]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - ipc/mqueue.c
net: bridge: stp: don't cache eth dest pointer before skb pull
[thirdparty/kernel/stable.git] / ipc / mqueue.c
1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42
43 #include <net/sock.h>
44 #include "util.h"
45
46 struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48 };
49
50 #define MQUEUE_MAGIC 0x19800202
51 #define DIRENT_SIZE 20
52 #define FILENT_SIZE 80
53
54 #define SEND 0
55 #define RECV 1
56
57 #define STATE_NONE 0
58 #define STATE_READY 1
59
60 struct posix_msg_tree_node {
61 struct rb_node rb_node;
62 struct list_head msg_list;
63 int priority;
64 };
65
66 struct ext_wait_queue { /* queue of sleeping tasks */
67 struct task_struct *task;
68 struct list_head list;
69 struct msg_msg *msg; /* ptr of loaded message */
70 int state; /* one of STATE_* values */
71 };
72
73 struct mqueue_inode_info {
74 spinlock_t lock;
75 struct inode vfs_inode;
76 wait_queue_head_t wait_q;
77
78 struct rb_root msg_tree;
79 struct posix_msg_tree_node *node_cache;
80 struct mq_attr attr;
81
82 struct sigevent notify;
83 struct pid *notify_owner;
84 struct user_namespace *notify_user_ns;
85 struct user_struct *user; /* user who created, for accounting */
86 struct sock *notify_sock;
87 struct sk_buff *notify_cookie;
88
89 /* for tasks waiting for free space and messages, respectively */
90 struct ext_wait_queue e_wait_q[2];
91
92 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
93 };
94
95 static struct file_system_type mqueue_fs_type;
96 static const struct inode_operations mqueue_dir_inode_operations;
97 static const struct file_operations mqueue_file_operations;
98 static const struct super_operations mqueue_super_ops;
99 static const struct fs_context_operations mqueue_fs_context_ops;
100 static void remove_notification(struct mqueue_inode_info *info);
101
102 static struct kmem_cache *mqueue_inode_cachep;
103
104 static struct ctl_table_header *mq_sysctl_table;
105
106 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
107 {
108 return container_of(inode, struct mqueue_inode_info, vfs_inode);
109 }
110
111 /*
112 * This routine should be called with the mq_lock held.
113 */
114 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
115 {
116 return get_ipc_ns(inode->i_sb->s_fs_info);
117 }
118
119 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
120 {
121 struct ipc_namespace *ns;
122
123 spin_lock(&mq_lock);
124 ns = __get_ns_from_inode(inode);
125 spin_unlock(&mq_lock);
126 return ns;
127 }
128
129 /* Auxiliary functions to manipulate messages' list */
130 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
131 {
132 struct rb_node **p, *parent = NULL;
133 struct posix_msg_tree_node *leaf;
134
135 p = &info->msg_tree.rb_node;
136 while (*p) {
137 parent = *p;
138 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
139
140 if (likely(leaf->priority == msg->m_type))
141 goto insert_msg;
142 else if (msg->m_type < leaf->priority)
143 p = &(*p)->rb_left;
144 else
145 p = &(*p)->rb_right;
146 }
147 if (info->node_cache) {
148 leaf = info->node_cache;
149 info->node_cache = NULL;
150 } else {
151 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
152 if (!leaf)
153 return -ENOMEM;
154 INIT_LIST_HEAD(&leaf->msg_list);
155 }
156 leaf->priority = msg->m_type;
157 rb_link_node(&leaf->rb_node, parent, p);
158 rb_insert_color(&leaf->rb_node, &info->msg_tree);
159 insert_msg:
160 info->attr.mq_curmsgs++;
161 info->qsize += msg->m_ts;
162 list_add_tail(&msg->m_list, &leaf->msg_list);
163 return 0;
164 }
165
166 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
167 {
168 struct rb_node **p, *parent = NULL;
169 struct posix_msg_tree_node *leaf;
170 struct msg_msg *msg;
171
172 try_again:
173 p = &info->msg_tree.rb_node;
174 while (*p) {
175 parent = *p;
176 /*
177 * During insert, low priorities go to the left and high to the
178 * right. On receive, we want the highest priorities first, so
179 * walk all the way to the right.
180 */
181 p = &(*p)->rb_right;
182 }
183 if (!parent) {
184 if (info->attr.mq_curmsgs) {
185 pr_warn_once("Inconsistency in POSIX message queue, "
186 "no tree element, but supposedly messages "
187 "should exist!\n");
188 info->attr.mq_curmsgs = 0;
189 }
190 return NULL;
191 }
192 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
193 if (unlikely(list_empty(&leaf->msg_list))) {
194 pr_warn_once("Inconsistency in POSIX message queue, "
195 "empty leaf node but we haven't implemented "
196 "lazy leaf delete!\n");
197 rb_erase(&leaf->rb_node, &info->msg_tree);
198 if (info->node_cache) {
199 kfree(leaf);
200 } else {
201 info->node_cache = leaf;
202 }
203 goto try_again;
204 } else {
205 msg = list_first_entry(&leaf->msg_list,
206 struct msg_msg, m_list);
207 list_del(&msg->m_list);
208 if (list_empty(&leaf->msg_list)) {
209 rb_erase(&leaf->rb_node, &info->msg_tree);
210 if (info->node_cache) {
211 kfree(leaf);
212 } else {
213 info->node_cache = leaf;
214 }
215 }
216 }
217 info->attr.mq_curmsgs--;
218 info->qsize -= msg->m_ts;
219 return msg;
220 }
221
222 static struct inode *mqueue_get_inode(struct super_block *sb,
223 struct ipc_namespace *ipc_ns, umode_t mode,
224 struct mq_attr *attr)
225 {
226 struct user_struct *u = current_user();
227 struct inode *inode;
228 int ret = -ENOMEM;
229
230 inode = new_inode(sb);
231 if (!inode)
232 goto err;
233
234 inode->i_ino = get_next_ino();
235 inode->i_mode = mode;
236 inode->i_uid = current_fsuid();
237 inode->i_gid = current_fsgid();
238 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
239
240 if (S_ISREG(mode)) {
241 struct mqueue_inode_info *info;
242 unsigned long mq_bytes, mq_treesize;
243
244 inode->i_fop = &mqueue_file_operations;
245 inode->i_size = FILENT_SIZE;
246 /* mqueue specific info */
247 info = MQUEUE_I(inode);
248 spin_lock_init(&info->lock);
249 init_waitqueue_head(&info->wait_q);
250 INIT_LIST_HEAD(&info->e_wait_q[0].list);
251 INIT_LIST_HEAD(&info->e_wait_q[1].list);
252 info->notify_owner = NULL;
253 info->notify_user_ns = NULL;
254 info->qsize = 0;
255 info->user = NULL; /* set when all is ok */
256 info->msg_tree = RB_ROOT;
257 info->node_cache = NULL;
258 memset(&info->attr, 0, sizeof(info->attr));
259 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
260 ipc_ns->mq_msg_default);
261 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
262 ipc_ns->mq_msgsize_default);
263 if (attr) {
264 info->attr.mq_maxmsg = attr->mq_maxmsg;
265 info->attr.mq_msgsize = attr->mq_msgsize;
266 }
267 /*
268 * We used to allocate a static array of pointers and account
269 * the size of that array as well as one msg_msg struct per
270 * possible message into the queue size. That's no longer
271 * accurate as the queue is now an rbtree and will grow and
272 * shrink depending on usage patterns. We can, however, still
273 * account one msg_msg struct per message, but the nodes are
274 * allocated depending on priority usage, and most programs
275 * only use one, or a handful, of priorities. However, since
276 * this is pinned memory, we need to assume worst case, so
277 * that means the min(mq_maxmsg, max_priorities) * struct
278 * posix_msg_tree_node.
279 */
280
281 ret = -EINVAL;
282 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
283 goto out_inode;
284 if (capable(CAP_SYS_RESOURCE)) {
285 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
286 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
287 goto out_inode;
288 } else {
289 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
290 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
291 goto out_inode;
292 }
293 ret = -EOVERFLOW;
294 /* check for overflow */
295 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
296 goto out_inode;
297 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
298 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
299 sizeof(struct posix_msg_tree_node);
300 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
301 if (mq_bytes + mq_treesize < mq_bytes)
302 goto out_inode;
303 mq_bytes += mq_treesize;
304 spin_lock(&mq_lock);
305 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
306 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
307 spin_unlock(&mq_lock);
308 /* mqueue_evict_inode() releases info->messages */
309 ret = -EMFILE;
310 goto out_inode;
311 }
312 u->mq_bytes += mq_bytes;
313 spin_unlock(&mq_lock);
314
315 /* all is ok */
316 info->user = get_uid(u);
317 } else if (S_ISDIR(mode)) {
318 inc_nlink(inode);
319 /* Some things misbehave if size == 0 on a directory */
320 inode->i_size = 2 * DIRENT_SIZE;
321 inode->i_op = &mqueue_dir_inode_operations;
322 inode->i_fop = &simple_dir_operations;
323 }
324
325 return inode;
326 out_inode:
327 iput(inode);
328 err:
329 return ERR_PTR(ret);
330 }
331
332 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
333 {
334 struct inode *inode;
335 struct ipc_namespace *ns = sb->s_fs_info;
336
337 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
338 sb->s_blocksize = PAGE_SIZE;
339 sb->s_blocksize_bits = PAGE_SHIFT;
340 sb->s_magic = MQUEUE_MAGIC;
341 sb->s_op = &mqueue_super_ops;
342
343 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
344 if (IS_ERR(inode))
345 return PTR_ERR(inode);
346
347 sb->s_root = d_make_root(inode);
348 if (!sb->s_root)
349 return -ENOMEM;
350 return 0;
351 }
352
353 static int mqueue_get_tree(struct fs_context *fc)
354 {
355 struct mqueue_fs_context *ctx = fc->fs_private;
356
357 put_user_ns(fc->user_ns);
358 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
359 fc->s_fs_info = ctx->ipc_ns;
360 return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
361 }
362
363 static void mqueue_fs_context_free(struct fs_context *fc)
364 {
365 struct mqueue_fs_context *ctx = fc->fs_private;
366
367 if (ctx->ipc_ns)
368 put_ipc_ns(ctx->ipc_ns);
369 kfree(ctx);
370 }
371
372 static int mqueue_init_fs_context(struct fs_context *fc)
373 {
374 struct mqueue_fs_context *ctx;
375
376 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
377 if (!ctx)
378 return -ENOMEM;
379
380 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
381 fc->fs_private = ctx;
382 fc->ops = &mqueue_fs_context_ops;
383 return 0;
384 }
385
386 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
387 {
388 struct mqueue_fs_context *ctx;
389 struct fs_context *fc;
390 struct vfsmount *mnt;
391
392 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
393 if (IS_ERR(fc))
394 return ERR_CAST(fc);
395
396 ctx = fc->fs_private;
397 put_ipc_ns(ctx->ipc_ns);
398 ctx->ipc_ns = get_ipc_ns(ns);
399
400 mnt = fc_mount(fc);
401 put_fs_context(fc);
402 return mnt;
403 }
404
405 static void init_once(void *foo)
406 {
407 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
408
409 inode_init_once(&p->vfs_inode);
410 }
411
412 static struct inode *mqueue_alloc_inode(struct super_block *sb)
413 {
414 struct mqueue_inode_info *ei;
415
416 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
417 if (!ei)
418 return NULL;
419 return &ei->vfs_inode;
420 }
421
422 static void mqueue_i_callback(struct rcu_head *head)
423 {
424 struct inode *inode = container_of(head, struct inode, i_rcu);
425 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
426 }
427
428 static void mqueue_destroy_inode(struct inode *inode)
429 {
430 call_rcu(&inode->i_rcu, mqueue_i_callback);
431 }
432
433 static void mqueue_evict_inode(struct inode *inode)
434 {
435 struct mqueue_inode_info *info;
436 struct user_struct *user;
437 unsigned long mq_bytes, mq_treesize;
438 struct ipc_namespace *ipc_ns;
439 struct msg_msg *msg, *nmsg;
440 LIST_HEAD(tmp_msg);
441
442 clear_inode(inode);
443
444 if (S_ISDIR(inode->i_mode))
445 return;
446
447 ipc_ns = get_ns_from_inode(inode);
448 info = MQUEUE_I(inode);
449 spin_lock(&info->lock);
450 while ((msg = msg_get(info)) != NULL)
451 list_add_tail(&msg->m_list, &tmp_msg);
452 kfree(info->node_cache);
453 spin_unlock(&info->lock);
454
455 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
456 list_del(&msg->m_list);
457 free_msg(msg);
458 }
459
460 /* Total amount of bytes accounted for the mqueue */
461 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
462 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
463 sizeof(struct posix_msg_tree_node);
464
465 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
466 info->attr.mq_msgsize);
467
468 user = info->user;
469 if (user) {
470 spin_lock(&mq_lock);
471 user->mq_bytes -= mq_bytes;
472 /*
473 * get_ns_from_inode() ensures that the
474 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
475 * to which we now hold a reference, or it is NULL.
476 * We can't put it here under mq_lock, though.
477 */
478 if (ipc_ns)
479 ipc_ns->mq_queues_count--;
480 spin_unlock(&mq_lock);
481 free_uid(user);
482 }
483 if (ipc_ns)
484 put_ipc_ns(ipc_ns);
485 }
486
487 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
488 {
489 struct inode *dir = dentry->d_parent->d_inode;
490 struct inode *inode;
491 struct mq_attr *attr = arg;
492 int error;
493 struct ipc_namespace *ipc_ns;
494
495 spin_lock(&mq_lock);
496 ipc_ns = __get_ns_from_inode(dir);
497 if (!ipc_ns) {
498 error = -EACCES;
499 goto out_unlock;
500 }
501
502 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
503 !capable(CAP_SYS_RESOURCE)) {
504 error = -ENOSPC;
505 goto out_unlock;
506 }
507 ipc_ns->mq_queues_count++;
508 spin_unlock(&mq_lock);
509
510 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
511 if (IS_ERR(inode)) {
512 error = PTR_ERR(inode);
513 spin_lock(&mq_lock);
514 ipc_ns->mq_queues_count--;
515 goto out_unlock;
516 }
517
518 put_ipc_ns(ipc_ns);
519 dir->i_size += DIRENT_SIZE;
520 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
521
522 d_instantiate(dentry, inode);
523 dget(dentry);
524 return 0;
525 out_unlock:
526 spin_unlock(&mq_lock);
527 if (ipc_ns)
528 put_ipc_ns(ipc_ns);
529 return error;
530 }
531
532 static int mqueue_create(struct inode *dir, struct dentry *dentry,
533 umode_t mode, bool excl)
534 {
535 return mqueue_create_attr(dentry, mode, NULL);
536 }
537
538 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
539 {
540 struct inode *inode = d_inode(dentry);
541
542 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
543 dir->i_size -= DIRENT_SIZE;
544 drop_nlink(inode);
545 dput(dentry);
546 return 0;
547 }
548
549 /*
550 * This is routine for system read from queue file.
551 * To avoid mess with doing here some sort of mq_receive we allow
552 * to read only queue size & notification info (the only values
553 * that are interesting from user point of view and aren't accessible
554 * through std routines)
555 */
556 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
557 size_t count, loff_t *off)
558 {
559 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
560 char buffer[FILENT_SIZE];
561 ssize_t ret;
562
563 spin_lock(&info->lock);
564 snprintf(buffer, sizeof(buffer),
565 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
566 info->qsize,
567 info->notify_owner ? info->notify.sigev_notify : 0,
568 (info->notify_owner &&
569 info->notify.sigev_notify == SIGEV_SIGNAL) ?
570 info->notify.sigev_signo : 0,
571 pid_vnr(info->notify_owner));
572 spin_unlock(&info->lock);
573 buffer[sizeof(buffer)-1] = '\0';
574
575 ret = simple_read_from_buffer(u_data, count, off, buffer,
576 strlen(buffer));
577 if (ret <= 0)
578 return ret;
579
580 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
581 return ret;
582 }
583
584 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
585 {
586 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
587
588 spin_lock(&info->lock);
589 if (task_tgid(current) == info->notify_owner)
590 remove_notification(info);
591
592 spin_unlock(&info->lock);
593 return 0;
594 }
595
596 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
597 {
598 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
599 __poll_t retval = 0;
600
601 poll_wait(filp, &info->wait_q, poll_tab);
602
603 spin_lock(&info->lock);
604 if (info->attr.mq_curmsgs)
605 retval = EPOLLIN | EPOLLRDNORM;
606
607 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
608 retval |= EPOLLOUT | EPOLLWRNORM;
609 spin_unlock(&info->lock);
610
611 return retval;
612 }
613
614 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
615 static void wq_add(struct mqueue_inode_info *info, int sr,
616 struct ext_wait_queue *ewp)
617 {
618 struct ext_wait_queue *walk;
619
620 ewp->task = current;
621
622 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
623 if (walk->task->prio <= current->prio) {
624 list_add_tail(&ewp->list, &walk->list);
625 return;
626 }
627 }
628 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
629 }
630
631 /*
632 * Puts current task to sleep. Caller must hold queue lock. After return
633 * lock isn't held.
634 * sr: SEND or RECV
635 */
636 static int wq_sleep(struct mqueue_inode_info *info, int sr,
637 ktime_t *timeout, struct ext_wait_queue *ewp)
638 __releases(&info->lock)
639 {
640 int retval;
641 signed long time;
642
643 wq_add(info, sr, ewp);
644
645 for (;;) {
646 __set_current_state(TASK_INTERRUPTIBLE);
647
648 spin_unlock(&info->lock);
649 time = schedule_hrtimeout_range_clock(timeout, 0,
650 HRTIMER_MODE_ABS, CLOCK_REALTIME);
651
652 if (ewp->state == STATE_READY) {
653 retval = 0;
654 goto out;
655 }
656 spin_lock(&info->lock);
657 if (ewp->state == STATE_READY) {
658 retval = 0;
659 goto out_unlock;
660 }
661 if (signal_pending(current)) {
662 retval = -ERESTARTSYS;
663 break;
664 }
665 if (time == 0) {
666 retval = -ETIMEDOUT;
667 break;
668 }
669 }
670 list_del(&ewp->list);
671 out_unlock:
672 spin_unlock(&info->lock);
673 out:
674 return retval;
675 }
676
677 /*
678 * Returns waiting task that should be serviced first or NULL if none exists
679 */
680 static struct ext_wait_queue *wq_get_first_waiter(
681 struct mqueue_inode_info *info, int sr)
682 {
683 struct list_head *ptr;
684
685 ptr = info->e_wait_q[sr].list.prev;
686 if (ptr == &info->e_wait_q[sr].list)
687 return NULL;
688 return list_entry(ptr, struct ext_wait_queue, list);
689 }
690
691
692 static inline void set_cookie(struct sk_buff *skb, char code)
693 {
694 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
695 }
696
697 /*
698 * The next function is only to split too long sys_mq_timedsend
699 */
700 static void __do_notify(struct mqueue_inode_info *info)
701 {
702 /* notification
703 * invoked when there is registered process and there isn't process
704 * waiting synchronously for message AND state of queue changed from
705 * empty to not empty. Here we are sure that no one is waiting
706 * synchronously. */
707 if (info->notify_owner &&
708 info->attr.mq_curmsgs == 1) {
709 struct kernel_siginfo sig_i;
710 switch (info->notify.sigev_notify) {
711 case SIGEV_NONE:
712 break;
713 case SIGEV_SIGNAL:
714 /* sends signal */
715
716 clear_siginfo(&sig_i);
717 sig_i.si_signo = info->notify.sigev_signo;
718 sig_i.si_errno = 0;
719 sig_i.si_code = SI_MESGQ;
720 sig_i.si_value = info->notify.sigev_value;
721 /* map current pid/uid into info->owner's namespaces */
722 rcu_read_lock();
723 sig_i.si_pid = task_tgid_nr_ns(current,
724 ns_of_pid(info->notify_owner));
725 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
726 rcu_read_unlock();
727
728 kill_pid_info(info->notify.sigev_signo,
729 &sig_i, info->notify_owner);
730 break;
731 case SIGEV_THREAD:
732 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
733 netlink_sendskb(info->notify_sock, info->notify_cookie);
734 break;
735 }
736 /* after notification unregisters process */
737 put_pid(info->notify_owner);
738 put_user_ns(info->notify_user_ns);
739 info->notify_owner = NULL;
740 info->notify_user_ns = NULL;
741 }
742 wake_up(&info->wait_q);
743 }
744
745 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
746 struct timespec64 *ts)
747 {
748 if (get_timespec64(ts, u_abs_timeout))
749 return -EFAULT;
750 if (!timespec64_valid(ts))
751 return -EINVAL;
752 return 0;
753 }
754
755 static void remove_notification(struct mqueue_inode_info *info)
756 {
757 if (info->notify_owner != NULL &&
758 info->notify.sigev_notify == SIGEV_THREAD) {
759 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
760 netlink_sendskb(info->notify_sock, info->notify_cookie);
761 }
762 put_pid(info->notify_owner);
763 put_user_ns(info->notify_user_ns);
764 info->notify_owner = NULL;
765 info->notify_user_ns = NULL;
766 }
767
768 static int prepare_open(struct dentry *dentry, int oflag, int ro,
769 umode_t mode, struct filename *name,
770 struct mq_attr *attr)
771 {
772 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
773 MAY_READ | MAY_WRITE };
774 int acc;
775
776 if (d_really_is_negative(dentry)) {
777 if (!(oflag & O_CREAT))
778 return -ENOENT;
779 if (ro)
780 return ro;
781 audit_inode_parent_hidden(name, dentry->d_parent);
782 return vfs_mkobj(dentry, mode & ~current_umask(),
783 mqueue_create_attr, attr);
784 }
785 /* it already existed */
786 audit_inode(name, dentry, 0);
787 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
788 return -EEXIST;
789 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
790 return -EINVAL;
791 acc = oflag2acc[oflag & O_ACCMODE];
792 return inode_permission(d_inode(dentry), acc);
793 }
794
795 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
796 struct mq_attr *attr)
797 {
798 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
799 struct dentry *root = mnt->mnt_root;
800 struct filename *name;
801 struct path path;
802 int fd, error;
803 int ro;
804
805 audit_mq_open(oflag, mode, attr);
806
807 if (IS_ERR(name = getname(u_name)))
808 return PTR_ERR(name);
809
810 fd = get_unused_fd_flags(O_CLOEXEC);
811 if (fd < 0)
812 goto out_putname;
813
814 ro = mnt_want_write(mnt); /* we'll drop it in any case */
815 inode_lock(d_inode(root));
816 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
817 if (IS_ERR(path.dentry)) {
818 error = PTR_ERR(path.dentry);
819 goto out_putfd;
820 }
821 path.mnt = mntget(mnt);
822 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
823 if (!error) {
824 struct file *file = dentry_open(&path, oflag, current_cred());
825 if (!IS_ERR(file))
826 fd_install(fd, file);
827 else
828 error = PTR_ERR(file);
829 }
830 path_put(&path);
831 out_putfd:
832 if (error) {
833 put_unused_fd(fd);
834 fd = error;
835 }
836 inode_unlock(d_inode(root));
837 if (!ro)
838 mnt_drop_write(mnt);
839 out_putname:
840 putname(name);
841 return fd;
842 }
843
844 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
845 struct mq_attr __user *, u_attr)
846 {
847 struct mq_attr attr;
848 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
849 return -EFAULT;
850
851 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
852 }
853
854 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
855 {
856 int err;
857 struct filename *name;
858 struct dentry *dentry;
859 struct inode *inode = NULL;
860 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
861 struct vfsmount *mnt = ipc_ns->mq_mnt;
862
863 name = getname(u_name);
864 if (IS_ERR(name))
865 return PTR_ERR(name);
866
867 audit_inode_parent_hidden(name, mnt->mnt_root);
868 err = mnt_want_write(mnt);
869 if (err)
870 goto out_name;
871 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
872 dentry = lookup_one_len(name->name, mnt->mnt_root,
873 strlen(name->name));
874 if (IS_ERR(dentry)) {
875 err = PTR_ERR(dentry);
876 goto out_unlock;
877 }
878
879 inode = d_inode(dentry);
880 if (!inode) {
881 err = -ENOENT;
882 } else {
883 ihold(inode);
884 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
885 }
886 dput(dentry);
887
888 out_unlock:
889 inode_unlock(d_inode(mnt->mnt_root));
890 if (inode)
891 iput(inode);
892 mnt_drop_write(mnt);
893 out_name:
894 putname(name);
895
896 return err;
897 }
898
899 /* Pipelined send and receive functions.
900 *
901 * If a receiver finds no waiting message, then it registers itself in the
902 * list of waiting receivers. A sender checks that list before adding the new
903 * message into the message array. If there is a waiting receiver, then it
904 * bypasses the message array and directly hands the message over to the
905 * receiver. The receiver accepts the message and returns without grabbing the
906 * queue spinlock:
907 *
908 * - Set pointer to message.
909 * - Queue the receiver task for later wakeup (without the info->lock).
910 * - Update its state to STATE_READY. Now the receiver can continue.
911 * - Wake up the process after the lock is dropped. Should the process wake up
912 * before this wakeup (due to a timeout or a signal) it will either see
913 * STATE_READY and continue or acquire the lock to check the state again.
914 *
915 * The same algorithm is used for senders.
916 */
917
918 /* pipelined_send() - send a message directly to the task waiting in
919 * sys_mq_timedreceive() (without inserting message into a queue).
920 */
921 static inline void pipelined_send(struct wake_q_head *wake_q,
922 struct mqueue_inode_info *info,
923 struct msg_msg *message,
924 struct ext_wait_queue *receiver)
925 {
926 receiver->msg = message;
927 list_del(&receiver->list);
928 wake_q_add(wake_q, receiver->task);
929 /*
930 * Rely on the implicit cmpxchg barrier from wake_q_add such
931 * that we can ensure that updating receiver->state is the last
932 * write operation: As once set, the receiver can continue,
933 * and if we don't have the reference count from the wake_q,
934 * yet, at that point we can later have a use-after-free
935 * condition and bogus wakeup.
936 */
937 receiver->state = STATE_READY;
938 }
939
940 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
941 * gets its message and put to the queue (we have one free place for sure). */
942 static inline void pipelined_receive(struct wake_q_head *wake_q,
943 struct mqueue_inode_info *info)
944 {
945 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
946
947 if (!sender) {
948 /* for poll */
949 wake_up_interruptible(&info->wait_q);
950 return;
951 }
952 if (msg_insert(sender->msg, info))
953 return;
954
955 list_del(&sender->list);
956 wake_q_add(wake_q, sender->task);
957 sender->state = STATE_READY;
958 }
959
960 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
961 size_t msg_len, unsigned int msg_prio,
962 struct timespec64 *ts)
963 {
964 struct fd f;
965 struct inode *inode;
966 struct ext_wait_queue wait;
967 struct ext_wait_queue *receiver;
968 struct msg_msg *msg_ptr;
969 struct mqueue_inode_info *info;
970 ktime_t expires, *timeout = NULL;
971 struct posix_msg_tree_node *new_leaf = NULL;
972 int ret = 0;
973 DEFINE_WAKE_Q(wake_q);
974
975 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
976 return -EINVAL;
977
978 if (ts) {
979 expires = timespec64_to_ktime(*ts);
980 timeout = &expires;
981 }
982
983 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
984
985 f = fdget(mqdes);
986 if (unlikely(!f.file)) {
987 ret = -EBADF;
988 goto out;
989 }
990
991 inode = file_inode(f.file);
992 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
993 ret = -EBADF;
994 goto out_fput;
995 }
996 info = MQUEUE_I(inode);
997 audit_file(f.file);
998
999 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1000 ret = -EBADF;
1001 goto out_fput;
1002 }
1003
1004 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1005 ret = -EMSGSIZE;
1006 goto out_fput;
1007 }
1008
1009 /* First try to allocate memory, before doing anything with
1010 * existing queues. */
1011 msg_ptr = load_msg(u_msg_ptr, msg_len);
1012 if (IS_ERR(msg_ptr)) {
1013 ret = PTR_ERR(msg_ptr);
1014 goto out_fput;
1015 }
1016 msg_ptr->m_ts = msg_len;
1017 msg_ptr->m_type = msg_prio;
1018
1019 /*
1020 * msg_insert really wants us to have a valid, spare node struct so
1021 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1022 * fall back to that if necessary.
1023 */
1024 if (!info->node_cache)
1025 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1026
1027 spin_lock(&info->lock);
1028
1029 if (!info->node_cache && new_leaf) {
1030 /* Save our speculative allocation into the cache */
1031 INIT_LIST_HEAD(&new_leaf->msg_list);
1032 info->node_cache = new_leaf;
1033 new_leaf = NULL;
1034 } else {
1035 kfree(new_leaf);
1036 }
1037
1038 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1039 if (f.file->f_flags & O_NONBLOCK) {
1040 ret = -EAGAIN;
1041 } else {
1042 wait.task = current;
1043 wait.msg = (void *) msg_ptr;
1044 wait.state = STATE_NONE;
1045 ret = wq_sleep(info, SEND, timeout, &wait);
1046 /*
1047 * wq_sleep must be called with info->lock held, and
1048 * returns with the lock released
1049 */
1050 goto out_free;
1051 }
1052 } else {
1053 receiver = wq_get_first_waiter(info, RECV);
1054 if (receiver) {
1055 pipelined_send(&wake_q, info, msg_ptr, receiver);
1056 } else {
1057 /* adds message to the queue */
1058 ret = msg_insert(msg_ptr, info);
1059 if (ret)
1060 goto out_unlock;
1061 __do_notify(info);
1062 }
1063 inode->i_atime = inode->i_mtime = inode->i_ctime =
1064 current_time(inode);
1065 }
1066 out_unlock:
1067 spin_unlock(&info->lock);
1068 wake_up_q(&wake_q);
1069 out_free:
1070 if (ret)
1071 free_msg(msg_ptr);
1072 out_fput:
1073 fdput(f);
1074 out:
1075 return ret;
1076 }
1077
1078 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1079 size_t msg_len, unsigned int __user *u_msg_prio,
1080 struct timespec64 *ts)
1081 {
1082 ssize_t ret;
1083 struct msg_msg *msg_ptr;
1084 struct fd f;
1085 struct inode *inode;
1086 struct mqueue_inode_info *info;
1087 struct ext_wait_queue wait;
1088 ktime_t expires, *timeout = NULL;
1089 struct posix_msg_tree_node *new_leaf = NULL;
1090
1091 if (ts) {
1092 expires = timespec64_to_ktime(*ts);
1093 timeout = &expires;
1094 }
1095
1096 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1097
1098 f = fdget(mqdes);
1099 if (unlikely(!f.file)) {
1100 ret = -EBADF;
1101 goto out;
1102 }
1103
1104 inode = file_inode(f.file);
1105 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1106 ret = -EBADF;
1107 goto out_fput;
1108 }
1109 info = MQUEUE_I(inode);
1110 audit_file(f.file);
1111
1112 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1113 ret = -EBADF;
1114 goto out_fput;
1115 }
1116
1117 /* checks if buffer is big enough */
1118 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1119 ret = -EMSGSIZE;
1120 goto out_fput;
1121 }
1122
1123 /*
1124 * msg_insert really wants us to have a valid, spare node struct so
1125 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1126 * fall back to that if necessary.
1127 */
1128 if (!info->node_cache)
1129 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1130
1131 spin_lock(&info->lock);
1132
1133 if (!info->node_cache && new_leaf) {
1134 /* Save our speculative allocation into the cache */
1135 INIT_LIST_HEAD(&new_leaf->msg_list);
1136 info->node_cache = new_leaf;
1137 } else {
1138 kfree(new_leaf);
1139 }
1140
1141 if (info->attr.mq_curmsgs == 0) {
1142 if (f.file->f_flags & O_NONBLOCK) {
1143 spin_unlock(&info->lock);
1144 ret = -EAGAIN;
1145 } else {
1146 wait.task = current;
1147 wait.state = STATE_NONE;
1148 ret = wq_sleep(info, RECV, timeout, &wait);
1149 msg_ptr = wait.msg;
1150 }
1151 } else {
1152 DEFINE_WAKE_Q(wake_q);
1153
1154 msg_ptr = msg_get(info);
1155
1156 inode->i_atime = inode->i_mtime = inode->i_ctime =
1157 current_time(inode);
1158
1159 /* There is now free space in queue. */
1160 pipelined_receive(&wake_q, info);
1161 spin_unlock(&info->lock);
1162 wake_up_q(&wake_q);
1163 ret = 0;
1164 }
1165 if (ret == 0) {
1166 ret = msg_ptr->m_ts;
1167
1168 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1169 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1170 ret = -EFAULT;
1171 }
1172 free_msg(msg_ptr);
1173 }
1174 out_fput:
1175 fdput(f);
1176 out:
1177 return ret;
1178 }
1179
1180 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1181 size_t, msg_len, unsigned int, msg_prio,
1182 const struct __kernel_timespec __user *, u_abs_timeout)
1183 {
1184 struct timespec64 ts, *p = NULL;
1185 if (u_abs_timeout) {
1186 int res = prepare_timeout(u_abs_timeout, &ts);
1187 if (res)
1188 return res;
1189 p = &ts;
1190 }
1191 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1192 }
1193
1194 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1195 size_t, msg_len, unsigned int __user *, u_msg_prio,
1196 const struct __kernel_timespec __user *, u_abs_timeout)
1197 {
1198 struct timespec64 ts, *p = NULL;
1199 if (u_abs_timeout) {
1200 int res = prepare_timeout(u_abs_timeout, &ts);
1201 if (res)
1202 return res;
1203 p = &ts;
1204 }
1205 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1206 }
1207
1208 /*
1209 * Notes: the case when user wants us to deregister (with NULL as pointer)
1210 * and he isn't currently owner of notification, will be silently discarded.
1211 * It isn't explicitly defined in the POSIX.
1212 */
1213 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1214 {
1215 int ret;
1216 struct fd f;
1217 struct sock *sock;
1218 struct inode *inode;
1219 struct mqueue_inode_info *info;
1220 struct sk_buff *nc;
1221
1222 audit_mq_notify(mqdes, notification);
1223
1224 nc = NULL;
1225 sock = NULL;
1226 if (notification != NULL) {
1227 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1228 notification->sigev_notify != SIGEV_SIGNAL &&
1229 notification->sigev_notify != SIGEV_THREAD))
1230 return -EINVAL;
1231 if (notification->sigev_notify == SIGEV_SIGNAL &&
1232 !valid_signal(notification->sigev_signo)) {
1233 return -EINVAL;
1234 }
1235 if (notification->sigev_notify == SIGEV_THREAD) {
1236 long timeo;
1237
1238 /* create the notify skb */
1239 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1240 if (!nc) {
1241 ret = -ENOMEM;
1242 goto out;
1243 }
1244 if (copy_from_user(nc->data,
1245 notification->sigev_value.sival_ptr,
1246 NOTIFY_COOKIE_LEN)) {
1247 ret = -EFAULT;
1248 goto out;
1249 }
1250
1251 /* TODO: add a header? */
1252 skb_put(nc, NOTIFY_COOKIE_LEN);
1253 /* and attach it to the socket */
1254 retry:
1255 f = fdget(notification->sigev_signo);
1256 if (!f.file) {
1257 ret = -EBADF;
1258 goto out;
1259 }
1260 sock = netlink_getsockbyfilp(f.file);
1261 fdput(f);
1262 if (IS_ERR(sock)) {
1263 ret = PTR_ERR(sock);
1264 sock = NULL;
1265 goto out;
1266 }
1267
1268 timeo = MAX_SCHEDULE_TIMEOUT;
1269 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1270 if (ret == 1) {
1271 sock = NULL;
1272 goto retry;
1273 }
1274 if (ret) {
1275 sock = NULL;
1276 nc = NULL;
1277 goto out;
1278 }
1279 }
1280 }
1281
1282 f = fdget(mqdes);
1283 if (!f.file) {
1284 ret = -EBADF;
1285 goto out;
1286 }
1287
1288 inode = file_inode(f.file);
1289 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1290 ret = -EBADF;
1291 goto out_fput;
1292 }
1293 info = MQUEUE_I(inode);
1294
1295 ret = 0;
1296 spin_lock(&info->lock);
1297 if (notification == NULL) {
1298 if (info->notify_owner == task_tgid(current)) {
1299 remove_notification(info);
1300 inode->i_atime = inode->i_ctime = current_time(inode);
1301 }
1302 } else if (info->notify_owner != NULL) {
1303 ret = -EBUSY;
1304 } else {
1305 switch (notification->sigev_notify) {
1306 case SIGEV_NONE:
1307 info->notify.sigev_notify = SIGEV_NONE;
1308 break;
1309 case SIGEV_THREAD:
1310 info->notify_sock = sock;
1311 info->notify_cookie = nc;
1312 sock = NULL;
1313 nc = NULL;
1314 info->notify.sigev_notify = SIGEV_THREAD;
1315 break;
1316 case SIGEV_SIGNAL:
1317 info->notify.sigev_signo = notification->sigev_signo;
1318 info->notify.sigev_value = notification->sigev_value;
1319 info->notify.sigev_notify = SIGEV_SIGNAL;
1320 break;
1321 }
1322
1323 info->notify_owner = get_pid(task_tgid(current));
1324 info->notify_user_ns = get_user_ns(current_user_ns());
1325 inode->i_atime = inode->i_ctime = current_time(inode);
1326 }
1327 spin_unlock(&info->lock);
1328 out_fput:
1329 fdput(f);
1330 out:
1331 if (sock)
1332 netlink_detachskb(sock, nc);
1333 else if (nc)
1334 dev_kfree_skb(nc);
1335
1336 return ret;
1337 }
1338
1339 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1340 const struct sigevent __user *, u_notification)
1341 {
1342 struct sigevent n, *p = NULL;
1343 if (u_notification) {
1344 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1345 return -EFAULT;
1346 p = &n;
1347 }
1348 return do_mq_notify(mqdes, p);
1349 }
1350
1351 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1352 {
1353 struct fd f;
1354 struct inode *inode;
1355 struct mqueue_inode_info *info;
1356
1357 if (new && (new->mq_flags & (~O_NONBLOCK)))
1358 return -EINVAL;
1359
1360 f = fdget(mqdes);
1361 if (!f.file)
1362 return -EBADF;
1363
1364 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1365 fdput(f);
1366 return -EBADF;
1367 }
1368
1369 inode = file_inode(f.file);
1370 info = MQUEUE_I(inode);
1371
1372 spin_lock(&info->lock);
1373
1374 if (old) {
1375 *old = info->attr;
1376 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1377 }
1378 if (new) {
1379 audit_mq_getsetattr(mqdes, new);
1380 spin_lock(&f.file->f_lock);
1381 if (new->mq_flags & O_NONBLOCK)
1382 f.file->f_flags |= O_NONBLOCK;
1383 else
1384 f.file->f_flags &= ~O_NONBLOCK;
1385 spin_unlock(&f.file->f_lock);
1386
1387 inode->i_atime = inode->i_ctime = current_time(inode);
1388 }
1389
1390 spin_unlock(&info->lock);
1391 fdput(f);
1392 return 0;
1393 }
1394
1395 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1396 const struct mq_attr __user *, u_mqstat,
1397 struct mq_attr __user *, u_omqstat)
1398 {
1399 int ret;
1400 struct mq_attr mqstat, omqstat;
1401 struct mq_attr *new = NULL, *old = NULL;
1402
1403 if (u_mqstat) {
1404 new = &mqstat;
1405 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1406 return -EFAULT;
1407 }
1408 if (u_omqstat)
1409 old = &omqstat;
1410
1411 ret = do_mq_getsetattr(mqdes, new, old);
1412 if (ret || !old)
1413 return ret;
1414
1415 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1416 return -EFAULT;
1417 return 0;
1418 }
1419
1420 #ifdef CONFIG_COMPAT
1421
1422 struct compat_mq_attr {
1423 compat_long_t mq_flags; /* message queue flags */
1424 compat_long_t mq_maxmsg; /* maximum number of messages */
1425 compat_long_t mq_msgsize; /* maximum message size */
1426 compat_long_t mq_curmsgs; /* number of messages currently queued */
1427 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1428 };
1429
1430 static inline int get_compat_mq_attr(struct mq_attr *attr,
1431 const struct compat_mq_attr __user *uattr)
1432 {
1433 struct compat_mq_attr v;
1434
1435 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1436 return -EFAULT;
1437
1438 memset(attr, 0, sizeof(*attr));
1439 attr->mq_flags = v.mq_flags;
1440 attr->mq_maxmsg = v.mq_maxmsg;
1441 attr->mq_msgsize = v.mq_msgsize;
1442 attr->mq_curmsgs = v.mq_curmsgs;
1443 return 0;
1444 }
1445
1446 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1447 struct compat_mq_attr __user *uattr)
1448 {
1449 struct compat_mq_attr v;
1450
1451 memset(&v, 0, sizeof(v));
1452 v.mq_flags = attr->mq_flags;
1453 v.mq_maxmsg = attr->mq_maxmsg;
1454 v.mq_msgsize = attr->mq_msgsize;
1455 v.mq_curmsgs = attr->mq_curmsgs;
1456 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1457 return -EFAULT;
1458 return 0;
1459 }
1460
1461 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1462 int, oflag, compat_mode_t, mode,
1463 struct compat_mq_attr __user *, u_attr)
1464 {
1465 struct mq_attr attr, *p = NULL;
1466 if (u_attr && oflag & O_CREAT) {
1467 p = &attr;
1468 if (get_compat_mq_attr(&attr, u_attr))
1469 return -EFAULT;
1470 }
1471 return do_mq_open(u_name, oflag, mode, p);
1472 }
1473
1474 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1475 const struct compat_sigevent __user *, u_notification)
1476 {
1477 struct sigevent n, *p = NULL;
1478 if (u_notification) {
1479 if (get_compat_sigevent(&n, u_notification))
1480 return -EFAULT;
1481 if (n.sigev_notify == SIGEV_THREAD)
1482 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1483 p = &n;
1484 }
1485 return do_mq_notify(mqdes, p);
1486 }
1487
1488 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1489 const struct compat_mq_attr __user *, u_mqstat,
1490 struct compat_mq_attr __user *, u_omqstat)
1491 {
1492 int ret;
1493 struct mq_attr mqstat, omqstat;
1494 struct mq_attr *new = NULL, *old = NULL;
1495
1496 if (u_mqstat) {
1497 new = &mqstat;
1498 if (get_compat_mq_attr(new, u_mqstat))
1499 return -EFAULT;
1500 }
1501 if (u_omqstat)
1502 old = &omqstat;
1503
1504 ret = do_mq_getsetattr(mqdes, new, old);
1505 if (ret || !old)
1506 return ret;
1507
1508 if (put_compat_mq_attr(old, u_omqstat))
1509 return -EFAULT;
1510 return 0;
1511 }
1512 #endif
1513
1514 #ifdef CONFIG_COMPAT_32BIT_TIME
1515 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1516 struct timespec64 *ts)
1517 {
1518 if (get_old_timespec32(ts, p))
1519 return -EFAULT;
1520 if (!timespec64_valid(ts))
1521 return -EINVAL;
1522 return 0;
1523 }
1524
1525 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1526 const char __user *, u_msg_ptr,
1527 unsigned int, msg_len, unsigned int, msg_prio,
1528 const struct old_timespec32 __user *, u_abs_timeout)
1529 {
1530 struct timespec64 ts, *p = NULL;
1531 if (u_abs_timeout) {
1532 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1533 if (res)
1534 return res;
1535 p = &ts;
1536 }
1537 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1538 }
1539
1540 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1541 char __user *, u_msg_ptr,
1542 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1543 const struct old_timespec32 __user *, u_abs_timeout)
1544 {
1545 struct timespec64 ts, *p = NULL;
1546 if (u_abs_timeout) {
1547 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1548 if (res)
1549 return res;
1550 p = &ts;
1551 }
1552 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1553 }
1554 #endif
1555
1556 static const struct inode_operations mqueue_dir_inode_operations = {
1557 .lookup = simple_lookup,
1558 .create = mqueue_create,
1559 .unlink = mqueue_unlink,
1560 };
1561
1562 static const struct file_operations mqueue_file_operations = {
1563 .flush = mqueue_flush_file,
1564 .poll = mqueue_poll_file,
1565 .read = mqueue_read_file,
1566 .llseek = default_llseek,
1567 };
1568
1569 static const struct super_operations mqueue_super_ops = {
1570 .alloc_inode = mqueue_alloc_inode,
1571 .destroy_inode = mqueue_destroy_inode,
1572 .evict_inode = mqueue_evict_inode,
1573 .statfs = simple_statfs,
1574 };
1575
1576 static const struct fs_context_operations mqueue_fs_context_ops = {
1577 .free = mqueue_fs_context_free,
1578 .get_tree = mqueue_get_tree,
1579 };
1580
1581 static struct file_system_type mqueue_fs_type = {
1582 .name = "mqueue",
1583 .init_fs_context = mqueue_init_fs_context,
1584 .kill_sb = kill_litter_super,
1585 .fs_flags = FS_USERNS_MOUNT,
1586 };
1587
1588 int mq_init_ns(struct ipc_namespace *ns)
1589 {
1590 struct vfsmount *m;
1591
1592 ns->mq_queues_count = 0;
1593 ns->mq_queues_max = DFLT_QUEUESMAX;
1594 ns->mq_msg_max = DFLT_MSGMAX;
1595 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1596 ns->mq_msg_default = DFLT_MSG;
1597 ns->mq_msgsize_default = DFLT_MSGSIZE;
1598
1599 m = mq_create_mount(ns);
1600 if (IS_ERR(m))
1601 return PTR_ERR(m);
1602 ns->mq_mnt = m;
1603 return 0;
1604 }
1605
1606 void mq_clear_sbinfo(struct ipc_namespace *ns)
1607 {
1608 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1609 }
1610
1611 void mq_put_mnt(struct ipc_namespace *ns)
1612 {
1613 kern_unmount(ns->mq_mnt);
1614 }
1615
1616 static int __init init_mqueue_fs(void)
1617 {
1618 int error;
1619
1620 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1621 sizeof(struct mqueue_inode_info), 0,
1622 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1623 if (mqueue_inode_cachep == NULL)
1624 return -ENOMEM;
1625
1626 /* ignore failures - they are not fatal */
1627 mq_sysctl_table = mq_register_sysctl_table();
1628
1629 error = register_filesystem(&mqueue_fs_type);
1630 if (error)
1631 goto out_sysctl;
1632
1633 spin_lock_init(&mq_lock);
1634
1635 error = mq_init_ns(&init_ipc_ns);
1636 if (error)
1637 goto out_filesystem;
1638
1639 return 0;
1640
1641 out_filesystem:
1642 unregister_filesystem(&mqueue_fs_type);
1643 out_sysctl:
1644 if (mq_sysctl_table)
1645 unregister_sysctl_table(mq_sysctl_table);
1646 kmem_cache_destroy(mqueue_inode_cachep);
1647 return error;
1648 }
1649
1650 device_initcall(init_mqueue_fs);