]> git.ipfire.org Git - thirdparty/rsync.git/blob - io.c
189bc23237916b35b68d799db9a9e1da5354fd10
[thirdparty/rsync.git] / io.c
1 /*
2 * Socket and pipe I/O utilities used in rsync.
3 *
4 * Copyright (C) 1996-2001 Andrew Tridgell
5 * Copyright (C) 1996 Paul Mackerras
6 * Copyright (C) 2001, 2002 Martin Pool <mbp@samba.org>
7 * Copyright (C) 2003-2019 Wayne Davison
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, visit the http://fsf.org website.
21 */
22
23 /* Rsync provides its own multiplexing system, which is used to send
24 * stderr and stdout over a single socket.
25 *
26 * For historical reasons this is off during the start of the
27 * connection, but it's switched on quite early using
28 * io_start_multiplex_out() and io_start_multiplex_in(). */
29
30 #include "rsync.h"
31 #include "ifuncs.h"
32 #include "inums.h"
33
34 /** If no timeout is specified then use a 60 second select timeout */
35 #define SELECT_TIMEOUT 60
36
37 extern int bwlimit;
38 extern size_t bwlimit_writemax;
39 extern int io_timeout;
40 extern int am_server;
41 extern int am_sender;
42 extern int am_receiver;
43 extern int am_generator;
44 extern int msgs2stderr;
45 extern int inc_recurse;
46 extern int io_error;
47 extern int eol_nulls;
48 extern int flist_eof;
49 extern int file_total;
50 extern int file_old_total;
51 extern int list_only;
52 extern int read_batch;
53 extern int compat_flags;
54 extern int protect_args;
55 extern int checksum_seed;
56 extern int protocol_version;
57 extern int remove_source_files;
58 extern int preserve_hard_links;
59 extern BOOL extra_flist_sending_enabled;
60 extern BOOL flush_ok_after_signal;
61 extern struct stats stats;
62 extern struct file_list *cur_flist;
63 #ifdef ICONV_OPTION
64 extern int filesfrom_convert;
65 extern iconv_t ic_send, ic_recv;
66 #endif
67
68 int csum_length = SHORT_SUM_LENGTH; /* initial value */
69 int allowed_lull = 0;
70 int batch_fd = -1;
71 int msgdone_cnt = 0;
72 int forward_flist_data = 0;
73 BOOL flist_receiving_enabled = False;
74
75 /* Ignore an EOF error if non-zero. See whine_about_eof(). */
76 int kluge_around_eof = 0;
77 int got_kill_signal = -1; /* is set to 0 only after multiplexed I/O starts */
78
79 int sock_f_in = -1;
80 int sock_f_out = -1;
81
82 int64 total_data_read = 0;
83 int64 total_data_written = 0;
84
85 static struct {
86 xbuf in, out, msg;
87 int in_fd;
88 int out_fd; /* Both "out" and "msg" go to this fd. */
89 int in_multiplexed;
90 unsigned out_empty_len;
91 size_t raw_data_header_pos; /* in the out xbuf */
92 size_t raw_flushing_ends_before; /* in the out xbuf */
93 size_t raw_input_ends_before; /* in the in xbuf */
94 } iobuf = { .in_fd = -1, .out_fd = -1 };
95
96 static time_t last_io_in;
97 static time_t last_io_out;
98
99 static int write_batch_monitor_in = -1;
100 static int write_batch_monitor_out = -1;
101
102 static int ff_forward_fd = -1;
103 static int ff_reenable_multiplex = -1;
104 static char ff_lastchar = '\0';
105 static xbuf ff_xb = EMPTY_XBUF;
106 #ifdef ICONV_OPTION
107 static xbuf iconv_buf = EMPTY_XBUF;
108 #endif
109 static int select_timeout = SELECT_TIMEOUT;
110 static int active_filecnt = 0;
111 static OFF_T active_bytecnt = 0;
112 static int first_message = 1;
113
114 static char int_byte_extra[64] = {
115 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (00 - 3F)/4 */
116 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (40 - 7F)/4 */
117 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* (80 - BF)/4 */
118 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, /* (C0 - FF)/4 */
119 };
120
121 /* Our I/O buffers are sized with no bits on in the lowest byte of the "size"
122 * (indeed, our rounding of sizes in 1024-byte units assures more than this).
123 * This allows the code that is storing bytes near the physical end of a
124 * circular buffer to temporarily reduce the buffer's size (in order to make
125 * some storing idioms easier), while also making it simple to restore the
126 * buffer's actual size when the buffer's "pos" wraps around to the start (we
127 * just round the buffer's size up again). */
128
129 #define IOBUF_WAS_REDUCED(siz) ((siz) & 0xFF)
130 #define IOBUF_RESTORE_SIZE(siz) (((siz) | 0xFF) + 1)
131
132 #define IN_MULTIPLEXED (iobuf.in_multiplexed != 0)
133 #define IN_MULTIPLEXED_AND_READY (iobuf.in_multiplexed > 0)
134 #define OUT_MULTIPLEXED (iobuf.out_empty_len != 0)
135
136 #define PIO_NEED_INPUT (1<<0) /* The *_NEED_* flags are mutually exclusive. */
137 #define PIO_NEED_OUTROOM (1<<1)
138 #define PIO_NEED_MSGROOM (1<<2)
139
140 #define PIO_CONSUME_INPUT (1<<4) /* Must becombined with PIO_NEED_INPUT. */
141
142 #define PIO_INPUT_AND_CONSUME (PIO_NEED_INPUT | PIO_CONSUME_INPUT)
143 #define PIO_NEED_FLAGS (PIO_NEED_INPUT | PIO_NEED_OUTROOM | PIO_NEED_MSGROOM)
144
145 #define REMOTE_OPTION_ERROR "rsync: on remote machine: -"
146 #define REMOTE_OPTION_ERROR2 ": unknown option"
147
148 #define FILESFROM_BUFLEN 2048
149
150 enum festatus { FES_SUCCESS, FES_REDO, FES_NO_SEND };
151
152 static flist_ndx_list redo_list, hlink_list;
153
154 static void read_a_msg(void);
155 static void drain_multiplex_messages(void);
156 static void sleep_for_bwlimit(int bytes_written);
157
158 static void check_timeout(BOOL allow_keepalive, int keepalive_flags)
159 {
160 time_t t, chk;
161
162 /* On the receiving side, the generator is now the one that decides
163 * when a timeout has occurred. When it is sifting through a lot of
164 * files looking for work, it will be sending keep-alive messages to
165 * the sender, and even though the receiver won't be sending/receiving
166 * anything (not even keep-alive messages), the successful writes to
167 * the sender will keep things going. If the receiver is actively
168 * receiving data, it will ensure that the generator knows that it is
169 * not idle by sending the generator keep-alive messages (since the
170 * generator might be blocked trying to send checksums, it needs to
171 * know that the receiver is active). Thus, as long as one or the
172 * other is successfully doing work, the generator will not timeout. */
173 if (!io_timeout)
174 return;
175
176 t = time(NULL);
177
178 if (allow_keepalive) {
179 /* This may put data into iobuf.msg w/o flushing. */
180 maybe_send_keepalive(t, keepalive_flags);
181 }
182
183 if (!last_io_in)
184 last_io_in = t;
185
186 if (am_receiver)
187 return;
188
189 chk = MAX(last_io_out, last_io_in);
190 if (t - chk >= io_timeout) {
191 if (am_server)
192 msgs2stderr = 1;
193 rprintf(FERROR, "[%s] io timeout after %d seconds -- exiting\n",
194 who_am_i(), (int)(t-chk));
195 exit_cleanup(RERR_TIMEOUT);
196 }
197 }
198
199 /* It's almost always an error to get an EOF when we're trying to read from the
200 * network, because the protocol is (for the most part) self-terminating.
201 *
202 * There is one case for the receiver when it is at the end of the transfer
203 * (hanging around reading any keep-alive packets that might come its way): if
204 * the sender dies before the generator's kill-signal comes through, we can end
205 * up here needing to loop until the kill-signal arrives. In this situation,
206 * kluge_around_eof will be < 0.
207 *
208 * There is another case for older protocol versions (< 24) where the module
209 * listing was not terminated, so we must ignore an EOF error in that case and
210 * exit. In this situation, kluge_around_eof will be > 0. */
211 static NORETURN void whine_about_eof(BOOL allow_kluge)
212 {
213 if (kluge_around_eof && allow_kluge) {
214 int i;
215 if (kluge_around_eof > 0)
216 exit_cleanup(0);
217 /* If we're still here after 10 seconds, exit with an error. */
218 for (i = 10*1000/20; i--; )
219 msleep(20);
220 }
221
222 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
223 "(%s bytes received so far) [%s]\n",
224 big_num(stats.total_read), who_am_i());
225
226 exit_cleanup(RERR_STREAMIO);
227 }
228
229 /* Do a safe read, handling any needed looping and error handling.
230 * Returns the count of the bytes read, which will only be different
231 * from "len" if we encountered an EOF. This routine is not used on
232 * the socket except very early in the transfer. */
233 static size_t safe_read(int fd, char *buf, size_t len)
234 {
235 size_t got = 0;
236
237 assert(fd != iobuf.in_fd);
238
239 while (1) {
240 struct timeval tv;
241 fd_set r_fds, e_fds;
242 int cnt;
243
244 FD_ZERO(&r_fds);
245 FD_SET(fd, &r_fds);
246 FD_ZERO(&e_fds);
247 FD_SET(fd, &e_fds);
248 tv.tv_sec = select_timeout;
249 tv.tv_usec = 0;
250
251 cnt = select(fd+1, &r_fds, NULL, &e_fds, &tv);
252 if (cnt <= 0) {
253 if (cnt < 0 && errno == EBADF) {
254 rsyserr(FERROR, errno, "safe_read select failed [%s]",
255 who_am_i());
256 exit_cleanup(RERR_FILEIO);
257 }
258 check_timeout(1, MSK_ALLOW_FLUSH);
259 continue;
260 }
261
262 /*if (FD_ISSET(fd, &e_fds))
263 rprintf(FINFO, "select exception on fd %d\n", fd); */
264
265 if (FD_ISSET(fd, &r_fds)) {
266 int n = read(fd, buf + got, len - got);
267 if (DEBUG_GTE(IO, 2))
268 rprintf(FINFO, "[%s] safe_read(%d)=%ld\n", who_am_i(), fd, (long)n);
269 if (n == 0)
270 break;
271 if (n < 0) {
272 if (errno == EINTR)
273 continue;
274 rsyserr(FERROR, errno, "safe_read failed to read %ld bytes [%s]",
275 (long)len, who_am_i());
276 exit_cleanup(RERR_STREAMIO);
277 }
278 if ((got += (size_t)n) == len)
279 break;
280 }
281 }
282
283 return got;
284 }
285
286 static const char *what_fd_is(int fd)
287 {
288 static char buf[20];
289
290 if (fd == sock_f_out)
291 return "socket";
292 else if (fd == iobuf.out_fd)
293 return "message fd";
294 else if (fd == batch_fd)
295 return "batch file";
296 else {
297 snprintf(buf, sizeof buf, "fd %d", fd);
298 return buf;
299 }
300 }
301
302 /* Do a safe write, handling any needed looping and error handling.
303 * Returns only if everything was successfully written. This routine
304 * is not used on the socket except very early in the transfer. */
305 static void safe_write(int fd, const char *buf, size_t len)
306 {
307 int n;
308
309 assert(fd != iobuf.out_fd);
310
311 n = write(fd, buf, len);
312 if ((size_t)n == len)
313 return;
314 if (n < 0) {
315 if (errno != EINTR && errno != EWOULDBLOCK && errno != EAGAIN) {
316 write_failed:
317 rsyserr(FERROR, errno,
318 "safe_write failed to write %ld bytes to %s [%s]",
319 (long)len, what_fd_is(fd), who_am_i());
320 exit_cleanup(RERR_STREAMIO);
321 }
322 } else {
323 buf += n;
324 len -= n;
325 }
326
327 while (len) {
328 struct timeval tv;
329 fd_set w_fds;
330 int cnt;
331
332 FD_ZERO(&w_fds);
333 FD_SET(fd, &w_fds);
334 tv.tv_sec = select_timeout;
335 tv.tv_usec = 0;
336
337 cnt = select(fd + 1, NULL, &w_fds, NULL, &tv);
338 if (cnt <= 0) {
339 if (cnt < 0 && errno == EBADF) {
340 rsyserr(FERROR, errno, "safe_write select failed on %s [%s]",
341 what_fd_is(fd), who_am_i());
342 exit_cleanup(RERR_FILEIO);
343 }
344 if (io_timeout)
345 maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH);
346 continue;
347 }
348
349 if (FD_ISSET(fd, &w_fds)) {
350 n = write(fd, buf, len);
351 if (n < 0) {
352 if (errno == EINTR)
353 continue;
354 goto write_failed;
355 }
356 buf += n;
357 len -= n;
358 }
359 }
360 }
361
362 /* This is only called when files-from data is known to be available. We read
363 * a chunk of data and put it into the output buffer. */
364 static void forward_filesfrom_data(void)
365 {
366 int len;
367
368 len = read(ff_forward_fd, ff_xb.buf + ff_xb.len, ff_xb.size - ff_xb.len);
369 if (len <= 0) {
370 if (len == 0 || errno != EINTR) {
371 /* Send end-of-file marker */
372 ff_forward_fd = -1;
373 write_buf(iobuf.out_fd, "\0\0", ff_lastchar ? 2 : 1);
374 free_xbuf(&ff_xb);
375 if (ff_reenable_multiplex >= 0)
376 io_start_multiplex_out(ff_reenable_multiplex);
377 }
378 return;
379 }
380
381 if (DEBUG_GTE(IO, 2))
382 rprintf(FINFO, "[%s] files-from read=%ld\n", who_am_i(), (long)len);
383
384 #ifdef ICONV_OPTION
385 len += ff_xb.len;
386 #endif
387
388 if (!eol_nulls) {
389 char *s = ff_xb.buf + len;
390 /* Transform CR and/or LF into '\0' */
391 while (s-- > ff_xb.buf) {
392 if (*s == '\n' || *s == '\r')
393 *s = '\0';
394 }
395 }
396
397 if (ff_lastchar)
398 ff_xb.pos = 0;
399 else {
400 char *s = ff_xb.buf;
401 /* Last buf ended with a '\0', so don't let this buf start with one. */
402 while (len && *s == '\0')
403 s++, len--;
404 ff_xb.pos = s - ff_xb.buf;
405 }
406
407 #ifdef ICONV_OPTION
408 if (filesfrom_convert && len) {
409 char *sob = ff_xb.buf + ff_xb.pos, *s = sob;
410 char *eob = sob + len;
411 int flags = ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT;
412 if (ff_lastchar == '\0')
413 flags |= ICB_INIT;
414 /* Convert/send each null-terminated string separately, skipping empties. */
415 while (s != eob) {
416 if (*s++ == '\0') {
417 ff_xb.len = s - sob - 1;
418 if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0)
419 exit_cleanup(RERR_PROTOCOL); /* impossible? */
420 write_buf(iobuf.out_fd, s-1, 1); /* Send the '\0'. */
421 while (s != eob && *s == '\0')
422 s++;
423 sob = s;
424 ff_xb.pos = sob - ff_xb.buf;
425 flags |= ICB_INIT;
426 }
427 }
428
429 if ((ff_xb.len = s - sob) == 0)
430 ff_lastchar = '\0';
431 else {
432 /* Handle a partial string specially, saving any incomplete chars. */
433 flags &= ~ICB_INCLUDE_INCOMPLETE;
434 if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0) {
435 if (errno == E2BIG)
436 exit_cleanup(RERR_PROTOCOL); /* impossible? */
437 if (ff_xb.pos)
438 memmove(ff_xb.buf, ff_xb.buf + ff_xb.pos, ff_xb.len);
439 }
440 ff_lastchar = 'x'; /* Anything non-zero. */
441 }
442 } else
443 #endif
444
445 if (len) {
446 char *f = ff_xb.buf + ff_xb.pos;
447 char *t = ff_xb.buf;
448 char *eob = f + len;
449 /* Eliminate any multi-'\0' runs. */
450 while (f != eob) {
451 if (!(*t++ = *f++)) {
452 while (f != eob && *f == '\0')
453 f++;
454 }
455 }
456 ff_lastchar = f[-1];
457 if ((len = t - ff_xb.buf) != 0) {
458 /* This will not circle back to perform_io() because we only get
459 * called when there is plenty of room in the output buffer. */
460 write_buf(iobuf.out_fd, ff_xb.buf, len);
461 }
462 }
463 }
464
465 void reduce_iobuf_size(xbuf *out, size_t new_size)
466 {
467 if (new_size < out->size) {
468 /* Avoid weird buffer interactions by only outputting this to stderr. */
469 if (msgs2stderr && DEBUG_GTE(IO, 4)) {
470 const char *name = out == &iobuf.out ? "iobuf.out"
471 : out == &iobuf.msg ? "iobuf.msg"
472 : NULL;
473 if (name) {
474 rprintf(FINFO, "[%s] reduced size of %s (-%d)\n",
475 who_am_i(), name, (int)(out->size - new_size));
476 }
477 }
478 out->size = new_size;
479 }
480 }
481
482 void restore_iobuf_size(xbuf *out)
483 {
484 if (IOBUF_WAS_REDUCED(out->size)) {
485 size_t new_size = IOBUF_RESTORE_SIZE(out->size);
486 /* Avoid weird buffer interactions by only outputting this to stderr. */
487 if (msgs2stderr && DEBUG_GTE(IO, 4)) {
488 const char *name = out == &iobuf.out ? "iobuf.out"
489 : out == &iobuf.msg ? "iobuf.msg"
490 : NULL;
491 if (name) {
492 rprintf(FINFO, "[%s] restored size of %s (+%d)\n",
493 who_am_i(), name, (int)(new_size - out->size));
494 }
495 }
496 out->size = new_size;
497 }
498 }
499
500 static void handle_kill_signal(BOOL flush_ok)
501 {
502 got_kill_signal = -1;
503 flush_ok_after_signal = flush_ok;
504 exit_cleanup(RERR_SIGNAL);
505 }
506
507 /* Perform buffered input and/or output until specified conditions are met.
508 * When given a "needed" read or write request, this returns without doing any
509 * I/O if the needed input bytes or write space is already available. Once I/O
510 * is needed, this will try to do whatever reading and/or writing is currently
511 * possible, up to the maximum buffer allowances, no matter if this is a read
512 * or write request. However, the I/O stops as soon as the required input
513 * bytes or output space is available. If this is not a read request, the
514 * routine may also do some advantageous reading of messages from a multiplexed
515 * input source (which ensures that we don't jam up with everyone in their
516 * "need to write" code and nobody reading the accumulated data that would make
517 * writing possible).
518 *
519 * The iobuf.in, .out and .msg buffers are all circular. Callers need to be
520 * aware that some data copies will need to be split when the bytes wrap around
521 * from the end to the start. In order to help make writing into the output
522 * buffers easier for some operations (such as the use of SIVAL() into the
523 * buffer) a buffer may be temporarily shortened by a small amount, but the
524 * original size will be automatically restored when the .pos wraps to the
525 * start. See also the 3 raw_* iobuf vars that are used in the handling of
526 * MSG_DATA bytes as they are read-from/written-into the buffers.
527 *
528 * When writing, we flush data in the following priority order:
529 *
530 * 1. Finish writing any in-progress MSG_DATA sequence from iobuf.out.
531 *
532 * 2. Write out all the messages from the message buf (if iobuf.msg is active).
533 * Yes, this means that a PIO_NEED_OUTROOM call will completely flush any
534 * messages before getting to the iobuf.out flushing (except for rule 1).
535 *
536 * 3. Write out the raw data from iobuf.out, possibly filling in the multiplexed
537 * MSG_DATA header that was pre-allocated (when output is multiplexed).
538 *
539 * TODO: items for possible future work:
540 *
541 * - Make this routine able to read the generator-to-receiver batch flow?
542 *
543 * Unlike the old routines that this replaces, it is OK to read ahead as far as
544 * we can because the read_a_msg() routine now reads its bytes out of the input
545 * buffer. In the old days, only raw data was in the input buffer, and any
546 * unused raw data in the buf would prevent the reading of socket data. */
547 static char *perform_io(size_t needed, int flags)
548 {
549 fd_set r_fds, e_fds, w_fds;
550 struct timeval tv;
551 int cnt, max_fd;
552 size_t empty_buf_len = 0;
553 xbuf *out;
554 char *data;
555
556 if (iobuf.in.len == 0 && iobuf.in.pos != 0) {
557 if (iobuf.raw_input_ends_before)
558 iobuf.raw_input_ends_before -= iobuf.in.pos;
559 iobuf.in.pos = 0;
560 }
561
562 switch (flags & PIO_NEED_FLAGS) {
563 case PIO_NEED_INPUT:
564 /* We never resize the circular input buffer. */
565 if (iobuf.in.size < needed) {
566 rprintf(FERROR, "need to read %ld bytes, iobuf.in.buf is only %ld bytes.\n",
567 (long)needed, (long)iobuf.in.size);
568 exit_cleanup(RERR_PROTOCOL);
569 }
570
571 if (msgs2stderr && DEBUG_GTE(IO, 3)) {
572 rprintf(FINFO, "[%s] perform_io(%ld, %sinput)\n",
573 who_am_i(), (long)needed, flags & PIO_CONSUME_INPUT ? "consume&" : "");
574 }
575 break;
576
577 case PIO_NEED_OUTROOM:
578 /* We never resize the circular output buffer. */
579 if (iobuf.out.size - iobuf.out_empty_len < needed) {
580 fprintf(stderr, "need to write %ld bytes, iobuf.out.buf is only %ld bytes.\n",
581 (long)needed, (long)(iobuf.out.size - iobuf.out_empty_len));
582 exit_cleanup(RERR_PROTOCOL);
583 }
584
585 if (msgs2stderr && DEBUG_GTE(IO, 3)) {
586 rprintf(FINFO, "[%s] perform_io(%ld, outroom) needs to flush %ld\n",
587 who_am_i(), (long)needed,
588 iobuf.out.len + needed > iobuf.out.size
589 ? (long)(iobuf.out.len + needed - iobuf.out.size) : 0L);
590 }
591 break;
592
593 case PIO_NEED_MSGROOM:
594 /* We never resize the circular message buffer. */
595 if (iobuf.msg.size < needed) {
596 fprintf(stderr, "need to write %ld bytes, iobuf.msg.buf is only %ld bytes.\n",
597 (long)needed, (long)iobuf.msg.size);
598 exit_cleanup(RERR_PROTOCOL);
599 }
600
601 if (msgs2stderr && DEBUG_GTE(IO, 3)) {
602 rprintf(FINFO, "[%s] perform_io(%ld, msgroom) needs to flush %ld\n",
603 who_am_i(), (long)needed,
604 iobuf.msg.len + needed > iobuf.msg.size
605 ? (long)(iobuf.msg.len + needed - iobuf.msg.size) : 0L);
606 }
607 break;
608
609 case 0:
610 if (msgs2stderr && DEBUG_GTE(IO, 3))
611 rprintf(FINFO, "[%s] perform_io(%ld, %d)\n", who_am_i(), (long)needed, flags);
612 break;
613
614 default:
615 exit_cleanup(RERR_UNSUPPORTED);
616 }
617
618 while (1) {
619 switch (flags & PIO_NEED_FLAGS) {
620 case PIO_NEED_INPUT:
621 if (iobuf.in.len >= needed)
622 goto double_break;
623 break;
624 case PIO_NEED_OUTROOM:
625 /* Note that iobuf.out_empty_len doesn't factor into this check
626 * because iobuf.out.len already holds any needed header len. */
627 if (iobuf.out.len + needed <= iobuf.out.size)
628 goto double_break;
629 break;
630 case PIO_NEED_MSGROOM:
631 if (iobuf.msg.len + needed <= iobuf.msg.size)
632 goto double_break;
633 break;
634 }
635
636 max_fd = -1;
637
638 FD_ZERO(&r_fds);
639 FD_ZERO(&e_fds);
640 if (iobuf.in_fd >= 0 && iobuf.in.size - iobuf.in.len) {
641 if (!read_batch || batch_fd >= 0) {
642 FD_SET(iobuf.in_fd, &r_fds);
643 FD_SET(iobuf.in_fd, &e_fds);
644 }
645 if (iobuf.in_fd > max_fd)
646 max_fd = iobuf.in_fd;
647 }
648
649 /* Only do more filesfrom processing if there is enough room in the out buffer. */
650 if (ff_forward_fd >= 0 && iobuf.out.size - iobuf.out.len > FILESFROM_BUFLEN*2) {
651 FD_SET(ff_forward_fd, &r_fds);
652 if (ff_forward_fd > max_fd)
653 max_fd = ff_forward_fd;
654 }
655
656 FD_ZERO(&w_fds);
657 if (iobuf.out_fd >= 0) {
658 if (iobuf.raw_flushing_ends_before
659 || (!iobuf.msg.len && iobuf.out.len > iobuf.out_empty_len && !(flags & PIO_NEED_MSGROOM))) {
660 if (OUT_MULTIPLEXED && !iobuf.raw_flushing_ends_before) {
661 /* The iobuf.raw_flushing_ends_before value can point off the end
662 * of the iobuf.out buffer for a while, for easier subtracting. */
663 iobuf.raw_flushing_ends_before = iobuf.out.pos + iobuf.out.len;
664
665 SIVAL(iobuf.out.buf + iobuf.raw_data_header_pos, 0,
666 ((MPLEX_BASE + (int)MSG_DATA)<<24) + iobuf.out.len - 4);
667
668 if (msgs2stderr && DEBUG_GTE(IO, 1)) {
669 rprintf(FINFO, "[%s] send_msg(%d, %ld)\n",
670 who_am_i(), (int)MSG_DATA, (long)iobuf.out.len - 4);
671 }
672
673 /* reserve room for the next MSG_DATA header */
674 iobuf.raw_data_header_pos = iobuf.raw_flushing_ends_before;
675 if (iobuf.raw_data_header_pos >= iobuf.out.size)
676 iobuf.raw_data_header_pos -= iobuf.out.size;
677 else if (iobuf.raw_data_header_pos + 4 > iobuf.out.size) {
678 /* The 4-byte header won't fit at the end of the buffer,
679 * so we'll temporarily reduce the output buffer's size
680 * and put the header at the start of the buffer. */
681 reduce_iobuf_size(&iobuf.out, iobuf.raw_data_header_pos);
682 iobuf.raw_data_header_pos = 0;
683 }
684 /* Yes, it is possible for this to make len > size for a while. */
685 iobuf.out.len += 4;
686 }
687
688 empty_buf_len = iobuf.out_empty_len;
689 out = &iobuf.out;
690 } else if (iobuf.msg.len) {
691 empty_buf_len = 0;
692 out = &iobuf.msg;
693 } else
694 out = NULL;
695 if (out) {
696 FD_SET(iobuf.out_fd, &w_fds);
697 if (iobuf.out_fd > max_fd)
698 max_fd = iobuf.out_fd;
699 }
700 } else
701 out = NULL;
702
703 if (max_fd < 0) {
704 switch (flags & PIO_NEED_FLAGS) {
705 case PIO_NEED_INPUT:
706 iobuf.in.len = 0;
707 if (kluge_around_eof == 2)
708 exit_cleanup(0);
709 if (iobuf.in_fd == -2)
710 whine_about_eof(True);
711 rprintf(FERROR, "error in perform_io: no fd for input.\n");
712 exit_cleanup(RERR_PROTOCOL);
713 case PIO_NEED_OUTROOM:
714 case PIO_NEED_MSGROOM:
715 msgs2stderr = 1;
716 drain_multiplex_messages();
717 if (iobuf.out_fd == -2)
718 whine_about_eof(True);
719 rprintf(FERROR, "error in perform_io: no fd for output.\n");
720 exit_cleanup(RERR_PROTOCOL);
721 default:
722 /* No stated needs, so I guess this is OK. */
723 break;
724 }
725 break;
726 }
727
728 if (got_kill_signal > 0)
729 handle_kill_signal(True);
730
731 if (extra_flist_sending_enabled) {
732 if (file_total - file_old_total < MAX_FILECNT_LOOKAHEAD && IN_MULTIPLEXED_AND_READY)
733 tv.tv_sec = 0;
734 else {
735 extra_flist_sending_enabled = False;
736 tv.tv_sec = select_timeout;
737 }
738 } else
739 tv.tv_sec = select_timeout;
740 tv.tv_usec = 0;
741
742 cnt = select(max_fd + 1, &r_fds, &w_fds, &e_fds, &tv);
743
744 if (cnt <= 0) {
745 if (cnt < 0 && errno == EBADF) {
746 msgs2stderr = 1;
747 exit_cleanup(RERR_SOCKETIO);
748 }
749 if (extra_flist_sending_enabled) {
750 extra_flist_sending_enabled = False;
751 send_extra_file_list(sock_f_out, -1);
752 extra_flist_sending_enabled = !flist_eof;
753 } else
754 check_timeout((flags & PIO_NEED_INPUT) != 0, 0);
755 FD_ZERO(&r_fds); /* Just in case... */
756 FD_ZERO(&w_fds);
757 }
758
759 if (iobuf.in_fd >= 0 && FD_ISSET(iobuf.in_fd, &r_fds)) {
760 size_t len, pos = iobuf.in.pos + iobuf.in.len;
761 int n;
762 if (pos >= iobuf.in.size) {
763 pos -= iobuf.in.size;
764 len = iobuf.in.size - iobuf.in.len;
765 } else
766 len = iobuf.in.size - pos;
767 if ((n = read(iobuf.in_fd, iobuf.in.buf + pos, len)) <= 0) {
768 if (n == 0) {
769 /* Signal that input has become invalid. */
770 if (!read_batch || batch_fd < 0 || am_generator)
771 iobuf.in_fd = -2;
772 batch_fd = -1;
773 continue;
774 }
775 if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN)
776 n = 0;
777 else {
778 /* Don't write errors on a dead socket. */
779 if (iobuf.in_fd == sock_f_in) {
780 if (am_sender)
781 msgs2stderr = 1;
782 rsyserr(FERROR_SOCKET, errno, "read error");
783 } else
784 rsyserr(FERROR, errno, "read error");
785 exit_cleanup(RERR_SOCKETIO);
786 }
787 }
788 if (msgs2stderr && DEBUG_GTE(IO, 2))
789 rprintf(FINFO, "[%s] recv=%ld\n", who_am_i(), (long)n);
790
791 if (io_timeout) {
792 last_io_in = time(NULL);
793 if (flags & PIO_NEED_INPUT)
794 maybe_send_keepalive(last_io_in, 0);
795 }
796 stats.total_read += n;
797
798 iobuf.in.len += n;
799 }
800
801 if (out && FD_ISSET(iobuf.out_fd, &w_fds)) {
802 size_t len = iobuf.raw_flushing_ends_before ? iobuf.raw_flushing_ends_before - out->pos : out->len;
803 int n;
804
805 if (bwlimit_writemax && len > bwlimit_writemax)
806 len = bwlimit_writemax;
807
808 if (out->pos + len > out->size)
809 len = out->size - out->pos;
810 if ((n = write(iobuf.out_fd, out->buf + out->pos, len)) <= 0) {
811 if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN)
812 n = 0;
813 else {
814 /* Don't write errors on a dead socket. */
815 msgs2stderr = 1;
816 iobuf.out_fd = -2;
817 iobuf.out.len = iobuf.msg.len = iobuf.raw_flushing_ends_before = 0;
818 rsyserr(FERROR_SOCKET, errno, "[%s] write error", who_am_i());
819 drain_multiplex_messages();
820 exit_cleanup(RERR_SOCKETIO);
821 }
822 }
823 if (msgs2stderr && DEBUG_GTE(IO, 2)) {
824 rprintf(FINFO, "[%s] %s sent=%ld\n",
825 who_am_i(), out == &iobuf.out ? "out" : "msg", (long)n);
826 }
827
828 if (io_timeout)
829 last_io_out = time(NULL);
830 stats.total_written += n;
831
832 if (bwlimit_writemax)
833 sleep_for_bwlimit(n);
834
835 if ((out->pos += n) == out->size) {
836 if (iobuf.raw_flushing_ends_before)
837 iobuf.raw_flushing_ends_before -= out->size;
838 out->pos = 0;
839 restore_iobuf_size(out);
840 } else if (out->pos == iobuf.raw_flushing_ends_before)
841 iobuf.raw_flushing_ends_before = 0;
842 if ((out->len -= n) == empty_buf_len) {
843 out->pos = 0;
844 restore_iobuf_size(out);
845 if (empty_buf_len)
846 iobuf.raw_data_header_pos = 0;
847 }
848 }
849
850 if (got_kill_signal > 0)
851 handle_kill_signal(True);
852
853 /* We need to help prevent deadlock by doing what reading
854 * we can whenever we are here trying to write. */
855 if (IN_MULTIPLEXED_AND_READY && !(flags & PIO_NEED_INPUT)) {
856 while (!iobuf.raw_input_ends_before && iobuf.in.len > 512)
857 read_a_msg();
858 if (flist_receiving_enabled && iobuf.in.len > 512)
859 wait_for_receiver(); /* generator only */
860 }
861
862 if (ff_forward_fd >= 0 && FD_ISSET(ff_forward_fd, &r_fds)) {
863 /* This can potentially flush all output and enable
864 * multiplexed output, so keep this last in the loop
865 * and be sure to not cache anything that would break
866 * such a change. */
867 forward_filesfrom_data();
868 }
869 }
870 double_break:
871
872 if (got_kill_signal > 0)
873 handle_kill_signal(True);
874
875 data = iobuf.in.buf + iobuf.in.pos;
876
877 if (flags & PIO_CONSUME_INPUT) {
878 iobuf.in.len -= needed;
879 iobuf.in.pos += needed;
880 if (iobuf.in.pos == iobuf.raw_input_ends_before)
881 iobuf.raw_input_ends_before = 0;
882 if (iobuf.in.pos >= iobuf.in.size) {
883 iobuf.in.pos -= iobuf.in.size;
884 if (iobuf.raw_input_ends_before)
885 iobuf.raw_input_ends_before -= iobuf.in.size;
886 }
887 }
888
889 return data;
890 }
891
892 static void raw_read_buf(char *buf, size_t len)
893 {
894 size_t pos = iobuf.in.pos;
895 char *data = perform_io(len, PIO_INPUT_AND_CONSUME);
896 if (iobuf.in.pos <= pos && len) {
897 size_t siz = len - iobuf.in.pos;
898 memcpy(buf, data, siz);
899 memcpy(buf + siz, iobuf.in.buf, iobuf.in.pos);
900 } else
901 memcpy(buf, data, len);
902 }
903
904 static int32 raw_read_int(void)
905 {
906 char *data, buf[4];
907 if (iobuf.in.size - iobuf.in.pos >= 4)
908 data = perform_io(4, PIO_INPUT_AND_CONSUME);
909 else
910 raw_read_buf(data = buf, 4);
911 return IVAL(data, 0);
912 }
913
914 void noop_io_until_death(void)
915 {
916 char buf[1024];
917
918 if (!iobuf.in.buf || !iobuf.out.buf || iobuf.in_fd < 0 || iobuf.out_fd < 0 || kluge_around_eof)
919 return;
920
921 kluge_around_eof = 2;
922 /* Setting an I/O timeout ensures that if something inexplicably weird
923 * happens, we won't hang around forever. */
924 if (!io_timeout)
925 set_io_timeout(60);
926
927 while (1)
928 read_buf(iobuf.in_fd, buf, sizeof buf);
929 }
930
931 /* Buffer a message for the multiplexed output stream. Is not used for (normal) MSG_DATA. */
932 int send_msg(enum msgcode code, const char *buf, size_t len, int convert)
933 {
934 char *hdr;
935 size_t needed, pos;
936 BOOL want_debug = DEBUG_GTE(IO, 1) && convert >= 0 && (msgs2stderr || code != MSG_INFO);
937
938 if (!OUT_MULTIPLEXED)
939 return 0;
940
941 if (want_debug)
942 rprintf(FINFO, "[%s] send_msg(%d, %ld)\n", who_am_i(), (int)code, (long)len);
943
944 /* When checking for enough free space for this message, we need to
945 * make sure that there is space for the 4-byte header, plus we'll
946 * assume that we may waste up to 3 bytes (if the header doesn't fit
947 * at the physical end of the buffer). */
948 #ifdef ICONV_OPTION
949 if (convert > 0 && ic_send == (iconv_t)-1)
950 convert = 0;
951 if (convert > 0) {
952 /* Ensuring double-size room leaves space for maximal conversion expansion. */
953 needed = len*2 + 4 + 3;
954 } else
955 #endif
956 needed = len + 4 + 3;
957 if (iobuf.msg.len + needed > iobuf.msg.size)
958 perform_io(needed, PIO_NEED_MSGROOM);
959
960 pos = iobuf.msg.pos + iobuf.msg.len; /* Must be set after any flushing. */
961 if (pos >= iobuf.msg.size)
962 pos -= iobuf.msg.size;
963 else if (pos + 4 > iobuf.msg.size) {
964 /* The 4-byte header won't fit at the end of the buffer,
965 * so we'll temporarily reduce the message buffer's size
966 * and put the header at the start of the buffer. */
967 reduce_iobuf_size(&iobuf.msg, pos);
968 pos = 0;
969 }
970 hdr = iobuf.msg.buf + pos;
971
972 iobuf.msg.len += 4; /* Allocate room for the coming header bytes. */
973
974 #ifdef ICONV_OPTION
975 if (convert > 0) {
976 xbuf inbuf;
977
978 INIT_XBUF(inbuf, (char*)buf, len, (size_t)-1);
979
980 len = iobuf.msg.len;
981 iconvbufs(ic_send, &inbuf, &iobuf.msg,
982 ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT | ICB_INIT);
983 if (inbuf.len > 0) {
984 rprintf(FERROR, "overflowed iobuf.msg buffer in send_msg");
985 exit_cleanup(RERR_UNSUPPORTED);
986 }
987 len = iobuf.msg.len - len;
988 } else
989 #endif
990 {
991 size_t siz;
992
993 if ((pos += 4) == iobuf.msg.size)
994 pos = 0;
995
996 /* Handle a split copy if we wrap around the end of the circular buffer. */
997 if (pos >= iobuf.msg.pos && (siz = iobuf.msg.size - pos) < len) {
998 memcpy(iobuf.msg.buf + pos, buf, siz);
999 memcpy(iobuf.msg.buf, buf + siz, len - siz);
1000 } else
1001 memcpy(iobuf.msg.buf + pos, buf, len);
1002
1003 iobuf.msg.len += len;
1004 }
1005
1006 SIVAL(hdr, 0, ((MPLEX_BASE + (int)code)<<24) + len);
1007
1008 if (want_debug && convert > 0)
1009 rprintf(FINFO, "[%s] converted msg len=%ld\n", who_am_i(), (long)len);
1010
1011 return 1;
1012 }
1013
1014 void send_msg_int(enum msgcode code, int num)
1015 {
1016 char numbuf[4];
1017
1018 if (DEBUG_GTE(IO, 1))
1019 rprintf(FINFO, "[%s] send_msg_int(%d, %d)\n", who_am_i(), (int)code, num);
1020
1021 SIVAL(numbuf, 0, num);
1022 send_msg(code, numbuf, 4, -1);
1023 }
1024
1025 static void got_flist_entry_status(enum festatus status, int ndx)
1026 {
1027 struct file_list *flist = flist_for_ndx(ndx, "got_flist_entry_status");
1028
1029 if (remove_source_files) {
1030 active_filecnt--;
1031 active_bytecnt -= F_LENGTH(flist->files[ndx - flist->ndx_start]);
1032 }
1033
1034 if (inc_recurse)
1035 flist->in_progress--;
1036
1037 switch (status) {
1038 case FES_SUCCESS:
1039 if (remove_source_files)
1040 send_msg_int(MSG_SUCCESS, ndx);
1041 /* FALL THROUGH */
1042 case FES_NO_SEND:
1043 #ifdef SUPPORT_HARD_LINKS
1044 if (preserve_hard_links) {
1045 struct file_struct *file = flist->files[ndx - flist->ndx_start];
1046 if (F_IS_HLINKED(file)) {
1047 if (status == FES_NO_SEND)
1048 flist_ndx_push(&hlink_list, -2); /* indicates a failure follows */
1049 flist_ndx_push(&hlink_list, ndx);
1050 if (inc_recurse)
1051 flist->in_progress++;
1052 }
1053 }
1054 #endif
1055 break;
1056 case FES_REDO:
1057 if (read_batch) {
1058 if (inc_recurse)
1059 flist->in_progress++;
1060 break;
1061 }
1062 if (inc_recurse)
1063 flist->to_redo++;
1064 flist_ndx_push(&redo_list, ndx);
1065 break;
1066 }
1067 }
1068
1069 /* Note the fds used for the main socket (which might really be a pipe
1070 * for a local transfer, but we can ignore that). */
1071 void io_set_sock_fds(int f_in, int f_out)
1072 {
1073 sock_f_in = f_in;
1074 sock_f_out = f_out;
1075 }
1076
1077 void set_io_timeout(int secs)
1078 {
1079 io_timeout = secs;
1080 allowed_lull = (io_timeout + 1) / 2;
1081
1082 if (!io_timeout || allowed_lull > SELECT_TIMEOUT)
1083 select_timeout = SELECT_TIMEOUT;
1084 else
1085 select_timeout = allowed_lull;
1086
1087 if (read_batch)
1088 allowed_lull = 0;
1089 }
1090
1091 static void check_for_d_option_error(const char *msg)
1092 {
1093 static char rsync263_opts[] = "BCDHIKLPRSTWabceghlnopqrtuvxz";
1094 char *colon;
1095 int saw_d = 0;
1096
1097 if (*msg != 'r'
1098 || strncmp(msg, REMOTE_OPTION_ERROR, sizeof REMOTE_OPTION_ERROR - 1) != 0)
1099 return;
1100
1101 msg += sizeof REMOTE_OPTION_ERROR - 1;
1102 if (*msg == '-' || (colon = strchr(msg, ':')) == NULL
1103 || strncmp(colon, REMOTE_OPTION_ERROR2, sizeof REMOTE_OPTION_ERROR2 - 1) != 0)
1104 return;
1105
1106 for ( ; *msg != ':'; msg++) {
1107 if (*msg == 'd')
1108 saw_d = 1;
1109 else if (*msg == 'e')
1110 break;
1111 else if (strchr(rsync263_opts, *msg) == NULL)
1112 return;
1113 }
1114
1115 if (saw_d) {
1116 rprintf(FWARNING,
1117 "*** Try using \"--old-d\" if remote rsync is <= 2.6.3 ***\n");
1118 }
1119 }
1120
1121 /* This is used by the generator to limit how many file transfers can
1122 * be active at once when --remove-source-files is specified. Without
1123 * this, sender-side deletions were mostly happening at the end. */
1124 void increment_active_files(int ndx, int itemizing, enum logcode code)
1125 {
1126 while (1) {
1127 /* TODO: tune these limits? */
1128 int limit = active_bytecnt >= 128*1024 ? 10 : 50;
1129 if (active_filecnt < limit)
1130 break;
1131 check_for_finished_files(itemizing, code, 0);
1132 if (active_filecnt < limit)
1133 break;
1134 wait_for_receiver();
1135 }
1136
1137 active_filecnt++;
1138 active_bytecnt += F_LENGTH(cur_flist->files[ndx - cur_flist->ndx_start]);
1139 }
1140
1141 int get_redo_num(void)
1142 {
1143 return flist_ndx_pop(&redo_list);
1144 }
1145
1146 int get_hlink_num(void)
1147 {
1148 return flist_ndx_pop(&hlink_list);
1149 }
1150
1151 /* When we're the receiver and we have a local --files-from list of names
1152 * that needs to be sent over the socket to the sender, we have to do two
1153 * things at the same time: send the sender a list of what files we're
1154 * processing and read the incoming file+info list from the sender. We do
1155 * this by making recv_file_list() call forward_filesfrom_data(), which
1156 * will ensure that we forward data to the sender until we get some data
1157 * for recv_file_list() to use. */
1158 void start_filesfrom_forwarding(int fd)
1159 {
1160 if (protocol_version < 31 && OUT_MULTIPLEXED) {
1161 /* Older protocols send the files-from data w/o packaging
1162 * it in multiplexed I/O packets, so temporarily switch
1163 * to buffered I/O to match this behavior. */
1164 iobuf.msg.pos = iobuf.msg.len = 0; /* Be extra sure no messages go out. */
1165 ff_reenable_multiplex = io_end_multiplex_out(MPLX_TO_BUFFERED);
1166 }
1167 ff_forward_fd = fd;
1168
1169 alloc_xbuf(&ff_xb, FILESFROM_BUFLEN);
1170 }
1171
1172 /* Read a line into the "buf" buffer. */
1173 int read_line(int fd, char *buf, size_t bufsiz, int flags)
1174 {
1175 char ch, *s, *eob;
1176
1177 #ifdef ICONV_OPTION
1178 if (flags & RL_CONVERT && iconv_buf.size < bufsiz)
1179 realloc_xbuf(&iconv_buf, bufsiz + 1024);
1180 #endif
1181
1182 start:
1183 #ifdef ICONV_OPTION
1184 s = flags & RL_CONVERT ? iconv_buf.buf : buf;
1185 #else
1186 s = buf;
1187 #endif
1188 eob = s + bufsiz - 1;
1189 while (1) {
1190 /* We avoid read_byte() for files because files can return an EOF. */
1191 if (fd == iobuf.in_fd)
1192 ch = read_byte(fd);
1193 else if (safe_read(fd, &ch, 1) == 0)
1194 break;
1195 if (flags & RL_EOL_NULLS ? ch == '\0' : (ch == '\r' || ch == '\n')) {
1196 /* Skip empty lines if dumping comments. */
1197 if (flags & RL_DUMP_COMMENTS && s == buf)
1198 continue;
1199 break;
1200 }
1201 if (s < eob)
1202 *s++ = ch;
1203 }
1204 *s = '\0';
1205
1206 if (flags & RL_DUMP_COMMENTS && (*buf == '#' || *buf == ';'))
1207 goto start;
1208
1209 #ifdef ICONV_OPTION
1210 if (flags & RL_CONVERT) {
1211 xbuf outbuf;
1212 INIT_XBUF(outbuf, buf, 0, bufsiz);
1213 iconv_buf.pos = 0;
1214 iconv_buf.len = s - iconv_buf.buf;
1215 iconvbufs(ic_recv, &iconv_buf, &outbuf,
1216 ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_INIT);
1217 outbuf.buf[outbuf.len] = '\0';
1218 return outbuf.len;
1219 }
1220 #endif
1221
1222 return s - buf;
1223 }
1224
1225 void read_args(int f_in, char *mod_name, char *buf, size_t bufsiz, int rl_nulls,
1226 char ***argv_p, int *argc_p, char **request_p)
1227 {
1228 int maxargs = MAX_ARGS;
1229 int dot_pos = 0, argc = 0, request_len = 0;
1230 char **argv, *p;
1231 int rl_flags = (rl_nulls ? RL_EOL_NULLS : 0);
1232
1233 #ifdef ICONV_OPTION
1234 rl_flags |= (protect_args && ic_recv != (iconv_t)-1 ? RL_CONVERT : 0);
1235 #endif
1236
1237 if (!(argv = new_array(char *, maxargs)))
1238 out_of_memory("read_args");
1239 if (mod_name && !protect_args)
1240 argv[argc++] = "rsyncd";
1241
1242 if (request_p)
1243 *request_p = NULL;
1244
1245 while (1) {
1246 if (read_line(f_in, buf, bufsiz, rl_flags) == 0)
1247 break;
1248
1249 if (argc == maxargs-1) {
1250 maxargs += MAX_ARGS;
1251 if (!(argv = realloc_array(argv, char *, maxargs)))
1252 out_of_memory("read_args");
1253 }
1254
1255 if (dot_pos) {
1256 if (request_p && request_len < 1024) {
1257 int len = strlen(buf);
1258 if (request_len)
1259 request_p[0][request_len++] = ' ';
1260 if (!(*request_p = realloc_array(*request_p, char, request_len + len + 1)))
1261 out_of_memory("read_args");
1262 memcpy(*request_p + request_len, buf, len + 1);
1263 request_len += len;
1264 }
1265 if (mod_name)
1266 glob_expand_module(mod_name, buf, &argv, &argc, &maxargs);
1267 else
1268 glob_expand(buf, &argv, &argc, &maxargs);
1269 } else {
1270 if (!(p = strdup(buf)))
1271 out_of_memory("read_args");
1272 argv[argc++] = p;
1273 if (*p == '.' && p[1] == '\0')
1274 dot_pos = argc;
1275 }
1276 }
1277 argv[argc] = NULL;
1278
1279 glob_expand(NULL, NULL, NULL, NULL);
1280
1281 *argc_p = argc;
1282 *argv_p = argv;
1283 }
1284
1285 BOOL io_start_buffering_out(int f_out)
1286 {
1287 if (msgs2stderr && DEBUG_GTE(IO, 2))
1288 rprintf(FINFO, "[%s] io_start_buffering_out(%d)\n", who_am_i(), f_out);
1289
1290 if (iobuf.out.buf) {
1291 if (iobuf.out_fd == -1)
1292 iobuf.out_fd = f_out;
1293 else
1294 assert(f_out == iobuf.out_fd);
1295 return False;
1296 }
1297
1298 alloc_xbuf(&iobuf.out, ROUND_UP_1024(IO_BUFFER_SIZE * 2));
1299 iobuf.out_fd = f_out;
1300
1301 return True;
1302 }
1303
1304 BOOL io_start_buffering_in(int f_in)
1305 {
1306 if (msgs2stderr && DEBUG_GTE(IO, 2))
1307 rprintf(FINFO, "[%s] io_start_buffering_in(%d)\n", who_am_i(), f_in);
1308
1309 if (iobuf.in.buf) {
1310 if (iobuf.in_fd == -1)
1311 iobuf.in_fd = f_in;
1312 else
1313 assert(f_in == iobuf.in_fd);
1314 return False;
1315 }
1316
1317 alloc_xbuf(&iobuf.in, ROUND_UP_1024(IO_BUFFER_SIZE));
1318 iobuf.in_fd = f_in;
1319
1320 return True;
1321 }
1322
1323 void io_end_buffering_in(BOOL free_buffers)
1324 {
1325 if (msgs2stderr && DEBUG_GTE(IO, 2)) {
1326 rprintf(FINFO, "[%s] io_end_buffering_in(IOBUF_%s_BUFS)\n",
1327 who_am_i(), free_buffers ? "FREE" : "KEEP");
1328 }
1329
1330 if (free_buffers)
1331 free_xbuf(&iobuf.in);
1332 else
1333 iobuf.in.pos = iobuf.in.len = 0;
1334
1335 iobuf.in_fd = -1;
1336 }
1337
1338 void io_end_buffering_out(BOOL free_buffers)
1339 {
1340 if (msgs2stderr && DEBUG_GTE(IO, 2)) {
1341 rprintf(FINFO, "[%s] io_end_buffering_out(IOBUF_%s_BUFS)\n",
1342 who_am_i(), free_buffers ? "FREE" : "KEEP");
1343 }
1344
1345 io_flush(FULL_FLUSH);
1346
1347 if (free_buffers) {
1348 free_xbuf(&iobuf.out);
1349 free_xbuf(&iobuf.msg);
1350 }
1351
1352 iobuf.out_fd = -1;
1353 }
1354
1355 void maybe_flush_socket(int important)
1356 {
1357 if (flist_eof && iobuf.out.buf && iobuf.out.len > iobuf.out_empty_len
1358 && (important || time(NULL) - last_io_out >= 5))
1359 io_flush(NORMAL_FLUSH);
1360 }
1361
1362 /* Older rsync versions used to send either a MSG_NOOP (protocol 30) or a
1363 * raw-data-based keep-alive (protocol 29), both of which implied forwarding of
1364 * the message through the sender. Since the new timeout method does not need
1365 * any forwarding, we just send an empty MSG_DATA message, which works with all
1366 * rsync versions. This avoids any message forwarding, and leaves the raw-data
1367 * stream alone (since we can never be quite sure if that stream is in the
1368 * right state for a keep-alive message). */
1369 void maybe_send_keepalive(time_t now, int flags)
1370 {
1371 if (flags & MSK_ACTIVE_RECEIVER)
1372 last_io_in = now; /* Fudge things when we're working hard on the files. */
1373
1374 /* Early in the transfer (before the receiver forks) the receiving side doesn't
1375 * care if it hasn't sent data in a while as long as it is receiving data (in
1376 * fact, a pre-3.1.0 rsync would die if we tried to send it a keep alive during
1377 * this time). So, if we're an early-receiving proc, just return and let the
1378 * incoming data determine if we timeout. */
1379 if (!am_sender && !am_receiver && !am_generator)
1380 return;
1381
1382 if (now - last_io_out >= allowed_lull) {
1383 /* The receiver is special: it only sends keep-alive messages if it is
1384 * actively receiving data. Otherwise, it lets the generator timeout. */
1385 if (am_receiver && now - last_io_in >= io_timeout)
1386 return;
1387
1388 if (!iobuf.msg.len && iobuf.out.len == iobuf.out_empty_len)
1389 send_msg(MSG_DATA, "", 0, 0);
1390 if (!(flags & MSK_ALLOW_FLUSH)) {
1391 /* Let the caller worry about writing out the data. */
1392 } else if (iobuf.msg.len)
1393 perform_io(iobuf.msg.size - iobuf.msg.len + 1, PIO_NEED_MSGROOM);
1394 else if (iobuf.out.len > iobuf.out_empty_len)
1395 io_flush(NORMAL_FLUSH);
1396 }
1397 }
1398
1399 void start_flist_forward(int ndx)
1400 {
1401 write_int(iobuf.out_fd, ndx);
1402 forward_flist_data = 1;
1403 }
1404
1405 void stop_flist_forward(void)
1406 {
1407 forward_flist_data = 0;
1408 }
1409
1410 /* Read a message from a multiplexed source. */
1411 static void read_a_msg(void)
1412 {
1413 char data[BIGPATHBUFLEN];
1414 int tag, val;
1415 size_t msg_bytes;
1416
1417 /* This ensures that perform_io() does not try to do any message reading
1418 * until we've read all of the data for this message. We should also
1419 * try to avoid calling things that will cause data to be written via
1420 * perform_io() prior to this being reset to 1. */
1421 iobuf.in_multiplexed = -1;
1422
1423 tag = raw_read_int();
1424
1425 msg_bytes = tag & 0xFFFFFF;
1426 tag = (tag >> 24) - MPLEX_BASE;
1427
1428 if (DEBUG_GTE(IO, 1) && msgs2stderr)
1429 rprintf(FINFO, "[%s] got msg=%d, len=%ld\n", who_am_i(), (int)tag, (long)msg_bytes);
1430
1431 switch (tag) {
1432 case MSG_DATA:
1433 assert(iobuf.raw_input_ends_before == 0);
1434 /* Though this does not yet read the data, we do mark where in
1435 * the buffer the msg data will end once it is read. It is
1436 * possible that this points off the end of the buffer, in
1437 * which case the gradual reading of the input stream will
1438 * cause this value to wrap around and eventually become real. */
1439 if (msg_bytes)
1440 iobuf.raw_input_ends_before = iobuf.in.pos + msg_bytes;
1441 iobuf.in_multiplexed = 1;
1442 break;
1443 case MSG_STATS:
1444 if (msg_bytes != sizeof stats.total_read || !am_generator)
1445 goto invalid_msg;
1446 raw_read_buf((char*)&stats.total_read, sizeof stats.total_read);
1447 iobuf.in_multiplexed = 1;
1448 break;
1449 case MSG_REDO:
1450 if (msg_bytes != 4 || !am_generator)
1451 goto invalid_msg;
1452 val = raw_read_int();
1453 iobuf.in_multiplexed = 1;
1454 got_flist_entry_status(FES_REDO, val);
1455 break;
1456 case MSG_IO_ERROR:
1457 if (msg_bytes != 4)
1458 goto invalid_msg;
1459 val = raw_read_int();
1460 iobuf.in_multiplexed = 1;
1461 io_error |= val;
1462 if (am_receiver)
1463 send_msg_int(MSG_IO_ERROR, val);
1464 break;
1465 case MSG_IO_TIMEOUT:
1466 if (msg_bytes != 4 || am_server || am_generator)
1467 goto invalid_msg;
1468 val = raw_read_int();
1469 iobuf.in_multiplexed = 1;
1470 if (!io_timeout || io_timeout > val) {
1471 if (INFO_GTE(MISC, 2))
1472 rprintf(FINFO, "Setting --timeout=%d to match server\n", val);
1473 set_io_timeout(val);
1474 }
1475 break;
1476 case MSG_NOOP:
1477 /* Support protocol-30 keep-alive method. */
1478 if (msg_bytes != 0)
1479 goto invalid_msg;
1480 iobuf.in_multiplexed = 1;
1481 if (am_sender)
1482 maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH);
1483 break;
1484 case MSG_DELETED:
1485 if (msg_bytes >= sizeof data)
1486 goto overflow;
1487 if (am_generator) {
1488 raw_read_buf(data, msg_bytes);
1489 iobuf.in_multiplexed = 1;
1490 send_msg(MSG_DELETED, data, msg_bytes, 1);
1491 break;
1492 }
1493 #ifdef ICONV_OPTION
1494 if (ic_recv != (iconv_t)-1) {
1495 xbuf outbuf, inbuf;
1496 char ibuf[512];
1497 int add_null = 0;
1498 int flags = ICB_INCLUDE_BAD | ICB_INIT;
1499
1500 INIT_CONST_XBUF(outbuf, data);
1501 INIT_XBUF(inbuf, ibuf, 0, (size_t)-1);
1502
1503 while (msg_bytes) {
1504 size_t len = msg_bytes > sizeof ibuf - inbuf.len ? sizeof ibuf - inbuf.len : msg_bytes;
1505 raw_read_buf(ibuf + inbuf.len, len);
1506 inbuf.pos = 0;
1507 inbuf.len += len;
1508 if (!(msg_bytes -= len) && !ibuf[inbuf.len-1])
1509 inbuf.len--, add_null = 1;
1510 if (iconvbufs(ic_send, &inbuf, &outbuf, flags) < 0) {
1511 if (errno == E2BIG)
1512 goto overflow;
1513 /* Buffer ended with an incomplete char, so move the
1514 * bytes to the start of the buffer and continue. */
1515 memmove(ibuf, ibuf + inbuf.pos, inbuf.len);
1516 }
1517 flags &= ~ICB_INIT;
1518 }
1519 if (add_null) {
1520 if (outbuf.len == outbuf.size)
1521 goto overflow;
1522 outbuf.buf[outbuf.len++] = '\0';
1523 }
1524 msg_bytes = outbuf.len;
1525 } else
1526 #endif
1527 raw_read_buf(data, msg_bytes);
1528 iobuf.in_multiplexed = 1;
1529 /* A directory name was sent with the trailing null */
1530 if (msg_bytes > 0 && !data[msg_bytes-1])
1531 log_delete(data, S_IFDIR);
1532 else {
1533 data[msg_bytes] = '\0';
1534 log_delete(data, S_IFREG);
1535 }
1536 break;
1537 case MSG_SUCCESS:
1538 if (msg_bytes != 4) {
1539 invalid_msg:
1540 rprintf(FERROR, "invalid multi-message %d:%lu [%s%s]\n",
1541 tag, (unsigned long)msg_bytes, who_am_i(),
1542 inc_recurse ? "/inc" : "");
1543 exit_cleanup(RERR_STREAMIO);
1544 }
1545 val = raw_read_int();
1546 iobuf.in_multiplexed = 1;
1547 if (am_generator)
1548 got_flist_entry_status(FES_SUCCESS, val);
1549 else
1550 successful_send(val);
1551 break;
1552 case MSG_NO_SEND:
1553 if (msg_bytes != 4)
1554 goto invalid_msg;
1555 val = raw_read_int();
1556 iobuf.in_multiplexed = 1;
1557 if (am_generator)
1558 got_flist_entry_status(FES_NO_SEND, val);
1559 else
1560 send_msg_int(MSG_NO_SEND, val);
1561 break;
1562 case MSG_ERROR_SOCKET:
1563 case MSG_ERROR_UTF8:
1564 case MSG_CLIENT:
1565 case MSG_LOG:
1566 if (!am_generator)
1567 goto invalid_msg;
1568 if (tag == MSG_ERROR_SOCKET)
1569 msgs2stderr = 1;
1570 /* FALL THROUGH */
1571 case MSG_INFO:
1572 case MSG_ERROR:
1573 case MSG_ERROR_XFER:
1574 case MSG_WARNING:
1575 if (msg_bytes >= sizeof data) {
1576 overflow:
1577 rprintf(FERROR,
1578 "multiplexing overflow %d:%lu [%s%s]\n",
1579 tag, (unsigned long)msg_bytes, who_am_i(),
1580 inc_recurse ? "/inc" : "");
1581 exit_cleanup(RERR_STREAMIO);
1582 }
1583 raw_read_buf(data, msg_bytes);
1584 /* We don't set in_multiplexed value back to 1 before writing this message
1585 * because the write might loop back and read yet another message, over and
1586 * over again, while waiting for room to put the message in the msg buffer. */
1587 rwrite((enum logcode)tag, data, msg_bytes, !am_generator);
1588 iobuf.in_multiplexed = 1;
1589 if (first_message) {
1590 if (list_only && !am_sender && tag == 1 && msg_bytes < sizeof data) {
1591 data[msg_bytes] = '\0';
1592 check_for_d_option_error(data);
1593 }
1594 first_message = 0;
1595 }
1596 break;
1597 case MSG_ERROR_EXIT:
1598 if (msg_bytes == 4)
1599 val = raw_read_int();
1600 else if (msg_bytes == 0)
1601 val = 0;
1602 else
1603 goto invalid_msg;
1604 iobuf.in_multiplexed = 1;
1605 if (DEBUG_GTE(EXIT, 3))
1606 rprintf(FINFO, "[%s] got MSG_ERROR_EXIT with %ld bytes\n", who_am_i(), (long)msg_bytes);
1607 if (msg_bytes == 0) {
1608 if (!am_sender && !am_generator) {
1609 if (DEBUG_GTE(EXIT, 3)) {
1610 rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n",
1611 who_am_i());
1612 }
1613 send_msg(MSG_ERROR_EXIT, "", 0, 0);
1614 io_flush(FULL_FLUSH);
1615 }
1616 } else if (protocol_version >= 31) {
1617 if (am_generator || am_receiver) {
1618 if (DEBUG_GTE(EXIT, 3)) {
1619 rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT with exit_code %d\n",
1620 who_am_i(), val);
1621 }
1622 send_msg_int(MSG_ERROR_EXIT, val);
1623 } else {
1624 if (DEBUG_GTE(EXIT, 3)) {
1625 rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n",
1626 who_am_i());
1627 }
1628 send_msg(MSG_ERROR_EXIT, "", 0, 0);
1629 }
1630 }
1631 /* Send a negative linenum so that we don't end up
1632 * with a duplicate exit message. */
1633 _exit_cleanup(val, __FILE__, 0 - __LINE__);
1634 default:
1635 rprintf(FERROR, "unexpected tag %d [%s%s]\n",
1636 tag, who_am_i(), inc_recurse ? "/inc" : "");
1637 exit_cleanup(RERR_STREAMIO);
1638 }
1639
1640 assert(iobuf.in_multiplexed > 0);
1641 }
1642
1643 static void drain_multiplex_messages(void)
1644 {
1645 while (IN_MULTIPLEXED_AND_READY && iobuf.in.len) {
1646 if (iobuf.raw_input_ends_before) {
1647 size_t raw_len = iobuf.raw_input_ends_before - iobuf.in.pos;
1648 iobuf.raw_input_ends_before = 0;
1649 if (raw_len >= iobuf.in.len) {
1650 iobuf.in.len = 0;
1651 break;
1652 }
1653 iobuf.in.len -= raw_len;
1654 if ((iobuf.in.pos += raw_len) >= iobuf.in.size)
1655 iobuf.in.pos -= iobuf.in.size;
1656 }
1657 read_a_msg();
1658 }
1659 }
1660
1661 void wait_for_receiver(void)
1662 {
1663 if (!iobuf.raw_input_ends_before)
1664 read_a_msg();
1665
1666 if (iobuf.raw_input_ends_before) {
1667 int ndx = read_int(iobuf.in_fd);
1668 if (ndx < 0) {
1669 switch (ndx) {
1670 case NDX_FLIST_EOF:
1671 flist_eof = 1;
1672 if (DEBUG_GTE(FLIST, 3))
1673 rprintf(FINFO, "[%s] flist_eof=1\n", who_am_i());
1674 break;
1675 case NDX_DONE:
1676 msgdone_cnt++;
1677 break;
1678 default:
1679 exit_cleanup(RERR_STREAMIO);
1680 }
1681 } else {
1682 struct file_list *flist;
1683 flist_receiving_enabled = False;
1684 if (DEBUG_GTE(FLIST, 2)) {
1685 rprintf(FINFO, "[%s] receiving flist for dir %d\n",
1686 who_am_i(), ndx);
1687 }
1688 flist = recv_file_list(iobuf.in_fd, ndx);
1689 flist->parent_ndx = ndx;
1690 #ifdef SUPPORT_HARD_LINKS
1691 if (preserve_hard_links)
1692 match_hard_links(flist);
1693 #endif
1694 flist_receiving_enabled = True;
1695 }
1696 }
1697 }
1698
1699 unsigned short read_shortint(int f)
1700 {
1701 char b[2];
1702 read_buf(f, b, 2);
1703 return (UVAL(b, 1) << 8) + UVAL(b, 0);
1704 }
1705
1706 int32 read_int(int f)
1707 {
1708 char b[4];
1709 int32 num;
1710
1711 read_buf(f, b, 4);
1712 num = IVAL(b, 0);
1713 #if SIZEOF_INT32 > 4
1714 if (num & (int32)0x80000000)
1715 num |= ~(int32)0xffffffff;
1716 #endif
1717 return num;
1718 }
1719
1720 int32 read_varint(int f)
1721 {
1722 union {
1723 char b[5];
1724 int32 x;
1725 } u;
1726 uchar ch;
1727 int extra;
1728
1729 u.x = 0;
1730 ch = read_byte(f);
1731 extra = int_byte_extra[ch / 4];
1732 if (extra) {
1733 uchar bit = ((uchar)1<<(8-extra));
1734 if (extra >= (int)sizeof u.b) {
1735 rprintf(FERROR, "Overflow in read_varint()\n");
1736 exit_cleanup(RERR_STREAMIO);
1737 }
1738 read_buf(f, u.b, extra);
1739 u.b[extra] = ch & (bit-1);
1740 } else
1741 u.b[0] = ch;
1742 #if CAREFUL_ALIGNMENT
1743 u.x = IVAL(u.b,0);
1744 #endif
1745 #if SIZEOF_INT32 > 4
1746 if (u.x & (int32)0x80000000)
1747 u.x |= ~(int32)0xffffffff;
1748 #endif
1749 return u.x;
1750 }
1751
1752 int64 read_varlong(int f, uchar min_bytes)
1753 {
1754 union {
1755 char b[9];
1756 int64 x;
1757 } u;
1758 char b2[8];
1759 int extra;
1760
1761 #if SIZEOF_INT64 < 8
1762 memset(u.b, 0, 8);
1763 #else
1764 u.x = 0;
1765 #endif
1766 read_buf(f, b2, min_bytes);
1767 memcpy(u.b, b2+1, min_bytes-1);
1768 extra = int_byte_extra[CVAL(b2, 0) / 4];
1769 if (extra) {
1770 uchar bit = ((uchar)1<<(8-extra));
1771 if (min_bytes + extra > (int)sizeof u.b) {
1772 rprintf(FERROR, "Overflow in read_varlong()\n");
1773 exit_cleanup(RERR_STREAMIO);
1774 }
1775 read_buf(f, u.b + min_bytes - 1, extra);
1776 u.b[min_bytes + extra - 1] = CVAL(b2, 0) & (bit-1);
1777 #if SIZEOF_INT64 < 8
1778 if (min_bytes + extra > 5 || u.b[4] || CVAL(u.b,3) & 0x80) {
1779 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
1780 exit_cleanup(RERR_UNSUPPORTED);
1781 }
1782 #endif
1783 } else
1784 u.b[min_bytes + extra - 1] = CVAL(b2, 0);
1785 #if SIZEOF_INT64 < 8
1786 u.x = IVAL(u.b,0);
1787 #elif CAREFUL_ALIGNMENT
1788 u.x = IVAL64(u.b,0);
1789 #endif
1790 return u.x;
1791 }
1792
1793 int64 read_longint(int f)
1794 {
1795 #if SIZEOF_INT64 >= 8
1796 char b[9];
1797 #endif
1798 int32 num = read_int(f);
1799
1800 if (num != (int32)0xffffffff)
1801 return num;
1802
1803 #if SIZEOF_INT64 < 8
1804 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
1805 exit_cleanup(RERR_UNSUPPORTED);
1806 #else
1807 read_buf(f, b, 8);
1808 return IVAL(b,0) | (((int64)IVAL(b,4))<<32);
1809 #endif
1810 }
1811
1812 void read_buf(int f, char *buf, size_t len)
1813 {
1814 if (f != iobuf.in_fd) {
1815 if (safe_read(f, buf, len) != len)
1816 whine_about_eof(False); /* Doesn't return. */
1817 goto batch_copy;
1818 }
1819
1820 if (!IN_MULTIPLEXED) {
1821 raw_read_buf(buf, len);
1822 total_data_read += len;
1823 if (forward_flist_data)
1824 write_buf(iobuf.out_fd, buf, len);
1825 batch_copy:
1826 if (f == write_batch_monitor_in)
1827 safe_write(batch_fd, buf, len);
1828 return;
1829 }
1830
1831 while (1) {
1832 size_t siz;
1833
1834 while (!iobuf.raw_input_ends_before)
1835 read_a_msg();
1836
1837 siz = MIN(len, iobuf.raw_input_ends_before - iobuf.in.pos);
1838 if (siz >= iobuf.in.size)
1839 siz = iobuf.in.size;
1840 raw_read_buf(buf, siz);
1841 total_data_read += siz;
1842
1843 if (forward_flist_data)
1844 write_buf(iobuf.out_fd, buf, siz);
1845
1846 if (f == write_batch_monitor_in)
1847 safe_write(batch_fd, buf, siz);
1848
1849 if ((len -= siz) == 0)
1850 break;
1851 buf += siz;
1852 }
1853 }
1854
1855 void read_sbuf(int f, char *buf, size_t len)
1856 {
1857 read_buf(f, buf, len);
1858 buf[len] = '\0';
1859 }
1860
1861 uchar read_byte(int f)
1862 {
1863 uchar c;
1864 read_buf(f, (char*)&c, 1);
1865 return c;
1866 }
1867
1868 int read_vstring(int f, char *buf, int bufsize)
1869 {
1870 int len = read_byte(f);
1871
1872 if (len & 0x80)
1873 len = (len & ~0x80) * 0x100 + read_byte(f);
1874
1875 if (len >= bufsize) {
1876 rprintf(FERROR, "over-long vstring received (%d > %d)\n",
1877 len, bufsize - 1);
1878 return -1;
1879 }
1880
1881 if (len)
1882 read_buf(f, buf, len);
1883 buf[len] = '\0';
1884 return len;
1885 }
1886
1887 /* Populate a sum_struct with values from the socket. This is
1888 * called by both the sender and the receiver. */
1889 void read_sum_head(int f, struct sum_struct *sum)
1890 {
1891 int32 max_blength = protocol_version < 30 ? OLD_MAX_BLOCK_SIZE : MAX_BLOCK_SIZE;
1892 sum->count = read_int(f);
1893 if (sum->count < 0) {
1894 rprintf(FERROR, "Invalid checksum count %ld [%s]\n",
1895 (long)sum->count, who_am_i());
1896 exit_cleanup(RERR_PROTOCOL);
1897 }
1898 sum->blength = read_int(f);
1899 if (sum->blength < 0 || sum->blength > max_blength) {
1900 rprintf(FERROR, "Invalid block length %ld [%s]\n",
1901 (long)sum->blength, who_am_i());
1902 exit_cleanup(RERR_PROTOCOL);
1903 }
1904 sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f);
1905 if (sum->s2length < 0 || sum->s2length > MAX_DIGEST_LEN) {
1906 rprintf(FERROR, "Invalid checksum length %d [%s]\n",
1907 sum->s2length, who_am_i());
1908 exit_cleanup(RERR_PROTOCOL);
1909 }
1910 sum->remainder = read_int(f);
1911 if (sum->remainder < 0 || sum->remainder > sum->blength) {
1912 rprintf(FERROR, "Invalid remainder length %ld [%s]\n",
1913 (long)sum->remainder, who_am_i());
1914 exit_cleanup(RERR_PROTOCOL);
1915 }
1916 }
1917
1918 /* Send the values from a sum_struct over the socket. Set sum to
1919 * NULL if there are no checksums to send. This is called by both
1920 * the generator and the sender. */
1921 void write_sum_head(int f, struct sum_struct *sum)
1922 {
1923 static struct sum_struct null_sum;
1924
1925 if (sum == NULL)
1926 sum = &null_sum;
1927
1928 write_int(f, sum->count);
1929 write_int(f, sum->blength);
1930 if (protocol_version >= 27)
1931 write_int(f, sum->s2length);
1932 write_int(f, sum->remainder);
1933 }
1934
1935 /* Sleep after writing to limit I/O bandwidth usage.
1936 *
1937 * @todo Rather than sleeping after each write, it might be better to
1938 * use some kind of averaging. The current algorithm seems to always
1939 * use a bit less bandwidth than specified, because it doesn't make up
1940 * for slow periods. But arguably this is a feature. In addition, we
1941 * ought to take the time used to write the data into account.
1942 *
1943 * During some phases of big transfers (file FOO is uptodate) this is
1944 * called with a small bytes_written every time. As the kernel has to
1945 * round small waits up to guarantee that we actually wait at least the
1946 * requested number of microseconds, this can become grossly inaccurate.
1947 * We therefore keep track of the bytes we've written over time and only
1948 * sleep when the accumulated delay is at least 1 tenth of a second. */
1949 static void sleep_for_bwlimit(int bytes_written)
1950 {
1951 static struct timeval prior_tv;
1952 static long total_written = 0;
1953 struct timeval tv, start_tv;
1954 long elapsed_usec, sleep_usec;
1955
1956 #define ONE_SEC 1000000L /* # of microseconds in a second */
1957
1958 total_written += bytes_written;
1959
1960 gettimeofday(&start_tv, NULL);
1961 if (prior_tv.tv_sec) {
1962 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
1963 + (start_tv.tv_usec - prior_tv.tv_usec);
1964 total_written -= (int64)elapsed_usec * bwlimit / (ONE_SEC/1024);
1965 if (total_written < 0)
1966 total_written = 0;
1967 }
1968
1969 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
1970 if (sleep_usec < ONE_SEC / 10) {
1971 prior_tv = start_tv;
1972 return;
1973 }
1974
1975 tv.tv_sec = sleep_usec / ONE_SEC;
1976 tv.tv_usec = sleep_usec % ONE_SEC;
1977 select(0, NULL, NULL, NULL, &tv);
1978
1979 gettimeofday(&prior_tv, NULL);
1980 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
1981 + (prior_tv.tv_usec - start_tv.tv_usec);
1982 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
1983 }
1984
1985 void io_flush(int flush_it_all)
1986 {
1987 if (iobuf.out.len > iobuf.out_empty_len) {
1988 if (flush_it_all) /* FULL_FLUSH: flush everything in the output buffers */
1989 perform_io(iobuf.out.size - iobuf.out_empty_len, PIO_NEED_OUTROOM);
1990 else /* NORMAL_FLUSH: flush at least 1 byte */
1991 perform_io(iobuf.out.size - iobuf.out.len + 1, PIO_NEED_OUTROOM);
1992 }
1993 if (iobuf.msg.len)
1994 perform_io(iobuf.msg.size, PIO_NEED_MSGROOM);
1995 }
1996
1997 void write_shortint(int f, unsigned short x)
1998 {
1999 char b[2];
2000 b[0] = (char)x;
2001 b[1] = (char)(x >> 8);
2002 write_buf(f, b, 2);
2003 }
2004
2005 void write_int(int f, int32 x)
2006 {
2007 char b[4];
2008 SIVAL(b, 0, x);
2009 write_buf(f, b, 4);
2010 }
2011
2012 void write_varint(int f, int32 x)
2013 {
2014 char b[5];
2015 uchar bit;
2016 int cnt;
2017
2018 SIVAL(b, 1, x);
2019
2020 for (cnt = 4; cnt > 1 && b[cnt] == 0; cnt--) {}
2021 bit = ((uchar)1<<(7-cnt+1));
2022
2023 if (CVAL(b, cnt) >= bit) {
2024 cnt++;
2025 *b = ~(bit-1);
2026 } else if (cnt > 1)
2027 *b = b[cnt] | ~(bit*2-1);
2028 else
2029 *b = b[1];
2030
2031 write_buf(f, b, cnt);
2032 }
2033
2034 void write_varlong(int f, int64 x, uchar min_bytes)
2035 {
2036 char b[9];
2037 uchar bit;
2038 int cnt = 8;
2039
2040 #if SIZEOF_INT64 >= 8
2041 SIVAL64(b, 1, x);
2042 #else
2043 SIVAL(b, 1, x);
2044 if (x <= 0x7FFFFFFF && x >= 0)
2045 memset(b + 5, 0, 4);
2046 else {
2047 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
2048 exit_cleanup(RERR_UNSUPPORTED);
2049 }
2050 #endif
2051
2052 while (cnt > min_bytes && b[cnt] == 0)
2053 cnt--;
2054 bit = ((uchar)1<<(7-cnt+min_bytes));
2055 if (CVAL(b, cnt) >= bit) {
2056 cnt++;
2057 *b = ~(bit-1);
2058 } else if (cnt > min_bytes)
2059 *b = b[cnt] | ~(bit*2-1);
2060 else
2061 *b = b[cnt];
2062
2063 write_buf(f, b, cnt);
2064 }
2065
2066 /*
2067 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
2068 * 64-bit types on this platform.
2069 */
2070 void write_longint(int f, int64 x)
2071 {
2072 char b[12], * const s = b+4;
2073
2074 SIVAL(s, 0, x);
2075 if (x <= 0x7FFFFFFF && x >= 0) {
2076 write_buf(f, s, 4);
2077 return;
2078 }
2079
2080 #if SIZEOF_INT64 < 8
2081 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
2082 exit_cleanup(RERR_UNSUPPORTED);
2083 #else
2084 memset(b, 0xFF, 4);
2085 SIVAL(s, 4, x >> 32);
2086 write_buf(f, b, 12);
2087 #endif
2088 }
2089
2090 void write_bigbuf(int f, const char *buf, size_t len)
2091 {
2092 size_t half_max = (iobuf.out.size - iobuf.out_empty_len) / 2;
2093
2094 while (len > half_max + 1024) {
2095 write_buf(f, buf, half_max);
2096 buf += half_max;
2097 len -= half_max;
2098 }
2099
2100 write_buf(f, buf, len);
2101 }
2102
2103 void write_buf(int f, const char *buf, size_t len)
2104 {
2105 size_t pos, siz;
2106
2107 if (f != iobuf.out_fd) {
2108 safe_write(f, buf, len);
2109 goto batch_copy;
2110 }
2111
2112 if (iobuf.out.len + len > iobuf.out.size)
2113 perform_io(len, PIO_NEED_OUTROOM);
2114
2115 pos = iobuf.out.pos + iobuf.out.len; /* Must be set after any flushing. */
2116 if (pos >= iobuf.out.size)
2117 pos -= iobuf.out.size;
2118
2119 /* Handle a split copy if we wrap around the end of the circular buffer. */
2120 if (pos >= iobuf.out.pos && (siz = iobuf.out.size - pos) < len) {
2121 memcpy(iobuf.out.buf + pos, buf, siz);
2122 memcpy(iobuf.out.buf, buf + siz, len - siz);
2123 } else
2124 memcpy(iobuf.out.buf + pos, buf, len);
2125
2126 iobuf.out.len += len;
2127 total_data_written += len;
2128
2129 batch_copy:
2130 if (f == write_batch_monitor_out)
2131 safe_write(batch_fd, buf, len);
2132 }
2133
2134 /* Write a string to the connection */
2135 void write_sbuf(int f, const char *buf)
2136 {
2137 write_buf(f, buf, strlen(buf));
2138 }
2139
2140 void write_byte(int f, uchar c)
2141 {
2142 write_buf(f, (char *)&c, 1);
2143 }
2144
2145 void write_vstring(int f, const char *str, int len)
2146 {
2147 uchar lenbuf[3], *lb = lenbuf;
2148
2149 if (len > 0x7F) {
2150 if (len > 0x7FFF) {
2151 rprintf(FERROR,
2152 "attempting to send over-long vstring (%d > %d)\n",
2153 len, 0x7FFF);
2154 exit_cleanup(RERR_PROTOCOL);
2155 }
2156 *lb++ = len / 0x100 + 0x80;
2157 }
2158 *lb = len;
2159
2160 write_buf(f, (char*)lenbuf, lb - lenbuf + 1);
2161 if (len)
2162 write_buf(f, str, len);
2163 }
2164
2165 /* Send a file-list index using a byte-reduction method. */
2166 void write_ndx(int f, int32 ndx)
2167 {
2168 static int32 prev_positive = -1, prev_negative = 1;
2169 int32 diff, cnt = 0;
2170 char b[6];
2171
2172 if (protocol_version < 30 || read_batch) {
2173 write_int(f, ndx);
2174 return;
2175 }
2176
2177 /* Send NDX_DONE as a single-byte 0 with no side effects. Send
2178 * negative nums as a positive after sending a leading 0xFF. */
2179 if (ndx >= 0) {
2180 diff = ndx - prev_positive;
2181 prev_positive = ndx;
2182 } else if (ndx == NDX_DONE) {
2183 *b = 0;
2184 write_buf(f, b, 1);
2185 return;
2186 } else {
2187 b[cnt++] = (char)0xFF;
2188 ndx = -ndx;
2189 diff = ndx - prev_negative;
2190 prev_negative = ndx;
2191 }
2192
2193 /* A diff of 1 - 253 is sent as a one-byte diff; a diff of 254 - 32767
2194 * or 0 is sent as a 0xFE + a two-byte diff; otherwise we send 0xFE
2195 * & all 4 bytes of the (non-negative) num with the high-bit set. */
2196 if (diff < 0xFE && diff > 0)
2197 b[cnt++] = (char)diff;
2198 else if (diff < 0 || diff > 0x7FFF) {
2199 b[cnt++] = (char)0xFE;
2200 b[cnt++] = (char)((ndx >> 24) | 0x80);
2201 b[cnt++] = (char)ndx;
2202 b[cnt++] = (char)(ndx >> 8);
2203 b[cnt++] = (char)(ndx >> 16);
2204 } else {
2205 b[cnt++] = (char)0xFE;
2206 b[cnt++] = (char)(diff >> 8);
2207 b[cnt++] = (char)diff;
2208 }
2209 write_buf(f, b, cnt);
2210 }
2211
2212 /* Receive a file-list index using a byte-reduction method. */
2213 int32 read_ndx(int f)
2214 {
2215 static int32 prev_positive = -1, prev_negative = 1;
2216 int32 *prev_ptr, num;
2217 char b[4];
2218
2219 if (protocol_version < 30)
2220 return read_int(f);
2221
2222 read_buf(f, b, 1);
2223 if (CVAL(b, 0) == 0xFF) {
2224 read_buf(f, b, 1);
2225 prev_ptr = &prev_negative;
2226 } else if (CVAL(b, 0) == 0)
2227 return NDX_DONE;
2228 else
2229 prev_ptr = &prev_positive;
2230 if (CVAL(b, 0) == 0xFE) {
2231 read_buf(f, b, 2);
2232 if (CVAL(b, 0) & 0x80) {
2233 b[3] = CVAL(b, 0) & ~0x80;
2234 b[0] = b[1];
2235 read_buf(f, b+1, 2);
2236 num = IVAL(b, 0);
2237 } else
2238 num = (UVAL(b,0)<<8) + UVAL(b,1) + *prev_ptr;
2239 } else
2240 num = UVAL(b, 0) + *prev_ptr;
2241 *prev_ptr = num;
2242 if (prev_ptr == &prev_negative)
2243 num = -num;
2244 return num;
2245 }
2246
2247 /* Read a line of up to bufsiz-1 characters into buf. Strips
2248 * the (required) trailing newline and all carriage returns.
2249 * Returns 1 for success; 0 for I/O error or truncation. */
2250 int read_line_old(int fd, char *buf, size_t bufsiz, int eof_ok)
2251 {
2252 assert(fd != iobuf.in_fd);
2253 bufsiz--; /* leave room for the null */
2254 while (bufsiz > 0) {
2255 if (safe_read(fd, buf, 1) == 0) {
2256 if (eof_ok)
2257 break;
2258 return 0;
2259 }
2260 if (*buf == '\0')
2261 return 0;
2262 if (*buf == '\n')
2263 break;
2264 if (*buf != '\r') {
2265 buf++;
2266 bufsiz--;
2267 }
2268 }
2269 *buf = '\0';
2270 return bufsiz > 0;
2271 }
2272
2273 void io_printf(int fd, const char *format, ...)
2274 {
2275 va_list ap;
2276 char buf[BIGPATHBUFLEN];
2277 int len;
2278
2279 va_start(ap, format);
2280 len = vsnprintf(buf, sizeof buf, format, ap);
2281 va_end(ap);
2282
2283 if (len < 0)
2284 exit_cleanup(RERR_PROTOCOL);
2285
2286 if (len >= (int)sizeof buf) {
2287 rprintf(FERROR, "io_printf() was too long for the buffer.\n");
2288 exit_cleanup(RERR_PROTOCOL);
2289 }
2290
2291 write_sbuf(fd, buf);
2292 }
2293
2294 /* Setup for multiplexing a MSG_* stream with the data stream. */
2295 void io_start_multiplex_out(int fd)
2296 {
2297 io_flush(FULL_FLUSH);
2298
2299 if (msgs2stderr && DEBUG_GTE(IO, 2))
2300 rprintf(FINFO, "[%s] io_start_multiplex_out(%d)\n", who_am_i(), fd);
2301
2302 if (!iobuf.msg.buf)
2303 alloc_xbuf(&iobuf.msg, ROUND_UP_1024(IO_BUFFER_SIZE));
2304
2305 iobuf.out_empty_len = 4; /* See also OUT_MULTIPLEXED */
2306 io_start_buffering_out(fd);
2307 got_kill_signal = 0;
2308
2309 iobuf.raw_data_header_pos = iobuf.out.pos + iobuf.out.len;
2310 iobuf.out.len += 4;
2311 }
2312
2313 /* Setup for multiplexing a MSG_* stream with the data stream. */
2314 void io_start_multiplex_in(int fd)
2315 {
2316 if (msgs2stderr && DEBUG_GTE(IO, 2))
2317 rprintf(FINFO, "[%s] io_start_multiplex_in(%d)\n", who_am_i(), fd);
2318
2319 iobuf.in_multiplexed = 1; /* See also IN_MULTIPLEXED */
2320 io_start_buffering_in(fd);
2321 }
2322
2323 int io_end_multiplex_in(int mode)
2324 {
2325 int ret = iobuf.in_multiplexed ? iobuf.in_fd : -1;
2326
2327 if (msgs2stderr && DEBUG_GTE(IO, 2))
2328 rprintf(FINFO, "[%s] io_end_multiplex_in(mode=%d)\n", who_am_i(), mode);
2329
2330 iobuf.in_multiplexed = 0;
2331 if (mode == MPLX_SWITCHING)
2332 iobuf.raw_input_ends_before = 0;
2333 else
2334 assert(iobuf.raw_input_ends_before == 0);
2335 if (mode != MPLX_TO_BUFFERED)
2336 io_end_buffering_in(mode);
2337
2338 return ret;
2339 }
2340
2341 int io_end_multiplex_out(int mode)
2342 {
2343 int ret = iobuf.out_empty_len ? iobuf.out_fd : -1;
2344
2345 if (msgs2stderr && DEBUG_GTE(IO, 2))
2346 rprintf(FINFO, "[%s] io_end_multiplex_out(mode=%d)\n", who_am_i(), mode);
2347
2348 if (mode != MPLX_TO_BUFFERED)
2349 io_end_buffering_out(mode);
2350 else
2351 io_flush(FULL_FLUSH);
2352
2353 iobuf.out.len = 0;
2354 iobuf.out_empty_len = 0;
2355 if (got_kill_signal > 0) /* Just in case... */
2356 handle_kill_signal(False);
2357 got_kill_signal = -1;
2358
2359 return ret;
2360 }
2361
2362 void start_write_batch(int fd)
2363 {
2364 /* Some communication has already taken place, but we don't
2365 * enable batch writing until here so that we can write a
2366 * canonical record of the communication even though the
2367 * actual communication so far depends on whether a daemon
2368 * is involved. */
2369 write_int(batch_fd, protocol_version);
2370 if (protocol_version >= 30)
2371 write_varint(batch_fd, compat_flags);
2372 maybe_write_checksum(batch_fd);
2373 write_int(batch_fd, checksum_seed);
2374
2375 if (am_sender)
2376 write_batch_monitor_out = fd;
2377 else
2378 write_batch_monitor_in = fd;
2379 }
2380
2381 void stop_write_batch(void)
2382 {
2383 write_batch_monitor_out = -1;
2384 write_batch_monitor_in = -1;
2385 }