]> git.ipfire.org Git - thirdparty/linux.git/blob - io_uring/io_uring.c
Merge tag 'fsnotify_for_v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / io_uring / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79
80 #include <uapi/linux/io_uring.h>
81
82 #include "io-wq.h"
83
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100
101 #define IORING_MAX_ENTRIES 32768
102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
103
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 IO_REQ_CLEAN_FLAGS)
119
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124
125 enum {
126 IO_CHECK_CQ_OVERFLOW_BIT,
127 IO_CHECK_CQ_DROPPED_BIT,
128 };
129
130 enum {
131 IO_EVENTFD_OP_SIGNAL_BIT,
132 IO_EVENTFD_OP_FREE_BIT,
133 };
134
135 struct io_defer_entry {
136 struct list_head list;
137 struct io_kiocb *req;
138 u32 seq;
139 };
140
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct task_struct *task,
147 bool cancel_all);
148
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152
153 struct kmem_cache *req_cachep;
154
155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 if (io_is_uring_fops(file)) {
159 struct io_ring_ctx *ctx = file->private_data;
160
161 return ctx->ring_sock->sk;
162 }
163 #endif
164 return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167
168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
171 ctx->submit_state.cqes_count)
172 __io_submit_flush_completions(ctx);
173 }
174
175 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
176 {
177 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
178 }
179
180 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
181 {
182 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
183 }
184
185 static bool io_match_linked(struct io_kiocb *head)
186 {
187 struct io_kiocb *req;
188
189 io_for_each_link(req, head) {
190 if (req->flags & REQ_F_INFLIGHT)
191 return true;
192 }
193 return false;
194 }
195
196 /*
197 * As io_match_task() but protected against racing with linked timeouts.
198 * User must not hold timeout_lock.
199 */
200 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
201 bool cancel_all)
202 {
203 bool matched;
204
205 if (task && head->task != task)
206 return false;
207 if (cancel_all)
208 return true;
209
210 if (head->flags & REQ_F_LINK_TIMEOUT) {
211 struct io_ring_ctx *ctx = head->ctx;
212
213 /* protect against races with linked timeouts */
214 spin_lock_irq(&ctx->timeout_lock);
215 matched = io_match_linked(head);
216 spin_unlock_irq(&ctx->timeout_lock);
217 } else {
218 matched = io_match_linked(head);
219 }
220 return matched;
221 }
222
223 static inline void req_fail_link_node(struct io_kiocb *req, int res)
224 {
225 req_set_fail(req);
226 io_req_set_res(req, res, 0);
227 }
228
229 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
230 {
231 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
232 kasan_poison_object_data(req_cachep, req);
233 }
234
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
236 {
237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
238
239 complete(&ctx->ref_comp);
240 }
241
242 static __cold void io_fallback_req_func(struct work_struct *work)
243 {
244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
245 fallback_work.work);
246 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 struct io_kiocb *req, *tmp;
248 struct io_tw_state ts = { .locked = true, };
249
250 mutex_lock(&ctx->uring_lock);
251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 req->io_task_work.func(req, &ts);
253 if (WARN_ON_ONCE(!ts.locked))
254 return;
255 io_submit_flush_completions(ctx);
256 mutex_unlock(&ctx->uring_lock);
257 }
258
259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
260 {
261 unsigned hash_buckets = 1U << bits;
262 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
263
264 table->hbs = kmalloc(hash_size, GFP_KERNEL);
265 if (!table->hbs)
266 return -ENOMEM;
267
268 table->hash_bits = bits;
269 init_hash_table(table, hash_buckets);
270 return 0;
271 }
272
273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
274 {
275 struct io_ring_ctx *ctx;
276 int hash_bits;
277
278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 if (!ctx)
280 return NULL;
281
282 xa_init(&ctx->io_bl_xa);
283
284 /*
285 * Use 5 bits less than the max cq entries, that should give us around
286 * 32 entries per hash list if totally full and uniformly spread, but
287 * don't keep too many buckets to not overconsume memory.
288 */
289 hash_bits = ilog2(p->cq_entries) - 5;
290 hash_bits = clamp(hash_bits, 1, 8);
291 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
292 goto err;
293 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
294 goto err;
295
296 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
297 if (!ctx->dummy_ubuf)
298 goto err;
299 /* set invalid range, so io_import_fixed() fails meeting it */
300 ctx->dummy_ubuf->ubuf = -1UL;
301
302 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
303 0, GFP_KERNEL))
304 goto err;
305
306 ctx->flags = p->flags;
307 init_waitqueue_head(&ctx->sqo_sq_wait);
308 INIT_LIST_HEAD(&ctx->sqd_list);
309 INIT_LIST_HEAD(&ctx->cq_overflow_list);
310 INIT_LIST_HEAD(&ctx->io_buffers_cache);
311 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
312 sizeof(struct io_rsrc_node));
313 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
314 sizeof(struct async_poll));
315 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
316 sizeof(struct io_async_msghdr));
317 init_completion(&ctx->ref_comp);
318 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
319 mutex_init(&ctx->uring_lock);
320 init_waitqueue_head(&ctx->cq_wait);
321 init_waitqueue_head(&ctx->poll_wq);
322 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
323 spin_lock_init(&ctx->completion_lock);
324 spin_lock_init(&ctx->timeout_lock);
325 INIT_WQ_LIST(&ctx->iopoll_list);
326 INIT_LIST_HEAD(&ctx->io_buffers_pages);
327 INIT_LIST_HEAD(&ctx->io_buffers_comp);
328 INIT_LIST_HEAD(&ctx->defer_list);
329 INIT_LIST_HEAD(&ctx->timeout_list);
330 INIT_LIST_HEAD(&ctx->ltimeout_list);
331 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
332 init_llist_head(&ctx->work_llist);
333 INIT_LIST_HEAD(&ctx->tctx_list);
334 ctx->submit_state.free_list.next = NULL;
335 INIT_WQ_LIST(&ctx->locked_free_list);
336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 return ctx;
339 err:
340 kfree(ctx->dummy_ubuf);
341 kfree(ctx->cancel_table.hbs);
342 kfree(ctx->cancel_table_locked.hbs);
343 kfree(ctx->io_bl);
344 xa_destroy(&ctx->io_bl_xa);
345 kfree(ctx);
346 return NULL;
347 }
348
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 struct io_rings *r = ctx->rings;
352
353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 ctx->cq_extra--;
355 }
356
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 struct io_ring_ctx *ctx = req->ctx;
361
362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 }
364
365 return false;
366 }
367
368 static void io_clean_op(struct io_kiocb *req)
369 {
370 if (req->flags & REQ_F_BUFFER_SELECTED) {
371 spin_lock(&req->ctx->completion_lock);
372 io_put_kbuf_comp(req);
373 spin_unlock(&req->ctx->completion_lock);
374 }
375
376 if (req->flags & REQ_F_NEED_CLEANUP) {
377 const struct io_cold_def *def = &io_cold_defs[req->opcode];
378
379 if (def->cleanup)
380 def->cleanup(req);
381 }
382 if ((req->flags & REQ_F_POLLED) && req->apoll) {
383 kfree(req->apoll->double_poll);
384 kfree(req->apoll);
385 req->apoll = NULL;
386 }
387 if (req->flags & REQ_F_INFLIGHT) {
388 struct io_uring_task *tctx = req->task->io_uring;
389
390 atomic_dec(&tctx->inflight_tracked);
391 }
392 if (req->flags & REQ_F_CREDS)
393 put_cred(req->creds);
394 if (req->flags & REQ_F_ASYNC_DATA) {
395 kfree(req->async_data);
396 req->async_data = NULL;
397 }
398 req->flags &= ~IO_REQ_CLEAN_FLAGS;
399 }
400
401 static inline void io_req_track_inflight(struct io_kiocb *req)
402 {
403 if (!(req->flags & REQ_F_INFLIGHT)) {
404 req->flags |= REQ_F_INFLIGHT;
405 atomic_inc(&req->task->io_uring->inflight_tracked);
406 }
407 }
408
409 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
410 {
411 if (WARN_ON_ONCE(!req->link))
412 return NULL;
413
414 req->flags &= ~REQ_F_ARM_LTIMEOUT;
415 req->flags |= REQ_F_LINK_TIMEOUT;
416
417 /* linked timeouts should have two refs once prep'ed */
418 io_req_set_refcount(req);
419 __io_req_set_refcount(req->link, 2);
420 return req->link;
421 }
422
423 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
424 {
425 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
426 return NULL;
427 return __io_prep_linked_timeout(req);
428 }
429
430 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
431 {
432 io_queue_linked_timeout(__io_prep_linked_timeout(req));
433 }
434
435 static inline void io_arm_ltimeout(struct io_kiocb *req)
436 {
437 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
438 __io_arm_ltimeout(req);
439 }
440
441 static void io_prep_async_work(struct io_kiocb *req)
442 {
443 const struct io_issue_def *def = &io_issue_defs[req->opcode];
444 struct io_ring_ctx *ctx = req->ctx;
445
446 if (!(req->flags & REQ_F_CREDS)) {
447 req->flags |= REQ_F_CREDS;
448 req->creds = get_current_cred();
449 }
450
451 req->work.list.next = NULL;
452 req->work.flags = 0;
453 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
454 if (req->flags & REQ_F_FORCE_ASYNC)
455 req->work.flags |= IO_WQ_WORK_CONCURRENT;
456
457 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
458 req->flags |= io_file_get_flags(req->file);
459
460 if (req->file && (req->flags & REQ_F_ISREG)) {
461 bool should_hash = def->hash_reg_file;
462
463 /* don't serialize this request if the fs doesn't need it */
464 if (should_hash && (req->file->f_flags & O_DIRECT) &&
465 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
466 should_hash = false;
467 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
468 io_wq_hash_work(&req->work, file_inode(req->file));
469 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
470 if (def->unbound_nonreg_file)
471 req->work.flags |= IO_WQ_WORK_UNBOUND;
472 }
473 }
474
475 static void io_prep_async_link(struct io_kiocb *req)
476 {
477 struct io_kiocb *cur;
478
479 if (req->flags & REQ_F_LINK_TIMEOUT) {
480 struct io_ring_ctx *ctx = req->ctx;
481
482 spin_lock_irq(&ctx->timeout_lock);
483 io_for_each_link(cur, req)
484 io_prep_async_work(cur);
485 spin_unlock_irq(&ctx->timeout_lock);
486 } else {
487 io_for_each_link(cur, req)
488 io_prep_async_work(cur);
489 }
490 }
491
492 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
493 {
494 struct io_kiocb *link = io_prep_linked_timeout(req);
495 struct io_uring_task *tctx = req->task->io_uring;
496
497 BUG_ON(!tctx);
498 BUG_ON(!tctx->io_wq);
499
500 /* init ->work of the whole link before punting */
501 io_prep_async_link(req);
502
503 /*
504 * Not expected to happen, but if we do have a bug where this _can_
505 * happen, catch it here and ensure the request is marked as
506 * canceled. That will make io-wq go through the usual work cancel
507 * procedure rather than attempt to run this request (or create a new
508 * worker for it).
509 */
510 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
511 req->work.flags |= IO_WQ_WORK_CANCEL;
512
513 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
514 io_wq_enqueue(tctx->io_wq, &req->work);
515 if (link)
516 io_queue_linked_timeout(link);
517 }
518
519 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
520 {
521 while (!list_empty(&ctx->defer_list)) {
522 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
523 struct io_defer_entry, list);
524
525 if (req_need_defer(de->req, de->seq))
526 break;
527 list_del_init(&de->list);
528 io_req_task_queue(de->req);
529 kfree(de);
530 }
531 }
532
533
534 static void io_eventfd_ops(struct rcu_head *rcu)
535 {
536 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
537 int ops = atomic_xchg(&ev_fd->ops, 0);
538
539 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
540 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
541
542 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
543 * ordering in a race but if references are 0 we know we have to free
544 * it regardless.
545 */
546 if (atomic_dec_and_test(&ev_fd->refs)) {
547 eventfd_ctx_put(ev_fd->cq_ev_fd);
548 kfree(ev_fd);
549 }
550 }
551
552 static void io_eventfd_signal(struct io_ring_ctx *ctx)
553 {
554 struct io_ev_fd *ev_fd = NULL;
555
556 rcu_read_lock();
557 /*
558 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
559 * and eventfd_signal
560 */
561 ev_fd = rcu_dereference(ctx->io_ev_fd);
562
563 /*
564 * Check again if ev_fd exists incase an io_eventfd_unregister call
565 * completed between the NULL check of ctx->io_ev_fd at the start of
566 * the function and rcu_read_lock.
567 */
568 if (unlikely(!ev_fd))
569 goto out;
570 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
571 goto out;
572 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
573 goto out;
574
575 if (likely(eventfd_signal_allowed())) {
576 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
577 } else {
578 atomic_inc(&ev_fd->refs);
579 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
580 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
581 else
582 atomic_dec(&ev_fd->refs);
583 }
584
585 out:
586 rcu_read_unlock();
587 }
588
589 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
590 {
591 bool skip;
592
593 spin_lock(&ctx->completion_lock);
594
595 /*
596 * Eventfd should only get triggered when at least one event has been
597 * posted. Some applications rely on the eventfd notification count
598 * only changing IFF a new CQE has been added to the CQ ring. There's
599 * no depedency on 1:1 relationship between how many times this
600 * function is called (and hence the eventfd count) and number of CQEs
601 * posted to the CQ ring.
602 */
603 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
604 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
605 spin_unlock(&ctx->completion_lock);
606 if (skip)
607 return;
608
609 io_eventfd_signal(ctx);
610 }
611
612 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
613 {
614 if (ctx->poll_activated)
615 io_poll_wq_wake(ctx);
616 if (ctx->off_timeout_used)
617 io_flush_timeouts(ctx);
618 if (ctx->drain_active) {
619 spin_lock(&ctx->completion_lock);
620 io_queue_deferred(ctx);
621 spin_unlock(&ctx->completion_lock);
622 }
623 if (ctx->has_evfd)
624 io_eventfd_flush_signal(ctx);
625 }
626
627 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
628 {
629 if (!ctx->task_complete)
630 spin_lock(&ctx->completion_lock);
631 }
632
633 static inline void io_cq_lock(struct io_ring_ctx *ctx)
634 __acquires(ctx->completion_lock)
635 {
636 spin_lock(&ctx->completion_lock);
637 }
638
639 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
640 {
641 io_commit_cqring(ctx);
642
643 if (ctx->task_complete) {
644 /*
645 * ->task_complete implies that only current might be waiting
646 * for CQEs, and obviously, we currently don't. No one is
647 * waiting, wakeups are futile, skip them.
648 */
649 io_commit_cqring_flush(ctx);
650 } else {
651 spin_unlock(&ctx->completion_lock);
652 io_commit_cqring_flush(ctx);
653 io_cqring_wake(ctx);
654 }
655 }
656
657 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
658 __releases(ctx->completion_lock)
659 {
660 io_commit_cqring(ctx);
661 spin_unlock(&ctx->completion_lock);
662 io_commit_cqring_flush(ctx);
663 io_cqring_wake(ctx);
664 }
665
666 /* Returns true if there are no backlogged entries after the flush */
667 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
668 {
669 struct io_overflow_cqe *ocqe;
670 LIST_HEAD(list);
671
672 spin_lock(&ctx->completion_lock);
673 list_splice_init(&ctx->cq_overflow_list, &list);
674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 spin_unlock(&ctx->completion_lock);
676
677 while (!list_empty(&list)) {
678 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
679 list_del(&ocqe->list);
680 kfree(ocqe);
681 }
682 }
683
684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
685 {
686 size_t cqe_size = sizeof(struct io_uring_cqe);
687
688 if (__io_cqring_events(ctx) == ctx->cq_entries)
689 return;
690
691 if (ctx->flags & IORING_SETUP_CQE32)
692 cqe_size <<= 1;
693
694 io_cq_lock(ctx);
695 while (!list_empty(&ctx->cq_overflow_list)) {
696 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
697 struct io_overflow_cqe *ocqe;
698
699 if (!cqe)
700 break;
701 ocqe = list_first_entry(&ctx->cq_overflow_list,
702 struct io_overflow_cqe, list);
703 memcpy(cqe, &ocqe->cqe, cqe_size);
704 list_del(&ocqe->list);
705 kfree(ocqe);
706 }
707
708 if (list_empty(&ctx->cq_overflow_list)) {
709 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
710 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
711 }
712 io_cq_unlock_post(ctx);
713 }
714
715 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
716 {
717 /* iopoll syncs against uring_lock, not completion_lock */
718 if (ctx->flags & IORING_SETUP_IOPOLL)
719 mutex_lock(&ctx->uring_lock);
720 __io_cqring_overflow_flush(ctx);
721 if (ctx->flags & IORING_SETUP_IOPOLL)
722 mutex_unlock(&ctx->uring_lock);
723 }
724
725 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
726 {
727 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
728 io_cqring_do_overflow_flush(ctx);
729 }
730
731 /* can be called by any task */
732 static void io_put_task_remote(struct task_struct *task)
733 {
734 struct io_uring_task *tctx = task->io_uring;
735
736 percpu_counter_sub(&tctx->inflight, 1);
737 if (unlikely(atomic_read(&tctx->in_cancel)))
738 wake_up(&tctx->wait);
739 put_task_struct(task);
740 }
741
742 /* used by a task to put its own references */
743 static void io_put_task_local(struct task_struct *task)
744 {
745 task->io_uring->cached_refs++;
746 }
747
748 /* must to be called somewhat shortly after putting a request */
749 static inline void io_put_task(struct task_struct *task)
750 {
751 if (likely(task == current))
752 io_put_task_local(task);
753 else
754 io_put_task_remote(task);
755 }
756
757 void io_task_refs_refill(struct io_uring_task *tctx)
758 {
759 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
760
761 percpu_counter_add(&tctx->inflight, refill);
762 refcount_add(refill, &current->usage);
763 tctx->cached_refs += refill;
764 }
765
766 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
767 {
768 struct io_uring_task *tctx = task->io_uring;
769 unsigned int refs = tctx->cached_refs;
770
771 if (refs) {
772 tctx->cached_refs = 0;
773 percpu_counter_sub(&tctx->inflight, refs);
774 put_task_struct_many(task, refs);
775 }
776 }
777
778 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
779 s32 res, u32 cflags, u64 extra1, u64 extra2)
780 {
781 struct io_overflow_cqe *ocqe;
782 size_t ocq_size = sizeof(struct io_overflow_cqe);
783 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
784
785 lockdep_assert_held(&ctx->completion_lock);
786
787 if (is_cqe32)
788 ocq_size += sizeof(struct io_uring_cqe);
789
790 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
791 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
792 if (!ocqe) {
793 /*
794 * If we're in ring overflow flush mode, or in task cancel mode,
795 * or cannot allocate an overflow entry, then we need to drop it
796 * on the floor.
797 */
798 io_account_cq_overflow(ctx);
799 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
800 return false;
801 }
802 if (list_empty(&ctx->cq_overflow_list)) {
803 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
804 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
805
806 }
807 ocqe->cqe.user_data = user_data;
808 ocqe->cqe.res = res;
809 ocqe->cqe.flags = cflags;
810 if (is_cqe32) {
811 ocqe->cqe.big_cqe[0] = extra1;
812 ocqe->cqe.big_cqe[1] = extra2;
813 }
814 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
815 return true;
816 }
817
818 bool io_req_cqe_overflow(struct io_kiocb *req)
819 {
820 if (!(req->flags & REQ_F_CQE32_INIT)) {
821 req->extra1 = 0;
822 req->extra2 = 0;
823 }
824 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
825 req->cqe.res, req->cqe.flags,
826 req->extra1, req->extra2);
827 }
828
829 /*
830 * writes to the cq entry need to come after reading head; the
831 * control dependency is enough as we're using WRITE_ONCE to
832 * fill the cq entry
833 */
834 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
835 {
836 struct io_rings *rings = ctx->rings;
837 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
838 unsigned int free, queued, len;
839
840 /*
841 * Posting into the CQ when there are pending overflowed CQEs may break
842 * ordering guarantees, which will affect links, F_MORE users and more.
843 * Force overflow the completion.
844 */
845 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
846 return NULL;
847
848 /* userspace may cheat modifying the tail, be safe and do min */
849 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
850 free = ctx->cq_entries - queued;
851 /* we need a contiguous range, limit based on the current array offset */
852 len = min(free, ctx->cq_entries - off);
853 if (!len)
854 return NULL;
855
856 if (ctx->flags & IORING_SETUP_CQE32) {
857 off <<= 1;
858 len <<= 1;
859 }
860
861 ctx->cqe_cached = &rings->cqes[off];
862 ctx->cqe_sentinel = ctx->cqe_cached + len;
863
864 ctx->cached_cq_tail++;
865 ctx->cqe_cached++;
866 if (ctx->flags & IORING_SETUP_CQE32)
867 ctx->cqe_cached++;
868 return &rings->cqes[off];
869 }
870
871 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
872 u32 cflags)
873 {
874 struct io_uring_cqe *cqe;
875
876 ctx->cq_extra++;
877
878 /*
879 * If we can't get a cq entry, userspace overflowed the
880 * submission (by quite a lot). Increment the overflow count in
881 * the ring.
882 */
883 cqe = io_get_cqe(ctx);
884 if (likely(cqe)) {
885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
886
887 WRITE_ONCE(cqe->user_data, user_data);
888 WRITE_ONCE(cqe->res, res);
889 WRITE_ONCE(cqe->flags, cflags);
890
891 if (ctx->flags & IORING_SETUP_CQE32) {
892 WRITE_ONCE(cqe->big_cqe[0], 0);
893 WRITE_ONCE(cqe->big_cqe[1], 0);
894 }
895 return true;
896 }
897 return false;
898 }
899
900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
901 __must_hold(&ctx->uring_lock)
902 {
903 struct io_submit_state *state = &ctx->submit_state;
904 unsigned int i;
905
906 lockdep_assert_held(&ctx->uring_lock);
907 for (i = 0; i < state->cqes_count; i++) {
908 struct io_uring_cqe *cqe = &state->cqes[i];
909
910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
911 if (ctx->task_complete) {
912 spin_lock(&ctx->completion_lock);
913 io_cqring_event_overflow(ctx, cqe->user_data,
914 cqe->res, cqe->flags, 0, 0);
915 spin_unlock(&ctx->completion_lock);
916 } else {
917 io_cqring_event_overflow(ctx, cqe->user_data,
918 cqe->res, cqe->flags, 0, 0);
919 }
920 }
921 }
922 state->cqes_count = 0;
923 }
924
925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
926 bool allow_overflow)
927 {
928 bool filled;
929
930 io_cq_lock(ctx);
931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
932 if (!filled && allow_overflow)
933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
934
935 io_cq_unlock_post(ctx);
936 return filled;
937 }
938
939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
940 {
941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
942 }
943
944 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
945 bool allow_overflow)
946 {
947 struct io_ring_ctx *ctx = req->ctx;
948 u64 user_data = req->cqe.user_data;
949 struct io_uring_cqe *cqe;
950
951 if (!defer)
952 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
953
954 lockdep_assert_held(&ctx->uring_lock);
955
956 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
957 __io_cq_lock(ctx);
958 __io_flush_post_cqes(ctx);
959 /* no need to flush - flush is deferred */
960 __io_cq_unlock_post(ctx);
961 }
962
963 /* For defered completions this is not as strict as it is otherwise,
964 * however it's main job is to prevent unbounded posted completions,
965 * and in that it works just as well.
966 */
967 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
968 return false;
969
970 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
971 cqe->user_data = user_data;
972 cqe->res = res;
973 cqe->flags = cflags;
974 return true;
975 }
976
977 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
978 {
979 struct io_ring_ctx *ctx = req->ctx;
980 struct io_rsrc_node *rsrc_node = NULL;
981
982 io_cq_lock(ctx);
983 if (!(req->flags & REQ_F_CQE_SKIP))
984 io_fill_cqe_req(ctx, req);
985
986 /*
987 * If we're the last reference to this request, add to our locked
988 * free_list cache.
989 */
990 if (req_ref_put_and_test(req)) {
991 if (req->flags & IO_REQ_LINK_FLAGS) {
992 if (req->flags & IO_DISARM_MASK)
993 io_disarm_next(req);
994 if (req->link) {
995 io_req_task_queue(req->link);
996 req->link = NULL;
997 }
998 }
999 io_put_kbuf_comp(req);
1000 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1001 io_clean_op(req);
1002 if (!(req->flags & REQ_F_FIXED_FILE))
1003 io_put_file(req->file);
1004
1005 rsrc_node = req->rsrc_node;
1006 /*
1007 * Selected buffer deallocation in io_clean_op() assumes that
1008 * we don't hold ->completion_lock. Clean them here to avoid
1009 * deadlocks.
1010 */
1011 io_put_task_remote(req->task);
1012 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1013 ctx->locked_free_nr++;
1014 }
1015 io_cq_unlock_post(ctx);
1016
1017 if (rsrc_node) {
1018 io_ring_submit_lock(ctx, issue_flags);
1019 io_put_rsrc_node(ctx, rsrc_node);
1020 io_ring_submit_unlock(ctx, issue_flags);
1021 }
1022 }
1023
1024 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1025 {
1026 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1027 req->io_task_work.func = io_req_task_complete;
1028 io_req_task_work_add(req);
1029 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1030 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1031 __io_req_complete_post(req, issue_flags);
1032 } else {
1033 struct io_ring_ctx *ctx = req->ctx;
1034
1035 mutex_lock(&ctx->uring_lock);
1036 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1037 mutex_unlock(&ctx->uring_lock);
1038 }
1039 }
1040
1041 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1042 __must_hold(&ctx->uring_lock)
1043 {
1044 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1045
1046 lockdep_assert_held(&req->ctx->uring_lock);
1047
1048 req_set_fail(req);
1049 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1050 if (def->fail)
1051 def->fail(req);
1052 io_req_complete_defer(req);
1053 }
1054
1055 /*
1056 * Don't initialise the fields below on every allocation, but do that in
1057 * advance and keep them valid across allocations.
1058 */
1059 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1060 {
1061 req->ctx = ctx;
1062 req->link = NULL;
1063 req->async_data = NULL;
1064 /* not necessary, but safer to zero */
1065 req->cqe.res = 0;
1066 }
1067
1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1069 struct io_submit_state *state)
1070 {
1071 spin_lock(&ctx->completion_lock);
1072 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1073 ctx->locked_free_nr = 0;
1074 spin_unlock(&ctx->completion_lock);
1075 }
1076
1077 /*
1078 * A request might get retired back into the request caches even before opcode
1079 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1080 * Because of that, io_alloc_req() should be called only under ->uring_lock
1081 * and with extra caution to not get a request that is still worked on.
1082 */
1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1084 __must_hold(&ctx->uring_lock)
1085 {
1086 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1087 void *reqs[IO_REQ_ALLOC_BATCH];
1088 int ret, i;
1089
1090 /*
1091 * If we have more than a batch's worth of requests in our IRQ side
1092 * locked cache, grab the lock and move them over to our submission
1093 * side cache.
1094 */
1095 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1096 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1097 if (!io_req_cache_empty(ctx))
1098 return true;
1099 }
1100
1101 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1102
1103 /*
1104 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1105 * retry single alloc to be on the safe side.
1106 */
1107 if (unlikely(ret <= 0)) {
1108 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1109 if (!reqs[0])
1110 return false;
1111 ret = 1;
1112 }
1113
1114 percpu_ref_get_many(&ctx->refs, ret);
1115 for (i = 0; i < ret; i++) {
1116 struct io_kiocb *req = reqs[i];
1117
1118 io_preinit_req(req, ctx);
1119 io_req_add_to_cache(req, ctx);
1120 }
1121 return true;
1122 }
1123
1124 __cold void io_free_req(struct io_kiocb *req)
1125 {
1126 /* refs were already put, restore them for io_req_task_complete() */
1127 req->flags &= ~REQ_F_REFCOUNT;
1128 /* we only want to free it, don't post CQEs */
1129 req->flags |= REQ_F_CQE_SKIP;
1130 req->io_task_work.func = io_req_task_complete;
1131 io_req_task_work_add(req);
1132 }
1133
1134 static void __io_req_find_next_prep(struct io_kiocb *req)
1135 {
1136 struct io_ring_ctx *ctx = req->ctx;
1137
1138 spin_lock(&ctx->completion_lock);
1139 io_disarm_next(req);
1140 spin_unlock(&ctx->completion_lock);
1141 }
1142
1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144 {
1145 struct io_kiocb *nxt;
1146
1147 /*
1148 * If LINK is set, we have dependent requests in this chain. If we
1149 * didn't fail this request, queue the first one up, moving any other
1150 * dependencies to the next request. In case of failure, fail the rest
1151 * of the chain.
1152 */
1153 if (unlikely(req->flags & IO_DISARM_MASK))
1154 __io_req_find_next_prep(req);
1155 nxt = req->link;
1156 req->link = NULL;
1157 return nxt;
1158 }
1159
1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161 {
1162 if (!ctx)
1163 return;
1164 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1165 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166 if (ts->locked) {
1167 io_submit_flush_completions(ctx);
1168 mutex_unlock(&ctx->uring_lock);
1169 ts->locked = false;
1170 }
1171 percpu_ref_put(&ctx->refs);
1172 }
1173
1174 static unsigned int handle_tw_list(struct llist_node *node,
1175 struct io_ring_ctx **ctx,
1176 struct io_tw_state *ts,
1177 struct llist_node *last)
1178 {
1179 unsigned int count = 0;
1180
1181 while (node && node != last) {
1182 struct llist_node *next = node->next;
1183 struct io_kiocb *req = container_of(node, struct io_kiocb,
1184 io_task_work.node);
1185
1186 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1187
1188 if (req->ctx != *ctx) {
1189 ctx_flush_and_put(*ctx, ts);
1190 *ctx = req->ctx;
1191 /* if not contended, grab and improve batching */
1192 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1193 percpu_ref_get(&(*ctx)->refs);
1194 }
1195 INDIRECT_CALL_2(req->io_task_work.func,
1196 io_poll_task_func, io_req_rw_complete,
1197 req, ts);
1198 node = next;
1199 count++;
1200 if (unlikely(need_resched())) {
1201 ctx_flush_and_put(*ctx, ts);
1202 *ctx = NULL;
1203 cond_resched();
1204 }
1205 }
1206
1207 return count;
1208 }
1209
1210 /**
1211 * io_llist_xchg - swap all entries in a lock-less list
1212 * @head: the head of lock-less list to delete all entries
1213 * @new: new entry as the head of the list
1214 *
1215 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1216 * The order of entries returned is from the newest to the oldest added one.
1217 */
1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1219 struct llist_node *new)
1220 {
1221 return xchg(&head->first, new);
1222 }
1223
1224 /**
1225 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1226 * @head: the head of lock-less list to delete all entries
1227 * @old: expected old value of the first entry of the list
1228 * @new: new entry as the head of the list
1229 *
1230 * perform a cmpxchg on the first entry of the list.
1231 */
1232
1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1234 struct llist_node *old,
1235 struct llist_node *new)
1236 {
1237 return cmpxchg(&head->first, old, new);
1238 }
1239
1240 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1241 {
1242 struct llist_node *node = llist_del_all(&tctx->task_list);
1243 struct io_ring_ctx *last_ctx = NULL;
1244 struct io_kiocb *req;
1245
1246 while (node) {
1247 req = container_of(node, struct io_kiocb, io_task_work.node);
1248 node = node->next;
1249 if (sync && last_ctx != req->ctx) {
1250 if (last_ctx) {
1251 flush_delayed_work(&last_ctx->fallback_work);
1252 percpu_ref_put(&last_ctx->refs);
1253 }
1254 last_ctx = req->ctx;
1255 percpu_ref_get(&last_ctx->refs);
1256 }
1257 if (llist_add(&req->io_task_work.node,
1258 &req->ctx->fallback_llist))
1259 schedule_delayed_work(&req->ctx->fallback_work, 1);
1260 }
1261
1262 if (last_ctx) {
1263 flush_delayed_work(&last_ctx->fallback_work);
1264 percpu_ref_put(&last_ctx->refs);
1265 }
1266 }
1267
1268 void tctx_task_work(struct callback_head *cb)
1269 {
1270 struct io_tw_state ts = {};
1271 struct io_ring_ctx *ctx = NULL;
1272 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1273 task_work);
1274 struct llist_node fake = {};
1275 struct llist_node *node;
1276 unsigned int loops = 0;
1277 unsigned int count = 0;
1278
1279 if (unlikely(current->flags & PF_EXITING)) {
1280 io_fallback_tw(tctx, true);
1281 return;
1282 }
1283
1284 do {
1285 loops++;
1286 node = io_llist_xchg(&tctx->task_list, &fake);
1287 count += handle_tw_list(node, &ctx, &ts, &fake);
1288
1289 /* skip expensive cmpxchg if there are items in the list */
1290 if (READ_ONCE(tctx->task_list.first) != &fake)
1291 continue;
1292 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1293 io_submit_flush_completions(ctx);
1294 if (READ_ONCE(tctx->task_list.first) != &fake)
1295 continue;
1296 }
1297 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1298 } while (node != &fake);
1299
1300 ctx_flush_and_put(ctx, &ts);
1301
1302 /* relaxed read is enough as only the task itself sets ->in_cancel */
1303 if (unlikely(atomic_read(&tctx->in_cancel)))
1304 io_uring_drop_tctx_refs(current);
1305
1306 trace_io_uring_task_work_run(tctx, count, loops);
1307 }
1308
1309 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1310 {
1311 struct io_ring_ctx *ctx = req->ctx;
1312 unsigned nr_wait, nr_tw, nr_tw_prev;
1313 struct llist_node *first;
1314
1315 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1316 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1317
1318 first = READ_ONCE(ctx->work_llist.first);
1319 do {
1320 nr_tw_prev = 0;
1321 if (first) {
1322 struct io_kiocb *first_req = container_of(first,
1323 struct io_kiocb,
1324 io_task_work.node);
1325 /*
1326 * Might be executed at any moment, rely on
1327 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1328 */
1329 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1330 }
1331 nr_tw = nr_tw_prev + 1;
1332 /* Large enough to fail the nr_wait comparison below */
1333 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1334 nr_tw = -1U;
1335
1336 req->nr_tw = nr_tw;
1337 req->io_task_work.node.next = first;
1338 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1339 &req->io_task_work.node));
1340
1341 if (!first) {
1342 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1343 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1344 if (ctx->has_evfd)
1345 io_eventfd_signal(ctx);
1346 }
1347
1348 nr_wait = atomic_read(&ctx->cq_wait_nr);
1349 /* no one is waiting */
1350 if (!nr_wait)
1351 return;
1352 /* either not enough or the previous add has already woken it up */
1353 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1354 return;
1355 /* pairs with set_current_state() in io_cqring_wait() */
1356 smp_mb__after_atomic();
1357 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1358 }
1359
1360 static void io_req_normal_work_add(struct io_kiocb *req)
1361 {
1362 struct io_uring_task *tctx = req->task->io_uring;
1363 struct io_ring_ctx *ctx = req->ctx;
1364
1365 /* task_work already pending, we're done */
1366 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1367 return;
1368
1369 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1370 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1371
1372 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1373 return;
1374
1375 io_fallback_tw(tctx, false);
1376 }
1377
1378 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1379 {
1380 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1381 rcu_read_lock();
1382 io_req_local_work_add(req, flags);
1383 rcu_read_unlock();
1384 } else {
1385 io_req_normal_work_add(req);
1386 }
1387 }
1388
1389 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1390 {
1391 struct llist_node *node;
1392
1393 node = llist_del_all(&ctx->work_llist);
1394 while (node) {
1395 struct io_kiocb *req = container_of(node, struct io_kiocb,
1396 io_task_work.node);
1397
1398 node = node->next;
1399 io_req_normal_work_add(req);
1400 }
1401 }
1402
1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1404 {
1405 struct llist_node *node;
1406 unsigned int loops = 0;
1407 int ret = 0;
1408
1409 if (WARN_ON_ONCE(ctx->submitter_task != current))
1410 return -EEXIST;
1411 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1412 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1413 again:
1414 /*
1415 * llists are in reverse order, flip it back the right way before
1416 * running the pending items.
1417 */
1418 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1419 while (node) {
1420 struct llist_node *next = node->next;
1421 struct io_kiocb *req = container_of(node, struct io_kiocb,
1422 io_task_work.node);
1423 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1424 INDIRECT_CALL_2(req->io_task_work.func,
1425 io_poll_task_func, io_req_rw_complete,
1426 req, ts);
1427 ret++;
1428 node = next;
1429 }
1430 loops++;
1431
1432 if (!llist_empty(&ctx->work_llist))
1433 goto again;
1434 if (ts->locked) {
1435 io_submit_flush_completions(ctx);
1436 if (!llist_empty(&ctx->work_llist))
1437 goto again;
1438 }
1439 trace_io_uring_local_work_run(ctx, ret, loops);
1440 return ret;
1441 }
1442
1443 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1444 {
1445 struct io_tw_state ts = { .locked = true, };
1446 int ret;
1447
1448 if (llist_empty(&ctx->work_llist))
1449 return 0;
1450
1451 ret = __io_run_local_work(ctx, &ts);
1452 /* shouldn't happen! */
1453 if (WARN_ON_ONCE(!ts.locked))
1454 mutex_lock(&ctx->uring_lock);
1455 return ret;
1456 }
1457
1458 static int io_run_local_work(struct io_ring_ctx *ctx)
1459 {
1460 struct io_tw_state ts = {};
1461 int ret;
1462
1463 ts.locked = mutex_trylock(&ctx->uring_lock);
1464 ret = __io_run_local_work(ctx, &ts);
1465 if (ts.locked)
1466 mutex_unlock(&ctx->uring_lock);
1467
1468 return ret;
1469 }
1470
1471 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1472 {
1473 io_tw_lock(req->ctx, ts);
1474 io_req_defer_failed(req, req->cqe.res);
1475 }
1476
1477 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1478 {
1479 io_tw_lock(req->ctx, ts);
1480 /* req->task == current here, checking PF_EXITING is safe */
1481 if (unlikely(req->task->flags & PF_EXITING))
1482 io_req_defer_failed(req, -EFAULT);
1483 else if (req->flags & REQ_F_FORCE_ASYNC)
1484 io_queue_iowq(req, ts);
1485 else
1486 io_queue_sqe(req);
1487 }
1488
1489 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1490 {
1491 io_req_set_res(req, ret, 0);
1492 req->io_task_work.func = io_req_task_cancel;
1493 io_req_task_work_add(req);
1494 }
1495
1496 void io_req_task_queue(struct io_kiocb *req)
1497 {
1498 req->io_task_work.func = io_req_task_submit;
1499 io_req_task_work_add(req);
1500 }
1501
1502 void io_queue_next(struct io_kiocb *req)
1503 {
1504 struct io_kiocb *nxt = io_req_find_next(req);
1505
1506 if (nxt)
1507 io_req_task_queue(nxt);
1508 }
1509
1510 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1511 __must_hold(&ctx->uring_lock)
1512 {
1513 do {
1514 struct io_kiocb *req = container_of(node, struct io_kiocb,
1515 comp_list);
1516
1517 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1518 if (req->flags & REQ_F_REFCOUNT) {
1519 node = req->comp_list.next;
1520 if (!req_ref_put_and_test(req))
1521 continue;
1522 }
1523 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1524 struct async_poll *apoll = req->apoll;
1525
1526 if (apoll->double_poll)
1527 kfree(apoll->double_poll);
1528 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1529 kfree(apoll);
1530 req->flags &= ~REQ_F_POLLED;
1531 }
1532 if (req->flags & IO_REQ_LINK_FLAGS)
1533 io_queue_next(req);
1534 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1535 io_clean_op(req);
1536 }
1537 if (!(req->flags & REQ_F_FIXED_FILE))
1538 io_put_file(req->file);
1539
1540 io_req_put_rsrc_locked(req, ctx);
1541
1542 io_put_task(req->task);
1543 node = req->comp_list.next;
1544 io_req_add_to_cache(req, ctx);
1545 } while (node);
1546 }
1547
1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1549 __must_hold(&ctx->uring_lock)
1550 {
1551 struct io_submit_state *state = &ctx->submit_state;
1552 struct io_wq_work_node *node;
1553
1554 __io_cq_lock(ctx);
1555 /* must come first to preserve CQE ordering in failure cases */
1556 if (state->cqes_count)
1557 __io_flush_post_cqes(ctx);
1558 __wq_list_for_each(node, &state->compl_reqs) {
1559 struct io_kiocb *req = container_of(node, struct io_kiocb,
1560 comp_list);
1561
1562 if (!(req->flags & REQ_F_CQE_SKIP) &&
1563 unlikely(!__io_fill_cqe_req(ctx, req))) {
1564 if (ctx->task_complete) {
1565 spin_lock(&ctx->completion_lock);
1566 io_req_cqe_overflow(req);
1567 spin_unlock(&ctx->completion_lock);
1568 } else {
1569 io_req_cqe_overflow(req);
1570 }
1571 }
1572 }
1573 __io_cq_unlock_post(ctx);
1574
1575 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1576 io_free_batch_list(ctx, state->compl_reqs.first);
1577 INIT_WQ_LIST(&state->compl_reqs);
1578 }
1579 }
1580
1581 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1582 {
1583 /* See comment at the top of this file */
1584 smp_rmb();
1585 return __io_cqring_events(ctx);
1586 }
1587
1588 /*
1589 * We can't just wait for polled events to come to us, we have to actively
1590 * find and complete them.
1591 */
1592 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1593 {
1594 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1595 return;
1596
1597 mutex_lock(&ctx->uring_lock);
1598 while (!wq_list_empty(&ctx->iopoll_list)) {
1599 /* let it sleep and repeat later if can't complete a request */
1600 if (io_do_iopoll(ctx, true) == 0)
1601 break;
1602 /*
1603 * Ensure we allow local-to-the-cpu processing to take place,
1604 * in this case we need to ensure that we reap all events.
1605 * Also let task_work, etc. to progress by releasing the mutex
1606 */
1607 if (need_resched()) {
1608 mutex_unlock(&ctx->uring_lock);
1609 cond_resched();
1610 mutex_lock(&ctx->uring_lock);
1611 }
1612 }
1613 mutex_unlock(&ctx->uring_lock);
1614 }
1615
1616 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1617 {
1618 unsigned int nr_events = 0;
1619 int ret = 0;
1620 unsigned long check_cq;
1621
1622 if (!io_allowed_run_tw(ctx))
1623 return -EEXIST;
1624
1625 check_cq = READ_ONCE(ctx->check_cq);
1626 if (unlikely(check_cq)) {
1627 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1628 __io_cqring_overflow_flush(ctx);
1629 /*
1630 * Similarly do not spin if we have not informed the user of any
1631 * dropped CQE.
1632 */
1633 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1634 return -EBADR;
1635 }
1636 /*
1637 * Don't enter poll loop if we already have events pending.
1638 * If we do, we can potentially be spinning for commands that
1639 * already triggered a CQE (eg in error).
1640 */
1641 if (io_cqring_events(ctx))
1642 return 0;
1643
1644 do {
1645 /*
1646 * If a submit got punted to a workqueue, we can have the
1647 * application entering polling for a command before it gets
1648 * issued. That app will hold the uring_lock for the duration
1649 * of the poll right here, so we need to take a breather every
1650 * now and then to ensure that the issue has a chance to add
1651 * the poll to the issued list. Otherwise we can spin here
1652 * forever, while the workqueue is stuck trying to acquire the
1653 * very same mutex.
1654 */
1655 if (wq_list_empty(&ctx->iopoll_list) ||
1656 io_task_work_pending(ctx)) {
1657 u32 tail = ctx->cached_cq_tail;
1658
1659 (void) io_run_local_work_locked(ctx);
1660
1661 if (task_work_pending(current) ||
1662 wq_list_empty(&ctx->iopoll_list)) {
1663 mutex_unlock(&ctx->uring_lock);
1664 io_run_task_work();
1665 mutex_lock(&ctx->uring_lock);
1666 }
1667 /* some requests don't go through iopoll_list */
1668 if (tail != ctx->cached_cq_tail ||
1669 wq_list_empty(&ctx->iopoll_list))
1670 break;
1671 }
1672 ret = io_do_iopoll(ctx, !min);
1673 if (ret < 0)
1674 break;
1675 nr_events += ret;
1676 ret = 0;
1677 } while (nr_events < min && !need_resched());
1678
1679 return ret;
1680 }
1681
1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1683 {
1684 if (ts->locked)
1685 io_req_complete_defer(req);
1686 else
1687 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1688 }
1689
1690 /*
1691 * After the iocb has been issued, it's safe to be found on the poll list.
1692 * Adding the kiocb to the list AFTER submission ensures that we don't
1693 * find it from a io_do_iopoll() thread before the issuer is done
1694 * accessing the kiocb cookie.
1695 */
1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1697 {
1698 struct io_ring_ctx *ctx = req->ctx;
1699 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1700
1701 /* workqueue context doesn't hold uring_lock, grab it now */
1702 if (unlikely(needs_lock))
1703 mutex_lock(&ctx->uring_lock);
1704
1705 /*
1706 * Track whether we have multiple files in our lists. This will impact
1707 * how we do polling eventually, not spinning if we're on potentially
1708 * different devices.
1709 */
1710 if (wq_list_empty(&ctx->iopoll_list)) {
1711 ctx->poll_multi_queue = false;
1712 } else if (!ctx->poll_multi_queue) {
1713 struct io_kiocb *list_req;
1714
1715 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1716 comp_list);
1717 if (list_req->file != req->file)
1718 ctx->poll_multi_queue = true;
1719 }
1720
1721 /*
1722 * For fast devices, IO may have already completed. If it has, add
1723 * it to the front so we find it first.
1724 */
1725 if (READ_ONCE(req->iopoll_completed))
1726 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1727 else
1728 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1729
1730 if (unlikely(needs_lock)) {
1731 /*
1732 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1733 * in sq thread task context or in io worker task context. If
1734 * current task context is sq thread, we don't need to check
1735 * whether should wake up sq thread.
1736 */
1737 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1738 wq_has_sleeper(&ctx->sq_data->wait))
1739 wake_up(&ctx->sq_data->wait);
1740
1741 mutex_unlock(&ctx->uring_lock);
1742 }
1743 }
1744
1745 unsigned int io_file_get_flags(struct file *file)
1746 {
1747 unsigned int res = 0;
1748
1749 if (S_ISREG(file_inode(file)->i_mode))
1750 res |= REQ_F_ISREG;
1751 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1752 res |= REQ_F_SUPPORT_NOWAIT;
1753 return res;
1754 }
1755
1756 bool io_alloc_async_data(struct io_kiocb *req)
1757 {
1758 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1759 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1760 if (req->async_data) {
1761 req->flags |= REQ_F_ASYNC_DATA;
1762 return false;
1763 }
1764 return true;
1765 }
1766
1767 int io_req_prep_async(struct io_kiocb *req)
1768 {
1769 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1770 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1771
1772 /* assign early for deferred execution for non-fixed file */
1773 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1774 req->file = io_file_get_normal(req, req->cqe.fd);
1775 if (!cdef->prep_async)
1776 return 0;
1777 if (WARN_ON_ONCE(req_has_async_data(req)))
1778 return -EFAULT;
1779 if (!def->manual_alloc) {
1780 if (io_alloc_async_data(req))
1781 return -EAGAIN;
1782 }
1783 return cdef->prep_async(req);
1784 }
1785
1786 static u32 io_get_sequence(struct io_kiocb *req)
1787 {
1788 u32 seq = req->ctx->cached_sq_head;
1789 struct io_kiocb *cur;
1790
1791 /* need original cached_sq_head, but it was increased for each req */
1792 io_for_each_link(cur, req)
1793 seq--;
1794 return seq;
1795 }
1796
1797 static __cold void io_drain_req(struct io_kiocb *req)
1798 __must_hold(&ctx->uring_lock)
1799 {
1800 struct io_ring_ctx *ctx = req->ctx;
1801 struct io_defer_entry *de;
1802 int ret;
1803 u32 seq = io_get_sequence(req);
1804
1805 /* Still need defer if there is pending req in defer list. */
1806 spin_lock(&ctx->completion_lock);
1807 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1808 spin_unlock(&ctx->completion_lock);
1809 queue:
1810 ctx->drain_active = false;
1811 io_req_task_queue(req);
1812 return;
1813 }
1814 spin_unlock(&ctx->completion_lock);
1815
1816 io_prep_async_link(req);
1817 de = kmalloc(sizeof(*de), GFP_KERNEL);
1818 if (!de) {
1819 ret = -ENOMEM;
1820 io_req_defer_failed(req, ret);
1821 return;
1822 }
1823
1824 spin_lock(&ctx->completion_lock);
1825 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1826 spin_unlock(&ctx->completion_lock);
1827 kfree(de);
1828 goto queue;
1829 }
1830
1831 trace_io_uring_defer(req);
1832 de->req = req;
1833 de->seq = seq;
1834 list_add_tail(&de->list, &ctx->defer_list);
1835 spin_unlock(&ctx->completion_lock);
1836 }
1837
1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1839 unsigned int issue_flags)
1840 {
1841 if (req->file || !def->needs_file)
1842 return true;
1843
1844 if (req->flags & REQ_F_FIXED_FILE)
1845 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1846 else
1847 req->file = io_file_get_normal(req, req->cqe.fd);
1848
1849 return !!req->file;
1850 }
1851
1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1853 {
1854 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1855 const struct cred *creds = NULL;
1856 int ret;
1857
1858 if (unlikely(!io_assign_file(req, def, issue_flags)))
1859 return -EBADF;
1860
1861 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1862 creds = override_creds(req->creds);
1863
1864 if (!def->audit_skip)
1865 audit_uring_entry(req->opcode);
1866
1867 ret = def->issue(req, issue_flags);
1868
1869 if (!def->audit_skip)
1870 audit_uring_exit(!ret, ret);
1871
1872 if (creds)
1873 revert_creds(creds);
1874
1875 if (ret == IOU_OK) {
1876 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1877 io_req_complete_defer(req);
1878 else
1879 io_req_complete_post(req, issue_flags);
1880 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1881 return ret;
1882
1883 /* If the op doesn't have a file, we're not polling for it */
1884 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1885 io_iopoll_req_issued(req, issue_flags);
1886
1887 return 0;
1888 }
1889
1890 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1891 {
1892 io_tw_lock(req->ctx, ts);
1893 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1894 IO_URING_F_COMPLETE_DEFER);
1895 }
1896
1897 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1898 {
1899 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1900 struct io_kiocb *nxt = NULL;
1901
1902 if (req_ref_put_and_test(req)) {
1903 if (req->flags & IO_REQ_LINK_FLAGS)
1904 nxt = io_req_find_next(req);
1905 io_free_req(req);
1906 }
1907 return nxt ? &nxt->work : NULL;
1908 }
1909
1910 void io_wq_submit_work(struct io_wq_work *work)
1911 {
1912 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1913 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1914 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1915 bool needs_poll = false;
1916 int ret = 0, err = -ECANCELED;
1917
1918 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1919 if (!(req->flags & REQ_F_REFCOUNT))
1920 __io_req_set_refcount(req, 2);
1921 else
1922 req_ref_get(req);
1923
1924 io_arm_ltimeout(req);
1925
1926 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1927 if (work->flags & IO_WQ_WORK_CANCEL) {
1928 fail:
1929 io_req_task_queue_fail(req, err);
1930 return;
1931 }
1932 if (!io_assign_file(req, def, issue_flags)) {
1933 err = -EBADF;
1934 work->flags |= IO_WQ_WORK_CANCEL;
1935 goto fail;
1936 }
1937
1938 if (req->flags & REQ_F_FORCE_ASYNC) {
1939 bool opcode_poll = def->pollin || def->pollout;
1940
1941 if (opcode_poll && file_can_poll(req->file)) {
1942 needs_poll = true;
1943 issue_flags |= IO_URING_F_NONBLOCK;
1944 }
1945 }
1946
1947 do {
1948 ret = io_issue_sqe(req, issue_flags);
1949 if (ret != -EAGAIN)
1950 break;
1951 /*
1952 * We can get EAGAIN for iopolled IO even though we're
1953 * forcing a sync submission from here, since we can't
1954 * wait for request slots on the block side.
1955 */
1956 if (!needs_poll) {
1957 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1958 break;
1959 cond_resched();
1960 continue;
1961 }
1962
1963 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1964 return;
1965 /* aborted or ready, in either case retry blocking */
1966 needs_poll = false;
1967 issue_flags &= ~IO_URING_F_NONBLOCK;
1968 } while (1);
1969
1970 /* avoid locking problems by failing it from a clean context */
1971 if (ret < 0)
1972 io_req_task_queue_fail(req, ret);
1973 }
1974
1975 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1976 unsigned int issue_flags)
1977 {
1978 struct io_ring_ctx *ctx = req->ctx;
1979 struct io_fixed_file *slot;
1980 struct file *file = NULL;
1981
1982 io_ring_submit_lock(ctx, issue_flags);
1983
1984 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1985 goto out;
1986 fd = array_index_nospec(fd, ctx->nr_user_files);
1987 slot = io_fixed_file_slot(&ctx->file_table, fd);
1988 file = io_slot_file(slot);
1989 req->flags |= io_slot_flags(slot);
1990 io_req_set_rsrc_node(req, ctx, 0);
1991 out:
1992 io_ring_submit_unlock(ctx, issue_flags);
1993 return file;
1994 }
1995
1996 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1997 {
1998 struct file *file = fget(fd);
1999
2000 trace_io_uring_file_get(req, fd);
2001
2002 /* we don't allow fixed io_uring files */
2003 if (file && io_is_uring_fops(file))
2004 io_req_track_inflight(req);
2005 return file;
2006 }
2007
2008 static void io_queue_async(struct io_kiocb *req, int ret)
2009 __must_hold(&req->ctx->uring_lock)
2010 {
2011 struct io_kiocb *linked_timeout;
2012
2013 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2014 io_req_defer_failed(req, ret);
2015 return;
2016 }
2017
2018 linked_timeout = io_prep_linked_timeout(req);
2019
2020 switch (io_arm_poll_handler(req, 0)) {
2021 case IO_APOLL_READY:
2022 io_kbuf_recycle(req, 0);
2023 io_req_task_queue(req);
2024 break;
2025 case IO_APOLL_ABORTED:
2026 io_kbuf_recycle(req, 0);
2027 io_queue_iowq(req, NULL);
2028 break;
2029 case IO_APOLL_OK:
2030 break;
2031 }
2032
2033 if (linked_timeout)
2034 io_queue_linked_timeout(linked_timeout);
2035 }
2036
2037 static inline void io_queue_sqe(struct io_kiocb *req)
2038 __must_hold(&req->ctx->uring_lock)
2039 {
2040 int ret;
2041
2042 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2043
2044 /*
2045 * We async punt it if the file wasn't marked NOWAIT, or if the file
2046 * doesn't support non-blocking read/write attempts
2047 */
2048 if (likely(!ret))
2049 io_arm_ltimeout(req);
2050 else
2051 io_queue_async(req, ret);
2052 }
2053
2054 static void io_queue_sqe_fallback(struct io_kiocb *req)
2055 __must_hold(&req->ctx->uring_lock)
2056 {
2057 if (unlikely(req->flags & REQ_F_FAIL)) {
2058 /*
2059 * We don't submit, fail them all, for that replace hardlinks
2060 * with normal links. Extra REQ_F_LINK is tolerated.
2061 */
2062 req->flags &= ~REQ_F_HARDLINK;
2063 req->flags |= REQ_F_LINK;
2064 io_req_defer_failed(req, req->cqe.res);
2065 } else {
2066 int ret = io_req_prep_async(req);
2067
2068 if (unlikely(ret)) {
2069 io_req_defer_failed(req, ret);
2070 return;
2071 }
2072
2073 if (unlikely(req->ctx->drain_active))
2074 io_drain_req(req);
2075 else
2076 io_queue_iowq(req, NULL);
2077 }
2078 }
2079
2080 /*
2081 * Check SQE restrictions (opcode and flags).
2082 *
2083 * Returns 'true' if SQE is allowed, 'false' otherwise.
2084 */
2085 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2086 struct io_kiocb *req,
2087 unsigned int sqe_flags)
2088 {
2089 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2090 return false;
2091
2092 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2093 ctx->restrictions.sqe_flags_required)
2094 return false;
2095
2096 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2097 ctx->restrictions.sqe_flags_required))
2098 return false;
2099
2100 return true;
2101 }
2102
2103 static void io_init_req_drain(struct io_kiocb *req)
2104 {
2105 struct io_ring_ctx *ctx = req->ctx;
2106 struct io_kiocb *head = ctx->submit_state.link.head;
2107
2108 ctx->drain_active = true;
2109 if (head) {
2110 /*
2111 * If we need to drain a request in the middle of a link, drain
2112 * the head request and the next request/link after the current
2113 * link. Considering sequential execution of links,
2114 * REQ_F_IO_DRAIN will be maintained for every request of our
2115 * link.
2116 */
2117 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2118 ctx->drain_next = true;
2119 }
2120 }
2121
2122 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2123 const struct io_uring_sqe *sqe)
2124 __must_hold(&ctx->uring_lock)
2125 {
2126 const struct io_issue_def *def;
2127 unsigned int sqe_flags;
2128 int personality;
2129 u8 opcode;
2130
2131 /* req is partially pre-initialised, see io_preinit_req() */
2132 req->opcode = opcode = READ_ONCE(sqe->opcode);
2133 /* same numerical values with corresponding REQ_F_*, safe to copy */
2134 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2135 req->cqe.user_data = READ_ONCE(sqe->user_data);
2136 req->file = NULL;
2137 req->rsrc_node = NULL;
2138 req->task = current;
2139
2140 if (unlikely(opcode >= IORING_OP_LAST)) {
2141 req->opcode = 0;
2142 return -EINVAL;
2143 }
2144 def = &io_issue_defs[opcode];
2145 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2146 /* enforce forwards compatibility on users */
2147 if (sqe_flags & ~SQE_VALID_FLAGS)
2148 return -EINVAL;
2149 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2150 if (!def->buffer_select)
2151 return -EOPNOTSUPP;
2152 req->buf_index = READ_ONCE(sqe->buf_group);
2153 }
2154 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2155 ctx->drain_disabled = true;
2156 if (sqe_flags & IOSQE_IO_DRAIN) {
2157 if (ctx->drain_disabled)
2158 return -EOPNOTSUPP;
2159 io_init_req_drain(req);
2160 }
2161 }
2162 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2163 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2164 return -EACCES;
2165 /* knock it to the slow queue path, will be drained there */
2166 if (ctx->drain_active)
2167 req->flags |= REQ_F_FORCE_ASYNC;
2168 /* if there is no link, we're at "next" request and need to drain */
2169 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2170 ctx->drain_next = false;
2171 ctx->drain_active = true;
2172 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2173 }
2174 }
2175
2176 if (!def->ioprio && sqe->ioprio)
2177 return -EINVAL;
2178 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2179 return -EINVAL;
2180
2181 if (def->needs_file) {
2182 struct io_submit_state *state = &ctx->submit_state;
2183
2184 req->cqe.fd = READ_ONCE(sqe->fd);
2185
2186 /*
2187 * Plug now if we have more than 2 IO left after this, and the
2188 * target is potentially a read/write to block based storage.
2189 */
2190 if (state->need_plug && def->plug) {
2191 state->plug_started = true;
2192 state->need_plug = false;
2193 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2194 }
2195 }
2196
2197 personality = READ_ONCE(sqe->personality);
2198 if (personality) {
2199 int ret;
2200
2201 req->creds = xa_load(&ctx->personalities, personality);
2202 if (!req->creds)
2203 return -EINVAL;
2204 get_cred(req->creds);
2205 ret = security_uring_override_creds(req->creds);
2206 if (ret) {
2207 put_cred(req->creds);
2208 return ret;
2209 }
2210 req->flags |= REQ_F_CREDS;
2211 }
2212
2213 return def->prep(req, sqe);
2214 }
2215
2216 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2217 struct io_kiocb *req, int ret)
2218 {
2219 struct io_ring_ctx *ctx = req->ctx;
2220 struct io_submit_link *link = &ctx->submit_state.link;
2221 struct io_kiocb *head = link->head;
2222
2223 trace_io_uring_req_failed(sqe, req, ret);
2224
2225 /*
2226 * Avoid breaking links in the middle as it renders links with SQPOLL
2227 * unusable. Instead of failing eagerly, continue assembling the link if
2228 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2229 * should find the flag and handle the rest.
2230 */
2231 req_fail_link_node(req, ret);
2232 if (head && !(head->flags & REQ_F_FAIL))
2233 req_fail_link_node(head, -ECANCELED);
2234
2235 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2236 if (head) {
2237 link->last->link = req;
2238 link->head = NULL;
2239 req = head;
2240 }
2241 io_queue_sqe_fallback(req);
2242 return ret;
2243 }
2244
2245 if (head)
2246 link->last->link = req;
2247 else
2248 link->head = req;
2249 link->last = req;
2250 return 0;
2251 }
2252
2253 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2254 const struct io_uring_sqe *sqe)
2255 __must_hold(&ctx->uring_lock)
2256 {
2257 struct io_submit_link *link = &ctx->submit_state.link;
2258 int ret;
2259
2260 ret = io_init_req(ctx, req, sqe);
2261 if (unlikely(ret))
2262 return io_submit_fail_init(sqe, req, ret);
2263
2264 trace_io_uring_submit_req(req);
2265
2266 /*
2267 * If we already have a head request, queue this one for async
2268 * submittal once the head completes. If we don't have a head but
2269 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2270 * submitted sync once the chain is complete. If none of those
2271 * conditions are true (normal request), then just queue it.
2272 */
2273 if (unlikely(link->head)) {
2274 ret = io_req_prep_async(req);
2275 if (unlikely(ret))
2276 return io_submit_fail_init(sqe, req, ret);
2277
2278 trace_io_uring_link(req, link->head);
2279 link->last->link = req;
2280 link->last = req;
2281
2282 if (req->flags & IO_REQ_LINK_FLAGS)
2283 return 0;
2284 /* last request of the link, flush it */
2285 req = link->head;
2286 link->head = NULL;
2287 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2288 goto fallback;
2289
2290 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2291 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2292 if (req->flags & IO_REQ_LINK_FLAGS) {
2293 link->head = req;
2294 link->last = req;
2295 } else {
2296 fallback:
2297 io_queue_sqe_fallback(req);
2298 }
2299 return 0;
2300 }
2301
2302 io_queue_sqe(req);
2303 return 0;
2304 }
2305
2306 /*
2307 * Batched submission is done, ensure local IO is flushed out.
2308 */
2309 static void io_submit_state_end(struct io_ring_ctx *ctx)
2310 {
2311 struct io_submit_state *state = &ctx->submit_state;
2312
2313 if (unlikely(state->link.head))
2314 io_queue_sqe_fallback(state->link.head);
2315 /* flush only after queuing links as they can generate completions */
2316 io_submit_flush_completions(ctx);
2317 if (state->plug_started)
2318 blk_finish_plug(&state->plug);
2319 }
2320
2321 /*
2322 * Start submission side cache.
2323 */
2324 static void io_submit_state_start(struct io_submit_state *state,
2325 unsigned int max_ios)
2326 {
2327 state->plug_started = false;
2328 state->need_plug = max_ios > 2;
2329 state->submit_nr = max_ios;
2330 /* set only head, no need to init link_last in advance */
2331 state->link.head = NULL;
2332 }
2333
2334 static void io_commit_sqring(struct io_ring_ctx *ctx)
2335 {
2336 struct io_rings *rings = ctx->rings;
2337
2338 /*
2339 * Ensure any loads from the SQEs are done at this point,
2340 * since once we write the new head, the application could
2341 * write new data to them.
2342 */
2343 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2344 }
2345
2346 /*
2347 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2348 * that is mapped by userspace. This means that care needs to be taken to
2349 * ensure that reads are stable, as we cannot rely on userspace always
2350 * being a good citizen. If members of the sqe are validated and then later
2351 * used, it's important that those reads are done through READ_ONCE() to
2352 * prevent a re-load down the line.
2353 */
2354 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2355 {
2356 unsigned head, mask = ctx->sq_entries - 1;
2357 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2358
2359 /*
2360 * The cached sq head (or cq tail) serves two purposes:
2361 *
2362 * 1) allows us to batch the cost of updating the user visible
2363 * head updates.
2364 * 2) allows the kernel side to track the head on its own, even
2365 * though the application is the one updating it.
2366 */
2367 head = READ_ONCE(ctx->sq_array[sq_idx]);
2368 if (likely(head < ctx->sq_entries)) {
2369 /* double index for 128-byte SQEs, twice as long */
2370 if (ctx->flags & IORING_SETUP_SQE128)
2371 head <<= 1;
2372 *sqe = &ctx->sq_sqes[head];
2373 return true;
2374 }
2375
2376 /* drop invalid entries */
2377 ctx->cq_extra--;
2378 WRITE_ONCE(ctx->rings->sq_dropped,
2379 READ_ONCE(ctx->rings->sq_dropped) + 1);
2380 return false;
2381 }
2382
2383 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2384 __must_hold(&ctx->uring_lock)
2385 {
2386 unsigned int entries = io_sqring_entries(ctx);
2387 unsigned int left;
2388 int ret;
2389
2390 if (unlikely(!entries))
2391 return 0;
2392 /* make sure SQ entry isn't read before tail */
2393 ret = left = min(nr, entries);
2394 io_get_task_refs(left);
2395 io_submit_state_start(&ctx->submit_state, left);
2396
2397 do {
2398 const struct io_uring_sqe *sqe;
2399 struct io_kiocb *req;
2400
2401 if (unlikely(!io_alloc_req(ctx, &req)))
2402 break;
2403 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2404 io_req_add_to_cache(req, ctx);
2405 break;
2406 }
2407
2408 /*
2409 * Continue submitting even for sqe failure if the
2410 * ring was setup with IORING_SETUP_SUBMIT_ALL
2411 */
2412 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2413 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2414 left--;
2415 break;
2416 }
2417 } while (--left);
2418
2419 if (unlikely(left)) {
2420 ret -= left;
2421 /* try again if it submitted nothing and can't allocate a req */
2422 if (!ret && io_req_cache_empty(ctx))
2423 ret = -EAGAIN;
2424 current->io_uring->cached_refs += left;
2425 }
2426
2427 io_submit_state_end(ctx);
2428 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2429 io_commit_sqring(ctx);
2430 return ret;
2431 }
2432
2433 struct io_wait_queue {
2434 struct wait_queue_entry wq;
2435 struct io_ring_ctx *ctx;
2436 unsigned cq_tail;
2437 unsigned nr_timeouts;
2438 ktime_t timeout;
2439 };
2440
2441 static inline bool io_has_work(struct io_ring_ctx *ctx)
2442 {
2443 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2444 !llist_empty(&ctx->work_llist);
2445 }
2446
2447 static inline bool io_should_wake(struct io_wait_queue *iowq)
2448 {
2449 struct io_ring_ctx *ctx = iowq->ctx;
2450 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2451
2452 /*
2453 * Wake up if we have enough events, or if a timeout occurred since we
2454 * started waiting. For timeouts, we always want to return to userspace,
2455 * regardless of event count.
2456 */
2457 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2458 }
2459
2460 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2461 int wake_flags, void *key)
2462 {
2463 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2464
2465 /*
2466 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2467 * the task, and the next invocation will do it.
2468 */
2469 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2470 return autoremove_wake_function(curr, mode, wake_flags, key);
2471 return -1;
2472 }
2473
2474 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2475 {
2476 if (!llist_empty(&ctx->work_llist)) {
2477 __set_current_state(TASK_RUNNING);
2478 if (io_run_local_work(ctx) > 0)
2479 return 1;
2480 }
2481 if (io_run_task_work() > 0)
2482 return 1;
2483 if (task_sigpending(current))
2484 return -EINTR;
2485 return 0;
2486 }
2487
2488 /* when returns >0, the caller should retry */
2489 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2490 struct io_wait_queue *iowq)
2491 {
2492 if (unlikely(READ_ONCE(ctx->check_cq)))
2493 return 1;
2494 if (unlikely(!llist_empty(&ctx->work_llist)))
2495 return 1;
2496 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2497 return 1;
2498 if (unlikely(task_sigpending(current)))
2499 return -EINTR;
2500 if (unlikely(io_should_wake(iowq)))
2501 return 0;
2502 if (iowq->timeout == KTIME_MAX)
2503 schedule();
2504 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2505 return -ETIME;
2506 return 0;
2507 }
2508
2509 /*
2510 * Wait until events become available, if we don't already have some. The
2511 * application must reap them itself, as they reside on the shared cq ring.
2512 */
2513 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2514 const sigset_t __user *sig, size_t sigsz,
2515 struct __kernel_timespec __user *uts)
2516 {
2517 struct io_wait_queue iowq;
2518 struct io_rings *rings = ctx->rings;
2519 int ret;
2520
2521 if (!io_allowed_run_tw(ctx))
2522 return -EEXIST;
2523 if (!llist_empty(&ctx->work_llist))
2524 io_run_local_work(ctx);
2525 io_run_task_work();
2526 io_cqring_overflow_flush(ctx);
2527 /* if user messes with these they will just get an early return */
2528 if (__io_cqring_events_user(ctx) >= min_events)
2529 return 0;
2530
2531 if (sig) {
2532 #ifdef CONFIG_COMPAT
2533 if (in_compat_syscall())
2534 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2535 sigsz);
2536 else
2537 #endif
2538 ret = set_user_sigmask(sig, sigsz);
2539
2540 if (ret)
2541 return ret;
2542 }
2543
2544 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2545 iowq.wq.private = current;
2546 INIT_LIST_HEAD(&iowq.wq.entry);
2547 iowq.ctx = ctx;
2548 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2549 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2550 iowq.timeout = KTIME_MAX;
2551
2552 if (uts) {
2553 struct timespec64 ts;
2554
2555 if (get_timespec64(&ts, uts))
2556 return -EFAULT;
2557 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2558 }
2559
2560 trace_io_uring_cqring_wait(ctx, min_events);
2561 do {
2562 unsigned long check_cq;
2563
2564 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2565 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2566
2567 atomic_set(&ctx->cq_wait_nr, nr_wait);
2568 set_current_state(TASK_INTERRUPTIBLE);
2569 } else {
2570 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2571 TASK_INTERRUPTIBLE);
2572 }
2573
2574 ret = io_cqring_wait_schedule(ctx, &iowq);
2575 __set_current_state(TASK_RUNNING);
2576 atomic_set(&ctx->cq_wait_nr, 0);
2577
2578 if (ret < 0)
2579 break;
2580 /*
2581 * Run task_work after scheduling and before io_should_wake().
2582 * If we got woken because of task_work being processed, run it
2583 * now rather than let the caller do another wait loop.
2584 */
2585 io_run_task_work();
2586 if (!llist_empty(&ctx->work_llist))
2587 io_run_local_work(ctx);
2588
2589 check_cq = READ_ONCE(ctx->check_cq);
2590 if (unlikely(check_cq)) {
2591 /* let the caller flush overflows, retry */
2592 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2593 io_cqring_do_overflow_flush(ctx);
2594 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2595 ret = -EBADR;
2596 break;
2597 }
2598 }
2599
2600 if (io_should_wake(&iowq)) {
2601 ret = 0;
2602 break;
2603 }
2604 cond_resched();
2605 } while (1);
2606
2607 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2608 finish_wait(&ctx->cq_wait, &iowq.wq);
2609 restore_saved_sigmask_unless(ret == -EINTR);
2610
2611 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2612 }
2613
2614 static void io_mem_free(void *ptr)
2615 {
2616 struct page *page;
2617
2618 if (!ptr)
2619 return;
2620
2621 page = virt_to_head_page(ptr);
2622 if (put_page_testzero(page))
2623 free_compound_page(page);
2624 }
2625
2626 static void io_pages_free(struct page ***pages, int npages)
2627 {
2628 struct page **page_array;
2629 int i;
2630
2631 if (!pages)
2632 return;
2633 page_array = *pages;
2634 for (i = 0; i < npages; i++)
2635 unpin_user_page(page_array[i]);
2636 kvfree(page_array);
2637 *pages = NULL;
2638 }
2639
2640 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2641 unsigned long uaddr, size_t size)
2642 {
2643 struct page **page_array;
2644 unsigned int nr_pages;
2645 int ret;
2646
2647 *npages = 0;
2648
2649 if (uaddr & (PAGE_SIZE - 1) || !size)
2650 return ERR_PTR(-EINVAL);
2651
2652 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2653 if (nr_pages > USHRT_MAX)
2654 return ERR_PTR(-EINVAL);
2655 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2656 if (!page_array)
2657 return ERR_PTR(-ENOMEM);
2658
2659 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2660 page_array);
2661 if (ret != nr_pages) {
2662 err:
2663 io_pages_free(&page_array, ret > 0 ? ret : 0);
2664 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2665 }
2666 /*
2667 * Should be a single page. If the ring is small enough that we can
2668 * use a normal page, that is fine. If we need multiple pages, then
2669 * userspace should use a huge page. That's the only way to guarantee
2670 * that we get contigious memory, outside of just being lucky or
2671 * (currently) having low memory fragmentation.
2672 */
2673 if (page_array[0] != page_array[ret - 1])
2674 goto err;
2675 *pages = page_array;
2676 *npages = nr_pages;
2677 return page_to_virt(page_array[0]);
2678 }
2679
2680 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2681 size_t size)
2682 {
2683 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2684 size);
2685 }
2686
2687 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2688 size_t size)
2689 {
2690 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2691 size);
2692 }
2693
2694 static void io_rings_free(struct io_ring_ctx *ctx)
2695 {
2696 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2697 io_mem_free(ctx->rings);
2698 io_mem_free(ctx->sq_sqes);
2699 ctx->rings = NULL;
2700 ctx->sq_sqes = NULL;
2701 } else {
2702 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2703 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2704 }
2705 }
2706
2707 static void *io_mem_alloc(size_t size)
2708 {
2709 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2710 void *ret;
2711
2712 ret = (void *) __get_free_pages(gfp, get_order(size));
2713 if (ret)
2714 return ret;
2715 return ERR_PTR(-ENOMEM);
2716 }
2717
2718 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2719 unsigned int cq_entries, size_t *sq_offset)
2720 {
2721 struct io_rings *rings;
2722 size_t off, sq_array_size;
2723
2724 off = struct_size(rings, cqes, cq_entries);
2725 if (off == SIZE_MAX)
2726 return SIZE_MAX;
2727 if (ctx->flags & IORING_SETUP_CQE32) {
2728 if (check_shl_overflow(off, 1, &off))
2729 return SIZE_MAX;
2730 }
2731
2732 #ifdef CONFIG_SMP
2733 off = ALIGN(off, SMP_CACHE_BYTES);
2734 if (off == 0)
2735 return SIZE_MAX;
2736 #endif
2737
2738 if (sq_offset)
2739 *sq_offset = off;
2740
2741 sq_array_size = array_size(sizeof(u32), sq_entries);
2742 if (sq_array_size == SIZE_MAX)
2743 return SIZE_MAX;
2744
2745 if (check_add_overflow(off, sq_array_size, &off))
2746 return SIZE_MAX;
2747
2748 return off;
2749 }
2750
2751 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2752 unsigned int eventfd_async)
2753 {
2754 struct io_ev_fd *ev_fd;
2755 __s32 __user *fds = arg;
2756 int fd;
2757
2758 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2759 lockdep_is_held(&ctx->uring_lock));
2760 if (ev_fd)
2761 return -EBUSY;
2762
2763 if (copy_from_user(&fd, fds, sizeof(*fds)))
2764 return -EFAULT;
2765
2766 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2767 if (!ev_fd)
2768 return -ENOMEM;
2769
2770 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2771 if (IS_ERR(ev_fd->cq_ev_fd)) {
2772 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2773 kfree(ev_fd);
2774 return ret;
2775 }
2776
2777 spin_lock(&ctx->completion_lock);
2778 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2779 spin_unlock(&ctx->completion_lock);
2780
2781 ev_fd->eventfd_async = eventfd_async;
2782 ctx->has_evfd = true;
2783 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2784 atomic_set(&ev_fd->refs, 1);
2785 atomic_set(&ev_fd->ops, 0);
2786 return 0;
2787 }
2788
2789 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2790 {
2791 struct io_ev_fd *ev_fd;
2792
2793 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2794 lockdep_is_held(&ctx->uring_lock));
2795 if (ev_fd) {
2796 ctx->has_evfd = false;
2797 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2798 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2799 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2800 return 0;
2801 }
2802
2803 return -ENXIO;
2804 }
2805
2806 static void io_req_caches_free(struct io_ring_ctx *ctx)
2807 {
2808 struct io_kiocb *req;
2809 int nr = 0;
2810
2811 mutex_lock(&ctx->uring_lock);
2812 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2813
2814 while (!io_req_cache_empty(ctx)) {
2815 req = io_extract_req(ctx);
2816 kmem_cache_free(req_cachep, req);
2817 nr++;
2818 }
2819 if (nr)
2820 percpu_ref_put_many(&ctx->refs, nr);
2821 mutex_unlock(&ctx->uring_lock);
2822 }
2823
2824 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2825 {
2826 kfree(container_of(entry, struct io_rsrc_node, cache));
2827 }
2828
2829 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2830 {
2831 io_sq_thread_finish(ctx);
2832 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2833 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2834 return;
2835
2836 mutex_lock(&ctx->uring_lock);
2837 if (ctx->buf_data)
2838 __io_sqe_buffers_unregister(ctx);
2839 if (ctx->file_data)
2840 __io_sqe_files_unregister(ctx);
2841 io_cqring_overflow_kill(ctx);
2842 io_eventfd_unregister(ctx);
2843 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2844 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2845 io_destroy_buffers(ctx);
2846 mutex_unlock(&ctx->uring_lock);
2847 if (ctx->sq_creds)
2848 put_cred(ctx->sq_creds);
2849 if (ctx->submitter_task)
2850 put_task_struct(ctx->submitter_task);
2851
2852 /* there are no registered resources left, nobody uses it */
2853 if (ctx->rsrc_node)
2854 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2855
2856 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2857
2858 #if defined(CONFIG_UNIX)
2859 if (ctx->ring_sock) {
2860 ctx->ring_sock->file = NULL; /* so that iput() is called */
2861 sock_release(ctx->ring_sock);
2862 }
2863 #endif
2864 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2865
2866 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2867 if (ctx->mm_account) {
2868 mmdrop(ctx->mm_account);
2869 ctx->mm_account = NULL;
2870 }
2871 io_rings_free(ctx);
2872
2873 percpu_ref_exit(&ctx->refs);
2874 free_uid(ctx->user);
2875 io_req_caches_free(ctx);
2876 if (ctx->hash_map)
2877 io_wq_put_hash(ctx->hash_map);
2878 kfree(ctx->cancel_table.hbs);
2879 kfree(ctx->cancel_table_locked.hbs);
2880 kfree(ctx->dummy_ubuf);
2881 kfree(ctx->io_bl);
2882 xa_destroy(&ctx->io_bl_xa);
2883 kfree(ctx);
2884 }
2885
2886 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2887 {
2888 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2889 poll_wq_task_work);
2890
2891 mutex_lock(&ctx->uring_lock);
2892 ctx->poll_activated = true;
2893 mutex_unlock(&ctx->uring_lock);
2894
2895 /*
2896 * Wake ups for some events between start of polling and activation
2897 * might've been lost due to loose synchronisation.
2898 */
2899 wake_up_all(&ctx->poll_wq);
2900 percpu_ref_put(&ctx->refs);
2901 }
2902
2903 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2904 {
2905 spin_lock(&ctx->completion_lock);
2906 /* already activated or in progress */
2907 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2908 goto out;
2909 if (WARN_ON_ONCE(!ctx->task_complete))
2910 goto out;
2911 if (!ctx->submitter_task)
2912 goto out;
2913 /*
2914 * with ->submitter_task only the submitter task completes requests, we
2915 * only need to sync with it, which is done by injecting a tw
2916 */
2917 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2918 percpu_ref_get(&ctx->refs);
2919 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2920 percpu_ref_put(&ctx->refs);
2921 out:
2922 spin_unlock(&ctx->completion_lock);
2923 }
2924
2925 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2926 {
2927 struct io_ring_ctx *ctx = file->private_data;
2928 __poll_t mask = 0;
2929
2930 if (unlikely(!ctx->poll_activated))
2931 io_activate_pollwq(ctx);
2932
2933 poll_wait(file, &ctx->poll_wq, wait);
2934 /*
2935 * synchronizes with barrier from wq_has_sleeper call in
2936 * io_commit_cqring
2937 */
2938 smp_rmb();
2939 if (!io_sqring_full(ctx))
2940 mask |= EPOLLOUT | EPOLLWRNORM;
2941
2942 /*
2943 * Don't flush cqring overflow list here, just do a simple check.
2944 * Otherwise there could possible be ABBA deadlock:
2945 * CPU0 CPU1
2946 * ---- ----
2947 * lock(&ctx->uring_lock);
2948 * lock(&ep->mtx);
2949 * lock(&ctx->uring_lock);
2950 * lock(&ep->mtx);
2951 *
2952 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2953 * pushes them to do the flush.
2954 */
2955
2956 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2957 mask |= EPOLLIN | EPOLLRDNORM;
2958
2959 return mask;
2960 }
2961
2962 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2963 {
2964 const struct cred *creds;
2965
2966 creds = xa_erase(&ctx->personalities, id);
2967 if (creds) {
2968 put_cred(creds);
2969 return 0;
2970 }
2971
2972 return -EINVAL;
2973 }
2974
2975 struct io_tctx_exit {
2976 struct callback_head task_work;
2977 struct completion completion;
2978 struct io_ring_ctx *ctx;
2979 };
2980
2981 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2982 {
2983 struct io_uring_task *tctx = current->io_uring;
2984 struct io_tctx_exit *work;
2985
2986 work = container_of(cb, struct io_tctx_exit, task_work);
2987 /*
2988 * When @in_cancel, we're in cancellation and it's racy to remove the
2989 * node. It'll be removed by the end of cancellation, just ignore it.
2990 * tctx can be NULL if the queueing of this task_work raced with
2991 * work cancelation off the exec path.
2992 */
2993 if (tctx && !atomic_read(&tctx->in_cancel))
2994 io_uring_del_tctx_node((unsigned long)work->ctx);
2995 complete(&work->completion);
2996 }
2997
2998 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2999 {
3000 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3001
3002 return req->ctx == data;
3003 }
3004
3005 static __cold void io_ring_exit_work(struct work_struct *work)
3006 {
3007 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3008 unsigned long timeout = jiffies + HZ * 60 * 5;
3009 unsigned long interval = HZ / 20;
3010 struct io_tctx_exit exit;
3011 struct io_tctx_node *node;
3012 int ret;
3013
3014 /*
3015 * If we're doing polled IO and end up having requests being
3016 * submitted async (out-of-line), then completions can come in while
3017 * we're waiting for refs to drop. We need to reap these manually,
3018 * as nobody else will be looking for them.
3019 */
3020 do {
3021 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3022 mutex_lock(&ctx->uring_lock);
3023 io_cqring_overflow_kill(ctx);
3024 mutex_unlock(&ctx->uring_lock);
3025 }
3026
3027 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3028 io_move_task_work_from_local(ctx);
3029
3030 while (io_uring_try_cancel_requests(ctx, NULL, true))
3031 cond_resched();
3032
3033 if (ctx->sq_data) {
3034 struct io_sq_data *sqd = ctx->sq_data;
3035 struct task_struct *tsk;
3036
3037 io_sq_thread_park(sqd);
3038 tsk = sqd->thread;
3039 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3040 io_wq_cancel_cb(tsk->io_uring->io_wq,
3041 io_cancel_ctx_cb, ctx, true);
3042 io_sq_thread_unpark(sqd);
3043 }
3044
3045 io_req_caches_free(ctx);
3046
3047 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3048 /* there is little hope left, don't run it too often */
3049 interval = HZ * 60;
3050 }
3051 /*
3052 * This is really an uninterruptible wait, as it has to be
3053 * complete. But it's also run from a kworker, which doesn't
3054 * take signals, so it's fine to make it interruptible. This
3055 * avoids scenarios where we knowingly can wait much longer
3056 * on completions, for example if someone does a SIGSTOP on
3057 * a task that needs to finish task_work to make this loop
3058 * complete. That's a synthetic situation that should not
3059 * cause a stuck task backtrace, and hence a potential panic
3060 * on stuck tasks if that is enabled.
3061 */
3062 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3063
3064 init_completion(&exit.completion);
3065 init_task_work(&exit.task_work, io_tctx_exit_cb);
3066 exit.ctx = ctx;
3067 /*
3068 * Some may use context even when all refs and requests have been put,
3069 * and they are free to do so while still holding uring_lock or
3070 * completion_lock, see io_req_task_submit(). Apart from other work,
3071 * this lock/unlock section also waits them to finish.
3072 */
3073 mutex_lock(&ctx->uring_lock);
3074 while (!list_empty(&ctx->tctx_list)) {
3075 WARN_ON_ONCE(time_after(jiffies, timeout));
3076
3077 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3078 ctx_node);
3079 /* don't spin on a single task if cancellation failed */
3080 list_rotate_left(&ctx->tctx_list);
3081 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3082 if (WARN_ON_ONCE(ret))
3083 continue;
3084
3085 mutex_unlock(&ctx->uring_lock);
3086 /*
3087 * See comment above for
3088 * wait_for_completion_interruptible_timeout() on why this
3089 * wait is marked as interruptible.
3090 */
3091 wait_for_completion_interruptible(&exit.completion);
3092 mutex_lock(&ctx->uring_lock);
3093 }
3094 mutex_unlock(&ctx->uring_lock);
3095 spin_lock(&ctx->completion_lock);
3096 spin_unlock(&ctx->completion_lock);
3097
3098 /* pairs with RCU read section in io_req_local_work_add() */
3099 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3100 synchronize_rcu();
3101
3102 io_ring_ctx_free(ctx);
3103 }
3104
3105 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3106 {
3107 unsigned long index;
3108 struct creds *creds;
3109
3110 mutex_lock(&ctx->uring_lock);
3111 percpu_ref_kill(&ctx->refs);
3112 xa_for_each(&ctx->personalities, index, creds)
3113 io_unregister_personality(ctx, index);
3114 if (ctx->rings)
3115 io_poll_remove_all(ctx, NULL, true);
3116 mutex_unlock(&ctx->uring_lock);
3117
3118 /*
3119 * If we failed setting up the ctx, we might not have any rings
3120 * and therefore did not submit any requests
3121 */
3122 if (ctx->rings)
3123 io_kill_timeouts(ctx, NULL, true);
3124
3125 flush_delayed_work(&ctx->fallback_work);
3126
3127 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3128 /*
3129 * Use system_unbound_wq to avoid spawning tons of event kworkers
3130 * if we're exiting a ton of rings at the same time. It just adds
3131 * noise and overhead, there's no discernable change in runtime
3132 * over using system_wq.
3133 */
3134 queue_work(system_unbound_wq, &ctx->exit_work);
3135 }
3136
3137 static int io_uring_release(struct inode *inode, struct file *file)
3138 {
3139 struct io_ring_ctx *ctx = file->private_data;
3140
3141 file->private_data = NULL;
3142 io_ring_ctx_wait_and_kill(ctx);
3143 return 0;
3144 }
3145
3146 struct io_task_cancel {
3147 struct task_struct *task;
3148 bool all;
3149 };
3150
3151 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3152 {
3153 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3154 struct io_task_cancel *cancel = data;
3155
3156 return io_match_task_safe(req, cancel->task, cancel->all);
3157 }
3158
3159 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3160 struct task_struct *task,
3161 bool cancel_all)
3162 {
3163 struct io_defer_entry *de;
3164 LIST_HEAD(list);
3165
3166 spin_lock(&ctx->completion_lock);
3167 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3168 if (io_match_task_safe(de->req, task, cancel_all)) {
3169 list_cut_position(&list, &ctx->defer_list, &de->list);
3170 break;
3171 }
3172 }
3173 spin_unlock(&ctx->completion_lock);
3174 if (list_empty(&list))
3175 return false;
3176
3177 while (!list_empty(&list)) {
3178 de = list_first_entry(&list, struct io_defer_entry, list);
3179 list_del_init(&de->list);
3180 io_req_task_queue_fail(de->req, -ECANCELED);
3181 kfree(de);
3182 }
3183 return true;
3184 }
3185
3186 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3187 {
3188 struct io_tctx_node *node;
3189 enum io_wq_cancel cret;
3190 bool ret = false;
3191
3192 mutex_lock(&ctx->uring_lock);
3193 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3194 struct io_uring_task *tctx = node->task->io_uring;
3195
3196 /*
3197 * io_wq will stay alive while we hold uring_lock, because it's
3198 * killed after ctx nodes, which requires to take the lock.
3199 */
3200 if (!tctx || !tctx->io_wq)
3201 continue;
3202 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3203 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3204 }
3205 mutex_unlock(&ctx->uring_lock);
3206
3207 return ret;
3208 }
3209
3210 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3211 struct task_struct *task,
3212 bool cancel_all)
3213 {
3214 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3215 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3216 enum io_wq_cancel cret;
3217 bool ret = false;
3218
3219 /* set it so io_req_local_work_add() would wake us up */
3220 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3221 atomic_set(&ctx->cq_wait_nr, 1);
3222 smp_mb();
3223 }
3224
3225 /* failed during ring init, it couldn't have issued any requests */
3226 if (!ctx->rings)
3227 return false;
3228
3229 if (!task) {
3230 ret |= io_uring_try_cancel_iowq(ctx);
3231 } else if (tctx && tctx->io_wq) {
3232 /*
3233 * Cancels requests of all rings, not only @ctx, but
3234 * it's fine as the task is in exit/exec.
3235 */
3236 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3237 &cancel, true);
3238 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3239 }
3240
3241 /* SQPOLL thread does its own polling */
3242 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3243 (ctx->sq_data && ctx->sq_data->thread == current)) {
3244 while (!wq_list_empty(&ctx->iopoll_list)) {
3245 io_iopoll_try_reap_events(ctx);
3246 ret = true;
3247 cond_resched();
3248 }
3249 }
3250
3251 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3252 io_allowed_defer_tw_run(ctx))
3253 ret |= io_run_local_work(ctx) > 0;
3254 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3255 mutex_lock(&ctx->uring_lock);
3256 ret |= io_poll_remove_all(ctx, task, cancel_all);
3257 mutex_unlock(&ctx->uring_lock);
3258 ret |= io_kill_timeouts(ctx, task, cancel_all);
3259 if (task)
3260 ret |= io_run_task_work() > 0;
3261 return ret;
3262 }
3263
3264 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3265 {
3266 if (tracked)
3267 return atomic_read(&tctx->inflight_tracked);
3268 return percpu_counter_sum(&tctx->inflight);
3269 }
3270
3271 /*
3272 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3273 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3274 */
3275 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3276 {
3277 struct io_uring_task *tctx = current->io_uring;
3278 struct io_ring_ctx *ctx;
3279 struct io_tctx_node *node;
3280 unsigned long index;
3281 s64 inflight;
3282 DEFINE_WAIT(wait);
3283
3284 WARN_ON_ONCE(sqd && sqd->thread != current);
3285
3286 if (!current->io_uring)
3287 return;
3288 if (tctx->io_wq)
3289 io_wq_exit_start(tctx->io_wq);
3290
3291 atomic_inc(&tctx->in_cancel);
3292 do {
3293 bool loop = false;
3294
3295 io_uring_drop_tctx_refs(current);
3296 /* read completions before cancelations */
3297 inflight = tctx_inflight(tctx, !cancel_all);
3298 if (!inflight)
3299 break;
3300
3301 if (!sqd) {
3302 xa_for_each(&tctx->xa, index, node) {
3303 /* sqpoll task will cancel all its requests */
3304 if (node->ctx->sq_data)
3305 continue;
3306 loop |= io_uring_try_cancel_requests(node->ctx,
3307 current, cancel_all);
3308 }
3309 } else {
3310 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3311 loop |= io_uring_try_cancel_requests(ctx,
3312 current,
3313 cancel_all);
3314 }
3315
3316 if (loop) {
3317 cond_resched();
3318 continue;
3319 }
3320
3321 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3322 io_run_task_work();
3323 io_uring_drop_tctx_refs(current);
3324 xa_for_each(&tctx->xa, index, node) {
3325 if (!llist_empty(&node->ctx->work_llist)) {
3326 WARN_ON_ONCE(node->ctx->submitter_task &&
3327 node->ctx->submitter_task != current);
3328 goto end_wait;
3329 }
3330 }
3331 /*
3332 * If we've seen completions, retry without waiting. This
3333 * avoids a race where a completion comes in before we did
3334 * prepare_to_wait().
3335 */
3336 if (inflight == tctx_inflight(tctx, !cancel_all))
3337 schedule();
3338 end_wait:
3339 finish_wait(&tctx->wait, &wait);
3340 } while (1);
3341
3342 io_uring_clean_tctx(tctx);
3343 if (cancel_all) {
3344 /*
3345 * We shouldn't run task_works after cancel, so just leave
3346 * ->in_cancel set for normal exit.
3347 */
3348 atomic_dec(&tctx->in_cancel);
3349 /* for exec all current's requests should be gone, kill tctx */
3350 __io_uring_free(current);
3351 }
3352 }
3353
3354 void __io_uring_cancel(bool cancel_all)
3355 {
3356 io_uring_cancel_generic(cancel_all, NULL);
3357 }
3358
3359 static void *io_uring_validate_mmap_request(struct file *file,
3360 loff_t pgoff, size_t sz)
3361 {
3362 struct io_ring_ctx *ctx = file->private_data;
3363 loff_t offset = pgoff << PAGE_SHIFT;
3364 struct page *page;
3365 void *ptr;
3366
3367 /* Don't allow mmap if the ring was setup without it */
3368 if (ctx->flags & IORING_SETUP_NO_MMAP)
3369 return ERR_PTR(-EINVAL);
3370
3371 switch (offset & IORING_OFF_MMAP_MASK) {
3372 case IORING_OFF_SQ_RING:
3373 case IORING_OFF_CQ_RING:
3374 ptr = ctx->rings;
3375 break;
3376 case IORING_OFF_SQES:
3377 ptr = ctx->sq_sqes;
3378 break;
3379 case IORING_OFF_PBUF_RING: {
3380 unsigned int bgid;
3381
3382 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3383 mutex_lock(&ctx->uring_lock);
3384 ptr = io_pbuf_get_address(ctx, bgid);
3385 mutex_unlock(&ctx->uring_lock);
3386 if (!ptr)
3387 return ERR_PTR(-EINVAL);
3388 break;
3389 }
3390 default:
3391 return ERR_PTR(-EINVAL);
3392 }
3393
3394 page = virt_to_head_page(ptr);
3395 if (sz > page_size(page))
3396 return ERR_PTR(-EINVAL);
3397
3398 return ptr;
3399 }
3400
3401 #ifdef CONFIG_MMU
3402
3403 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3404 {
3405 size_t sz = vma->vm_end - vma->vm_start;
3406 unsigned long pfn;
3407 void *ptr;
3408
3409 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3410 if (IS_ERR(ptr))
3411 return PTR_ERR(ptr);
3412
3413 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3414 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3415 }
3416
3417 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3418 unsigned long addr, unsigned long len,
3419 unsigned long pgoff, unsigned long flags)
3420 {
3421 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3422 struct vm_unmapped_area_info info;
3423 void *ptr;
3424
3425 /*
3426 * Do not allow to map to user-provided address to avoid breaking the
3427 * aliasing rules. Userspace is not able to guess the offset address of
3428 * kernel kmalloc()ed memory area.
3429 */
3430 if (addr)
3431 return -EINVAL;
3432
3433 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3434 if (IS_ERR(ptr))
3435 return -ENOMEM;
3436
3437 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3438 info.length = len;
3439 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3440 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3441 #ifdef SHM_COLOUR
3442 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3443 #else
3444 info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3445 #endif
3446 info.align_offset = (unsigned long) ptr;
3447
3448 /*
3449 * A failed mmap() very likely causes application failure,
3450 * so fall back to the bottom-up function here. This scenario
3451 * can happen with large stack limits and large mmap()
3452 * allocations.
3453 */
3454 addr = vm_unmapped_area(&info);
3455 if (offset_in_page(addr)) {
3456 info.flags = 0;
3457 info.low_limit = TASK_UNMAPPED_BASE;
3458 info.high_limit = mmap_end;
3459 addr = vm_unmapped_area(&info);
3460 }
3461
3462 return addr;
3463 }
3464
3465 #else /* !CONFIG_MMU */
3466
3467 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3468 {
3469 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3470 }
3471
3472 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3473 {
3474 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3475 }
3476
3477 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3478 unsigned long addr, unsigned long len,
3479 unsigned long pgoff, unsigned long flags)
3480 {
3481 void *ptr;
3482
3483 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3484 if (IS_ERR(ptr))
3485 return PTR_ERR(ptr);
3486
3487 return (unsigned long) ptr;
3488 }
3489
3490 #endif /* !CONFIG_MMU */
3491
3492 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3493 {
3494 if (flags & IORING_ENTER_EXT_ARG) {
3495 struct io_uring_getevents_arg arg;
3496
3497 if (argsz != sizeof(arg))
3498 return -EINVAL;
3499 if (copy_from_user(&arg, argp, sizeof(arg)))
3500 return -EFAULT;
3501 }
3502 return 0;
3503 }
3504
3505 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3506 struct __kernel_timespec __user **ts,
3507 const sigset_t __user **sig)
3508 {
3509 struct io_uring_getevents_arg arg;
3510
3511 /*
3512 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3513 * is just a pointer to the sigset_t.
3514 */
3515 if (!(flags & IORING_ENTER_EXT_ARG)) {
3516 *sig = (const sigset_t __user *) argp;
3517 *ts = NULL;
3518 return 0;
3519 }
3520
3521 /*
3522 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3523 * timespec and sigset_t pointers if good.
3524 */
3525 if (*argsz != sizeof(arg))
3526 return -EINVAL;
3527 if (copy_from_user(&arg, argp, sizeof(arg)))
3528 return -EFAULT;
3529 if (arg.pad)
3530 return -EINVAL;
3531 *sig = u64_to_user_ptr(arg.sigmask);
3532 *argsz = arg.sigmask_sz;
3533 *ts = u64_to_user_ptr(arg.ts);
3534 return 0;
3535 }
3536
3537 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3538 u32, min_complete, u32, flags, const void __user *, argp,
3539 size_t, argsz)
3540 {
3541 struct io_ring_ctx *ctx;
3542 struct fd f;
3543 long ret;
3544
3545 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3546 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3547 IORING_ENTER_REGISTERED_RING)))
3548 return -EINVAL;
3549
3550 /*
3551 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3552 * need only dereference our task private array to find it.
3553 */
3554 if (flags & IORING_ENTER_REGISTERED_RING) {
3555 struct io_uring_task *tctx = current->io_uring;
3556
3557 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3558 return -EINVAL;
3559 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3560 f.file = tctx->registered_rings[fd];
3561 f.flags = 0;
3562 if (unlikely(!f.file))
3563 return -EBADF;
3564 } else {
3565 f = fdget(fd);
3566 if (unlikely(!f.file))
3567 return -EBADF;
3568 ret = -EOPNOTSUPP;
3569 if (unlikely(!io_is_uring_fops(f.file)))
3570 goto out;
3571 }
3572
3573 ctx = f.file->private_data;
3574 ret = -EBADFD;
3575 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3576 goto out;
3577
3578 /*
3579 * For SQ polling, the thread will do all submissions and completions.
3580 * Just return the requested submit count, and wake the thread if
3581 * we were asked to.
3582 */
3583 ret = 0;
3584 if (ctx->flags & IORING_SETUP_SQPOLL) {
3585 io_cqring_overflow_flush(ctx);
3586
3587 if (unlikely(ctx->sq_data->thread == NULL)) {
3588 ret = -EOWNERDEAD;
3589 goto out;
3590 }
3591 if (flags & IORING_ENTER_SQ_WAKEUP)
3592 wake_up(&ctx->sq_data->wait);
3593 if (flags & IORING_ENTER_SQ_WAIT)
3594 io_sqpoll_wait_sq(ctx);
3595
3596 ret = to_submit;
3597 } else if (to_submit) {
3598 ret = io_uring_add_tctx_node(ctx);
3599 if (unlikely(ret))
3600 goto out;
3601
3602 mutex_lock(&ctx->uring_lock);
3603 ret = io_submit_sqes(ctx, to_submit);
3604 if (ret != to_submit) {
3605 mutex_unlock(&ctx->uring_lock);
3606 goto out;
3607 }
3608 if (flags & IORING_ENTER_GETEVENTS) {
3609 if (ctx->syscall_iopoll)
3610 goto iopoll_locked;
3611 /*
3612 * Ignore errors, we'll soon call io_cqring_wait() and
3613 * it should handle ownership problems if any.
3614 */
3615 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3616 (void)io_run_local_work_locked(ctx);
3617 }
3618 mutex_unlock(&ctx->uring_lock);
3619 }
3620
3621 if (flags & IORING_ENTER_GETEVENTS) {
3622 int ret2;
3623
3624 if (ctx->syscall_iopoll) {
3625 /*
3626 * We disallow the app entering submit/complete with
3627 * polling, but we still need to lock the ring to
3628 * prevent racing with polled issue that got punted to
3629 * a workqueue.
3630 */
3631 mutex_lock(&ctx->uring_lock);
3632 iopoll_locked:
3633 ret2 = io_validate_ext_arg(flags, argp, argsz);
3634 if (likely(!ret2)) {
3635 min_complete = min(min_complete,
3636 ctx->cq_entries);
3637 ret2 = io_iopoll_check(ctx, min_complete);
3638 }
3639 mutex_unlock(&ctx->uring_lock);
3640 } else {
3641 const sigset_t __user *sig;
3642 struct __kernel_timespec __user *ts;
3643
3644 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3645 if (likely(!ret2)) {
3646 min_complete = min(min_complete,
3647 ctx->cq_entries);
3648 ret2 = io_cqring_wait(ctx, min_complete, sig,
3649 argsz, ts);
3650 }
3651 }
3652
3653 if (!ret) {
3654 ret = ret2;
3655
3656 /*
3657 * EBADR indicates that one or more CQE were dropped.
3658 * Once the user has been informed we can clear the bit
3659 * as they are obviously ok with those drops.
3660 */
3661 if (unlikely(ret2 == -EBADR))
3662 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3663 &ctx->check_cq);
3664 }
3665 }
3666 out:
3667 fdput(f);
3668 return ret;
3669 }
3670
3671 static const struct file_operations io_uring_fops = {
3672 .release = io_uring_release,
3673 .mmap = io_uring_mmap,
3674 #ifndef CONFIG_MMU
3675 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3676 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3677 #else
3678 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3679 #endif
3680 .poll = io_uring_poll,
3681 #ifdef CONFIG_PROC_FS
3682 .show_fdinfo = io_uring_show_fdinfo,
3683 #endif
3684 };
3685
3686 bool io_is_uring_fops(struct file *file)
3687 {
3688 return file->f_op == &io_uring_fops;
3689 }
3690
3691 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3692 struct io_uring_params *p)
3693 {
3694 struct io_rings *rings;
3695 size_t size, sq_array_offset;
3696 void *ptr;
3697
3698 /* make sure these are sane, as we already accounted them */
3699 ctx->sq_entries = p->sq_entries;
3700 ctx->cq_entries = p->cq_entries;
3701
3702 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3703 if (size == SIZE_MAX)
3704 return -EOVERFLOW;
3705
3706 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3707 rings = io_mem_alloc(size);
3708 else
3709 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3710
3711 if (IS_ERR(rings))
3712 return PTR_ERR(rings);
3713
3714 ctx->rings = rings;
3715 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3716 rings->sq_ring_mask = p->sq_entries - 1;
3717 rings->cq_ring_mask = p->cq_entries - 1;
3718 rings->sq_ring_entries = p->sq_entries;
3719 rings->cq_ring_entries = p->cq_entries;
3720
3721 if (p->flags & IORING_SETUP_SQE128)
3722 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3723 else
3724 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3725 if (size == SIZE_MAX) {
3726 io_rings_free(ctx);
3727 return -EOVERFLOW;
3728 }
3729
3730 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3731 ptr = io_mem_alloc(size);
3732 else
3733 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3734
3735 if (IS_ERR(ptr)) {
3736 io_rings_free(ctx);
3737 return PTR_ERR(ptr);
3738 }
3739
3740 ctx->sq_sqes = ptr;
3741 return 0;
3742 }
3743
3744 static int io_uring_install_fd(struct file *file)
3745 {
3746 int fd;
3747
3748 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3749 if (fd < 0)
3750 return fd;
3751 fd_install(fd, file);
3752 return fd;
3753 }
3754
3755 /*
3756 * Allocate an anonymous fd, this is what constitutes the application
3757 * visible backing of an io_uring instance. The application mmaps this
3758 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3759 * we have to tie this fd to a socket for file garbage collection purposes.
3760 */
3761 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3762 {
3763 struct file *file;
3764 #if defined(CONFIG_UNIX)
3765 int ret;
3766
3767 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3768 &ctx->ring_sock);
3769 if (ret)
3770 return ERR_PTR(ret);
3771 #endif
3772
3773 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3774 O_RDWR | O_CLOEXEC, NULL);
3775 #if defined(CONFIG_UNIX)
3776 if (IS_ERR(file)) {
3777 sock_release(ctx->ring_sock);
3778 ctx->ring_sock = NULL;
3779 } else {
3780 ctx->ring_sock->file = file;
3781 }
3782 #endif
3783 return file;
3784 }
3785
3786 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3787 struct io_uring_params __user *params)
3788 {
3789 struct io_ring_ctx *ctx;
3790 struct io_uring_task *tctx;
3791 struct file *file;
3792 int ret;
3793
3794 if (!entries)
3795 return -EINVAL;
3796 if (entries > IORING_MAX_ENTRIES) {
3797 if (!(p->flags & IORING_SETUP_CLAMP))
3798 return -EINVAL;
3799 entries = IORING_MAX_ENTRIES;
3800 }
3801
3802 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3803 && !(p->flags & IORING_SETUP_NO_MMAP))
3804 return -EINVAL;
3805
3806 /*
3807 * Use twice as many entries for the CQ ring. It's possible for the
3808 * application to drive a higher depth than the size of the SQ ring,
3809 * since the sqes are only used at submission time. This allows for
3810 * some flexibility in overcommitting a bit. If the application has
3811 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3812 * of CQ ring entries manually.
3813 */
3814 p->sq_entries = roundup_pow_of_two(entries);
3815 if (p->flags & IORING_SETUP_CQSIZE) {
3816 /*
3817 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3818 * to a power-of-two, if it isn't already. We do NOT impose
3819 * any cq vs sq ring sizing.
3820 */
3821 if (!p->cq_entries)
3822 return -EINVAL;
3823 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3824 if (!(p->flags & IORING_SETUP_CLAMP))
3825 return -EINVAL;
3826 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3827 }
3828 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3829 if (p->cq_entries < p->sq_entries)
3830 return -EINVAL;
3831 } else {
3832 p->cq_entries = 2 * p->sq_entries;
3833 }
3834
3835 ctx = io_ring_ctx_alloc(p);
3836 if (!ctx)
3837 return -ENOMEM;
3838
3839 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3840 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3841 !(ctx->flags & IORING_SETUP_SQPOLL))
3842 ctx->task_complete = true;
3843
3844 /*
3845 * lazy poll_wq activation relies on ->task_complete for synchronisation
3846 * purposes, see io_activate_pollwq()
3847 */
3848 if (!ctx->task_complete)
3849 ctx->poll_activated = true;
3850
3851 /*
3852 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3853 * space applications don't need to do io completion events
3854 * polling again, they can rely on io_sq_thread to do polling
3855 * work, which can reduce cpu usage and uring_lock contention.
3856 */
3857 if (ctx->flags & IORING_SETUP_IOPOLL &&
3858 !(ctx->flags & IORING_SETUP_SQPOLL))
3859 ctx->syscall_iopoll = 1;
3860
3861 ctx->compat = in_compat_syscall();
3862 if (!capable(CAP_IPC_LOCK))
3863 ctx->user = get_uid(current_user());
3864
3865 /*
3866 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3867 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3868 */
3869 ret = -EINVAL;
3870 if (ctx->flags & IORING_SETUP_SQPOLL) {
3871 /* IPI related flags don't make sense with SQPOLL */
3872 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3873 IORING_SETUP_TASKRUN_FLAG |
3874 IORING_SETUP_DEFER_TASKRUN))
3875 goto err;
3876 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3877 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3878 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3879 } else {
3880 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3881 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3882 goto err;
3883 ctx->notify_method = TWA_SIGNAL;
3884 }
3885
3886 /*
3887 * For DEFER_TASKRUN we require the completion task to be the same as the
3888 * submission task. This implies that there is only one submitter, so enforce
3889 * that.
3890 */
3891 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3892 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3893 goto err;
3894 }
3895
3896 /*
3897 * This is just grabbed for accounting purposes. When a process exits,
3898 * the mm is exited and dropped before the files, hence we need to hang
3899 * on to this mm purely for the purposes of being able to unaccount
3900 * memory (locked/pinned vm). It's not used for anything else.
3901 */
3902 mmgrab(current->mm);
3903 ctx->mm_account = current->mm;
3904
3905 ret = io_allocate_scq_urings(ctx, p);
3906 if (ret)
3907 goto err;
3908
3909 ret = io_sq_offload_create(ctx, p);
3910 if (ret)
3911 goto err;
3912
3913 ret = io_rsrc_init(ctx);
3914 if (ret)
3915 goto err;
3916
3917 p->sq_off.head = offsetof(struct io_rings, sq.head);
3918 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3919 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3920 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3921 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3922 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3923 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3924 p->sq_off.resv1 = 0;
3925 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3926 p->sq_off.user_addr = 0;
3927
3928 p->cq_off.head = offsetof(struct io_rings, cq.head);
3929 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3930 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3931 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3932 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3933 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3934 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3935 p->cq_off.resv1 = 0;
3936 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3937 p->cq_off.user_addr = 0;
3938
3939 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3940 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3941 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3942 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3943 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3944 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3945 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3946
3947 if (copy_to_user(params, p, sizeof(*p))) {
3948 ret = -EFAULT;
3949 goto err;
3950 }
3951
3952 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3953 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3954 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3955
3956 file = io_uring_get_file(ctx);
3957 if (IS_ERR(file)) {
3958 ret = PTR_ERR(file);
3959 goto err;
3960 }
3961
3962 ret = __io_uring_add_tctx_node(ctx);
3963 if (ret)
3964 goto err_fput;
3965 tctx = current->io_uring;
3966
3967 /*
3968 * Install ring fd as the very last thing, so we don't risk someone
3969 * having closed it before we finish setup
3970 */
3971 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3972 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3973 else
3974 ret = io_uring_install_fd(file);
3975 if (ret < 0)
3976 goto err_fput;
3977
3978 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3979 return ret;
3980 err:
3981 io_ring_ctx_wait_and_kill(ctx);
3982 return ret;
3983 err_fput:
3984 fput(file);
3985 return ret;
3986 }
3987
3988 /*
3989 * Sets up an aio uring context, and returns the fd. Applications asks for a
3990 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3991 * params structure passed in.
3992 */
3993 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3994 {
3995 struct io_uring_params p;
3996 int i;
3997
3998 if (copy_from_user(&p, params, sizeof(p)))
3999 return -EFAULT;
4000 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4001 if (p.resv[i])
4002 return -EINVAL;
4003 }
4004
4005 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4006 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4007 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4008 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4009 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4010 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4011 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4012 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4013 return -EINVAL;
4014
4015 return io_uring_create(entries, &p, params);
4016 }
4017
4018 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4019 struct io_uring_params __user *, params)
4020 {
4021 return io_uring_setup(entries, params);
4022 }
4023
4024 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4025 unsigned nr_args)
4026 {
4027 struct io_uring_probe *p;
4028 size_t size;
4029 int i, ret;
4030
4031 size = struct_size(p, ops, nr_args);
4032 if (size == SIZE_MAX)
4033 return -EOVERFLOW;
4034 p = kzalloc(size, GFP_KERNEL);
4035 if (!p)
4036 return -ENOMEM;
4037
4038 ret = -EFAULT;
4039 if (copy_from_user(p, arg, size))
4040 goto out;
4041 ret = -EINVAL;
4042 if (memchr_inv(p, 0, size))
4043 goto out;
4044
4045 p->last_op = IORING_OP_LAST - 1;
4046 if (nr_args > IORING_OP_LAST)
4047 nr_args = IORING_OP_LAST;
4048
4049 for (i = 0; i < nr_args; i++) {
4050 p->ops[i].op = i;
4051 if (!io_issue_defs[i].not_supported)
4052 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4053 }
4054 p->ops_len = i;
4055
4056 ret = 0;
4057 if (copy_to_user(arg, p, size))
4058 ret = -EFAULT;
4059 out:
4060 kfree(p);
4061 return ret;
4062 }
4063
4064 static int io_register_personality(struct io_ring_ctx *ctx)
4065 {
4066 const struct cred *creds;
4067 u32 id;
4068 int ret;
4069
4070 creds = get_current_cred();
4071
4072 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4073 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4074 if (ret < 0) {
4075 put_cred(creds);
4076 return ret;
4077 }
4078 return id;
4079 }
4080
4081 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4082 void __user *arg, unsigned int nr_args)
4083 {
4084 struct io_uring_restriction *res;
4085 size_t size;
4086 int i, ret;
4087
4088 /* Restrictions allowed only if rings started disabled */
4089 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4090 return -EBADFD;
4091
4092 /* We allow only a single restrictions registration */
4093 if (ctx->restrictions.registered)
4094 return -EBUSY;
4095
4096 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4097 return -EINVAL;
4098
4099 size = array_size(nr_args, sizeof(*res));
4100 if (size == SIZE_MAX)
4101 return -EOVERFLOW;
4102
4103 res = memdup_user(arg, size);
4104 if (IS_ERR(res))
4105 return PTR_ERR(res);
4106
4107 ret = 0;
4108
4109 for (i = 0; i < nr_args; i++) {
4110 switch (res[i].opcode) {
4111 case IORING_RESTRICTION_REGISTER_OP:
4112 if (res[i].register_op >= IORING_REGISTER_LAST) {
4113 ret = -EINVAL;
4114 goto out;
4115 }
4116
4117 __set_bit(res[i].register_op,
4118 ctx->restrictions.register_op);
4119 break;
4120 case IORING_RESTRICTION_SQE_OP:
4121 if (res[i].sqe_op >= IORING_OP_LAST) {
4122 ret = -EINVAL;
4123 goto out;
4124 }
4125
4126 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4127 break;
4128 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4129 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4130 break;
4131 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4132 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4133 break;
4134 default:
4135 ret = -EINVAL;
4136 goto out;
4137 }
4138 }
4139
4140 out:
4141 /* Reset all restrictions if an error happened */
4142 if (ret != 0)
4143 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4144 else
4145 ctx->restrictions.registered = true;
4146
4147 kfree(res);
4148 return ret;
4149 }
4150
4151 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4152 {
4153 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4154 return -EBADFD;
4155
4156 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4157 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4158 /*
4159 * Lazy activation attempts would fail if it was polled before
4160 * submitter_task is set.
4161 */
4162 if (wq_has_sleeper(&ctx->poll_wq))
4163 io_activate_pollwq(ctx);
4164 }
4165
4166 if (ctx->restrictions.registered)
4167 ctx->restricted = 1;
4168
4169 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4170 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4171 wake_up(&ctx->sq_data->wait);
4172 return 0;
4173 }
4174
4175 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4176 void __user *arg, unsigned len)
4177 {
4178 struct io_uring_task *tctx = current->io_uring;
4179 cpumask_var_t new_mask;
4180 int ret;
4181
4182 if (!tctx || !tctx->io_wq)
4183 return -EINVAL;
4184
4185 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4186 return -ENOMEM;
4187
4188 cpumask_clear(new_mask);
4189 if (len > cpumask_size())
4190 len = cpumask_size();
4191
4192 if (in_compat_syscall()) {
4193 ret = compat_get_bitmap(cpumask_bits(new_mask),
4194 (const compat_ulong_t __user *)arg,
4195 len * 8 /* CHAR_BIT */);
4196 } else {
4197 ret = copy_from_user(new_mask, arg, len);
4198 }
4199
4200 if (ret) {
4201 free_cpumask_var(new_mask);
4202 return -EFAULT;
4203 }
4204
4205 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4206 free_cpumask_var(new_mask);
4207 return ret;
4208 }
4209
4210 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4211 {
4212 struct io_uring_task *tctx = current->io_uring;
4213
4214 if (!tctx || !tctx->io_wq)
4215 return -EINVAL;
4216
4217 return io_wq_cpu_affinity(tctx->io_wq, NULL);
4218 }
4219
4220 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4221 void __user *arg)
4222 __must_hold(&ctx->uring_lock)
4223 {
4224 struct io_tctx_node *node;
4225 struct io_uring_task *tctx = NULL;
4226 struct io_sq_data *sqd = NULL;
4227 __u32 new_count[2];
4228 int i, ret;
4229
4230 if (copy_from_user(new_count, arg, sizeof(new_count)))
4231 return -EFAULT;
4232 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4233 if (new_count[i] > INT_MAX)
4234 return -EINVAL;
4235
4236 if (ctx->flags & IORING_SETUP_SQPOLL) {
4237 sqd = ctx->sq_data;
4238 if (sqd) {
4239 /*
4240 * Observe the correct sqd->lock -> ctx->uring_lock
4241 * ordering. Fine to drop uring_lock here, we hold
4242 * a ref to the ctx.
4243 */
4244 refcount_inc(&sqd->refs);
4245 mutex_unlock(&ctx->uring_lock);
4246 mutex_lock(&sqd->lock);
4247 mutex_lock(&ctx->uring_lock);
4248 if (sqd->thread)
4249 tctx = sqd->thread->io_uring;
4250 }
4251 } else {
4252 tctx = current->io_uring;
4253 }
4254
4255 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4256
4257 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4258 if (new_count[i])
4259 ctx->iowq_limits[i] = new_count[i];
4260 ctx->iowq_limits_set = true;
4261
4262 if (tctx && tctx->io_wq) {
4263 ret = io_wq_max_workers(tctx->io_wq, new_count);
4264 if (ret)
4265 goto err;
4266 } else {
4267 memset(new_count, 0, sizeof(new_count));
4268 }
4269
4270 if (sqd) {
4271 mutex_unlock(&sqd->lock);
4272 io_put_sq_data(sqd);
4273 }
4274
4275 if (copy_to_user(arg, new_count, sizeof(new_count)))
4276 return -EFAULT;
4277
4278 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4279 if (sqd)
4280 return 0;
4281
4282 /* now propagate the restriction to all registered users */
4283 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4284 struct io_uring_task *tctx = node->task->io_uring;
4285
4286 if (WARN_ON_ONCE(!tctx->io_wq))
4287 continue;
4288
4289 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4290 new_count[i] = ctx->iowq_limits[i];
4291 /* ignore errors, it always returns zero anyway */
4292 (void)io_wq_max_workers(tctx->io_wq, new_count);
4293 }
4294 return 0;
4295 err:
4296 if (sqd) {
4297 mutex_unlock(&sqd->lock);
4298 io_put_sq_data(sqd);
4299 }
4300 return ret;
4301 }
4302
4303 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4304 void __user *arg, unsigned nr_args)
4305 __releases(ctx->uring_lock)
4306 __acquires(ctx->uring_lock)
4307 {
4308 int ret;
4309
4310 /*
4311 * We don't quiesce the refs for register anymore and so it can't be
4312 * dying as we're holding a file ref here.
4313 */
4314 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4315 return -ENXIO;
4316
4317 if (ctx->submitter_task && ctx->submitter_task != current)
4318 return -EEXIST;
4319
4320 if (ctx->restricted) {
4321 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4322 if (!test_bit(opcode, ctx->restrictions.register_op))
4323 return -EACCES;
4324 }
4325
4326 switch (opcode) {
4327 case IORING_REGISTER_BUFFERS:
4328 ret = -EFAULT;
4329 if (!arg)
4330 break;
4331 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4332 break;
4333 case IORING_UNREGISTER_BUFFERS:
4334 ret = -EINVAL;
4335 if (arg || nr_args)
4336 break;
4337 ret = io_sqe_buffers_unregister(ctx);
4338 break;
4339 case IORING_REGISTER_FILES:
4340 ret = -EFAULT;
4341 if (!arg)
4342 break;
4343 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4344 break;
4345 case IORING_UNREGISTER_FILES:
4346 ret = -EINVAL;
4347 if (arg || nr_args)
4348 break;
4349 ret = io_sqe_files_unregister(ctx);
4350 break;
4351 case IORING_REGISTER_FILES_UPDATE:
4352 ret = io_register_files_update(ctx, arg, nr_args);
4353 break;
4354 case IORING_REGISTER_EVENTFD:
4355 ret = -EINVAL;
4356 if (nr_args != 1)
4357 break;
4358 ret = io_eventfd_register(ctx, arg, 0);
4359 break;
4360 case IORING_REGISTER_EVENTFD_ASYNC:
4361 ret = -EINVAL;
4362 if (nr_args != 1)
4363 break;
4364 ret = io_eventfd_register(ctx, arg, 1);
4365 break;
4366 case IORING_UNREGISTER_EVENTFD:
4367 ret = -EINVAL;
4368 if (arg || nr_args)
4369 break;
4370 ret = io_eventfd_unregister(ctx);
4371 break;
4372 case IORING_REGISTER_PROBE:
4373 ret = -EINVAL;
4374 if (!arg || nr_args > 256)
4375 break;
4376 ret = io_probe(ctx, arg, nr_args);
4377 break;
4378 case IORING_REGISTER_PERSONALITY:
4379 ret = -EINVAL;
4380 if (arg || nr_args)
4381 break;
4382 ret = io_register_personality(ctx);
4383 break;
4384 case IORING_UNREGISTER_PERSONALITY:
4385 ret = -EINVAL;
4386 if (arg)
4387 break;
4388 ret = io_unregister_personality(ctx, nr_args);
4389 break;
4390 case IORING_REGISTER_ENABLE_RINGS:
4391 ret = -EINVAL;
4392 if (arg || nr_args)
4393 break;
4394 ret = io_register_enable_rings(ctx);
4395 break;
4396 case IORING_REGISTER_RESTRICTIONS:
4397 ret = io_register_restrictions(ctx, arg, nr_args);
4398 break;
4399 case IORING_REGISTER_FILES2:
4400 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4401 break;
4402 case IORING_REGISTER_FILES_UPDATE2:
4403 ret = io_register_rsrc_update(ctx, arg, nr_args,
4404 IORING_RSRC_FILE);
4405 break;
4406 case IORING_REGISTER_BUFFERS2:
4407 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4408 break;
4409 case IORING_REGISTER_BUFFERS_UPDATE:
4410 ret = io_register_rsrc_update(ctx, arg, nr_args,
4411 IORING_RSRC_BUFFER);
4412 break;
4413 case IORING_REGISTER_IOWQ_AFF:
4414 ret = -EINVAL;
4415 if (!arg || !nr_args)
4416 break;
4417 ret = io_register_iowq_aff(ctx, arg, nr_args);
4418 break;
4419 case IORING_UNREGISTER_IOWQ_AFF:
4420 ret = -EINVAL;
4421 if (arg || nr_args)
4422 break;
4423 ret = io_unregister_iowq_aff(ctx);
4424 break;
4425 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4426 ret = -EINVAL;
4427 if (!arg || nr_args != 2)
4428 break;
4429 ret = io_register_iowq_max_workers(ctx, arg);
4430 break;
4431 case IORING_REGISTER_RING_FDS:
4432 ret = io_ringfd_register(ctx, arg, nr_args);
4433 break;
4434 case IORING_UNREGISTER_RING_FDS:
4435 ret = io_ringfd_unregister(ctx, arg, nr_args);
4436 break;
4437 case IORING_REGISTER_PBUF_RING:
4438 ret = -EINVAL;
4439 if (!arg || nr_args != 1)
4440 break;
4441 ret = io_register_pbuf_ring(ctx, arg);
4442 break;
4443 case IORING_UNREGISTER_PBUF_RING:
4444 ret = -EINVAL;
4445 if (!arg || nr_args != 1)
4446 break;
4447 ret = io_unregister_pbuf_ring(ctx, arg);
4448 break;
4449 case IORING_REGISTER_SYNC_CANCEL:
4450 ret = -EINVAL;
4451 if (!arg || nr_args != 1)
4452 break;
4453 ret = io_sync_cancel(ctx, arg);
4454 break;
4455 case IORING_REGISTER_FILE_ALLOC_RANGE:
4456 ret = -EINVAL;
4457 if (!arg || nr_args)
4458 break;
4459 ret = io_register_file_alloc_range(ctx, arg);
4460 break;
4461 default:
4462 ret = -EINVAL;
4463 break;
4464 }
4465
4466 return ret;
4467 }
4468
4469 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4470 void __user *, arg, unsigned int, nr_args)
4471 {
4472 struct io_ring_ctx *ctx;
4473 long ret = -EBADF;
4474 struct fd f;
4475 bool use_registered_ring;
4476
4477 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4478 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4479
4480 if (opcode >= IORING_REGISTER_LAST)
4481 return -EINVAL;
4482
4483 if (use_registered_ring) {
4484 /*
4485 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4486 * need only dereference our task private array to find it.
4487 */
4488 struct io_uring_task *tctx = current->io_uring;
4489
4490 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4491 return -EINVAL;
4492 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4493 f.file = tctx->registered_rings[fd];
4494 f.flags = 0;
4495 if (unlikely(!f.file))
4496 return -EBADF;
4497 } else {
4498 f = fdget(fd);
4499 if (unlikely(!f.file))
4500 return -EBADF;
4501 ret = -EOPNOTSUPP;
4502 if (!io_is_uring_fops(f.file))
4503 goto out_fput;
4504 }
4505
4506 ctx = f.file->private_data;
4507
4508 mutex_lock(&ctx->uring_lock);
4509 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4510 mutex_unlock(&ctx->uring_lock);
4511 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4512 out_fput:
4513 fdput(f);
4514 return ret;
4515 }
4516
4517 static int __init io_uring_init(void)
4518 {
4519 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4520 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4521 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4522 } while (0)
4523
4524 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4525 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4526 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4527 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4528 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4529 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4530 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4531 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4532 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4533 BUILD_BUG_SQE_ELEM(8, __u64, off);
4534 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4535 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4536 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4537 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4538 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4539 BUILD_BUG_SQE_ELEM(24, __u32, len);
4540 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4541 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4542 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4543 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4544 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4545 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4546 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4547 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4548 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4549 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4550 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4551 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4552 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4553 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4554 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4555 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4556 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4557 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4558 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4559 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4560 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4561 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4562 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4563 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4564 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4565 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4566 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4567 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4568 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4569 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4570 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4571
4572 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4573 sizeof(struct io_uring_rsrc_update));
4574 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4575 sizeof(struct io_uring_rsrc_update2));
4576
4577 /* ->buf_index is u16 */
4578 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4579 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4580 offsetof(struct io_uring_buf_ring, tail));
4581
4582 /* should fit into one byte */
4583 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4584 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4585 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4586
4587 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4588
4589 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4590
4591 io_uring_optable_init();
4592
4593 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4594 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4595 return 0;
4596 };
4597 __initcall(io_uring_init);