]> git.ipfire.org Git - thirdparty/linux.git/blob - include/net/tcp.h
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / include / net / tcp.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS 48
57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59 /*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63 #define MAX_TCP_WINDOW 32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
67
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS 1024
70
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL 600
73
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD 8
76
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS 16U
82
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE 14U
85
86 /* urg_data states */
87 #define TCP_URG_VALID 0x0100
88 #define TCP_URG_NOTYET 0x0200
89 #define TCP_URG_READ 0x0400
90
91 #define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98 #define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
113
114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
120
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129
130 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN ((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN 4U
136 #define TCP_ATO_MIN 4U
137 #endif
138 #define TCP_RTO_MAX ((unsigned)(120*HZ))
139 #define TCP_RTO_MIN ((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
143 * used as a fallback RTO for the
144 * initial data transmission if no
145 * valid RTT sample has been acquired,
146 * most likely due to retrans in 3WHS.
147 */
148
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 * for local resources.
151 */
152 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
153 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
154 #define TCP_KEEPALIVE_INTVL (75*HZ)
155
156 #define MAX_TCP_KEEPIDLE 32767
157 #define MAX_TCP_KEEPINTVL 32767
158 #define MAX_TCP_KEEPCNT 127
159 #define MAX_TCP_SYNCNT 127
160
161 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
162
163 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
165 * after this time. It should be equal
166 * (or greater than) TCP_TIMEWAIT_LEN
167 * to provide reliability equal to one
168 * provided by timewait state.
169 */
170 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
171 * timestamps. It must be less than
172 * minimal timewait lifetime.
173 */
174 /*
175 * TCP option
176 */
177
178 #define TCPOPT_NOP 1 /* Padding */
179 #define TCPOPT_EOL 0 /* End of options */
180 #define TCPOPT_MSS 2 /* Segment size negotiating */
181 #define TCPOPT_WINDOW 3 /* Window scaling */
182 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
183 #define TCPOPT_SACK 5 /* SACK Block */
184 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
186 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
187 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
188 #define TCPOPT_EXP 254 /* Experimental */
189 /* Magic number to be after the option value for sharing TCP
190 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
191 */
192 #define TCPOPT_FASTOPEN_MAGIC 0xF989
193 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
194
195 /*
196 * TCP option lengths
197 */
198
199 #define TCPOLEN_MSS 4
200 #define TCPOLEN_WINDOW 3
201 #define TCPOLEN_SACK_PERM 2
202 #define TCPOLEN_TIMESTAMP 10
203 #define TCPOLEN_MD5SIG 18
204 #define TCPOLEN_FASTOPEN_BASE 2
205 #define TCPOLEN_EXP_FASTOPEN_BASE 4
206 #define TCPOLEN_EXP_SMC_BASE 6
207
208 /* But this is what stacks really send out. */
209 #define TCPOLEN_TSTAMP_ALIGNED 12
210 #define TCPOLEN_WSCALE_ALIGNED 4
211 #define TCPOLEN_SACKPERM_ALIGNED 4
212 #define TCPOLEN_SACK_BASE 2
213 #define TCPOLEN_SACK_BASE_ALIGNED 4
214 #define TCPOLEN_SACK_PERBLOCK 8
215 #define TCPOLEN_MD5SIG_ALIGNED 20
216 #define TCPOLEN_MSS_ALIGNED 4
217 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
218
219 /* Flags in tp->nonagle */
220 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
221 #define TCP_NAGLE_CORK 2 /* Socket is corked */
222 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
223
224 /* TCP thin-stream limits */
225 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
226
227 /* TCP initial congestion window as per rfc6928 */
228 #define TCP_INIT_CWND 10
229
230 /* Bit Flags for sysctl_tcp_fastopen */
231 #define TFO_CLIENT_ENABLE 1
232 #define TFO_SERVER_ENABLE 2
233 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
234
235 /* Accept SYN data w/o any cookie option */
236 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
237
238 /* Force enable TFO on all listeners, i.e., not requiring the
239 * TCP_FASTOPEN socket option.
240 */
241 #define TFO_SERVER_WO_SOCKOPT1 0x400
242
243
244 /* sysctl variables for tcp */
245 extern int sysctl_tcp_max_orphans;
246 extern long sysctl_tcp_mem[3];
247
248 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
249 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
250 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
251
252 extern atomic_long_t tcp_memory_allocated;
253 extern struct percpu_counter tcp_sockets_allocated;
254 extern unsigned long tcp_memory_pressure;
255
256 /* optimized version of sk_under_memory_pressure() for TCP sockets */
257 static inline bool tcp_under_memory_pressure(const struct sock *sk)
258 {
259 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
260 mem_cgroup_under_socket_pressure(sk->sk_memcg))
261 return true;
262
263 return READ_ONCE(tcp_memory_pressure);
264 }
265 /*
266 * The next routines deal with comparing 32 bit unsigned ints
267 * and worry about wraparound (automatic with unsigned arithmetic).
268 */
269
270 static inline bool before(__u32 seq1, __u32 seq2)
271 {
272 return (__s32)(seq1-seq2) < 0;
273 }
274 #define after(seq2, seq1) before(seq1, seq2)
275
276 /* is s2<=s1<=s3 ? */
277 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
278 {
279 return seq3 - seq2 >= seq1 - seq2;
280 }
281
282 static inline bool tcp_out_of_memory(struct sock *sk)
283 {
284 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
285 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
286 return true;
287 return false;
288 }
289
290 void sk_forced_mem_schedule(struct sock *sk, int size);
291
292 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
293 {
294 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
295 int orphans = percpu_counter_read_positive(ocp);
296
297 if (orphans << shift > sysctl_tcp_max_orphans) {
298 orphans = percpu_counter_sum_positive(ocp);
299 if (orphans << shift > sysctl_tcp_max_orphans)
300 return true;
301 }
302 return false;
303 }
304
305 bool tcp_check_oom(struct sock *sk, int shift);
306
307
308 extern struct proto tcp_prot;
309
310 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314
315 void tcp_tasklet_init(void);
316
317 int tcp_v4_err(struct sk_buff *skb, u32);
318
319 void tcp_shutdown(struct sock *sk, int how);
320
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323
324 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
325 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
328 int flags);
329 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
331 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
335 int size_goal);
336 void tcp_release_cb(struct sock *sk);
337 void tcp_wfree(struct sk_buff *skb);
338 void tcp_write_timer_handler(struct sock *sk);
339 void tcp_delack_timer_handler(struct sock *sk);
340 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
341 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_space_adjust(struct sock *sk);
344 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 void tcp_twsk_destructor(struct sock *sk);
346 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 struct pipe_inode_info *pipe, size_t len,
348 unsigned int flags);
349
350 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
351 static inline void tcp_dec_quickack_mode(struct sock *sk,
352 const unsigned int pkts)
353 {
354 struct inet_connection_sock *icsk = inet_csk(sk);
355
356 if (icsk->icsk_ack.quick) {
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
359 /* Leaving quickack mode we deflate ATO. */
360 icsk->icsk_ack.ato = TCP_ATO_MIN;
361 } else
362 icsk->icsk_ack.quick -= pkts;
363 }
364 }
365
366 #define TCP_ECN_OK 1
367 #define TCP_ECN_QUEUE_CWR 2
368 #define TCP_ECN_DEMAND_CWR 4
369 #define TCP_ECN_SEEN 8
370
371 enum tcp_tw_status {
372 TCP_TW_SUCCESS = 0,
373 TCP_TW_RST = 1,
374 TCP_TW_ACK = 2,
375 TCP_TW_SYN = 3
376 };
377
378
379 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 struct sk_buff *skb,
381 const struct tcphdr *th);
382 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 struct request_sock *req, bool fastopen,
384 bool *lost_race);
385 int tcp_child_process(struct sock *parent, struct sock *child,
386 struct sk_buff *skb);
387 void tcp_enter_loss(struct sock *sk);
388 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
389 void tcp_clear_retrans(struct tcp_sock *tp);
390 void tcp_update_metrics(struct sock *sk);
391 void tcp_init_metrics(struct sock *sk);
392 void tcp_metrics_init(void);
393 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394 void tcp_close(struct sock *sk, long timeout);
395 void tcp_init_sock(struct sock *sk);
396 void tcp_init_transfer(struct sock *sk, int bpf_op);
397 __poll_t tcp_poll(struct file *file, struct socket *sock,
398 struct poll_table_struct *wait);
399 int tcp_getsockopt(struct sock *sk, int level, int optname,
400 char __user *optval, int __user *optlen);
401 int tcp_setsockopt(struct sock *sk, int level, int optname,
402 char __user *optval, unsigned int optlen);
403 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
404 char __user *optval, int __user *optlen);
405 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
406 char __user *optval, unsigned int optlen);
407 void tcp_set_keepalive(struct sock *sk, int val);
408 void tcp_syn_ack_timeout(const struct request_sock *req);
409 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
410 int flags, int *addr_len);
411 int tcp_set_rcvlowat(struct sock *sk, int val);
412 void tcp_data_ready(struct sock *sk);
413 #ifdef CONFIG_MMU
414 int tcp_mmap(struct file *file, struct socket *sock,
415 struct vm_area_struct *vma);
416 #endif
417 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
418 struct tcp_options_received *opt_rx,
419 int estab, struct tcp_fastopen_cookie *foc);
420 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
421
422 /*
423 * BPF SKB-less helpers
424 */
425 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
426 struct tcphdr *th, u32 *cookie);
427 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
428 struct tcphdr *th, u32 *cookie);
429 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
430 const struct tcp_request_sock_ops *af_ops,
431 struct sock *sk, struct tcphdr *th);
432 /*
433 * TCP v4 functions exported for the inet6 API
434 */
435
436 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
437 void tcp_v4_mtu_reduced(struct sock *sk);
438 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
439 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
440 struct sock *tcp_create_openreq_child(const struct sock *sk,
441 struct request_sock *req,
442 struct sk_buff *skb);
443 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
444 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
445 struct request_sock *req,
446 struct dst_entry *dst,
447 struct request_sock *req_unhash,
448 bool *own_req);
449 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
450 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
451 int tcp_connect(struct sock *sk);
452 enum tcp_synack_type {
453 TCP_SYNACK_NORMAL,
454 TCP_SYNACK_FASTOPEN,
455 TCP_SYNACK_COOKIE,
456 };
457 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
458 struct request_sock *req,
459 struct tcp_fastopen_cookie *foc,
460 enum tcp_synack_type synack_type);
461 int tcp_disconnect(struct sock *sk, int flags);
462
463 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
464 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
465 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
466
467 /* From syncookies.c */
468 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
469 struct request_sock *req,
470 struct dst_entry *dst, u32 tsoff);
471 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
472 u32 cookie);
473 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
474 #ifdef CONFIG_SYN_COOKIES
475
476 /* Syncookies use a monotonic timer which increments every 60 seconds.
477 * This counter is used both as a hash input and partially encoded into
478 * the cookie value. A cookie is only validated further if the delta
479 * between the current counter value and the encoded one is less than this,
480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
481 * the counter advances immediately after a cookie is generated).
482 */
483 #define MAX_SYNCOOKIE_AGE 2
484 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
485 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
486
487 /* syncookies: remember time of last synqueue overflow
488 * But do not dirty this field too often (once per second is enough)
489 * It is racy as we do not hold a lock, but race is very minor.
490 */
491 static inline void tcp_synq_overflow(const struct sock *sk)
492 {
493 unsigned int last_overflow;
494 unsigned int now = jiffies;
495
496 if (sk->sk_reuseport) {
497 struct sock_reuseport *reuse;
498
499 reuse = rcu_dereference(sk->sk_reuseport_cb);
500 if (likely(reuse)) {
501 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
502 if (!time_between32(now, last_overflow,
503 last_overflow + HZ))
504 WRITE_ONCE(reuse->synq_overflow_ts, now);
505 return;
506 }
507 }
508
509 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
510 if (!time_between32(now, last_overflow, last_overflow + HZ))
511 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
512 }
513
514 /* syncookies: no recent synqueue overflow on this listening socket? */
515 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
516 {
517 unsigned int last_overflow;
518 unsigned int now = jiffies;
519
520 if (sk->sk_reuseport) {
521 struct sock_reuseport *reuse;
522
523 reuse = rcu_dereference(sk->sk_reuseport_cb);
524 if (likely(reuse)) {
525 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
526 return !time_between32(now, last_overflow - HZ,
527 last_overflow +
528 TCP_SYNCOOKIE_VALID);
529 }
530 }
531
532 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
533
534 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
535 * then we're under synflood. However, we have to use
536 * 'last_overflow - HZ' as lower bound. That's because a concurrent
537 * tcp_synq_overflow() could update .ts_recent_stamp after we read
538 * jiffies but before we store .ts_recent_stamp into last_overflow,
539 * which could lead to rejecting a valid syncookie.
540 */
541 return !time_between32(now, last_overflow - HZ,
542 last_overflow + TCP_SYNCOOKIE_VALID);
543 }
544
545 static inline u32 tcp_cookie_time(void)
546 {
547 u64 val = get_jiffies_64();
548
549 do_div(val, TCP_SYNCOOKIE_PERIOD);
550 return val;
551 }
552
553 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
554 u16 *mssp);
555 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
556 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
557 bool cookie_timestamp_decode(const struct net *net,
558 struct tcp_options_received *opt);
559 bool cookie_ecn_ok(const struct tcp_options_received *opt,
560 const struct net *net, const struct dst_entry *dst);
561
562 /* From net/ipv6/syncookies.c */
563 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
564 u32 cookie);
565 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
566
567 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
568 const struct tcphdr *th, u16 *mssp);
569 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
570 #endif
571 /* tcp_output.c */
572
573 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
574 int nonagle);
575 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
576 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 void tcp_retransmit_timer(struct sock *sk);
578 void tcp_xmit_retransmit_queue(struct sock *);
579 void tcp_simple_retransmit(struct sock *);
580 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
581 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
582 enum tcp_queue {
583 TCP_FRAG_IN_WRITE_QUEUE,
584 TCP_FRAG_IN_RTX_QUEUE,
585 };
586 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
587 struct sk_buff *skb, u32 len,
588 unsigned int mss_now, gfp_t gfp);
589
590 void tcp_send_probe0(struct sock *);
591 void tcp_send_partial(struct sock *);
592 int tcp_write_wakeup(struct sock *, int mib);
593 void tcp_send_fin(struct sock *sk);
594 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
595 int tcp_send_synack(struct sock *);
596 void tcp_push_one(struct sock *, unsigned int mss_now);
597 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
598 void tcp_send_ack(struct sock *sk);
599 void tcp_send_delayed_ack(struct sock *sk);
600 void tcp_send_loss_probe(struct sock *sk);
601 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
602 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
603 const struct sk_buff *next_skb);
604
605 /* tcp_input.c */
606 void tcp_rearm_rto(struct sock *sk);
607 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
608 void tcp_reset(struct sock *sk);
609 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
610 void tcp_fin(struct sock *sk);
611
612 /* tcp_timer.c */
613 void tcp_init_xmit_timers(struct sock *);
614 static inline void tcp_clear_xmit_timers(struct sock *sk)
615 {
616 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
617 __sock_put(sk);
618
619 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
620 __sock_put(sk);
621
622 inet_csk_clear_xmit_timers(sk);
623 }
624
625 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
626 unsigned int tcp_current_mss(struct sock *sk);
627
628 /* Bound MSS / TSO packet size with the half of the window */
629 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
630 {
631 int cutoff;
632
633 /* When peer uses tiny windows, there is no use in packetizing
634 * to sub-MSS pieces for the sake of SWS or making sure there
635 * are enough packets in the pipe for fast recovery.
636 *
637 * On the other hand, for extremely large MSS devices, handling
638 * smaller than MSS windows in this way does make sense.
639 */
640 if (tp->max_window > TCP_MSS_DEFAULT)
641 cutoff = (tp->max_window >> 1);
642 else
643 cutoff = tp->max_window;
644
645 if (cutoff && pktsize > cutoff)
646 return max_t(int, cutoff, 68U - tp->tcp_header_len);
647 else
648 return pktsize;
649 }
650
651 /* tcp.c */
652 void tcp_get_info(struct sock *, struct tcp_info *);
653
654 /* Read 'sendfile()'-style from a TCP socket */
655 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
656 sk_read_actor_t recv_actor);
657
658 void tcp_initialize_rcv_mss(struct sock *sk);
659
660 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
661 int tcp_mss_to_mtu(struct sock *sk, int mss);
662 void tcp_mtup_init(struct sock *sk);
663 void tcp_init_buffer_space(struct sock *sk);
664
665 static inline void tcp_bound_rto(const struct sock *sk)
666 {
667 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669 }
670
671 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672 {
673 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
674 }
675
676 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677 {
678 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
679 ntohl(TCP_FLAG_ACK) |
680 snd_wnd);
681 }
682
683 static inline void tcp_fast_path_on(struct tcp_sock *tp)
684 {
685 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
686 }
687
688 static inline void tcp_fast_path_check(struct sock *sk)
689 {
690 struct tcp_sock *tp = tcp_sk(sk);
691
692 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
693 tp->rcv_wnd &&
694 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
695 !tp->urg_data)
696 tcp_fast_path_on(tp);
697 }
698
699 /* Compute the actual rto_min value */
700 static inline u32 tcp_rto_min(struct sock *sk)
701 {
702 const struct dst_entry *dst = __sk_dst_get(sk);
703 u32 rto_min = TCP_RTO_MIN;
704
705 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
706 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
707 return rto_min;
708 }
709
710 static inline u32 tcp_rto_min_us(struct sock *sk)
711 {
712 return jiffies_to_usecs(tcp_rto_min(sk));
713 }
714
715 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
716 {
717 return dst_metric_locked(dst, RTAX_CC_ALGO);
718 }
719
720 /* Minimum RTT in usec. ~0 means not available. */
721 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
722 {
723 return minmax_get(&tp->rtt_min);
724 }
725
726 /* Compute the actual receive window we are currently advertising.
727 * Rcv_nxt can be after the window if our peer push more data
728 * than the offered window.
729 */
730 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
731 {
732 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
733
734 if (win < 0)
735 win = 0;
736 return (u32) win;
737 }
738
739 /* Choose a new window, without checks for shrinking, and without
740 * scaling applied to the result. The caller does these things
741 * if necessary. This is a "raw" window selection.
742 */
743 u32 __tcp_select_window(struct sock *sk);
744
745 void tcp_send_window_probe(struct sock *sk);
746
747 /* TCP uses 32bit jiffies to save some space.
748 * Note that this is different from tcp_time_stamp, which
749 * historically has been the same until linux-4.13.
750 */
751 #define tcp_jiffies32 ((u32)jiffies)
752
753 /*
754 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
755 * It is no longer tied to jiffies, but to 1 ms clock.
756 * Note: double check if you want to use tcp_jiffies32 instead of this.
757 */
758 #define TCP_TS_HZ 1000
759
760 static inline u64 tcp_clock_ns(void)
761 {
762 return ktime_get_ns();
763 }
764
765 static inline u64 tcp_clock_us(void)
766 {
767 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
768 }
769
770 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
771 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
772 {
773 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
774 }
775
776 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
777 static inline u32 tcp_ns_to_ts(u64 ns)
778 {
779 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
780 }
781
782 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
783 static inline u32 tcp_time_stamp_raw(void)
784 {
785 return tcp_ns_to_ts(tcp_clock_ns());
786 }
787
788 void tcp_mstamp_refresh(struct tcp_sock *tp);
789
790 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
791 {
792 return max_t(s64, t1 - t0, 0);
793 }
794
795 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
796 {
797 return tcp_ns_to_ts(skb->skb_mstamp_ns);
798 }
799
800 /* provide the departure time in us unit */
801 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
802 {
803 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
804 }
805
806
807 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
808
809 #define TCPHDR_FIN 0x01
810 #define TCPHDR_SYN 0x02
811 #define TCPHDR_RST 0x04
812 #define TCPHDR_PSH 0x08
813 #define TCPHDR_ACK 0x10
814 #define TCPHDR_URG 0x20
815 #define TCPHDR_ECE 0x40
816 #define TCPHDR_CWR 0x80
817
818 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
819
820 /* This is what the send packet queuing engine uses to pass
821 * TCP per-packet control information to the transmission code.
822 * We also store the host-order sequence numbers in here too.
823 * This is 44 bytes if IPV6 is enabled.
824 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
825 */
826 struct tcp_skb_cb {
827 __u32 seq; /* Starting sequence number */
828 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
829 union {
830 /* Note : tcp_tw_isn is used in input path only
831 * (isn chosen by tcp_timewait_state_process())
832 *
833 * tcp_gso_segs/size are used in write queue only,
834 * cf tcp_skb_pcount()/tcp_skb_mss()
835 */
836 __u32 tcp_tw_isn;
837 struct {
838 u16 tcp_gso_segs;
839 u16 tcp_gso_size;
840 };
841 };
842 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
843
844 __u8 sacked; /* State flags for SACK. */
845 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
846 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
847 #define TCPCB_LOST 0x04 /* SKB is lost */
848 #define TCPCB_TAGBITS 0x07 /* All tag bits */
849 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
850 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
851 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
852 TCPCB_REPAIRED)
853
854 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
855 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
856 eor:1, /* Is skb MSG_EOR marked? */
857 has_rxtstamp:1, /* SKB has a RX timestamp */
858 unused:5;
859 __u32 ack_seq; /* Sequence number ACK'd */
860 union {
861 struct {
862 /* There is space for up to 24 bytes */
863 __u32 in_flight:30,/* Bytes in flight at transmit */
864 is_app_limited:1, /* cwnd not fully used? */
865 unused:1;
866 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
867 __u32 delivered;
868 /* start of send pipeline phase */
869 u64 first_tx_mstamp;
870 /* when we reached the "delivered" count */
871 u64 delivered_mstamp;
872 } tx; /* only used for outgoing skbs */
873 union {
874 struct inet_skb_parm h4;
875 #if IS_ENABLED(CONFIG_IPV6)
876 struct inet6_skb_parm h6;
877 #endif
878 } header; /* For incoming skbs */
879 struct {
880 __u32 flags;
881 struct sock *sk_redir;
882 void *data_end;
883 } bpf;
884 };
885 };
886
887 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
888
889 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
890 {
891 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
892 }
893
894 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
895 {
896 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
897 }
898
899 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
900 {
901 return TCP_SKB_CB(skb)->bpf.sk_redir;
902 }
903
904 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
905 {
906 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
907 }
908
909 #if IS_ENABLED(CONFIG_IPV6)
910 /* This is the variant of inet6_iif() that must be used by TCP,
911 * as TCP moves IP6CB into a different location in skb->cb[]
912 */
913 static inline int tcp_v6_iif(const struct sk_buff *skb)
914 {
915 return TCP_SKB_CB(skb)->header.h6.iif;
916 }
917
918 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
919 {
920 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
921
922 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
923 }
924
925 /* TCP_SKB_CB reference means this can not be used from early demux */
926 static inline int tcp_v6_sdif(const struct sk_buff *skb)
927 {
928 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
930 return TCP_SKB_CB(skb)->header.h6.iif;
931 #endif
932 return 0;
933 }
934 #endif
935
936 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
940 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
941 return true;
942 #endif
943 return false;
944 }
945
946 /* TCP_SKB_CB reference means this can not be used from early demux */
947 static inline int tcp_v4_sdif(struct sk_buff *skb)
948 {
949 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
950 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
951 return TCP_SKB_CB(skb)->header.h4.iif;
952 #endif
953 return 0;
954 }
955
956 /* Due to TSO, an SKB can be composed of multiple actual
957 * packets. To keep these tracked properly, we use this.
958 */
959 static inline int tcp_skb_pcount(const struct sk_buff *skb)
960 {
961 return TCP_SKB_CB(skb)->tcp_gso_segs;
962 }
963
964 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
965 {
966 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
967 }
968
969 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
970 {
971 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
972 }
973
974 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
975 static inline int tcp_skb_mss(const struct sk_buff *skb)
976 {
977 return TCP_SKB_CB(skb)->tcp_gso_size;
978 }
979
980 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
981 {
982 return likely(!TCP_SKB_CB(skb)->eor);
983 }
984
985 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
986 const struct sk_buff *from)
987 {
988 return likely(tcp_skb_can_collapse_to(to) &&
989 mptcp_skb_can_collapse(to, from));
990 }
991
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 CA_EVENT_TX_START, /* first transmit when no packets in flight */
995 CA_EVENT_CWND_RESTART, /* congestion window restart */
996 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
997 CA_EVENT_LOSS, /* loss timeout */
998 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
999 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1000 };
1001
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1005 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1006 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1007 };
1008
1009 /*
1010 * Interface for adding new TCP congestion control handlers
1011 */
1012 #define TCP_CA_NAME_MAX 16
1013 #define TCP_CA_MAX 128
1014 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1015
1016 #define TCP_CA_UNSPEC 0
1017
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN 0x2
1022 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023
1024 union tcp_cc_info;
1025
1026 struct ack_sample {
1027 u32 pkts_acked;
1028 s32 rtt_us;
1029 u32 in_flight;
1030 };
1031
1032 /* A rate sample measures the number of (original/retransmitted) data
1033 * packets delivered "delivered" over an interval of time "interval_us".
1034 * The tcp_rate.c code fills in the rate sample, and congestion
1035 * control modules that define a cong_control function to run at the end
1036 * of ACK processing can optionally chose to consult this sample when
1037 * setting cwnd and pacing rate.
1038 * A sample is invalid if "delivered" or "interval_us" is negative.
1039 */
1040 struct rate_sample {
1041 u64 prior_mstamp; /* starting timestamp for interval */
1042 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1043 s32 delivered; /* number of packets delivered over interval */
1044 long interval_us; /* time for tp->delivered to incr "delivered" */
1045 u32 snd_interval_us; /* snd interval for delivered packets */
1046 u32 rcv_interval_us; /* rcv interval for delivered packets */
1047 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1048 int losses; /* number of packets marked lost upon ACK */
1049 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1050 u32 prior_in_flight; /* in flight before this ACK */
1051 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1052 bool is_retrans; /* is sample from retransmission? */
1053 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1054 };
1055
1056 struct tcp_congestion_ops {
1057 struct list_head list;
1058 u32 key;
1059 u32 flags;
1060
1061 /* initialize private data (optional) */
1062 void (*init)(struct sock *sk);
1063 /* cleanup private data (optional) */
1064 void (*release)(struct sock *sk);
1065
1066 /* return slow start threshold (required) */
1067 u32 (*ssthresh)(struct sock *sk);
1068 /* do new cwnd calculation (required) */
1069 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1070 /* call before changing ca_state (optional) */
1071 void (*set_state)(struct sock *sk, u8 new_state);
1072 /* call when cwnd event occurs (optional) */
1073 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1074 /* call when ack arrives (optional) */
1075 void (*in_ack_event)(struct sock *sk, u32 flags);
1076 /* new value of cwnd after loss (required) */
1077 u32 (*undo_cwnd)(struct sock *sk);
1078 /* hook for packet ack accounting (optional) */
1079 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1080 /* override sysctl_tcp_min_tso_segs */
1081 u32 (*min_tso_segs)(struct sock *sk);
1082 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1083 u32 (*sndbuf_expand)(struct sock *sk);
1084 /* call when packets are delivered to update cwnd and pacing rate,
1085 * after all the ca_state processing. (optional)
1086 */
1087 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1088 /* get info for inet_diag (optional) */
1089 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1090 union tcp_cc_info *info);
1091
1092 char name[TCP_CA_NAME_MAX];
1093 struct module *owner;
1094 };
1095
1096 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1097 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1098
1099 void tcp_assign_congestion_control(struct sock *sk);
1100 void tcp_init_congestion_control(struct sock *sk);
1101 void tcp_cleanup_congestion_control(struct sock *sk);
1102 int tcp_set_default_congestion_control(struct net *net, const char *name);
1103 void tcp_get_default_congestion_control(struct net *net, char *name);
1104 void tcp_get_available_congestion_control(char *buf, size_t len);
1105 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1106 int tcp_set_allowed_congestion_control(char *allowed);
1107 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1108 bool reinit, bool cap_net_admin);
1109 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1110 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1111
1112 u32 tcp_reno_ssthresh(struct sock *sk);
1113 u32 tcp_reno_undo_cwnd(struct sock *sk);
1114 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1115 extern struct tcp_congestion_ops tcp_reno;
1116
1117 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1118 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1119 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1120 #ifdef CONFIG_INET
1121 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1122 #else
1123 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1124 {
1125 return NULL;
1126 }
1127 #endif
1128
1129 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1130 {
1131 const struct inet_connection_sock *icsk = inet_csk(sk);
1132
1133 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1134 }
1135
1136 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1137 {
1138 struct inet_connection_sock *icsk = inet_csk(sk);
1139
1140 if (icsk->icsk_ca_ops->set_state)
1141 icsk->icsk_ca_ops->set_state(sk, ca_state);
1142 icsk->icsk_ca_state = ca_state;
1143 }
1144
1145 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1146 {
1147 const struct inet_connection_sock *icsk = inet_csk(sk);
1148
1149 if (icsk->icsk_ca_ops->cwnd_event)
1150 icsk->icsk_ca_ops->cwnd_event(sk, event);
1151 }
1152
1153 /* From tcp_rate.c */
1154 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1155 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1156 struct rate_sample *rs);
1157 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1158 bool is_sack_reneg, struct rate_sample *rs);
1159 void tcp_rate_check_app_limited(struct sock *sk);
1160
1161 /* These functions determine how the current flow behaves in respect of SACK
1162 * handling. SACK is negotiated with the peer, and therefore it can vary
1163 * between different flows.
1164 *
1165 * tcp_is_sack - SACK enabled
1166 * tcp_is_reno - No SACK
1167 */
1168 static inline int tcp_is_sack(const struct tcp_sock *tp)
1169 {
1170 return likely(tp->rx_opt.sack_ok);
1171 }
1172
1173 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1174 {
1175 return !tcp_is_sack(tp);
1176 }
1177
1178 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1179 {
1180 return tp->sacked_out + tp->lost_out;
1181 }
1182
1183 /* This determines how many packets are "in the network" to the best
1184 * of our knowledge. In many cases it is conservative, but where
1185 * detailed information is available from the receiver (via SACK
1186 * blocks etc.) we can make more aggressive calculations.
1187 *
1188 * Use this for decisions involving congestion control, use just
1189 * tp->packets_out to determine if the send queue is empty or not.
1190 *
1191 * Read this equation as:
1192 *
1193 * "Packets sent once on transmission queue" MINUS
1194 * "Packets left network, but not honestly ACKed yet" PLUS
1195 * "Packets fast retransmitted"
1196 */
1197 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1198 {
1199 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1200 }
1201
1202 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1203
1204 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1205 {
1206 return tp->snd_cwnd < tp->snd_ssthresh;
1207 }
1208
1209 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1210 {
1211 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1212 }
1213
1214 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1215 {
1216 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1217 (1 << inet_csk(sk)->icsk_ca_state);
1218 }
1219
1220 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1221 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1222 * ssthresh.
1223 */
1224 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1225 {
1226 const struct tcp_sock *tp = tcp_sk(sk);
1227
1228 if (tcp_in_cwnd_reduction(sk))
1229 return tp->snd_ssthresh;
1230 else
1231 return max(tp->snd_ssthresh,
1232 ((tp->snd_cwnd >> 1) +
1233 (tp->snd_cwnd >> 2)));
1234 }
1235
1236 /* Use define here intentionally to get WARN_ON location shown at the caller */
1237 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1238
1239 void tcp_enter_cwr(struct sock *sk);
1240 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1241
1242 /* The maximum number of MSS of available cwnd for which TSO defers
1243 * sending if not using sysctl_tcp_tso_win_divisor.
1244 */
1245 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1246 {
1247 return 3;
1248 }
1249
1250 /* Returns end sequence number of the receiver's advertised window */
1251 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1252 {
1253 return tp->snd_una + tp->snd_wnd;
1254 }
1255
1256 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1257 * flexible approach. The RFC suggests cwnd should not be raised unless
1258 * it was fully used previously. And that's exactly what we do in
1259 * congestion avoidance mode. But in slow start we allow cwnd to grow
1260 * as long as the application has used half the cwnd.
1261 * Example :
1262 * cwnd is 10 (IW10), but application sends 9 frames.
1263 * We allow cwnd to reach 18 when all frames are ACKed.
1264 * This check is safe because it's as aggressive as slow start which already
1265 * risks 100% overshoot. The advantage is that we discourage application to
1266 * either send more filler packets or data to artificially blow up the cwnd
1267 * usage, and allow application-limited process to probe bw more aggressively.
1268 */
1269 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1270 {
1271 const struct tcp_sock *tp = tcp_sk(sk);
1272
1273 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1274 if (tcp_in_slow_start(tp))
1275 return tp->snd_cwnd < 2 * tp->max_packets_out;
1276
1277 return tp->is_cwnd_limited;
1278 }
1279
1280 /* BBR congestion control needs pacing.
1281 * Same remark for SO_MAX_PACING_RATE.
1282 * sch_fq packet scheduler is efficiently handling pacing,
1283 * but is not always installed/used.
1284 * Return true if TCP stack should pace packets itself.
1285 */
1286 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1287 {
1288 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1289 }
1290
1291 /* Return in jiffies the delay before one skb is sent.
1292 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1293 */
1294 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1295 const struct sk_buff *skb)
1296 {
1297 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1298
1299 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1300
1301 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1302 }
1303
1304 static inline void tcp_reset_xmit_timer(struct sock *sk,
1305 const int what,
1306 unsigned long when,
1307 const unsigned long max_when,
1308 const struct sk_buff *skb)
1309 {
1310 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1311 max_when);
1312 }
1313
1314 /* Something is really bad, we could not queue an additional packet,
1315 * because qdisc is full or receiver sent a 0 window, or we are paced.
1316 * We do not want to add fuel to the fire, or abort too early,
1317 * so make sure the timer we arm now is at least 200ms in the future,
1318 * regardless of current icsk_rto value (as it could be ~2ms)
1319 */
1320 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1321 {
1322 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1323 }
1324
1325 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1326 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1327 unsigned long max_when)
1328 {
1329 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1330
1331 return (unsigned long)min_t(u64, when, max_when);
1332 }
1333
1334 static inline void tcp_check_probe_timer(struct sock *sk)
1335 {
1336 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1337 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1338 tcp_probe0_base(sk), TCP_RTO_MAX,
1339 NULL);
1340 }
1341
1342 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1343 {
1344 tp->snd_wl1 = seq;
1345 }
1346
1347 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1348 {
1349 tp->snd_wl1 = seq;
1350 }
1351
1352 /*
1353 * Calculate(/check) TCP checksum
1354 */
1355 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1356 __be32 daddr, __wsum base)
1357 {
1358 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1359 }
1360
1361 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1362 {
1363 return !skb_csum_unnecessary(skb) &&
1364 __skb_checksum_complete(skb);
1365 }
1366
1367 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1368 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1369 void tcp_set_state(struct sock *sk, int state);
1370 void tcp_done(struct sock *sk);
1371 int tcp_abort(struct sock *sk, int err);
1372
1373 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1374 {
1375 rx_opt->dsack = 0;
1376 rx_opt->num_sacks = 0;
1377 }
1378
1379 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1380
1381 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1382 {
1383 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 s32 delta;
1386
1387 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1388 ca_ops->cong_control)
1389 return;
1390 delta = tcp_jiffies32 - tp->lsndtime;
1391 if (delta > inet_csk(sk)->icsk_rto)
1392 tcp_cwnd_restart(sk, delta);
1393 }
1394
1395 /* Determine a window scaling and initial window to offer. */
1396 void tcp_select_initial_window(const struct sock *sk, int __space,
1397 __u32 mss, __u32 *rcv_wnd,
1398 __u32 *window_clamp, int wscale_ok,
1399 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1400
1401 static inline int tcp_win_from_space(const struct sock *sk, int space)
1402 {
1403 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1404
1405 return tcp_adv_win_scale <= 0 ?
1406 (space>>(-tcp_adv_win_scale)) :
1407 space - (space>>tcp_adv_win_scale);
1408 }
1409
1410 /* Note: caller must be prepared to deal with negative returns */
1411 static inline int tcp_space(const struct sock *sk)
1412 {
1413 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1414 READ_ONCE(sk->sk_backlog.len) -
1415 atomic_read(&sk->sk_rmem_alloc));
1416 }
1417
1418 static inline int tcp_full_space(const struct sock *sk)
1419 {
1420 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1421 }
1422
1423 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428 static inline bool tcp_rmem_pressure(const struct sock *sk)
1429 {
1430 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1431 int threshold = rcvbuf - (rcvbuf >> 3);
1432
1433 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1434 }
1435
1436 extern void tcp_openreq_init_rwin(struct request_sock *req,
1437 const struct sock *sk_listener,
1438 const struct dst_entry *dst);
1439
1440 void tcp_enter_memory_pressure(struct sock *sk);
1441 void tcp_leave_memory_pressure(struct sock *sk);
1442
1443 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1444 {
1445 struct net *net = sock_net((struct sock *)tp);
1446
1447 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1448 }
1449
1450 static inline int keepalive_time_when(const struct tcp_sock *tp)
1451 {
1452 struct net *net = sock_net((struct sock *)tp);
1453
1454 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1455 }
1456
1457 static inline int keepalive_probes(const struct tcp_sock *tp)
1458 {
1459 struct net *net = sock_net((struct sock *)tp);
1460
1461 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1462 }
1463
1464 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1465 {
1466 const struct inet_connection_sock *icsk = &tp->inet_conn;
1467
1468 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1469 tcp_jiffies32 - tp->rcv_tstamp);
1470 }
1471
1472 static inline int tcp_fin_time(const struct sock *sk)
1473 {
1474 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1475 const int rto = inet_csk(sk)->icsk_rto;
1476
1477 if (fin_timeout < (rto << 2) - (rto >> 1))
1478 fin_timeout = (rto << 2) - (rto >> 1);
1479
1480 return fin_timeout;
1481 }
1482
1483 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1484 int paws_win)
1485 {
1486 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1487 return true;
1488 if (unlikely(!time_before32(ktime_get_seconds(),
1489 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1490 return true;
1491 /*
1492 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1493 * then following tcp messages have valid values. Ignore 0 value,
1494 * or else 'negative' tsval might forbid us to accept their packets.
1495 */
1496 if (!rx_opt->ts_recent)
1497 return true;
1498 return false;
1499 }
1500
1501 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1502 int rst)
1503 {
1504 if (tcp_paws_check(rx_opt, 0))
1505 return false;
1506
1507 /* RST segments are not recommended to carry timestamp,
1508 and, if they do, it is recommended to ignore PAWS because
1509 "their cleanup function should take precedence over timestamps."
1510 Certainly, it is mistake. It is necessary to understand the reasons
1511 of this constraint to relax it: if peer reboots, clock may go
1512 out-of-sync and half-open connections will not be reset.
1513 Actually, the problem would be not existing if all
1514 the implementations followed draft about maintaining clock
1515 via reboots. Linux-2.2 DOES NOT!
1516
1517 However, we can relax time bounds for RST segments to MSL.
1518 */
1519 if (rst && !time_before32(ktime_get_seconds(),
1520 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1521 return false;
1522 return true;
1523 }
1524
1525 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1526 int mib_idx, u32 *last_oow_ack_time);
1527
1528 static inline void tcp_mib_init(struct net *net)
1529 {
1530 /* See RFC 2012 */
1531 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1532 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1533 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1534 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1535 }
1536
1537 /* from STCP */
1538 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1539 {
1540 tp->lost_skb_hint = NULL;
1541 }
1542
1543 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1544 {
1545 tcp_clear_retrans_hints_partial(tp);
1546 tp->retransmit_skb_hint = NULL;
1547 }
1548
1549 union tcp_md5_addr {
1550 struct in_addr a4;
1551 #if IS_ENABLED(CONFIG_IPV6)
1552 struct in6_addr a6;
1553 #endif
1554 };
1555
1556 /* - key database */
1557 struct tcp_md5sig_key {
1558 struct hlist_node node;
1559 u8 keylen;
1560 u8 family; /* AF_INET or AF_INET6 */
1561 u8 prefixlen;
1562 union tcp_md5_addr addr;
1563 int l3index; /* set if key added with L3 scope */
1564 u8 key[TCP_MD5SIG_MAXKEYLEN];
1565 struct rcu_head rcu;
1566 };
1567
1568 /* - sock block */
1569 struct tcp_md5sig_info {
1570 struct hlist_head head;
1571 struct rcu_head rcu;
1572 };
1573
1574 /* - pseudo header */
1575 struct tcp4_pseudohdr {
1576 __be32 saddr;
1577 __be32 daddr;
1578 __u8 pad;
1579 __u8 protocol;
1580 __be16 len;
1581 };
1582
1583 struct tcp6_pseudohdr {
1584 struct in6_addr saddr;
1585 struct in6_addr daddr;
1586 __be32 len;
1587 __be32 protocol; /* including padding */
1588 };
1589
1590 union tcp_md5sum_block {
1591 struct tcp4_pseudohdr ip4;
1592 #if IS_ENABLED(CONFIG_IPV6)
1593 struct tcp6_pseudohdr ip6;
1594 #endif
1595 };
1596
1597 /* - pool: digest algorithm, hash description and scratch buffer */
1598 struct tcp_md5sig_pool {
1599 struct ahash_request *md5_req;
1600 void *scratch;
1601 };
1602
1603 /* - functions */
1604 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1605 const struct sock *sk, const struct sk_buff *skb);
1606 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1607 int family, u8 prefixlen, int l3index,
1608 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1609 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1610 int family, u8 prefixlen, int l3index);
1611 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1612 const struct sock *addr_sk);
1613
1614 #ifdef CONFIG_TCP_MD5SIG
1615 #include <linux/jump_label.h>
1616 extern struct static_key_false tcp_md5_needed;
1617 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1618 const union tcp_md5_addr *addr,
1619 int family);
1620 static inline struct tcp_md5sig_key *
1621 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1622 const union tcp_md5_addr *addr, int family)
1623 {
1624 if (!static_branch_unlikely(&tcp_md5_needed))
1625 return NULL;
1626 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1627 }
1628
1629 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1630 #else
1631 static inline struct tcp_md5sig_key *
1632 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1633 const union tcp_md5_addr *addr, int family)
1634 {
1635 return NULL;
1636 }
1637 #define tcp_twsk_md5_key(twsk) NULL
1638 #endif
1639
1640 bool tcp_alloc_md5sig_pool(void);
1641
1642 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1643 static inline void tcp_put_md5sig_pool(void)
1644 {
1645 local_bh_enable();
1646 }
1647
1648 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1649 unsigned int header_len);
1650 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1651 const struct tcp_md5sig_key *key);
1652
1653 /* From tcp_fastopen.c */
1654 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1655 struct tcp_fastopen_cookie *cookie);
1656 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1657 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1658 u16 try_exp);
1659 struct tcp_fastopen_request {
1660 /* Fast Open cookie. Size 0 means a cookie request */
1661 struct tcp_fastopen_cookie cookie;
1662 struct msghdr *data; /* data in MSG_FASTOPEN */
1663 size_t size;
1664 int copied; /* queued in tcp_connect() */
1665 struct ubuf_info *uarg;
1666 };
1667 void tcp_free_fastopen_req(struct tcp_sock *tp);
1668 void tcp_fastopen_destroy_cipher(struct sock *sk);
1669 void tcp_fastopen_ctx_destroy(struct net *net);
1670 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1671 void *primary_key, void *backup_key);
1672 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1673 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1674 struct request_sock *req,
1675 struct tcp_fastopen_cookie *foc,
1676 const struct dst_entry *dst);
1677 void tcp_fastopen_init_key_once(struct net *net);
1678 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1679 struct tcp_fastopen_cookie *cookie);
1680 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1681 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1682 #define TCP_FASTOPEN_KEY_MAX 2
1683 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1684 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1685
1686 /* Fastopen key context */
1687 struct tcp_fastopen_context {
1688 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1689 int num;
1690 struct rcu_head rcu;
1691 };
1692
1693 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1694 void tcp_fastopen_active_disable(struct sock *sk);
1695 bool tcp_fastopen_active_should_disable(struct sock *sk);
1696 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1697 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1698
1699 /* Caller needs to wrap with rcu_read_(un)lock() */
1700 static inline
1701 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1702 {
1703 struct tcp_fastopen_context *ctx;
1704
1705 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1706 if (!ctx)
1707 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1708 return ctx;
1709 }
1710
1711 static inline
1712 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1713 const struct tcp_fastopen_cookie *orig)
1714 {
1715 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1716 orig->len == foc->len &&
1717 !memcmp(orig->val, foc->val, foc->len))
1718 return true;
1719 return false;
1720 }
1721
1722 static inline
1723 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1724 {
1725 return ctx->num;
1726 }
1727
1728 /* Latencies incurred by various limits for a sender. They are
1729 * chronograph-like stats that are mutually exclusive.
1730 */
1731 enum tcp_chrono {
1732 TCP_CHRONO_UNSPEC,
1733 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1734 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1735 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1736 __TCP_CHRONO_MAX,
1737 };
1738
1739 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1740 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1741
1742 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1743 * the same memory storage than skb->destructor/_skb_refdst
1744 */
1745 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1746 {
1747 skb->destructor = NULL;
1748 skb->_skb_refdst = 0UL;
1749 }
1750
1751 #define tcp_skb_tsorted_save(skb) { \
1752 unsigned long _save = skb->_skb_refdst; \
1753 skb->_skb_refdst = 0UL;
1754
1755 #define tcp_skb_tsorted_restore(skb) \
1756 skb->_skb_refdst = _save; \
1757 }
1758
1759 void tcp_write_queue_purge(struct sock *sk);
1760
1761 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1762 {
1763 return skb_rb_first(&sk->tcp_rtx_queue);
1764 }
1765
1766 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1767 {
1768 return skb_rb_last(&sk->tcp_rtx_queue);
1769 }
1770
1771 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1772 {
1773 return skb_peek(&sk->sk_write_queue);
1774 }
1775
1776 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1777 {
1778 return skb_peek_tail(&sk->sk_write_queue);
1779 }
1780
1781 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1782 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1783
1784 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1785 {
1786 return skb_peek(&sk->sk_write_queue);
1787 }
1788
1789 static inline bool tcp_skb_is_last(const struct sock *sk,
1790 const struct sk_buff *skb)
1791 {
1792 return skb_queue_is_last(&sk->sk_write_queue, skb);
1793 }
1794
1795 /**
1796 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1797 * @sk: socket
1798 *
1799 * Since the write queue can have a temporary empty skb in it,
1800 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1801 */
1802 static inline bool tcp_write_queue_empty(const struct sock *sk)
1803 {
1804 const struct tcp_sock *tp = tcp_sk(sk);
1805
1806 return tp->write_seq == tp->snd_nxt;
1807 }
1808
1809 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1810 {
1811 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1812 }
1813
1814 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1815 {
1816 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1817 }
1818
1819 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1820 {
1821 __skb_queue_tail(&sk->sk_write_queue, skb);
1822
1823 /* Queue it, remembering where we must start sending. */
1824 if (sk->sk_write_queue.next == skb)
1825 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1826 }
1827
1828 /* Insert new before skb on the write queue of sk. */
1829 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1830 struct sk_buff *skb,
1831 struct sock *sk)
1832 {
1833 __skb_queue_before(&sk->sk_write_queue, skb, new);
1834 }
1835
1836 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1837 {
1838 tcp_skb_tsorted_anchor_cleanup(skb);
1839 __skb_unlink(skb, &sk->sk_write_queue);
1840 }
1841
1842 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1843
1844 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1845 {
1846 tcp_skb_tsorted_anchor_cleanup(skb);
1847 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1848 }
1849
1850 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1851 {
1852 list_del(&skb->tcp_tsorted_anchor);
1853 tcp_rtx_queue_unlink(skb, sk);
1854 sk_wmem_free_skb(sk, skb);
1855 }
1856
1857 static inline void tcp_push_pending_frames(struct sock *sk)
1858 {
1859 if (tcp_send_head(sk)) {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1863 }
1864 }
1865
1866 /* Start sequence of the skb just after the highest skb with SACKed
1867 * bit, valid only if sacked_out > 0 or when the caller has ensured
1868 * validity by itself.
1869 */
1870 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1871 {
1872 if (!tp->sacked_out)
1873 return tp->snd_una;
1874
1875 if (tp->highest_sack == NULL)
1876 return tp->snd_nxt;
1877
1878 return TCP_SKB_CB(tp->highest_sack)->seq;
1879 }
1880
1881 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1882 {
1883 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1884 }
1885
1886 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1887 {
1888 return tcp_sk(sk)->highest_sack;
1889 }
1890
1891 static inline void tcp_highest_sack_reset(struct sock *sk)
1892 {
1893 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1894 }
1895
1896 /* Called when old skb is about to be deleted and replaced by new skb */
1897 static inline void tcp_highest_sack_replace(struct sock *sk,
1898 struct sk_buff *old,
1899 struct sk_buff *new)
1900 {
1901 if (old == tcp_highest_sack(sk))
1902 tcp_sk(sk)->highest_sack = new;
1903 }
1904
1905 /* This helper checks if socket has IP_TRANSPARENT set */
1906 static inline bool inet_sk_transparent(const struct sock *sk)
1907 {
1908 switch (sk->sk_state) {
1909 case TCP_TIME_WAIT:
1910 return inet_twsk(sk)->tw_transparent;
1911 case TCP_NEW_SYN_RECV:
1912 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1913 }
1914 return inet_sk(sk)->transparent;
1915 }
1916
1917 /* Determines whether this is a thin stream (which may suffer from
1918 * increased latency). Used to trigger latency-reducing mechanisms.
1919 */
1920 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1921 {
1922 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1923 }
1924
1925 /* /proc */
1926 enum tcp_seq_states {
1927 TCP_SEQ_STATE_LISTENING,
1928 TCP_SEQ_STATE_ESTABLISHED,
1929 };
1930
1931 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1932 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1933 void tcp_seq_stop(struct seq_file *seq, void *v);
1934
1935 struct tcp_seq_afinfo {
1936 sa_family_t family;
1937 };
1938
1939 struct tcp_iter_state {
1940 struct seq_net_private p;
1941 enum tcp_seq_states state;
1942 struct sock *syn_wait_sk;
1943 int bucket, offset, sbucket, num;
1944 loff_t last_pos;
1945 };
1946
1947 extern struct request_sock_ops tcp_request_sock_ops;
1948 extern struct request_sock_ops tcp6_request_sock_ops;
1949
1950 void tcp_v4_destroy_sock(struct sock *sk);
1951
1952 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1953 netdev_features_t features);
1954 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1955 int tcp_gro_complete(struct sk_buff *skb);
1956
1957 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1958
1959 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1960 {
1961 struct net *net = sock_net((struct sock *)tp);
1962 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1963 }
1964
1965 /* @wake is one when sk_stream_write_space() calls us.
1966 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1967 * This mimics the strategy used in sock_def_write_space().
1968 */
1969 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1970 {
1971 const struct tcp_sock *tp = tcp_sk(sk);
1972 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1973 READ_ONCE(tp->snd_nxt);
1974
1975 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1976 }
1977
1978 #ifdef CONFIG_PROC_FS
1979 int tcp4_proc_init(void);
1980 void tcp4_proc_exit(void);
1981 #endif
1982
1983 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1984 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1985 const struct tcp_request_sock_ops *af_ops,
1986 struct sock *sk, struct sk_buff *skb);
1987
1988 /* TCP af-specific functions */
1989 struct tcp_sock_af_ops {
1990 #ifdef CONFIG_TCP_MD5SIG
1991 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1992 const struct sock *addr_sk);
1993 int (*calc_md5_hash)(char *location,
1994 const struct tcp_md5sig_key *md5,
1995 const struct sock *sk,
1996 const struct sk_buff *skb);
1997 int (*md5_parse)(struct sock *sk,
1998 int optname,
1999 char __user *optval,
2000 int optlen);
2001 #endif
2002 };
2003
2004 struct tcp_request_sock_ops {
2005 u16 mss_clamp;
2006 #ifdef CONFIG_TCP_MD5SIG
2007 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2008 const struct sock *addr_sk);
2009 int (*calc_md5_hash) (char *location,
2010 const struct tcp_md5sig_key *md5,
2011 const struct sock *sk,
2012 const struct sk_buff *skb);
2013 #endif
2014 void (*init_req)(struct request_sock *req,
2015 const struct sock *sk_listener,
2016 struct sk_buff *skb);
2017 #ifdef CONFIG_SYN_COOKIES
2018 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2019 __u16 *mss);
2020 #endif
2021 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2022 const struct request_sock *req);
2023 u32 (*init_seq)(const struct sk_buff *skb);
2024 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2025 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2026 struct flowi *fl, struct request_sock *req,
2027 struct tcp_fastopen_cookie *foc,
2028 enum tcp_synack_type synack_type);
2029 };
2030
2031 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2032 #if IS_ENABLED(CONFIG_IPV6)
2033 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2034 #endif
2035
2036 #ifdef CONFIG_SYN_COOKIES
2037 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2038 const struct sock *sk, struct sk_buff *skb,
2039 __u16 *mss)
2040 {
2041 tcp_synq_overflow(sk);
2042 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2043 return ops->cookie_init_seq(skb, mss);
2044 }
2045 #else
2046 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2047 const struct sock *sk, struct sk_buff *skb,
2048 __u16 *mss)
2049 {
2050 return 0;
2051 }
2052 #endif
2053
2054 int tcpv4_offload_init(void);
2055
2056 void tcp_v4_init(void);
2057 void tcp_init(void);
2058
2059 /* tcp_recovery.c */
2060 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2061 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2062 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2063 u32 reo_wnd);
2064 extern void tcp_rack_mark_lost(struct sock *sk);
2065 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2066 u64 xmit_time);
2067 extern void tcp_rack_reo_timeout(struct sock *sk);
2068 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2069
2070 /* At how many usecs into the future should the RTO fire? */
2071 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2072 {
2073 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2074 u32 rto = inet_csk(sk)->icsk_rto;
2075 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2076
2077 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2078 }
2079
2080 /*
2081 * Save and compile IPv4 options, return a pointer to it
2082 */
2083 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2084 struct sk_buff *skb)
2085 {
2086 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2087 struct ip_options_rcu *dopt = NULL;
2088
2089 if (opt->optlen) {
2090 int opt_size = sizeof(*dopt) + opt->optlen;
2091
2092 dopt = kmalloc(opt_size, GFP_ATOMIC);
2093 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2094 kfree(dopt);
2095 dopt = NULL;
2096 }
2097 }
2098 return dopt;
2099 }
2100
2101 /* locally generated TCP pure ACKs have skb->truesize == 2
2102 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2103 * This is much faster than dissecting the packet to find out.
2104 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2105 */
2106 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2107 {
2108 return skb->truesize == 2;
2109 }
2110
2111 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2112 {
2113 skb->truesize = 2;
2114 }
2115
2116 static inline int tcp_inq(struct sock *sk)
2117 {
2118 struct tcp_sock *tp = tcp_sk(sk);
2119 int answ;
2120
2121 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2122 answ = 0;
2123 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2124 !tp->urg_data ||
2125 before(tp->urg_seq, tp->copied_seq) ||
2126 !before(tp->urg_seq, tp->rcv_nxt)) {
2127
2128 answ = tp->rcv_nxt - tp->copied_seq;
2129
2130 /* Subtract 1, if FIN was received */
2131 if (answ && sock_flag(sk, SOCK_DONE))
2132 answ--;
2133 } else {
2134 answ = tp->urg_seq - tp->copied_seq;
2135 }
2136
2137 return answ;
2138 }
2139
2140 int tcp_peek_len(struct socket *sock);
2141
2142 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2143 {
2144 u16 segs_in;
2145
2146 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2147 tp->segs_in += segs_in;
2148 if (skb->len > tcp_hdrlen(skb))
2149 tp->data_segs_in += segs_in;
2150 }
2151
2152 /*
2153 * TCP listen path runs lockless.
2154 * We forced "struct sock" to be const qualified to make sure
2155 * we don't modify one of its field by mistake.
2156 * Here, we increment sk_drops which is an atomic_t, so we can safely
2157 * make sock writable again.
2158 */
2159 static inline void tcp_listendrop(const struct sock *sk)
2160 {
2161 atomic_inc(&((struct sock *)sk)->sk_drops);
2162 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2163 }
2164
2165 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2166
2167 /*
2168 * Interface for adding Upper Level Protocols over TCP
2169 */
2170
2171 #define TCP_ULP_NAME_MAX 16
2172 #define TCP_ULP_MAX 128
2173 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2174
2175 struct tcp_ulp_ops {
2176 struct list_head list;
2177
2178 /* initialize ulp */
2179 int (*init)(struct sock *sk);
2180 /* update ulp */
2181 void (*update)(struct sock *sk, struct proto *p,
2182 void (*write_space)(struct sock *sk));
2183 /* cleanup ulp */
2184 void (*release)(struct sock *sk);
2185 /* diagnostic */
2186 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2187 size_t (*get_info_size)(const struct sock *sk);
2188 /* clone ulp */
2189 void (*clone)(const struct request_sock *req, struct sock *newsk,
2190 const gfp_t priority);
2191
2192 char name[TCP_ULP_NAME_MAX];
2193 struct module *owner;
2194 };
2195 int tcp_register_ulp(struct tcp_ulp_ops *type);
2196 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2197 int tcp_set_ulp(struct sock *sk, const char *name);
2198 void tcp_get_available_ulp(char *buf, size_t len);
2199 void tcp_cleanup_ulp(struct sock *sk);
2200 void tcp_update_ulp(struct sock *sk, struct proto *p,
2201 void (*write_space)(struct sock *sk));
2202
2203 #define MODULE_ALIAS_TCP_ULP(name) \
2204 __MODULE_INFO(alias, alias_userspace, name); \
2205 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2206
2207 struct sk_msg;
2208 struct sk_psock;
2209
2210 #ifdef CONFIG_BPF_STREAM_PARSER
2211 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2212 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2213 #else
2214 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2215 {
2216 }
2217 #endif /* CONFIG_BPF_STREAM_PARSER */
2218
2219 #ifdef CONFIG_NET_SOCK_MSG
2220 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2221 int flags);
2222 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2223 struct msghdr *msg, int len, int flags);
2224 #endif /* CONFIG_NET_SOCK_MSG */
2225
2226 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2227 * is < 0, then the BPF op failed (for example if the loaded BPF
2228 * program does not support the chosen operation or there is no BPF
2229 * program loaded).
2230 */
2231 #ifdef CONFIG_BPF
2232 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2233 {
2234 struct bpf_sock_ops_kern sock_ops;
2235 int ret;
2236
2237 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2238 if (sk_fullsock(sk)) {
2239 sock_ops.is_fullsock = 1;
2240 sock_owned_by_me(sk);
2241 }
2242
2243 sock_ops.sk = sk;
2244 sock_ops.op = op;
2245 if (nargs > 0)
2246 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2247
2248 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2249 if (ret == 0)
2250 ret = sock_ops.reply;
2251 else
2252 ret = -1;
2253 return ret;
2254 }
2255
2256 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2257 {
2258 u32 args[2] = {arg1, arg2};
2259
2260 return tcp_call_bpf(sk, op, 2, args);
2261 }
2262
2263 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2264 u32 arg3)
2265 {
2266 u32 args[3] = {arg1, arg2, arg3};
2267
2268 return tcp_call_bpf(sk, op, 3, args);
2269 }
2270
2271 #else
2272 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2273 {
2274 return -EPERM;
2275 }
2276
2277 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2278 {
2279 return -EPERM;
2280 }
2281
2282 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2283 u32 arg3)
2284 {
2285 return -EPERM;
2286 }
2287
2288 #endif
2289
2290 static inline u32 tcp_timeout_init(struct sock *sk)
2291 {
2292 int timeout;
2293
2294 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2295
2296 if (timeout <= 0)
2297 timeout = TCP_TIMEOUT_INIT;
2298 return timeout;
2299 }
2300
2301 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2302 {
2303 int rwnd;
2304
2305 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2306
2307 if (rwnd < 0)
2308 rwnd = 0;
2309 return rwnd;
2310 }
2311
2312 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2313 {
2314 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2315 }
2316
2317 static inline void tcp_bpf_rtt(struct sock *sk)
2318 {
2319 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2320 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2321 }
2322
2323 #if IS_ENABLED(CONFIG_SMC)
2324 extern struct static_key_false tcp_have_smc;
2325 #endif
2326
2327 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2328 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2329 void (*cad)(struct sock *sk, u32 ack_seq));
2330 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2331 void clean_acked_data_flush(void);
2332 #endif
2333
2334 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2335 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2336 const struct tcp_sock *tp)
2337 {
2338 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2339 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2340 }
2341
2342 /* Compute Earliest Departure Time for some control packets
2343 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2344 */
2345 static inline u64 tcp_transmit_time(const struct sock *sk)
2346 {
2347 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2348 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2349 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2350
2351 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2352 }
2353 return 0;
2354 }
2355
2356 #endif /* _TCP_H */