp_data
),
1410 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1412 static inline void sk_sockets_allocated_dec(struct sock
*sk
)
1414 percpu_counter_add_batch(sk
->sk_prot
->sockets_allocated
, -1,
1415 SK_ALLOC_PERCPU_COUNTER_BATCH
);
1418 static inline void sk_sockets_allocated_inc(struct sock
*sk
)
1420 percpu_counter_add_batch(sk
->sk_prot
->sockets_allocated
, 1,
1421 SK_ALLOC_PERCPU_COUNTER_BATCH
);
1425 sk_sockets_allocated_read_positive(struct sock
*sk
)
1427 return percpu_counter_read_positive(sk
->sk_prot
->sockets_allocated
);
1431 proto_sockets_allocated_sum_positive(struct proto
*prot
)
1433 return percpu_counter_sum_positive(prot
->sockets_allocated
);
1436 #ifdef CONFIG_PROC_FS
1437 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1440 int val
[PROTO_INUSE_NR
];
1443 static inline void sock_prot_inuse_add(const struct net
*net
,
1444 const struct proto
*prot
, int val
)
1446 this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
1449 static inline void sock_inuse_add(const struct net
*net
, int val
)
1451 this_cpu_add(net
->core
.prot_inuse
->all
, val
);
1454 int sock_prot_inuse_get(struct net
*net
, struct proto
*proto
);
1455 int sock_inuse_get(struct net
*net
);
1457 static inline void sock_prot_inuse_add(const struct net
*net
,
1458 const struct proto
*prot
, int val
)
1462 static inline void sock_inuse_add(const struct net
*net
, int val
)
1468 /* With per-bucket locks this operation is not-atomic, so that
1469 * this version is not worse.
1471 static inline int __sk_prot_rehash(struct sock
*sk
)
1473 sk
->sk_prot
->unhash(sk
);
1474 return sk
->sk_prot
->hash(sk
);
1477 /* About 10 seconds */
1478 #define SOCK_DESTROY_TIME (10*HZ)
1480 /* Sockets 0-1023 can't be bound to unless you are superuser */
1481 #define PROT_SOCK 1024
1483 #define SHUTDOWN_MASK 3
1484 #define RCV_SHUTDOWN 1
1485 #define SEND_SHUTDOWN 2
1487 #define SOCK_BINDADDR_LOCK 4
1488 #define SOCK_BINDPORT_LOCK 8
1490 struct socket_alloc
{
1491 struct socket socket
;
1492 struct inode vfs_inode
;
1495 static inline struct socket
*SOCKET_I(struct inode
*inode
)
1497 return &container_of(inode
, struct socket_alloc
, vfs_inode
)->socket
;
1500 static inline struct inode
*SOCK_INODE(struct socket
*socket
)
1502 return &container_of(socket
, struct socket_alloc
, socket
)->vfs_inode
;
1506 * Functions for memory accounting
1508 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
);
1509 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
);
1510 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
);
1511 void __sk_mem_reclaim(struct sock
*sk
, int amount
);
1513 #define SK_MEM_SEND 0
1514 #define SK_MEM_RECV 1
1516 /* sysctl_mem values are in pages */
1517 static inline long sk_prot_mem_limits(const struct sock
*sk
, int index
)
1519 return READ_ONCE(sk
->sk_prot
->sysctl_mem
[index
]);
1522 static inline int sk_mem_pages(int amt
)
1524 return (amt
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1527 static inline bool sk_has_account(struct sock
*sk
)
1529 /* return true if protocol supports memory accounting */
1530 return !!sk
->sk_prot
->memory_allocated
;
1533 static inline bool sk_wmem_schedule(struct sock
*sk
, int size
)
1537 if (!sk_has_account(sk
))
1539 delta
= size
- sk
->sk_forward_alloc
;
1540 return delta
<= 0 || __sk_mem_schedule(sk
, delta
, SK_MEM_SEND
);
1544 __sk_rmem_schedule(struct sock
*sk
, int size
, bool pfmemalloc
)
1548 if (!sk_has_account(sk
))
1550 delta
= size
- sk
->sk_forward_alloc
;
1551 return delta
<= 0 || __sk_mem_schedule(sk
, delta
, SK_MEM_RECV
) ||
1556 sk_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
, int size
)
1558 return __sk_rmem_schedule(sk
, size
, skb_pfmemalloc(skb
));
1561 static inline int sk_unused_reserved_mem(const struct sock
*sk
)
1565 if (likely(!sk
->sk_reserved_mem
))
1568 unused_mem
= sk
->sk_reserved_mem
- sk
->sk_wmem_queued
-
1569 atomic_read(&sk
->sk_rmem_alloc
);
1571 return unused_mem
> 0 ? unused_mem
: 0;
1574 static inline void sk_mem_reclaim(struct sock
*sk
)
1578 if (!sk_has_account(sk
))
1581 reclaimable
= sk
->sk_forward_alloc
- sk_unused_reserved_mem(sk
);
1583 if (reclaimable
>= (int)PAGE_SIZE
)
1584 __sk_mem_reclaim(sk
, reclaimable
);
1587 static inline void sk_mem_reclaim_final(struct sock
*sk
)
1589 sk
->sk_reserved_mem
= 0;
1593 static inline void sk_mem_charge(struct sock
*sk
, int size
)
1595 if (!sk_has_account(sk
))
1597 sk_forward_alloc_add(sk
, -size
);
1600 static inline void sk_mem_uncharge(struct sock
*sk
, int size
)
1602 if (!sk_has_account(sk
))
1604 sk_forward_alloc_add(sk
, size
);
1608 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
1609 static inline void sk_owner_set(struct sock
*sk
, struct module
*owner
)
1611 __module_get(owner
);
1612 sk
->sk_owner
= owner
;
1615 static inline void sk_owner_clear(struct sock
*sk
)
1617 sk
->sk_owner
= NULL
;
1620 static inline void sk_owner_put(struct sock
*sk
)
1622 module_put(sk
->sk_owner
);
1625 static inline void sk_owner_set(struct sock
*sk
, struct module
*owner
)
1629 static inline void sk_owner_clear(struct sock
*sk
)
1633 static inline void sk_owner_put(struct sock
*sk
)
1638 * Macro so as to not evaluate some arguments when
1639 * lockdep is not enabled.
1641 * Mark both the sk_lock and the sk_lock.slock as a
1642 * per-address-family lock class.
1644 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1646 sk_owner_set(sk, THIS_MODULE); \
1647 sk->sk_lock.owned = 0; \
1648 init_waitqueue_head(&sk->sk_lock.wq); \
1649 spin_lock_init(&(sk)->sk_lock.slock); \
1650 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1651 sizeof((sk)->sk_lock)); \
1652 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1654 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1657 static inline bool lockdep_sock_is_held(const struct sock
*sk
)
1659 return lockdep_is_held(&sk
->sk_lock
) ||
1660 lockdep_is_held(&sk
->sk_lock
.slock
);
1663 void lock_sock_nested(struct sock
*sk
, int subclass
);
1665 static inline void lock_sock(struct sock
*sk
)
1667 lock_sock_nested(sk
, 0);
1670 void __lock_sock(struct sock
*sk
);
1671 void __release_sock(struct sock
*sk
);
1672 void release_sock(struct sock
*sk
);
1674 /* BH context may only use the following locking interface. */
1675 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1676 #define bh_lock_sock_nested(__sk) \
1677 spin_lock_nested(&((__sk)->sk_lock.slock), \
1678 SINGLE_DEPTH_NESTING)
1679 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1681 bool __lock_sock_fast(struct sock
*sk
) __acquires(&sk
->sk_lock
.slock
);
1684 * lock_sock_fast - fast version of lock_sock
1687 * This version should be used for very small section, where process won't block
1688 * return false if fast path is taken:
1690 * sk_lock.slock locked, owned = 0, BH disabled
1692 * return true if slow path is taken:
1694 * sk_lock.slock unlocked, owned = 1, BH enabled
1696 static inline bool lock_sock_fast(struct sock
*sk
)
1698 /* The sk_lock has mutex_lock() semantics here. */
1699 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
1701 return __lock_sock_fast(sk
);
1704 /* fast socket lock variant for caller already holding a [different] socket lock */
1705 static inline bool lock_sock_fast_nested(struct sock
*sk
)
1707 mutex_acquire(&sk
->sk_lock
.dep_map
, SINGLE_DEPTH_NESTING
, 0, _RET_IP_
);
1709 return __lock_sock_fast(sk
);
1713 * unlock_sock_fast - complement of lock_sock_fast
1717 * fast unlock socket for user context.
1718 * If slow mode is on, we call regular release_sock()
1720 static inline void unlock_sock_fast(struct sock
*sk
, bool slow
)
1721 __releases(&sk
->sk_lock
.slock
)
1725 __release(&sk
->sk_lock
.slock
);
1727 mutex_release(&sk
->sk_lock
.dep_map
, _RET_IP_
);
1728 spin_unlock_bh(&sk
->sk_lock
.slock
);
1732 void sockopt_lock_sock(struct sock
*sk
);
1733 void sockopt_release_sock(struct sock
*sk
);
1734 bool sockopt_ns_capable(struct user_namespace
*ns
, int cap
);
1735 bool sockopt_capable(int cap
);
1737 /* Used by processes to "lock" a socket state, so that
1738 * interrupts and bottom half handlers won't change it
1739 * from under us. It essentially blocks any incoming
1740 * packets, so that we won't get any new data or any
1741 * packets that change the state of the socket.
1743 * While locked, BH processing will add new packets to
1744 * the backlog queue. This queue is processed by the
1745 * owner of the socket lock right before it is released.
1747 * Since ~2.3.5 it is also exclusive sleep lock serializing
1748 * accesses from user process context.
1751 static inline void sock_owned_by_me(const struct sock
*sk
)
1753 #ifdef CONFIG_LOCKDEP
1754 WARN_ON_ONCE(!lockdep_sock_is_held(sk
) && debug_locks
);
1758 static inline void sock_not_owned_by_me(const struct sock
*sk
)
1760 #ifdef CONFIG_LOCKDEP
1761 WARN_ON_ONCE(lockdep_sock_is_held(sk
) && debug_locks
);
1765 static inline bool sock_owned_by_user(const struct sock
*sk
)
1767 sock_owned_by_me(sk
);
1768 return sk
->sk_lock
.owned
;
1771 static inline bool sock_owned_by_user_nocheck(const struct sock
*sk
)
1773 return sk
->sk_lock
.owned
;
1776 static inline void sock_release_ownership(struct sock
*sk
)
1778 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk
));
1779 sk
->sk_lock
.owned
= 0;
1781 /* The sk_lock has mutex_unlock() semantics: */
1782 mutex_release(&sk
->sk_lock
.dep_map
, _RET_IP_
);
1785 /* no reclassification while locks are held */
1786 static inline bool sock_allow_reclassification(const struct sock
*csk
)
1788 struct sock
*sk
= (struct sock
*)csk
;
1790 return !sock_owned_by_user_nocheck(sk
) &&
1791 !spin_is_locked(&sk
->sk_lock
.slock
);
1794 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1795 struct proto
*prot
, int kern
);
1796 void sk_free(struct sock
*sk
);
1797 void sk_net_refcnt_upgrade(struct sock
*sk
);
1798 void sk_destruct(struct sock
*sk
);
1799 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
);
1801 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1803 void __sock_wfree(struct sk_buff
*skb
);
1804 void sock_wfree(struct sk_buff
*skb
);
1805 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1807 void skb_orphan_partial(struct sk_buff
*skb
);
1808 void sock_rfree(struct sk_buff
*skb
);
1809 void sock_efree(struct sk_buff
*skb
);
1811 void sock_edemux(struct sk_buff
*skb
);
1812 void sock_pfree(struct sk_buff
*skb
);
1814 static inline void skb_set_owner_edemux(struct sk_buff
*skb
, struct sock
*sk
)
1817 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1819 skb
->destructor
= sock_edemux
;
1823 #define sock_edemux sock_efree
1826 int sk_setsockopt(struct sock
*sk
, int level
, int optname
,
1827 sockptr_t optval
, unsigned int optlen
);
1828 int sock_setsockopt(struct socket
*sock
, int level
, int op
,
1829 sockptr_t optval
, unsigned int optlen
);
1830 int do_sock_setsockopt(struct socket
*sock
, bool compat
, int level
,
1831 int optname
, sockptr_t optval
, int optlen
);
1832 int do_sock_getsockopt(struct socket
*sock
, bool compat
, int level
,
1833 int optname
, sockptr_t optval
, sockptr_t optlen
);
1835 int sk_getsockopt(struct sock
*sk
, int level
, int optname
,
1836 sockptr_t optval
, sockptr_t optlen
);
1837 int sock_gettstamp(struct socket
*sock
, void __user
*userstamp
,
1838 bool timeval
, bool time32
);
1839 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1840 unsigned long data_len
, int noblock
,
1841 int *errcode
, int max_page_order
);
1843 static inline struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
,
1845 int noblock
, int *errcode
)
1847 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1850 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
);
1851 void *sock_kmemdup(struct sock
*sk
, const void *src
,
1852 int size
, gfp_t priority
);
1853 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
);
1854 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
);
1855 void sk_send_sigurg(struct sock
*sk
);
1857 static inline void sock_replace_proto(struct sock
*sk
, struct proto
*proto
)
1860 clear_bit(SOCK_SUPPORT_ZC
, &sk
->sk_socket
->flags
);
1861 WRITE_ONCE(sk
->sk_prot
, proto
);
1864 struct sockcm_cookie
{
1873 static inline void sockcm_init(struct sockcm_cookie
*sockc
,
1874 const struct sock
*sk
)
1876 *sockc
= (struct sockcm_cookie
) {
1877 .mark
= READ_ONCE(sk
->sk_mark
),
1878 .tsflags
= READ_ONCE(sk
->sk_tsflags
),
1879 .priority
= READ_ONCE(sk
->sk_priority
),
1883 int __sock_cmsg_send(struct sock
*sk
, struct cmsghdr
*cmsg
,
1884 struct sockcm_cookie
*sockc
);
1885 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
1886 struct sockcm_cookie
*sockc
);
1889 * Functions to fill in entries in struct proto_ops when a protocol
1890 * does not implement a particular function.
1892 int sock_no_bind(struct socket
*, struct sockaddr
*, int);
1893 int sock_no_connect(struct socket
*, struct sockaddr
*, int, int);
1894 int sock_no_socketpair(struct socket
*, struct socket
*);
1895 int sock_no_accept(struct socket
*, struct socket
*, struct proto_accept_arg
*);
1896 int sock_no_getname(struct socket
*, struct sockaddr
*, int);
1897 int sock_no_ioctl(struct socket
*, unsigned int, unsigned long);
1898 int sock_no_listen(struct socket
*, int);
1899 int sock_no_shutdown(struct socket
*, int);
1900 int sock_no_sendmsg(struct socket
*, struct msghdr
*, size_t);
1901 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t len
);
1902 int sock_no_recvmsg(struct socket
*, struct msghdr
*, size_t, int);
1903 int sock_no_mmap(struct file
*file
, struct socket
*sock
,
1904 struct vm_area_struct
*vma
);
1907 * Functions to fill in entries in struct proto_ops when a protocol
1908 * uses the inet style.
1910 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
1911 char __user
*optval
, int __user
*optlen
);
1912 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
1914 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
1915 sockptr_t optval
, unsigned int optlen
);
1917 void sk_common_release(struct sock
*sk
);
1920 * Default socket callbacks and setup code
1923 /* Initialise core socket variables using an explicit uid. */
1924 void sock_init_data_uid(struct socket
*sock
, struct sock
*sk
, kuid_t uid
);
1926 /* Initialise core socket variables.
1927 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1929 void sock_init_data(struct socket
*sock
, struct sock
*sk
);
1932 * Socket reference counting postulates.
1934 * * Each user of socket SHOULD hold a reference count.
1935 * * Each access point to socket (an hash table bucket, reference from a list,
1936 * running timer, skb in flight MUST hold a reference count.
1937 * * When reference count hits 0, it means it will never increase back.
1938 * * When reference count hits 0, it means that no references from
1939 * outside exist to this socket and current process on current CPU
1940 * is last user and may/should destroy this socket.
1941 * * sk_free is called from any context: process, BH, IRQ. When
1942 * it is called, socket has no references from outside -> sk_free
1943 * may release descendant resources allocated by the socket, but
1944 * to the time when it is called, socket is NOT referenced by any
1945 * hash tables, lists etc.
1946 * * Packets, delivered from outside (from network or from another process)
1947 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1948 * when they sit in queue. Otherwise, packets will leak to hole, when
1949 * socket is looked up by one cpu and unhasing is made by another CPU.
1950 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1951 * (leak to backlog). Packet socket does all the processing inside
1952 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1953 * use separate SMP lock, so that they are prone too.
1956 /* Ungrab socket and destroy it, if it was the last reference. */
1957 static inline void sock_put(struct sock
*sk
)
1959 if (refcount_dec_and_test(&sk
->sk_refcnt
))
1962 /* Generic version of sock_put(), dealing with all sockets
1963 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1965 void sock_gen_put(struct sock
*sk
);
1967 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
,
1968 unsigned int trim_cap
, bool refcounted
);
1969 static inline int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
1972 return __sk_receive_skb(sk
, skb
, nested
, 1, true);
1975 static inline void sk_tx_queue_set(struct sock
*sk
, int tx_queue
)
1977 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1978 if (WARN_ON_ONCE((unsigned short)tx_queue
>= USHRT_MAX
))
1980 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1981 * other WRITE_ONCE() because socket lock might be not held.
1983 WRITE_ONCE(sk
->sk_tx_queue_mapping
, tx_queue
);
1986 #define NO_QUEUE_MAPPING USHRT_MAX
1988 static inline void sk_tx_queue_clear(struct sock
*sk
)
1990 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1991 * other WRITE_ONCE() because socket lock might be not held.
1993 WRITE_ONCE(sk
->sk_tx_queue_mapping
, NO_QUEUE_MAPPING
);
1996 static inline int sk_tx_queue_get(const struct sock
*sk
)
1999 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2000 * and sk_tx_queue_set().
2002 int val
= READ_ONCE(sk
->sk_tx_queue_mapping
);
2004 if (val
!= NO_QUEUE_MAPPING
)
2010 static inline void __sk_rx_queue_set(struct sock
*sk
,
2011 const struct sk_buff
*skb
,
2014 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2015 if (skb_rx_queue_recorded(skb
)) {
2016 u16 rx_queue
= skb_get_rx_queue(skb
);
2019 unlikely(READ_ONCE(sk
->sk_rx_queue_mapping
) != rx_queue
))
2020 WRITE_ONCE(sk
->sk_rx_queue_mapping
, rx_queue
);
2025 static inline void sk_rx_queue_set(struct sock
*sk
, const struct sk_buff
*skb
)
2027 __sk_rx_queue_set(sk
, skb
, true);
2030 static inline void sk_rx_queue_update(struct sock
*sk
, const struct sk_buff
*skb
)
2032 __sk_rx_queue_set(sk
, skb
, false);
2035 static inline void sk_rx_queue_clear(struct sock
*sk
)
2037 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2038 WRITE_ONCE(sk
->sk_rx_queue_mapping
, NO_QUEUE_MAPPING
);
2042 static inline int sk_rx_queue_get(const struct sock
*sk
)
2044 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2046 int res
= READ_ONCE(sk
->sk_rx_queue_mapping
);
2048 if (res
!= NO_QUEUE_MAPPING
)
2056 static inline void sk_set_socket(struct sock
*sk
, struct socket
*sock
)
2058 sk
->sk_socket
= sock
;
2061 static inline wait_queue_head_t
*sk_sleep(struct sock
*sk
)
2063 BUILD_BUG_ON(offsetof(struct socket_wq
, wait
) != 0);
2064 return &rcu_dereference_raw(sk
->sk_wq
)->wait
;
2066 /* Detach socket from process context.
2067 * Announce socket dead, detach it from wait queue and inode.
2068 * Note that parent inode held reference count on this struct sock,
2069 * we do not release it in this function, because protocol
2070 * probably wants some additional cleanups or even continuing
2071 * to work with this socket (TCP).
2073 static inline void sock_orphan(struct sock
*sk
)
2075 write_lock_bh(&sk
->sk_callback_lock
);
2076 sock_set_flag(sk
, SOCK_DEAD
);
2077 sk_set_socket(sk
, NULL
);
2079 write_unlock_bh(&sk
->sk_callback_lock
);
2082 static inline void sock_graft(struct sock
*sk
, struct socket
*parent
)
2084 WARN_ON(parent
->sk
);
2085 write_lock_bh(&sk
->sk_callback_lock
);
2086 rcu_assign_pointer(sk
->sk_wq
, &parent
->wq
);
2088 sk_set_socket(sk
, parent
);
2089 sk
->sk_uid
= SOCK_INODE(parent
)->i_uid
;
2090 security_sock_graft(sk
, parent
);
2091 write_unlock_bh(&sk
->sk_callback_lock
);
2094 kuid_t
sock_i_uid(struct sock
*sk
);
2095 unsigned long __sock_i_ino(struct sock
*sk
);
2096 unsigned long sock_i_ino(struct sock
*sk
);
2098 static inline kuid_t
sock_net_uid(const struct net
*net
, const struct sock
*sk
)
2100 return sk
? sk
->sk_uid
: make_kuid(net
->user_ns
, 0);
2103 static inline u32
net_tx_rndhash(void)
2105 u32 v
= get_random_u32();
2110 static inline void sk_set_txhash(struct sock
*sk
)
2112 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2113 WRITE_ONCE(sk
->sk_txhash
, net_tx_rndhash());
2116 static inline bool sk_rethink_txhash(struct sock
*sk
)
2118 if (sk
->sk_txhash
&& sk
->sk_txrehash
== SOCK_TXREHASH_ENABLED
) {
2125 static inline struct dst_entry
*
2126 __sk_dst_get(const struct sock
*sk
)
2128 return rcu_dereference_check(sk
->sk_dst_cache
,
2129 lockdep_sock_is_held(sk
));
2132 static inline struct dst_entry
*
2133 sk_dst_get(const struct sock
*sk
)
2135 struct dst_entry
*dst
;
2138 dst
= rcu_dereference(sk
->sk_dst_cache
);
2139 if (dst
&& !rcuref_get(&dst
->__rcuref
))
2145 static inline void __dst_negative_advice(struct sock
*sk
)
2147 struct dst_entry
*dst
= __sk_dst_get(sk
);
2149 if (dst
&& dst
->ops
->negative_advice
)
2150 dst
->ops
->negative_advice(sk
, dst
);
2153 static inline void dst_negative_advice(struct sock
*sk
)
2155 sk_rethink_txhash(sk
);
2156 __dst_negative_advice(sk
);
2160 __sk_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
2162 struct dst_entry
*old_dst
;
2164 sk_tx_queue_clear(sk
);
2165 WRITE_ONCE(sk
->sk_dst_pending_confirm
, 0);
2166 old_dst
= rcu_dereference_protected(sk
->sk_dst_cache
,
2167 lockdep_sock_is_held(sk
));
2168 rcu_assign_pointer(sk
->sk_dst_cache
, dst
);
2169 dst_release(old_dst
);
2173 sk_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
2175 struct dst_entry
*old_dst
;
2177 sk_tx_queue_clear(sk
);
2178 WRITE_ONCE(sk
->sk_dst_pending_confirm
, 0);
2179 old_dst
= unrcu_pointer(xchg(&sk
->sk_dst_cache
, RCU_INITIALIZER(dst
)));
2180 dst_release(old_dst
);
2184 __sk_dst_reset(struct sock
*sk
)
2186 __sk_dst_set(sk
, NULL
);
2190 sk_dst_reset(struct sock
*sk
)
2192 sk_dst_set(sk
, NULL
);
2195 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
);
2197 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
);
2199 static inline void sk_dst_confirm(struct sock
*sk
)
2201 if (!READ_ONCE(sk
->sk_dst_pending_confirm
))
2202 WRITE_ONCE(sk
->sk_dst_pending_confirm
, 1);
2205 static inline void sock_confirm_neigh(struct sk_buff
*skb
, struct neighbour
*n
)
2207 if (skb_get_dst_pending_confirm(skb
)) {
2208 struct sock
*sk
= skb
->sk
;
2210 if (sk
&& READ_ONCE(sk
->sk_dst_pending_confirm
))
2211 WRITE_ONCE(sk
->sk_dst_pending_confirm
, 0);
2216 bool sk_mc_loop(const struct sock
*sk
);
2218 static inline bool sk_can_gso(const struct sock
*sk
)
2220 return net_gso_ok(sk
->sk_route_caps
, sk
->sk_gso_type
);
2223 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
);
2225 static inline void sk_gso_disable(struct sock
*sk
)
2227 sk
->sk_gso_disabled
= 1;
2228 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
2231 static inline int skb_do_copy_data_nocache(struct sock
*sk
, struct sk_buff
*skb
,
2232 struct iov_iter
*from
, char *to
,
2233 int copy
, int offset
)
2235 if (skb
->ip_summed
== CHECKSUM_NONE
) {
2237 if (!csum_and_copy_from_iter_full(to
, copy
, &csum
, from
))
2239 skb
->csum
= csum_block_add(skb
->csum
, csum
, offset
);
2240 } else if (sk
->sk_route_caps
& NETIF_F_NOCACHE_COPY
) {
2241 if (!copy_from_iter_full_nocache(to
, copy
, from
))
2243 } else if (!copy_from_iter_full(to
, copy
, from
))
2249 static inline int skb_add_data_nocache(struct sock
*sk
, struct sk_buff
*skb
,
2250 struct iov_iter
*from
, int copy
)
2252 int err
, offset
= skb
->len
;
2254 err
= skb_do_copy_data_nocache(sk
, skb
, from
, skb_put(skb
, copy
),
2257 __skb_trim(skb
, offset
);
2262 static inline int skb_copy_to_page_nocache(struct sock
*sk
, struct iov_iter
*from
,
2263 struct sk_buff
*skb
,
2269 err
= skb_do_copy_data_nocache(sk
, skb
, from
, page_address(page
) + off
,
2274 skb_len_add(skb
, copy
);
2275 sk_wmem_queued_add(sk
, copy
);
2276 sk_mem_charge(sk
, copy
);
2281 * sk_wmem_alloc_get - returns write allocations
2284 * Return: sk_wmem_alloc minus initial offset of one
2286 static inline int sk_wmem_alloc_get(const struct sock
*sk
)
2288 return refcount_read(&sk
->sk_wmem_alloc
) - 1;
2292 * sk_rmem_alloc_get - returns read allocations
2295 * Return: sk_rmem_alloc
2297 static inline int sk_rmem_alloc_get(const struct sock
*sk
)
2299 return atomic_read(&sk
->sk_rmem_alloc
);
2303 * sk_has_allocations - check if allocations are outstanding
2306 * Return: true if socket has write or read allocations
2308 static inline bool sk_has_allocations(const struct sock
*sk
)
2310 return sk_wmem_alloc_get(sk
) || sk_rmem_alloc_get(sk
);
2314 * skwq_has_sleeper - check if there are any waiting processes
2315 * @wq: struct socket_wq
2317 * Return: true if socket_wq has waiting processes
2319 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2320 * barrier call. They were added due to the race found within the tcp code.
2322 * Consider following tcp code paths::
2325 * sys_select receive packet
2327 * __add_wait_queue update tp->rcv_nxt
2329 * tp->rcv_nxt check sock_def_readable
2331 * schedule rcu_read_lock();
2332 * wq = rcu_dereference(sk->sk_wq);
2333 * if (wq && waitqueue_active(&wq->wait))
2334 * wake_up_interruptible(&wq->wait)
2338 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2339 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2340 * could then endup calling schedule and sleep forever if there are no more
2341 * data on the socket.
2344 static inline bool skwq_has_sleeper(struct socket_wq
*wq
)
2346 return wq
&& wq_has_sleeper(&wq
->wait
);
2350 * sock_poll_wait - wrapper for the poll_wait call.
2352 * @sock: socket to wait on
2355 * See the comments in the wq_has_sleeper function.
2357 static inline void sock_poll_wait(struct file
*filp
, struct socket
*sock
,
2360 /* Provides a barrier we need to be sure we are in sync
2361 * with the socket flags modification.
2363 * This memory barrier is paired in the wq_has_sleeper.
2365 poll_wait(filp
, &sock
->wq
.wait
, p
);
2368 static inline void skb_set_hash_from_sk(struct sk_buff
*skb
, struct sock
*sk
)
2370 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2371 u32 txhash
= READ_ONCE(sk
->sk_txhash
);
2379 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
);
2382 * Queue a received datagram if it will fit. Stream and sequenced
2383 * protocols can't normally use this as they need to fit buffers in
2384 * and play with them.
2386 * Inlined as it's very short and called for pretty much every
2387 * packet ever received.
2389 static inline void skb_set_owner_r(struct sk_buff
*skb
, struct sock
*sk
)
2393 skb
->destructor
= sock_rfree
;
2394 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
2395 sk_mem_charge(sk
, skb
->truesize
);
2398 static inline __must_check
bool skb_set_owner_sk_safe(struct sk_buff
*skb
, struct sock
*sk
)
2400 if (sk
&& refcount_inc_not_zero(&sk
->sk_refcnt
)) {
2402 skb
->destructor
= sock_efree
;
2409 static inline struct sk_buff
*skb_clone_and_charge_r(struct sk_buff
*skb
, struct sock
*sk
)
2411 skb
= skb_clone(skb
, sk_gfp_mask(sk
, GFP_ATOMIC
));
2413 if (sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
2414 skb_set_owner_r(skb
, sk
);
2422 static inline void skb_prepare_for_gro(struct sk_buff
*skb
)
2424 if (skb
->destructor
!= sock_wfree
) {
2431 void sk_reset_timer(struct sock
*sk
, struct timer_list
*timer
,
2432 unsigned long expires
);
2434 void sk_stop_timer(struct sock
*sk
, struct timer_list
*timer
);
2436 void sk_stop_timer_sync(struct sock
*sk
, struct timer_list
*timer
);
2438 int __sk_queue_drop_skb(struct sock
*sk
, struct sk_buff_head
*sk_queue
,
2439 struct sk_buff
*skb
, unsigned int flags
,
2440 void (*destructor
)(struct sock
*sk
,
2441 struct sk_buff
*skb
));
2442 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
2444 int sock_queue_rcv_skb_reason(struct sock
*sk
, struct sk_buff
*skb
,
2445 enum skb_drop_reason
*reason
);
2447 static inline int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
2449 return sock_queue_rcv_skb_reason(sk
, skb
, NULL
);
2452 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
);
2453 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
);
2456 * Recover an error report and clear atomically
2459 static inline int sock_error(struct sock
*sk
)
2463 /* Avoid an atomic operation for the common case.
2464 * This is racy since another cpu/thread can change sk_err under us.
2466 if (likely(data_race(!sk
->sk_err
)))
2469 err
= xchg(&sk
->sk_err
, 0);
2473 void sk_error_report(struct sock
*sk
);
2475 static inline unsigned long sock_wspace(struct sock
*sk
)
2479 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
2480 amt
= sk
->sk_sndbuf
- refcount_read(&sk
->sk_wmem_alloc
);
2488 * We use sk->sk_wq_raw, from contexts knowing this
2489 * pointer is not NULL and cannot disappear/change.
2491 static inline void sk_set_bit(int nr
, struct sock
*sk
)
2493 if ((nr
== SOCKWQ_ASYNC_NOSPACE
|| nr
== SOCKWQ_ASYNC_WAITDATA
) &&
2494 !sock_flag(sk
, SOCK_FASYNC
))
2497 set_bit(nr
, &sk
->sk_wq_raw
->flags
);
2500 static inline void sk_clear_bit(int nr
, struct sock
*sk
)
2502 if ((nr
== SOCKWQ_ASYNC_NOSPACE
|| nr
== SOCKWQ_ASYNC_WAITDATA
) &&
2503 !sock_flag(sk
, SOCK_FASYNC
))
2506 clear_bit(nr
, &sk
->sk_wq_raw
->flags
);
2509 static inline void sk_wake_async(const struct sock
*sk
, int how
, int band
)
2511 if (sock_flag(sk
, SOCK_FASYNC
)) {
2513 sock_wake_async(rcu_dereference(sk
->sk_wq
), how
, band
);
2518 static inline void sk_wake_async_rcu(const struct sock
*sk
, int how
, int band
)
2520 if (unlikely(sock_flag(sk
, SOCK_FASYNC
)))
2521 sock_wake_async(rcu_dereference(sk
->sk_wq
), how
, band
);
2524 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2525 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2526 * Note: for send buffers, TCP works better if we can build two skbs at
2529 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2531 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2532 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2534 static inline void sk_stream_moderate_sndbuf(struct sock
*sk
)
2538 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
2541 val
= min(sk
->sk_sndbuf
, sk
->sk_wmem_queued
>> 1);
2542 val
= max_t(u32
, val
, sk_unused_reserved_mem(sk
));
2544 WRITE_ONCE(sk
->sk_sndbuf
, max_t(u32
, val
, SOCK_MIN_SNDBUF
));
2548 * sk_page_frag - return an appropriate page_frag
2551 * Use the per task page_frag instead of the per socket one for
2552 * optimization when we know that we're in process context and own
2553 * everything that's associated with %current.
2555 * Both direct reclaim and page faults can nest inside other
2556 * socket operations and end up recursing into sk_page_frag()
2557 * while it's already in use: explicitly avoid task page_frag
2558 * when users disable sk_use_task_frag.
2560 * Return: a per task page_frag if context allows that,
2561 * otherwise a per socket one.
2563 static inline struct page_frag
*sk_page_frag(struct sock
*sk
)
2565 if (sk
->sk_use_task_frag
)
2566 return ¤t
->task_frag
;
2568 return &sk
->sk_frag
;
2571 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
);
2574 * Default write policy as shown to user space via poll/select/SIGIO
2576 static inline bool sock_writeable(const struct sock
*sk
)
2578 return refcount_read(&sk
->sk_wmem_alloc
) < (READ_ONCE(sk
->sk_sndbuf
) >> 1);
2581 static inline gfp_t
gfp_any(void)
2583 return in_softirq() ? GFP_ATOMIC
: GFP_KERNEL
;
2586 static inline gfp_t
gfp_memcg_charge(void)
2588 return in_softirq() ? GFP_ATOMIC
: GFP_KERNEL
;
2591 static inline long sock_rcvtimeo(const struct sock
*sk
, bool noblock
)
2593 return noblock
? 0 : sk
->sk_rcvtimeo
;
2596 static inline long sock_sndtimeo(const struct sock
*sk
, bool noblock
)
2598 return noblock
? 0 : sk
->sk_sndtimeo
;
2601 static inline int sock_rcvlowat(const struct sock
*sk
, int waitall
, int len
)
2603 int v
= waitall
? len
: min_t(int, READ_ONCE(sk
->sk_rcvlowat
), len
);
2608 /* Alas, with timeout socket operations are not restartable.
2609 * Compare this to poll().
2611 static inline int sock_intr_errno(long timeo
)
2613 return timeo
== MAX_SCHEDULE_TIMEOUT
? -ERESTARTSYS
: -EINTR
;
2616 struct sock_skb_cb
{
2620 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2621 * using skb->cb[] would keep using it directly and utilize its
2622 * alignment guarantee.
2624 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2625 sizeof(struct sock_skb_cb))
2627 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2628 SOCK_SKB_CB_OFFSET))
2630 #define sock_skb_cb_check_size(size) \
2631 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2634 sock_skb_set_dropcount(const struct sock
*sk
, struct sk_buff
*skb
)
2636 SOCK_SKB_CB(skb
)->dropcount
= sock_flag(sk
, SOCK_RXQ_OVFL
) ?
2637 atomic_read(&sk
->sk_drops
) : 0;
2640 static inline void sk_drops_add(struct sock
*sk
, const struct sk_buff
*skb
)
2642 int segs
= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
2644 atomic_add(segs
, &sk
->sk_drops
);
2647 static inline ktime_t
sock_read_timestamp(struct sock
*sk
)
2649 #if BITS_PER_LONG==32
2654 seq
= read_seqbegin(&sk
->sk_stamp_seq
);
2656 } while (read_seqretry(&sk
->sk_stamp_seq
, seq
));
2660 return READ_ONCE(sk
->sk_stamp
);
2664 static inline void sock_write_timestamp(struct sock
*sk
, ktime_t kt
)
2666 #if BITS_PER_LONG==32
2667 write_seqlock(&sk
->sk_stamp_seq
);
2669 write_sequnlock(&sk
->sk_stamp_seq
);
2671 WRITE_ONCE(sk
->sk_stamp
, kt
);
2675 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
2676 struct sk_buff
*skb
);
2677 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
2678 struct sk_buff
*skb
);
2681 sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
, struct sk_buff
*skb
)
2683 struct skb_shared_hwtstamps
*hwtstamps
= skb_hwtstamps(skb
);
2684 u32 tsflags
= READ_ONCE(sk
->sk_tsflags
);
2685 ktime_t kt
= skb
->tstamp
;
2687 * generate control messages if
2688 * - receive time stamping in software requested
2689 * - software time stamp available and wanted
2690 * - hardware time stamps available and wanted
2692 if (sock_flag(sk
, SOCK_RCVTSTAMP
) ||
2693 (tsflags
& SOF_TIMESTAMPING_RX_SOFTWARE
) ||
2694 (kt
&& tsflags
& SOF_TIMESTAMPING_SOFTWARE
) ||
2695 (hwtstamps
->hwtstamp
&&
2696 (tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)))
2697 __sock_recv_timestamp(msg
, sk
, skb
);
2699 sock_write_timestamp(sk
, kt
);
2701 if (sock_flag(sk
, SOCK_WIFI_STATUS
) && skb_wifi_acked_valid(skb
))
2702 __sock_recv_wifi_status(msg
, sk
, skb
);
2705 void __sock_recv_cmsgs(struct msghdr
*msg
, struct sock
*sk
,
2706 struct sk_buff
*skb
);
2708 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2709 static inline void sock_recv_cmsgs(struct msghdr
*msg
, struct sock
*sk
,
2710 struct sk_buff
*skb
)
2712 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2713 (1UL << SOCK_RCVTSTAMP) | \
2714 (1UL << SOCK_RCVMARK) | \
2715 (1UL << SOCK_RCVPRIORITY) | \
2716 (1UL << SOCK_TIMESTAMPING_ANY))
2717 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2718 SOF_TIMESTAMPING_RAW_HARDWARE)
2720 if (READ_ONCE(sk
->sk_flags
) & FLAGS_RECV_CMSGS
)
2721 __sock_recv_cmsgs(msg
, sk
, skb
);
2722 else if (unlikely(sock_flag(sk
, SOCK_TIMESTAMP
)))
2723 sock_write_timestamp(sk
, skb
->tstamp
);
2724 else if (unlikely(sock_read_timestamp(sk
) == SK_DEFAULT_STAMP
))
2725 sock_write_timestamp(sk
, 0);
2728 void __sock_tx_timestamp(__u32 tsflags
, __u8
*tx_flags
);
2731 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2732 * @sk: socket sending this packet
2733 * @sockc: pointer to socket cmsg cookie to get timestamping info
2734 * @tx_flags: completed with instructions for time stamping
2735 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2737 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2739 static inline void _sock_tx_timestamp(struct sock
*sk
,
2740 const struct sockcm_cookie
*sockc
,
2741 __u8
*tx_flags
, __u32
*tskey
)
2743 __u32 tsflags
= sockc
->tsflags
;
2745 if (unlikely(tsflags
)) {
2746 __sock_tx_timestamp(tsflags
, tx_flags
);
2747 if (tsflags
& SOF_TIMESTAMPING_OPT_ID
&& tskey
&&
2748 tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
) {
2749 if (tsflags
& SOCKCM_FLAG_TS_OPT_ID
)
2750 *tskey
= sockc
->ts_opt_id
;
2752 *tskey
= atomic_inc_return(&sk
->sk_tskey
) - 1;
2757 static inline void sock_tx_timestamp(struct sock
*sk
,
2758 const struct sockcm_cookie
*sockc
,
2761 _sock_tx_timestamp(sk
, sockc
, tx_flags
, NULL
);
2764 static inline void skb_setup_tx_timestamp(struct sk_buff
*skb
,
2765 const struct sockcm_cookie
*sockc
)
2767 _sock_tx_timestamp(skb
->sk
, sockc
, &skb_shinfo(skb
)->tx_flags
,
2768 &skb_shinfo(skb
)->tskey
);
2771 static inline bool sk_is_inet(const struct sock
*sk
)
2773 int family
= READ_ONCE(sk
->sk_family
);
2775 return family
== AF_INET
|| family
== AF_INET6
;
2778 static inline bool sk_is_tcp(const struct sock
*sk
)
2780 return sk_is_inet(sk
) &&
2781 sk
->sk_type
== SOCK_STREAM
&&
2782 sk
->sk_protocol
== IPPROTO_TCP
;
2785 static inline bool sk_is_udp(const struct sock
*sk
)
2787 return sk_is_inet(sk
) &&
2788 sk
->sk_type
== SOCK_DGRAM
&&
2789 sk
->sk_protocol
== IPPROTO_UDP
;
2792 static inline bool sk_is_unix(const struct sock
*sk
)
2794 return sk
->sk_family
== AF_UNIX
;
2797 static inline bool sk_is_stream_unix(const struct sock
*sk
)
2799 return sk_is_unix(sk
) && sk
->sk_type
== SOCK_STREAM
;
2802 static inline bool sk_is_vsock(const struct sock
*sk
)
2804 return sk
->sk_family
== AF_VSOCK
;
2807 static inline bool sk_may_scm_recv(const struct sock
*sk
)
2809 return (IS_ENABLED(CONFIG_UNIX
) && sk
->sk_family
== AF_UNIX
) ||
2810 sk
->sk_family
== AF_NETLINK
||
2811 (IS_ENABLED(CONFIG_BT
) && sk
->sk_family
== AF_BLUETOOTH
);
2815 * sk_eat_skb - Release a skb if it is no longer needed
2816 * @sk: socket to eat this skb from
2817 * @skb: socket buffer to eat
2819 * This routine must be called with interrupts disabled or with the socket
2820 * locked so that the sk_buff queue operation is ok.
2822 static inline void sk_eat_skb(struct sock
*sk
, struct sk_buff
*skb
)
2824 __skb_unlink(skb
, &sk
->sk_receive_queue
);
2829 skb_sk_is_prefetched(struct sk_buff
*skb
)
2832 return skb
->destructor
== sock_pfree
;
2835 #endif /* CONFIG_INET */
2838 /* This helper checks if a socket is a full socket,
2839 * ie _not_ a timewait or request socket.
2841 static inline bool sk_fullsock(const struct sock
*sk
)
2843 return (1 << sk
->sk_state
) & ~(TCPF_TIME_WAIT
| TCPF_NEW_SYN_RECV
);
2847 sk_is_refcounted(struct sock
*sk
)
2849 /* Only full sockets have sk->sk_flags. */
2850 return !sk_fullsock(sk
) || !sock_flag(sk
, SOCK_RCU_FREE
);
2854 sk_requests_wifi_status(struct sock
*sk
)
2856 return sk
&& sk_fullsock(sk
) && sock_flag(sk
, SOCK_WIFI_STATUS
);
2859 /* Checks if this SKB belongs to an HW offloaded socket
2860 * and whether any SW fallbacks are required based on dev.
2861 * Check decrypted mark in case skb_orphan() cleared socket.
2863 static inline struct sk_buff
*sk_validate_xmit_skb(struct sk_buff
*skb
,
2864 struct net_device
*dev
)
2866 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2867 struct sock
*sk
= skb
->sk
;
2869 if (sk
&& sk_fullsock(sk
) && sk
->sk_validate_xmit_skb
) {
2870 skb
= sk
->sk_validate_xmit_skb(sk
, dev
, skb
);
2871 } else if (unlikely(skb_is_decrypted(skb
))) {
2872 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2881 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2882 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2884 static inline bool sk_listener(const struct sock
*sk
)
2886 return (1 << sk
->sk_state
) & (TCPF_LISTEN
| TCPF_NEW_SYN_RECV
);
2889 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2890 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2891 * TCP RST and ACK can be attached to TIME_WAIT.
2893 static inline bool sk_listener_or_tw(const struct sock
*sk
)
2895 return (1 << READ_ONCE(sk
->sk_state
)) &
2896 (TCPF_LISTEN
| TCPF_NEW_SYN_RECV
| TCPF_TIME_WAIT
);
2899 void sock_enable_timestamp(struct sock
*sk
, enum sock_flags flag
);
2900 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
, int level
,
2903 bool sk_ns_capable(const struct sock
*sk
,
2904 struct user_namespace
*user_ns
, int cap
);
2905 bool sk_capable(const struct sock
*sk
, int cap
);
2906 bool sk_net_capable(const struct sock
*sk
, int cap
);
2908 void sk_get_meminfo(const struct sock
*sk
, u32
*meminfo
);
2910 /* Take into consideration the size of the struct sk_buff overhead in the
2911 * determination of these values, since that is non-constant across
2912 * platforms. This makes socket queueing behavior and performance
2913 * not depend upon such differences.
2915 #define _SK_MEM_PACKETS 256
2916 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2917 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2918 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2920 extern __u32 sysctl_wmem_max
;
2921 extern __u32 sysctl_rmem_max
;
2923 extern __u32 sysctl_wmem_default
;
2924 extern __u32 sysctl_rmem_default
;
2926 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2927 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key
);
2929 static inline int sk_get_wmem0(const struct sock
*sk
, const struct proto
*proto
)
2931 /* Does this proto have per netns sysctl_wmem ? */
2932 if (proto
->sysctl_wmem_offset
)
2933 return READ_ONCE(*(int *)((void *)sock_net(sk
) + proto
->sysctl_wmem_offset
));
2935 return READ_ONCE(*proto
->sysctl_wmem
);
2938 static inline int sk_get_rmem0(const struct sock
*sk
, const struct proto
*proto
)
2940 /* Does this proto have per netns sysctl_rmem ? */
2941 if (proto
->sysctl_rmem_offset
)
2942 return READ_ONCE(*(int *)((void *)sock_net(sk
) + proto
->sysctl_rmem_offset
));
2944 return READ_ONCE(*proto
->sysctl_rmem
);
2947 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2948 * Some wifi drivers need to tweak it to get more chunks.
2949 * They can use this helper from their ndo_start_xmit()
2951 static inline void sk_pacing_shift_update(struct sock
*sk
, int val
)
2953 if (!sk
|| !sk_fullsock(sk
) || READ_ONCE(sk
->sk_pacing_shift
) == val
)
2955 WRITE_ONCE(sk
->sk_pacing_shift
, val
);
2958 /* if a socket is bound to a device, check that the given device
2959 * index is either the same or that the socket is bound to an L3
2960 * master device and the given device index is also enslaved to
2963 static inline bool sk_dev_equal_l3scope(struct sock
*sk
, int dif
)
2965 int bound_dev_if
= READ_ONCE(sk
->sk_bound_dev_if
);
2968 if (!bound_dev_if
|| bound_dev_if
== dif
)
2971 mdif
= l3mdev_master_ifindex_by_index(sock_net(sk
), dif
);
2972 if (mdif
&& mdif
== bound_dev_if
)
2978 void sock_def_readable(struct sock
*sk
);
2980 int sock_bindtoindex(struct sock
*sk
, int ifindex
, bool lock_sk
);
2981 void sock_set_timestamp(struct sock
*sk
, int optname
, bool valbool
);
2982 int sock_set_timestamping(struct sock
*sk
, int optname
,
2983 struct so_timestamping timestamping
);
2985 void sock_enable_timestamps(struct sock
*sk
);
2986 #if defined(CONFIG_CGROUP_BPF)
2987 void bpf_skops_tx_timestamping(struct sock
*sk
, struct sk_buff
*skb
, int op
);
2989 static inline void bpf_skops_tx_timestamping(struct sock
*sk
, struct sk_buff
*skb
, int op
)
2993 void sock_no_linger(struct sock
*sk
);
2994 void sock_set_keepalive(struct sock
*sk
);
2995 void sock_set_priority(struct sock
*sk
, u32 priority
);
2996 void sock_set_rcvbuf(struct sock
*sk
, int val
);
2997 void sock_set_mark(struct sock
*sk
, u32 val
);
2998 void sock_set_reuseaddr(struct sock
*sk
);
2999 void sock_set_reuseport(struct sock
*sk
);
3000 void sock_set_sndtimeo(struct sock
*sk
, s64 secs
);
3002 int sock_bind_add(struct sock
*sk
, struct sockaddr
*addr
, int addr_len
);
3004 int sock_get_timeout(long timeo
, void *optval
, bool old_timeval
);
3005 int sock_copy_user_timeval(struct __kernel_sock_timeval
*tv
,
3006 sockptr_t optval
, int optlen
, bool old_timeval
);
3008 int sock_ioctl_inout(struct sock
*sk
, unsigned int cmd
,
3009 void __user
*arg
, void *karg
, size_t size
);
3010 int sk_ioctl(struct sock
*sk
, unsigned int cmd
, void __user
*arg
);
3011 static inline bool sk_is_readable(struct sock
*sk
)
3013 const struct proto
*prot
= READ_ONCE(sk
->sk_prot
);
3015 if (prot
->sock_is_readable
)
3016 return prot
->sock_is_readable(sk
);
3020 #endif /* _SOCK_H */