]> git.ipfire.org Git - thirdparty/qemu.git/blob - include/qom/cpu.h
cpus-common: move CPU list management to common code
[thirdparty/qemu.git] / include / qom / cpu.h
1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/bfd.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qemu/bitmap.h"
28 #include "qemu/queue.h"
29 #include "qemu/thread.h"
30 #include "trace/generated-events.h"
31
32 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
33 void *opaque);
34
35 /**
36 * vaddr:
37 * Type wide enough to contain any #target_ulong virtual address.
38 */
39 typedef uint64_t vaddr;
40 #define VADDR_PRId PRId64
41 #define VADDR_PRIu PRIu64
42 #define VADDR_PRIo PRIo64
43 #define VADDR_PRIx PRIx64
44 #define VADDR_PRIX PRIX64
45 #define VADDR_MAX UINT64_MAX
46
47 /**
48 * SECTION:cpu
49 * @section_id: QEMU-cpu
50 * @title: CPU Class
51 * @short_description: Base class for all CPUs
52 */
53
54 #define TYPE_CPU "cpu"
55
56 /* Since this macro is used a lot in hot code paths and in conjunction with
57 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
58 * an unchecked cast.
59 */
60 #define CPU(obj) ((CPUState *)(obj))
61
62 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
63 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
64
65 typedef enum MMUAccessType {
66 MMU_DATA_LOAD = 0,
67 MMU_DATA_STORE = 1,
68 MMU_INST_FETCH = 2
69 } MMUAccessType;
70
71 typedef struct CPUWatchpoint CPUWatchpoint;
72
73 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
74 bool is_write, bool is_exec, int opaque,
75 unsigned size);
76
77 struct TranslationBlock;
78
79 /**
80 * CPUClass:
81 * @class_by_name: Callback to map -cpu command line model name to an
82 * instantiatable CPU type.
83 * @parse_features: Callback to parse command line arguments.
84 * @reset: Callback to reset the #CPUState to its initial state.
85 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
86 * @has_work: Callback for checking if there is work to do.
87 * @do_interrupt: Callback for interrupt handling.
88 * @do_unassigned_access: Callback for unassigned access handling.
89 * @do_unaligned_access: Callback for unaligned access handling, if
90 * the target defines #ALIGNED_ONLY.
91 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
92 * runtime configurable endianness is currently big-endian. Non-configurable
93 * CPUs can use the default implementation of this method. This method should
94 * not be used by any callers other than the pre-1.0 virtio devices.
95 * @memory_rw_debug: Callback for GDB memory access.
96 * @dump_state: Callback for dumping state.
97 * @dump_statistics: Callback for dumping statistics.
98 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
99 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
100 * @get_memory_mapping: Callback for obtaining the memory mappings.
101 * @set_pc: Callback for setting the Program Counter register.
102 * @synchronize_from_tb: Callback for synchronizing state from a TCG
103 * #TranslationBlock.
104 * @handle_mmu_fault: Callback for handling an MMU fault.
105 * @get_phys_page_debug: Callback for obtaining a physical address.
106 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
107 * associated memory transaction attributes to use for the access.
108 * CPUs which use memory transaction attributes should implement this
109 * instead of get_phys_page_debug.
110 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
111 * a memory access with the specified memory transaction attributes.
112 * @gdb_read_register: Callback for letting GDB read a register.
113 * @gdb_write_register: Callback for letting GDB write a register.
114 * @debug_check_watchpoint: Callback: return true if the architectural
115 * watchpoint whose address has matched should really fire.
116 * @debug_excp_handler: Callback for handling debug exceptions.
117 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
118 * 64-bit VM coredump.
119 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
120 * note to a 32-bit VM coredump.
121 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
122 * 32-bit VM coredump.
123 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
124 * note to a 32-bit VM coredump.
125 * @vmsd: State description for migration.
126 * @gdb_num_core_regs: Number of core registers accessible to GDB.
127 * @gdb_core_xml_file: File name for core registers GDB XML description.
128 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
129 * before the insn which triggers a watchpoint rather than after it.
130 * @gdb_arch_name: Optional callback that returns the architecture name known
131 * to GDB. The caller must free the returned string with g_free.
132 * @cpu_exec_enter: Callback for cpu_exec preparation.
133 * @cpu_exec_exit: Callback for cpu_exec cleanup.
134 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
135 * @disas_set_info: Setup architecture specific components of disassembly info
136 *
137 * Represents a CPU family or model.
138 */
139 typedef struct CPUClass {
140 /*< private >*/
141 DeviceClass parent_class;
142 /*< public >*/
143
144 ObjectClass *(*class_by_name)(const char *cpu_model);
145 void (*parse_features)(const char *typename, char *str, Error **errp);
146
147 void (*reset)(CPUState *cpu);
148 int reset_dump_flags;
149 bool (*has_work)(CPUState *cpu);
150 void (*do_interrupt)(CPUState *cpu);
151 CPUUnassignedAccess do_unassigned_access;
152 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
153 MMUAccessType access_type,
154 int mmu_idx, uintptr_t retaddr);
155 bool (*virtio_is_big_endian)(CPUState *cpu);
156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157 uint8_t *buf, int len, bool is_write);
158 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
159 int flags);
160 void (*dump_statistics)(CPUState *cpu, FILE *f,
161 fprintf_function cpu_fprintf, int flags);
162 int64_t (*get_arch_id)(CPUState *cpu);
163 bool (*get_paging_enabled)(const CPUState *cpu);
164 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
165 Error **errp);
166 void (*set_pc)(CPUState *cpu, vaddr value);
167 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
168 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
169 int mmu_index);
170 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
171 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
172 MemTxAttrs *attrs);
173 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
174 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
175 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
176 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
177 void (*debug_excp_handler)(CPUState *cpu);
178
179 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
180 int cpuid, void *opaque);
181 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
182 void *opaque);
183 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
184 int cpuid, void *opaque);
185 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
186 void *opaque);
187
188 const struct VMStateDescription *vmsd;
189 int gdb_num_core_regs;
190 const char *gdb_core_xml_file;
191 gchar * (*gdb_arch_name)(CPUState *cpu);
192 bool gdb_stop_before_watchpoint;
193
194 void (*cpu_exec_enter)(CPUState *cpu);
195 void (*cpu_exec_exit)(CPUState *cpu);
196 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
197
198 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
199 } CPUClass;
200
201 #ifdef HOST_WORDS_BIGENDIAN
202 typedef struct icount_decr_u16 {
203 uint16_t high;
204 uint16_t low;
205 } icount_decr_u16;
206 #else
207 typedef struct icount_decr_u16 {
208 uint16_t low;
209 uint16_t high;
210 } icount_decr_u16;
211 #endif
212
213 typedef struct CPUBreakpoint {
214 vaddr pc;
215 int flags; /* BP_* */
216 QTAILQ_ENTRY(CPUBreakpoint) entry;
217 } CPUBreakpoint;
218
219 struct CPUWatchpoint {
220 vaddr vaddr;
221 vaddr len;
222 vaddr hitaddr;
223 MemTxAttrs hitattrs;
224 int flags; /* BP_* */
225 QTAILQ_ENTRY(CPUWatchpoint) entry;
226 };
227
228 struct KVMState;
229 struct kvm_run;
230
231 #define TB_JMP_CACHE_BITS 12
232 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
233
234 /* work queue */
235 typedef void (*run_on_cpu_func)(CPUState *cpu, void *data);
236
237 struct qemu_work_item {
238 struct qemu_work_item *next;
239 run_on_cpu_func func;
240 void *data;
241 int done;
242 bool free;
243 };
244
245 /**
246 * CPUState:
247 * @cpu_index: CPU index (informative).
248 * @nr_cores: Number of cores within this CPU package.
249 * @nr_threads: Number of threads within this CPU.
250 * @numa_node: NUMA node this CPU is belonging to.
251 * @host_tid: Host thread ID.
252 * @running: #true if CPU is currently running (usermode).
253 * @created: Indicates whether the CPU thread has been successfully created.
254 * @interrupt_request: Indicates a pending interrupt request.
255 * @halted: Nonzero if the CPU is in suspended state.
256 * @stop: Indicates a pending stop request.
257 * @stopped: Indicates the CPU has been artificially stopped.
258 * @unplug: Indicates a pending CPU unplug request.
259 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
260 * @tcg_exit_req: Set to force TCG to stop executing linked TBs for this
261 * CPU and return to its top level loop.
262 * @tb_flushed: Indicates the translation buffer has been flushed.
263 * @singlestep_enabled: Flags for single-stepping.
264 * @icount_extra: Instructions until next timer event.
265 * @icount_decr: Number of cycles left, with interrupt flag in high bit.
266 * This allows a single read-compare-cbranch-write sequence to test
267 * for both decrementer underflow and exceptions.
268 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
269 * requires that IO only be performed on the last instruction of a TB
270 * so that interrupts take effect immediately.
271 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
272 * AddressSpaces this CPU has)
273 * @num_ases: number of CPUAddressSpaces in @cpu_ases
274 * @as: Pointer to the first AddressSpace, for the convenience of targets which
275 * only have a single AddressSpace
276 * @env_ptr: Pointer to subclass-specific CPUArchState field.
277 * @gdb_regs: Additional GDB registers.
278 * @gdb_num_regs: Number of total registers accessible to GDB.
279 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
280 * @next_cpu: Next CPU sharing TB cache.
281 * @opaque: User data.
282 * @mem_io_pc: Host Program Counter at which the memory was accessed.
283 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
284 * @kvm_fd: vCPU file descriptor for KVM.
285 * @work_mutex: Lock to prevent multiple access to queued_work_*.
286 * @queued_work_first: First asynchronous work pending.
287 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
288 *
289 * State of one CPU core or thread.
290 */
291 struct CPUState {
292 /*< private >*/
293 DeviceState parent_obj;
294 /*< public >*/
295
296 int nr_cores;
297 int nr_threads;
298 int numa_node;
299
300 struct QemuThread *thread;
301 #ifdef _WIN32
302 HANDLE hThread;
303 #endif
304 int thread_id;
305 uint32_t host_tid;
306 bool running;
307 struct QemuCond *halt_cond;
308 bool thread_kicked;
309 bool created;
310 bool stop;
311 bool stopped;
312 bool unplug;
313 bool crash_occurred;
314 bool exit_request;
315 bool tb_flushed;
316 uint32_t interrupt_request;
317 int singlestep_enabled;
318 int64_t icount_extra;
319 sigjmp_buf jmp_env;
320
321 QemuMutex work_mutex;
322 struct qemu_work_item *queued_work_first, *queued_work_last;
323
324 CPUAddressSpace *cpu_ases;
325 int num_ases;
326 AddressSpace *as;
327 MemoryRegion *memory;
328
329 void *env_ptr; /* CPUArchState */
330 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
331 struct GDBRegisterState *gdb_regs;
332 int gdb_num_regs;
333 int gdb_num_g_regs;
334 QTAILQ_ENTRY(CPUState) node;
335
336 /* ice debug support */
337 QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
338
339 QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
340 CPUWatchpoint *watchpoint_hit;
341
342 void *opaque;
343
344 /* In order to avoid passing too many arguments to the MMIO helpers,
345 * we store some rarely used information in the CPU context.
346 */
347 uintptr_t mem_io_pc;
348 vaddr mem_io_vaddr;
349
350 int kvm_fd;
351 bool kvm_vcpu_dirty;
352 struct KVMState *kvm_state;
353 struct kvm_run *kvm_run;
354
355 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
356 DECLARE_BITMAP(trace_dstate, TRACE_VCPU_EVENT_COUNT);
357
358 /* TODO Move common fields from CPUArchState here. */
359 int cpu_index; /* used by alpha TCG */
360 uint32_t halted; /* used by alpha, cris, ppc TCG */
361 union {
362 uint32_t u32;
363 icount_decr_u16 u16;
364 } icount_decr;
365 uint32_t can_do_io;
366 int32_t exception_index; /* used by m68k TCG */
367
368 /* Used to keep track of an outstanding cpu throttle thread for migration
369 * autoconverge
370 */
371 bool throttle_thread_scheduled;
372
373 /* Note that this is accessed at the start of every TB via a negative
374 offset from AREG0. Leave this field at the end so as to make the
375 (absolute value) offset as small as possible. This reduces code
376 size, especially for hosts without large memory offsets. */
377 uint32_t tcg_exit_req;
378 };
379
380 QTAILQ_HEAD(CPUTailQ, CPUState);
381 extern struct CPUTailQ cpus;
382 #define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
383 #define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
384 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
385 QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
386 #define CPU_FOREACH_REVERSE(cpu) \
387 QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
388 #define first_cpu QTAILQ_FIRST(&cpus)
389
390 extern __thread CPUState *current_cpu;
391
392 /**
393 * cpu_paging_enabled:
394 * @cpu: The CPU whose state is to be inspected.
395 *
396 * Returns: %true if paging is enabled, %false otherwise.
397 */
398 bool cpu_paging_enabled(const CPUState *cpu);
399
400 /**
401 * cpu_get_memory_mapping:
402 * @cpu: The CPU whose memory mappings are to be obtained.
403 * @list: Where to write the memory mappings to.
404 * @errp: Pointer for reporting an #Error.
405 */
406 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
407 Error **errp);
408
409 /**
410 * cpu_write_elf64_note:
411 * @f: pointer to a function that writes memory to a file
412 * @cpu: The CPU whose memory is to be dumped
413 * @cpuid: ID number of the CPU
414 * @opaque: pointer to the CPUState struct
415 */
416 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
417 int cpuid, void *opaque);
418
419 /**
420 * cpu_write_elf64_qemunote:
421 * @f: pointer to a function that writes memory to a file
422 * @cpu: The CPU whose memory is to be dumped
423 * @cpuid: ID number of the CPU
424 * @opaque: pointer to the CPUState struct
425 */
426 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
427 void *opaque);
428
429 /**
430 * cpu_write_elf32_note:
431 * @f: pointer to a function that writes memory to a file
432 * @cpu: The CPU whose memory is to be dumped
433 * @cpuid: ID number of the CPU
434 * @opaque: pointer to the CPUState struct
435 */
436 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
437 int cpuid, void *opaque);
438
439 /**
440 * cpu_write_elf32_qemunote:
441 * @f: pointer to a function that writes memory to a file
442 * @cpu: The CPU whose memory is to be dumped
443 * @cpuid: ID number of the CPU
444 * @opaque: pointer to the CPUState struct
445 */
446 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
447 void *opaque);
448
449 /**
450 * CPUDumpFlags:
451 * @CPU_DUMP_CODE:
452 * @CPU_DUMP_FPU: dump FPU register state, not just integer
453 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
454 */
455 enum CPUDumpFlags {
456 CPU_DUMP_CODE = 0x00010000,
457 CPU_DUMP_FPU = 0x00020000,
458 CPU_DUMP_CCOP = 0x00040000,
459 };
460
461 /**
462 * cpu_dump_state:
463 * @cpu: The CPU whose state is to be dumped.
464 * @f: File to dump to.
465 * @cpu_fprintf: Function to dump with.
466 * @flags: Flags what to dump.
467 *
468 * Dumps CPU state.
469 */
470 void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
471 int flags);
472
473 /**
474 * cpu_dump_statistics:
475 * @cpu: The CPU whose state is to be dumped.
476 * @f: File to dump to.
477 * @cpu_fprintf: Function to dump with.
478 * @flags: Flags what to dump.
479 *
480 * Dumps CPU statistics.
481 */
482 void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
483 int flags);
484
485 #ifndef CONFIG_USER_ONLY
486 /**
487 * cpu_get_phys_page_attrs_debug:
488 * @cpu: The CPU to obtain the physical page address for.
489 * @addr: The virtual address.
490 * @attrs: Updated on return with the memory transaction attributes to use
491 * for this access.
492 *
493 * Obtains the physical page corresponding to a virtual one, together
494 * with the corresponding memory transaction attributes to use for the access.
495 * Use it only for debugging because no protection checks are done.
496 *
497 * Returns: Corresponding physical page address or -1 if no page found.
498 */
499 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
500 MemTxAttrs *attrs)
501 {
502 CPUClass *cc = CPU_GET_CLASS(cpu);
503
504 if (cc->get_phys_page_attrs_debug) {
505 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
506 }
507 /* Fallback for CPUs which don't implement the _attrs_ hook */
508 *attrs = MEMTXATTRS_UNSPECIFIED;
509 return cc->get_phys_page_debug(cpu, addr);
510 }
511
512 /**
513 * cpu_get_phys_page_debug:
514 * @cpu: The CPU to obtain the physical page address for.
515 * @addr: The virtual address.
516 *
517 * Obtains the physical page corresponding to a virtual one.
518 * Use it only for debugging because no protection checks are done.
519 *
520 * Returns: Corresponding physical page address or -1 if no page found.
521 */
522 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
523 {
524 MemTxAttrs attrs = {};
525
526 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
527 }
528
529 /** cpu_asidx_from_attrs:
530 * @cpu: CPU
531 * @attrs: memory transaction attributes
532 *
533 * Returns the address space index specifying the CPU AddressSpace
534 * to use for a memory access with the given transaction attributes.
535 */
536 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
537 {
538 CPUClass *cc = CPU_GET_CLASS(cpu);
539
540 if (cc->asidx_from_attrs) {
541 return cc->asidx_from_attrs(cpu, attrs);
542 }
543 return 0;
544 }
545 #endif
546
547 /**
548 * cpu_list_add:
549 * @cpu: The CPU to be added to the list of CPUs.
550 */
551 void cpu_list_add(CPUState *cpu);
552
553 /**
554 * cpu_list_remove:
555 * @cpu: The CPU to be removed from the list of CPUs.
556 */
557 void cpu_list_remove(CPUState *cpu);
558
559 /**
560 * cpu_reset:
561 * @cpu: The CPU whose state is to be reset.
562 */
563 void cpu_reset(CPUState *cpu);
564
565 /**
566 * cpu_class_by_name:
567 * @typename: The CPU base type.
568 * @cpu_model: The model string without any parameters.
569 *
570 * Looks up a CPU #ObjectClass matching name @cpu_model.
571 *
572 * Returns: A #CPUClass or %NULL if not matching class is found.
573 */
574 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
575
576 /**
577 * cpu_generic_init:
578 * @typename: The CPU base type.
579 * @cpu_model: The model string including optional parameters.
580 *
581 * Instantiates a CPU, processes optional parameters and realizes the CPU.
582 *
583 * Returns: A #CPUState or %NULL if an error occurred.
584 */
585 CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
586
587 /**
588 * cpu_has_work:
589 * @cpu: The vCPU to check.
590 *
591 * Checks whether the CPU has work to do.
592 *
593 * Returns: %true if the CPU has work, %false otherwise.
594 */
595 static inline bool cpu_has_work(CPUState *cpu)
596 {
597 CPUClass *cc = CPU_GET_CLASS(cpu);
598
599 g_assert(cc->has_work);
600 return cc->has_work(cpu);
601 }
602
603 /**
604 * qemu_cpu_is_self:
605 * @cpu: The vCPU to check against.
606 *
607 * Checks whether the caller is executing on the vCPU thread.
608 *
609 * Returns: %true if called from @cpu's thread, %false otherwise.
610 */
611 bool qemu_cpu_is_self(CPUState *cpu);
612
613 /**
614 * qemu_cpu_kick:
615 * @cpu: The vCPU to kick.
616 *
617 * Kicks @cpu's thread.
618 */
619 void qemu_cpu_kick(CPUState *cpu);
620
621 /**
622 * cpu_is_stopped:
623 * @cpu: The CPU to check.
624 *
625 * Checks whether the CPU is stopped.
626 *
627 * Returns: %true if run state is not running or if artificially stopped;
628 * %false otherwise.
629 */
630 bool cpu_is_stopped(CPUState *cpu);
631
632 /**
633 * run_on_cpu:
634 * @cpu: The vCPU to run on.
635 * @func: The function to be executed.
636 * @data: Data to pass to the function.
637 *
638 * Schedules the function @func for execution on the vCPU @cpu.
639 */
640 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
641
642 /**
643 * async_run_on_cpu:
644 * @cpu: The vCPU to run on.
645 * @func: The function to be executed.
646 * @data: Data to pass to the function.
647 *
648 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
649 */
650 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
651
652 /**
653 * qemu_get_cpu:
654 * @index: The CPUState@cpu_index value of the CPU to obtain.
655 *
656 * Gets a CPU matching @index.
657 *
658 * Returns: The CPU or %NULL if there is no matching CPU.
659 */
660 CPUState *qemu_get_cpu(int index);
661
662 /**
663 * cpu_exists:
664 * @id: Guest-exposed CPU ID to lookup.
665 *
666 * Search for CPU with specified ID.
667 *
668 * Returns: %true - CPU is found, %false - CPU isn't found.
669 */
670 bool cpu_exists(int64_t id);
671
672 /**
673 * cpu_throttle_set:
674 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
675 *
676 * Throttles all vcpus by forcing them to sleep for the given percentage of
677 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
678 * (example: 10ms sleep for every 30ms awake).
679 *
680 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
681 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
682 * is called.
683 */
684 void cpu_throttle_set(int new_throttle_pct);
685
686 /**
687 * cpu_throttle_stop:
688 *
689 * Stops the vcpu throttling started by cpu_throttle_set.
690 */
691 void cpu_throttle_stop(void);
692
693 /**
694 * cpu_throttle_active:
695 *
696 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
697 */
698 bool cpu_throttle_active(void);
699
700 /**
701 * cpu_throttle_get_percentage:
702 *
703 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
704 *
705 * Returns: The throttle percentage in range 1 to 99.
706 */
707 int cpu_throttle_get_percentage(void);
708
709 #ifndef CONFIG_USER_ONLY
710
711 typedef void (*CPUInterruptHandler)(CPUState *, int);
712
713 extern CPUInterruptHandler cpu_interrupt_handler;
714
715 /**
716 * cpu_interrupt:
717 * @cpu: The CPU to set an interrupt on.
718 * @mask: The interupts to set.
719 *
720 * Invokes the interrupt handler.
721 */
722 static inline void cpu_interrupt(CPUState *cpu, int mask)
723 {
724 cpu_interrupt_handler(cpu, mask);
725 }
726
727 #else /* USER_ONLY */
728
729 void cpu_interrupt(CPUState *cpu, int mask);
730
731 #endif /* USER_ONLY */
732
733 #ifdef CONFIG_SOFTMMU
734 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
735 bool is_write, bool is_exec,
736 int opaque, unsigned size)
737 {
738 CPUClass *cc = CPU_GET_CLASS(cpu);
739
740 if (cc->do_unassigned_access) {
741 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
742 }
743 }
744
745 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
746 MMUAccessType access_type,
747 int mmu_idx, uintptr_t retaddr)
748 {
749 CPUClass *cc = CPU_GET_CLASS(cpu);
750
751 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
752 }
753 #endif
754
755 /**
756 * cpu_set_pc:
757 * @cpu: The CPU to set the program counter for.
758 * @addr: Program counter value.
759 *
760 * Sets the program counter for a CPU.
761 */
762 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
763 {
764 CPUClass *cc = CPU_GET_CLASS(cpu);
765
766 cc->set_pc(cpu, addr);
767 }
768
769 /**
770 * cpu_reset_interrupt:
771 * @cpu: The CPU to clear the interrupt on.
772 * @mask: The interrupt mask to clear.
773 *
774 * Resets interrupts on the vCPU @cpu.
775 */
776 void cpu_reset_interrupt(CPUState *cpu, int mask);
777
778 /**
779 * cpu_exit:
780 * @cpu: The CPU to exit.
781 *
782 * Requests the CPU @cpu to exit execution.
783 */
784 void cpu_exit(CPUState *cpu);
785
786 /**
787 * cpu_resume:
788 * @cpu: The CPU to resume.
789 *
790 * Resumes CPU, i.e. puts CPU into runnable state.
791 */
792 void cpu_resume(CPUState *cpu);
793
794 /**
795 * cpu_remove:
796 * @cpu: The CPU to remove.
797 *
798 * Requests the CPU to be removed.
799 */
800 void cpu_remove(CPUState *cpu);
801
802 /**
803 * cpu_remove_sync:
804 * @cpu: The CPU to remove.
805 *
806 * Requests the CPU to be removed and waits till it is removed.
807 */
808 void cpu_remove_sync(CPUState *cpu);
809
810 /**
811 * qemu_init_vcpu:
812 * @cpu: The vCPU to initialize.
813 *
814 * Initializes a vCPU.
815 */
816 void qemu_init_vcpu(CPUState *cpu);
817
818 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
819 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
820 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
821
822 /**
823 * cpu_single_step:
824 * @cpu: CPU to the flags for.
825 * @enabled: Flags to enable.
826 *
827 * Enables or disables single-stepping for @cpu.
828 */
829 void cpu_single_step(CPUState *cpu, int enabled);
830
831 /* Breakpoint/watchpoint flags */
832 #define BP_MEM_READ 0x01
833 #define BP_MEM_WRITE 0x02
834 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
835 #define BP_STOP_BEFORE_ACCESS 0x04
836 /* 0x08 currently unused */
837 #define BP_GDB 0x10
838 #define BP_CPU 0x20
839 #define BP_ANY (BP_GDB | BP_CPU)
840 #define BP_WATCHPOINT_HIT_READ 0x40
841 #define BP_WATCHPOINT_HIT_WRITE 0x80
842 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
843
844 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
845 CPUBreakpoint **breakpoint);
846 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
847 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
848 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
849
850 /* Return true if PC matches an installed breakpoint. */
851 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
852 {
853 CPUBreakpoint *bp;
854
855 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
856 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
857 if (bp->pc == pc && (bp->flags & mask)) {
858 return true;
859 }
860 }
861 }
862 return false;
863 }
864
865 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
866 int flags, CPUWatchpoint **watchpoint);
867 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
868 vaddr len, int flags);
869 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
870 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
871
872 /**
873 * cpu_get_address_space:
874 * @cpu: CPU to get address space from
875 * @asidx: index identifying which address space to get
876 *
877 * Return the requested address space of this CPU. @asidx
878 * specifies which address space to read.
879 */
880 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
881
882 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
883 GCC_FMT_ATTR(2, 3);
884 void cpu_exec_exit(CPUState *cpu);
885
886 #ifdef CONFIG_SOFTMMU
887 extern const struct VMStateDescription vmstate_cpu_common;
888 #else
889 #define vmstate_cpu_common vmstate_dummy
890 #endif
891
892 #define VMSTATE_CPU() { \
893 .name = "parent_obj", \
894 .size = sizeof(CPUState), \
895 .vmsd = &vmstate_cpu_common, \
896 .flags = VMS_STRUCT, \
897 .offset = 0, \
898 }
899
900 #define UNASSIGNED_CPU_INDEX -1
901
902 #endif