]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - ipc/sem.c
Merge tag 'trace-v5.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[thirdparty/kernel/linux.git] / ipc / sem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180 /*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187 /*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221 * READ_ONCE()/WRITE_ONCE() is used.
222 *
223 * 2) queue.status: (SEM_BARRIER_2)
224 * Initialization is done while holding sem_lock(), so no further barrier is
225 * required.
226 * Setting it to a result code is a RELEASE, this is ensured by both a
227 * smp_store_release() (for case a) and while holding sem_lock()
228 * (for case b).
229 * The ACQUIRE when reading the result code without holding sem_lock() is
230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
231 * (case a above).
232 * Reading the result code while holding sem_lock() needs no further barriers,
233 * the locks inside sem_lock() enforce ordering (case b above)
234 *
235 * 3) current->state:
236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239 * when holding sem_lock(), no further barriers are required.
240 *
241 * See also ipc/mqueue.c for more details on the covered races.
242 */
243
244 #define sc_semmsl sem_ctls[0]
245 #define sc_semmns sem_ctls[1]
246 #define sc_semopm sem_ctls[2]
247 #define sc_semmni sem_ctls[3]
248
249 void sem_init_ns(struct ipc_namespace *ns)
250 {
251 ns->sc_semmsl = SEMMSL;
252 ns->sc_semmns = SEMMNS;
253 ns->sc_semopm = SEMOPM;
254 ns->sc_semmni = SEMMNI;
255 ns->used_sems = 0;
256 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
257 }
258
259 #ifdef CONFIG_IPC_NS
260 void sem_exit_ns(struct ipc_namespace *ns)
261 {
262 free_ipcs(ns, &sem_ids(ns), freeary);
263 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
264 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
265 }
266 #endif
267
268 void __init sem_init(void)
269 {
270 sem_init_ns(&init_ipc_ns);
271 ipc_init_proc_interface("sysvipc/sem",
272 " key semid perms nsems uid gid cuid cgid otime ctime\n",
273 IPC_SEM_IDS, sysvipc_sem_proc_show);
274 }
275
276 /**
277 * unmerge_queues - unmerge queues, if possible.
278 * @sma: semaphore array
279 *
280 * The function unmerges the wait queues if complex_count is 0.
281 * It must be called prior to dropping the global semaphore array lock.
282 */
283 static void unmerge_queues(struct sem_array *sma)
284 {
285 struct sem_queue *q, *tq;
286
287 /* complex operations still around? */
288 if (sma->complex_count)
289 return;
290 /*
291 * We will switch back to simple mode.
292 * Move all pending operation back into the per-semaphore
293 * queues.
294 */
295 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
296 struct sem *curr;
297 curr = &sma->sems[q->sops[0].sem_num];
298
299 list_add_tail(&q->list, &curr->pending_alter);
300 }
301 INIT_LIST_HEAD(&sma->pending_alter);
302 }
303
304 /**
305 * merge_queues - merge single semop queues into global queue
306 * @sma: semaphore array
307 *
308 * This function merges all per-semaphore queues into the global queue.
309 * It is necessary to achieve FIFO ordering for the pending single-sop
310 * operations when a multi-semop operation must sleep.
311 * Only the alter operations must be moved, the const operations can stay.
312 */
313 static void merge_queues(struct sem_array *sma)
314 {
315 int i;
316 for (i = 0; i < sma->sem_nsems; i++) {
317 struct sem *sem = &sma->sems[i];
318
319 list_splice_init(&sem->pending_alter, &sma->pending_alter);
320 }
321 }
322
323 static void sem_rcu_free(struct rcu_head *head)
324 {
325 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
326 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
327
328 security_sem_free(&sma->sem_perm);
329 kvfree(sma);
330 }
331
332 /*
333 * Enter the mode suitable for non-simple operations:
334 * Caller must own sem_perm.lock.
335 */
336 static void complexmode_enter(struct sem_array *sma)
337 {
338 int i;
339 struct sem *sem;
340
341 if (sma->use_global_lock > 0) {
342 /*
343 * We are already in global lock mode.
344 * Nothing to do, just reset the
345 * counter until we return to simple mode.
346 */
347 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
348 return;
349 }
350 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
351
352 for (i = 0; i < sma->sem_nsems; i++) {
353 sem = &sma->sems[i];
354 spin_lock(&sem->lock);
355 spin_unlock(&sem->lock);
356 }
357 }
358
359 /*
360 * Try to leave the mode that disallows simple operations:
361 * Caller must own sem_perm.lock.
362 */
363 static void complexmode_tryleave(struct sem_array *sma)
364 {
365 if (sma->complex_count) {
366 /* Complex ops are sleeping.
367 * We must stay in complex mode
368 */
369 return;
370 }
371 if (sma->use_global_lock == 1) {
372
373 /* See SEM_BARRIER_1 for purpose/pairing */
374 smp_store_release(&sma->use_global_lock, 0);
375 } else {
376 WRITE_ONCE(sma->use_global_lock,
377 sma->use_global_lock-1);
378 }
379 }
380
381 #define SEM_GLOBAL_LOCK (-1)
382 /*
383 * If the request contains only one semaphore operation, and there are
384 * no complex transactions pending, lock only the semaphore involved.
385 * Otherwise, lock the entire semaphore array, since we either have
386 * multiple semaphores in our own semops, or we need to look at
387 * semaphores from other pending complex operations.
388 */
389 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
390 int nsops)
391 {
392 struct sem *sem;
393 int idx;
394
395 if (nsops != 1) {
396 /* Complex operation - acquire a full lock */
397 ipc_lock_object(&sma->sem_perm);
398
399 /* Prevent parallel simple ops */
400 complexmode_enter(sma);
401 return SEM_GLOBAL_LOCK;
402 }
403
404 /*
405 * Only one semaphore affected - try to optimize locking.
406 * Optimized locking is possible if no complex operation
407 * is either enqueued or processed right now.
408 *
409 * Both facts are tracked by use_global_mode.
410 */
411 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
412 sem = &sma->sems[idx];
413
414 /*
415 * Initial check for use_global_lock. Just an optimization,
416 * no locking, no memory barrier.
417 */
418 if (!READ_ONCE(sma->use_global_lock)) {
419 /*
420 * It appears that no complex operation is around.
421 * Acquire the per-semaphore lock.
422 */
423 spin_lock(&sem->lock);
424
425 /* see SEM_BARRIER_1 for purpose/pairing */
426 if (!smp_load_acquire(&sma->use_global_lock)) {
427 /* fast path successful! */
428 return sops->sem_num;
429 }
430 spin_unlock(&sem->lock);
431 }
432
433 /* slow path: acquire the full lock */
434 ipc_lock_object(&sma->sem_perm);
435
436 if (sma->use_global_lock == 0) {
437 /*
438 * The use_global_lock mode ended while we waited for
439 * sma->sem_perm.lock. Thus we must switch to locking
440 * with sem->lock.
441 * Unlike in the fast path, there is no need to recheck
442 * sma->use_global_lock after we have acquired sem->lock:
443 * We own sma->sem_perm.lock, thus use_global_lock cannot
444 * change.
445 */
446 spin_lock(&sem->lock);
447
448 ipc_unlock_object(&sma->sem_perm);
449 return sops->sem_num;
450 } else {
451 /*
452 * Not a false alarm, thus continue to use the global lock
453 * mode. No need for complexmode_enter(), this was done by
454 * the caller that has set use_global_mode to non-zero.
455 */
456 return SEM_GLOBAL_LOCK;
457 }
458 }
459
460 static inline void sem_unlock(struct sem_array *sma, int locknum)
461 {
462 if (locknum == SEM_GLOBAL_LOCK) {
463 unmerge_queues(sma);
464 complexmode_tryleave(sma);
465 ipc_unlock_object(&sma->sem_perm);
466 } else {
467 struct sem *sem = &sma->sems[locknum];
468 spin_unlock(&sem->lock);
469 }
470 }
471
472 /*
473 * sem_lock_(check_) routines are called in the paths where the rwsem
474 * is not held.
475 *
476 * The caller holds the RCU read lock.
477 */
478 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
479 {
480 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
481
482 if (IS_ERR(ipcp))
483 return ERR_CAST(ipcp);
484
485 return container_of(ipcp, struct sem_array, sem_perm);
486 }
487
488 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
489 int id)
490 {
491 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
492
493 if (IS_ERR(ipcp))
494 return ERR_CAST(ipcp);
495
496 return container_of(ipcp, struct sem_array, sem_perm);
497 }
498
499 static inline void sem_lock_and_putref(struct sem_array *sma)
500 {
501 sem_lock(sma, NULL, -1);
502 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
503 }
504
505 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
506 {
507 ipc_rmid(&sem_ids(ns), &s->sem_perm);
508 }
509
510 static struct sem_array *sem_alloc(size_t nsems)
511 {
512 struct sem_array *sma;
513
514 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
515 return NULL;
516
517 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
518 if (unlikely(!sma))
519 return NULL;
520
521 return sma;
522 }
523
524 /**
525 * newary - Create a new semaphore set
526 * @ns: namespace
527 * @params: ptr to the structure that contains key, semflg and nsems
528 *
529 * Called with sem_ids.rwsem held (as a writer)
530 */
531 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
532 {
533 int retval;
534 struct sem_array *sma;
535 key_t key = params->key;
536 int nsems = params->u.nsems;
537 int semflg = params->flg;
538 int i;
539
540 if (!nsems)
541 return -EINVAL;
542 if (ns->used_sems + nsems > ns->sc_semmns)
543 return -ENOSPC;
544
545 sma = sem_alloc(nsems);
546 if (!sma)
547 return -ENOMEM;
548
549 sma->sem_perm.mode = (semflg & S_IRWXUGO);
550 sma->sem_perm.key = key;
551
552 sma->sem_perm.security = NULL;
553 retval = security_sem_alloc(&sma->sem_perm);
554 if (retval) {
555 kvfree(sma);
556 return retval;
557 }
558
559 for (i = 0; i < nsems; i++) {
560 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
561 INIT_LIST_HEAD(&sma->sems[i].pending_const);
562 spin_lock_init(&sma->sems[i].lock);
563 }
564
565 sma->complex_count = 0;
566 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
567 INIT_LIST_HEAD(&sma->pending_alter);
568 INIT_LIST_HEAD(&sma->pending_const);
569 INIT_LIST_HEAD(&sma->list_id);
570 sma->sem_nsems = nsems;
571 sma->sem_ctime = ktime_get_real_seconds();
572
573 /* ipc_addid() locks sma upon success. */
574 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
575 if (retval < 0) {
576 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
577 return retval;
578 }
579 ns->used_sems += nsems;
580
581 sem_unlock(sma, -1);
582 rcu_read_unlock();
583
584 return sma->sem_perm.id;
585 }
586
587
588 /*
589 * Called with sem_ids.rwsem and ipcp locked.
590 */
591 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
592 {
593 struct sem_array *sma;
594
595 sma = container_of(ipcp, struct sem_array, sem_perm);
596 if (params->u.nsems > sma->sem_nsems)
597 return -EINVAL;
598
599 return 0;
600 }
601
602 long ksys_semget(key_t key, int nsems, int semflg)
603 {
604 struct ipc_namespace *ns;
605 static const struct ipc_ops sem_ops = {
606 .getnew = newary,
607 .associate = security_sem_associate,
608 .more_checks = sem_more_checks,
609 };
610 struct ipc_params sem_params;
611
612 ns = current->nsproxy->ipc_ns;
613
614 if (nsems < 0 || nsems > ns->sc_semmsl)
615 return -EINVAL;
616
617 sem_params.key = key;
618 sem_params.flg = semflg;
619 sem_params.u.nsems = nsems;
620
621 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
622 }
623
624 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
625 {
626 return ksys_semget(key, nsems, semflg);
627 }
628
629 /**
630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
631 * operations on a given array.
632 * @sma: semaphore array
633 * @q: struct sem_queue that describes the operation
634 *
635 * Caller blocking are as follows, based the value
636 * indicated by the semaphore operation (sem_op):
637 *
638 * (1) >0 never blocks.
639 * (2) 0 (wait-for-zero operation): semval is non-zero.
640 * (3) <0 attempting to decrement semval to a value smaller than zero.
641 *
642 * Returns 0 if the operation was possible.
643 * Returns 1 if the operation is impossible, the caller must sleep.
644 * Returns <0 for error codes.
645 */
646 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
647 {
648 int result, sem_op, nsops;
649 struct pid *pid;
650 struct sembuf *sop;
651 struct sem *curr;
652 struct sembuf *sops;
653 struct sem_undo *un;
654
655 sops = q->sops;
656 nsops = q->nsops;
657 un = q->undo;
658
659 for (sop = sops; sop < sops + nsops; sop++) {
660 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
661 curr = &sma->sems[idx];
662 sem_op = sop->sem_op;
663 result = curr->semval;
664
665 if (!sem_op && result)
666 goto would_block;
667
668 result += sem_op;
669 if (result < 0)
670 goto would_block;
671 if (result > SEMVMX)
672 goto out_of_range;
673
674 if (sop->sem_flg & SEM_UNDO) {
675 int undo = un->semadj[sop->sem_num] - sem_op;
676 /* Exceeding the undo range is an error. */
677 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
678 goto out_of_range;
679 un->semadj[sop->sem_num] = undo;
680 }
681
682 curr->semval = result;
683 }
684
685 sop--;
686 pid = q->pid;
687 while (sop >= sops) {
688 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
689 sop--;
690 }
691
692 return 0;
693
694 out_of_range:
695 result = -ERANGE;
696 goto undo;
697
698 would_block:
699 q->blocking = sop;
700
701 if (sop->sem_flg & IPC_NOWAIT)
702 result = -EAGAIN;
703 else
704 result = 1;
705
706 undo:
707 sop--;
708 while (sop >= sops) {
709 sem_op = sop->sem_op;
710 sma->sems[sop->sem_num].semval -= sem_op;
711 if (sop->sem_flg & SEM_UNDO)
712 un->semadj[sop->sem_num] += sem_op;
713 sop--;
714 }
715
716 return result;
717 }
718
719 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
720 {
721 int result, sem_op, nsops;
722 struct sembuf *sop;
723 struct sem *curr;
724 struct sembuf *sops;
725 struct sem_undo *un;
726
727 sops = q->sops;
728 nsops = q->nsops;
729 un = q->undo;
730
731 if (unlikely(q->dupsop))
732 return perform_atomic_semop_slow(sma, q);
733
734 /*
735 * We scan the semaphore set twice, first to ensure that the entire
736 * operation can succeed, therefore avoiding any pointless writes
737 * to shared memory and having to undo such changes in order to block
738 * until the operations can go through.
739 */
740 for (sop = sops; sop < sops + nsops; sop++) {
741 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
742
743 curr = &sma->sems[idx];
744 sem_op = sop->sem_op;
745 result = curr->semval;
746
747 if (!sem_op && result)
748 goto would_block; /* wait-for-zero */
749
750 result += sem_op;
751 if (result < 0)
752 goto would_block;
753
754 if (result > SEMVMX)
755 return -ERANGE;
756
757 if (sop->sem_flg & SEM_UNDO) {
758 int undo = un->semadj[sop->sem_num] - sem_op;
759
760 /* Exceeding the undo range is an error. */
761 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
762 return -ERANGE;
763 }
764 }
765
766 for (sop = sops; sop < sops + nsops; sop++) {
767 curr = &sma->sems[sop->sem_num];
768 sem_op = sop->sem_op;
769 result = curr->semval;
770
771 if (sop->sem_flg & SEM_UNDO) {
772 int undo = un->semadj[sop->sem_num] - sem_op;
773
774 un->semadj[sop->sem_num] = undo;
775 }
776 curr->semval += sem_op;
777 ipc_update_pid(&curr->sempid, q->pid);
778 }
779
780 return 0;
781
782 would_block:
783 q->blocking = sop;
784 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
785 }
786
787 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
788 struct wake_q_head *wake_q)
789 {
790 struct task_struct *sleeper;
791
792 sleeper = get_task_struct(q->sleeper);
793
794 /* see SEM_BARRIER_2 for purpose/pairing */
795 smp_store_release(&q->status, error);
796
797 wake_q_add_safe(wake_q, sleeper);
798 }
799
800 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
801 {
802 list_del(&q->list);
803 if (q->nsops > 1)
804 sma->complex_count--;
805 }
806
807 /** check_restart(sma, q)
808 * @sma: semaphore array
809 * @q: the operation that just completed
810 *
811 * update_queue is O(N^2) when it restarts scanning the whole queue of
812 * waiting operations. Therefore this function checks if the restart is
813 * really necessary. It is called after a previously waiting operation
814 * modified the array.
815 * Note that wait-for-zero operations are handled without restart.
816 */
817 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
818 {
819 /* pending complex alter operations are too difficult to analyse */
820 if (!list_empty(&sma->pending_alter))
821 return 1;
822
823 /* we were a sleeping complex operation. Too difficult */
824 if (q->nsops > 1)
825 return 1;
826
827 /* It is impossible that someone waits for the new value:
828 * - complex operations always restart.
829 * - wait-for-zero are handled separately.
830 * - q is a previously sleeping simple operation that
831 * altered the array. It must be a decrement, because
832 * simple increments never sleep.
833 * - If there are older (higher priority) decrements
834 * in the queue, then they have observed the original
835 * semval value and couldn't proceed. The operation
836 * decremented to value - thus they won't proceed either.
837 */
838 return 0;
839 }
840
841 /**
842 * wake_const_ops - wake up non-alter tasks
843 * @sma: semaphore array.
844 * @semnum: semaphore that was modified.
845 * @wake_q: lockless wake-queue head.
846 *
847 * wake_const_ops must be called after a semaphore in a semaphore array
848 * was set to 0. If complex const operations are pending, wake_const_ops must
849 * be called with semnum = -1, as well as with the number of each modified
850 * semaphore.
851 * The tasks that must be woken up are added to @wake_q. The return code
852 * is stored in q->pid.
853 * The function returns 1 if at least one operation was completed successfully.
854 */
855 static int wake_const_ops(struct sem_array *sma, int semnum,
856 struct wake_q_head *wake_q)
857 {
858 struct sem_queue *q, *tmp;
859 struct list_head *pending_list;
860 int semop_completed = 0;
861
862 if (semnum == -1)
863 pending_list = &sma->pending_const;
864 else
865 pending_list = &sma->sems[semnum].pending_const;
866
867 list_for_each_entry_safe(q, tmp, pending_list, list) {
868 int error = perform_atomic_semop(sma, q);
869
870 if (error > 0)
871 continue;
872 /* operation completed, remove from queue & wakeup */
873 unlink_queue(sma, q);
874
875 wake_up_sem_queue_prepare(q, error, wake_q);
876 if (error == 0)
877 semop_completed = 1;
878 }
879
880 return semop_completed;
881 }
882
883 /**
884 * do_smart_wakeup_zero - wakeup all wait for zero tasks
885 * @sma: semaphore array
886 * @sops: operations that were performed
887 * @nsops: number of operations
888 * @wake_q: lockless wake-queue head
889 *
890 * Checks all required queue for wait-for-zero operations, based
891 * on the actual changes that were performed on the semaphore array.
892 * The function returns 1 if at least one operation was completed successfully.
893 */
894 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
895 int nsops, struct wake_q_head *wake_q)
896 {
897 int i;
898 int semop_completed = 0;
899 int got_zero = 0;
900
901 /* first: the per-semaphore queues, if known */
902 if (sops) {
903 for (i = 0; i < nsops; i++) {
904 int num = sops[i].sem_num;
905
906 if (sma->sems[num].semval == 0) {
907 got_zero = 1;
908 semop_completed |= wake_const_ops(sma, num, wake_q);
909 }
910 }
911 } else {
912 /*
913 * No sops means modified semaphores not known.
914 * Assume all were changed.
915 */
916 for (i = 0; i < sma->sem_nsems; i++) {
917 if (sma->sems[i].semval == 0) {
918 got_zero = 1;
919 semop_completed |= wake_const_ops(sma, i, wake_q);
920 }
921 }
922 }
923 /*
924 * If one of the modified semaphores got 0,
925 * then check the global queue, too.
926 */
927 if (got_zero)
928 semop_completed |= wake_const_ops(sma, -1, wake_q);
929
930 return semop_completed;
931 }
932
933
934 /**
935 * update_queue - look for tasks that can be completed.
936 * @sma: semaphore array.
937 * @semnum: semaphore that was modified.
938 * @wake_q: lockless wake-queue head.
939 *
940 * update_queue must be called after a semaphore in a semaphore array
941 * was modified. If multiple semaphores were modified, update_queue must
942 * be called with semnum = -1, as well as with the number of each modified
943 * semaphore.
944 * The tasks that must be woken up are added to @wake_q. The return code
945 * is stored in q->pid.
946 * The function internally checks if const operations can now succeed.
947 *
948 * The function return 1 if at least one semop was completed successfully.
949 */
950 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
951 {
952 struct sem_queue *q, *tmp;
953 struct list_head *pending_list;
954 int semop_completed = 0;
955
956 if (semnum == -1)
957 pending_list = &sma->pending_alter;
958 else
959 pending_list = &sma->sems[semnum].pending_alter;
960
961 again:
962 list_for_each_entry_safe(q, tmp, pending_list, list) {
963 int error, restart;
964
965 /* If we are scanning the single sop, per-semaphore list of
966 * one semaphore and that semaphore is 0, then it is not
967 * necessary to scan further: simple increments
968 * that affect only one entry succeed immediately and cannot
969 * be in the per semaphore pending queue, and decrements
970 * cannot be successful if the value is already 0.
971 */
972 if (semnum != -1 && sma->sems[semnum].semval == 0)
973 break;
974
975 error = perform_atomic_semop(sma, q);
976
977 /* Does q->sleeper still need to sleep? */
978 if (error > 0)
979 continue;
980
981 unlink_queue(sma, q);
982
983 if (error) {
984 restart = 0;
985 } else {
986 semop_completed = 1;
987 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
988 restart = check_restart(sma, q);
989 }
990
991 wake_up_sem_queue_prepare(q, error, wake_q);
992 if (restart)
993 goto again;
994 }
995 return semop_completed;
996 }
997
998 /**
999 * set_semotime - set sem_otime
1000 * @sma: semaphore array
1001 * @sops: operations that modified the array, may be NULL
1002 *
1003 * sem_otime is replicated to avoid cache line trashing.
1004 * This function sets one instance to the current time.
1005 */
1006 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1007 {
1008 if (sops == NULL) {
1009 sma->sems[0].sem_otime = ktime_get_real_seconds();
1010 } else {
1011 sma->sems[sops[0].sem_num].sem_otime =
1012 ktime_get_real_seconds();
1013 }
1014 }
1015
1016 /**
1017 * do_smart_update - optimized update_queue
1018 * @sma: semaphore array
1019 * @sops: operations that were performed
1020 * @nsops: number of operations
1021 * @otime: force setting otime
1022 * @wake_q: lockless wake-queue head
1023 *
1024 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1025 * based on the actual changes that were performed on the semaphore array.
1026 * Note that the function does not do the actual wake-up: the caller is
1027 * responsible for calling wake_up_q().
1028 * It is safe to perform this call after dropping all locks.
1029 */
1030 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1031 int otime, struct wake_q_head *wake_q)
1032 {
1033 int i;
1034
1035 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1036
1037 if (!list_empty(&sma->pending_alter)) {
1038 /* semaphore array uses the global queue - just process it. */
1039 otime |= update_queue(sma, -1, wake_q);
1040 } else {
1041 if (!sops) {
1042 /*
1043 * No sops, thus the modified semaphores are not
1044 * known. Check all.
1045 */
1046 for (i = 0; i < sma->sem_nsems; i++)
1047 otime |= update_queue(sma, i, wake_q);
1048 } else {
1049 /*
1050 * Check the semaphores that were increased:
1051 * - No complex ops, thus all sleeping ops are
1052 * decrease.
1053 * - if we decreased the value, then any sleeping
1054 * semaphore ops won't be able to run: If the
1055 * previous value was too small, then the new
1056 * value will be too small, too.
1057 */
1058 for (i = 0; i < nsops; i++) {
1059 if (sops[i].sem_op > 0) {
1060 otime |= update_queue(sma,
1061 sops[i].sem_num, wake_q);
1062 }
1063 }
1064 }
1065 }
1066 if (otime)
1067 set_semotime(sma, sops);
1068 }
1069
1070 /*
1071 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1072 */
1073 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1074 bool count_zero)
1075 {
1076 struct sembuf *sop = q->blocking;
1077
1078 /*
1079 * Linux always (since 0.99.10) reported a task as sleeping on all
1080 * semaphores. This violates SUS, therefore it was changed to the
1081 * standard compliant behavior.
1082 * Give the administrators a chance to notice that an application
1083 * might misbehave because it relies on the Linux behavior.
1084 */
1085 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1086 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1087 current->comm, task_pid_nr(current));
1088
1089 if (sop->sem_num != semnum)
1090 return 0;
1091
1092 if (count_zero && sop->sem_op == 0)
1093 return 1;
1094 if (!count_zero && sop->sem_op < 0)
1095 return 1;
1096
1097 return 0;
1098 }
1099
1100 /* The following counts are associated to each semaphore:
1101 * semncnt number of tasks waiting on semval being nonzero
1102 * semzcnt number of tasks waiting on semval being zero
1103 *
1104 * Per definition, a task waits only on the semaphore of the first semop
1105 * that cannot proceed, even if additional operation would block, too.
1106 */
1107 static int count_semcnt(struct sem_array *sma, ushort semnum,
1108 bool count_zero)
1109 {
1110 struct list_head *l;
1111 struct sem_queue *q;
1112 int semcnt;
1113
1114 semcnt = 0;
1115 /* First: check the simple operations. They are easy to evaluate */
1116 if (count_zero)
1117 l = &sma->sems[semnum].pending_const;
1118 else
1119 l = &sma->sems[semnum].pending_alter;
1120
1121 list_for_each_entry(q, l, list) {
1122 /* all task on a per-semaphore list sleep on exactly
1123 * that semaphore
1124 */
1125 semcnt++;
1126 }
1127
1128 /* Then: check the complex operations. */
1129 list_for_each_entry(q, &sma->pending_alter, list) {
1130 semcnt += check_qop(sma, semnum, q, count_zero);
1131 }
1132 if (count_zero) {
1133 list_for_each_entry(q, &sma->pending_const, list) {
1134 semcnt += check_qop(sma, semnum, q, count_zero);
1135 }
1136 }
1137 return semcnt;
1138 }
1139
1140 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1141 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1142 * remains locked on exit.
1143 */
1144 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1145 {
1146 struct sem_undo *un, *tu;
1147 struct sem_queue *q, *tq;
1148 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1149 int i;
1150 DEFINE_WAKE_Q(wake_q);
1151
1152 /* Free the existing undo structures for this semaphore set. */
1153 ipc_assert_locked_object(&sma->sem_perm);
1154 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1155 list_del(&un->list_id);
1156 spin_lock(&un->ulp->lock);
1157 un->semid = -1;
1158 list_del_rcu(&un->list_proc);
1159 spin_unlock(&un->ulp->lock);
1160 kvfree_rcu(un, rcu);
1161 }
1162
1163 /* Wake up all pending processes and let them fail with EIDRM. */
1164 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1165 unlink_queue(sma, q);
1166 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1167 }
1168
1169 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1170 unlink_queue(sma, q);
1171 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1172 }
1173 for (i = 0; i < sma->sem_nsems; i++) {
1174 struct sem *sem = &sma->sems[i];
1175 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1176 unlink_queue(sma, q);
1177 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1178 }
1179 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1180 unlink_queue(sma, q);
1181 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1182 }
1183 ipc_update_pid(&sem->sempid, NULL);
1184 }
1185
1186 /* Remove the semaphore set from the IDR */
1187 sem_rmid(ns, sma);
1188 sem_unlock(sma, -1);
1189 rcu_read_unlock();
1190
1191 wake_up_q(&wake_q);
1192 ns->used_sems -= sma->sem_nsems;
1193 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1194 }
1195
1196 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1197 {
1198 switch (version) {
1199 case IPC_64:
1200 return copy_to_user(buf, in, sizeof(*in));
1201 case IPC_OLD:
1202 {
1203 struct semid_ds out;
1204
1205 memset(&out, 0, sizeof(out));
1206
1207 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1208
1209 out.sem_otime = in->sem_otime;
1210 out.sem_ctime = in->sem_ctime;
1211 out.sem_nsems = in->sem_nsems;
1212
1213 return copy_to_user(buf, &out, sizeof(out));
1214 }
1215 default:
1216 return -EINVAL;
1217 }
1218 }
1219
1220 static time64_t get_semotime(struct sem_array *sma)
1221 {
1222 int i;
1223 time64_t res;
1224
1225 res = sma->sems[0].sem_otime;
1226 for (i = 1; i < sma->sem_nsems; i++) {
1227 time64_t to = sma->sems[i].sem_otime;
1228
1229 if (to > res)
1230 res = to;
1231 }
1232 return res;
1233 }
1234
1235 static int semctl_stat(struct ipc_namespace *ns, int semid,
1236 int cmd, struct semid64_ds *semid64)
1237 {
1238 struct sem_array *sma;
1239 time64_t semotime;
1240 int err;
1241
1242 memset(semid64, 0, sizeof(*semid64));
1243
1244 rcu_read_lock();
1245 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1246 sma = sem_obtain_object(ns, semid);
1247 if (IS_ERR(sma)) {
1248 err = PTR_ERR(sma);
1249 goto out_unlock;
1250 }
1251 } else { /* IPC_STAT */
1252 sma = sem_obtain_object_check(ns, semid);
1253 if (IS_ERR(sma)) {
1254 err = PTR_ERR(sma);
1255 goto out_unlock;
1256 }
1257 }
1258
1259 /* see comment for SHM_STAT_ANY */
1260 if (cmd == SEM_STAT_ANY)
1261 audit_ipc_obj(&sma->sem_perm);
1262 else {
1263 err = -EACCES;
1264 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1265 goto out_unlock;
1266 }
1267
1268 err = security_sem_semctl(&sma->sem_perm, cmd);
1269 if (err)
1270 goto out_unlock;
1271
1272 ipc_lock_object(&sma->sem_perm);
1273
1274 if (!ipc_valid_object(&sma->sem_perm)) {
1275 ipc_unlock_object(&sma->sem_perm);
1276 err = -EIDRM;
1277 goto out_unlock;
1278 }
1279
1280 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1281 semotime = get_semotime(sma);
1282 semid64->sem_otime = semotime;
1283 semid64->sem_ctime = sma->sem_ctime;
1284 #ifndef CONFIG_64BIT
1285 semid64->sem_otime_high = semotime >> 32;
1286 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1287 #endif
1288 semid64->sem_nsems = sma->sem_nsems;
1289
1290 if (cmd == IPC_STAT) {
1291 /*
1292 * As defined in SUS:
1293 * Return 0 on success
1294 */
1295 err = 0;
1296 } else {
1297 /*
1298 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1299 * Return the full id, including the sequence number
1300 */
1301 err = sma->sem_perm.id;
1302 }
1303 ipc_unlock_object(&sma->sem_perm);
1304 out_unlock:
1305 rcu_read_unlock();
1306 return err;
1307 }
1308
1309 static int semctl_info(struct ipc_namespace *ns, int semid,
1310 int cmd, void __user *p)
1311 {
1312 struct seminfo seminfo;
1313 int max_idx;
1314 int err;
1315
1316 err = security_sem_semctl(NULL, cmd);
1317 if (err)
1318 return err;
1319
1320 memset(&seminfo, 0, sizeof(seminfo));
1321 seminfo.semmni = ns->sc_semmni;
1322 seminfo.semmns = ns->sc_semmns;
1323 seminfo.semmsl = ns->sc_semmsl;
1324 seminfo.semopm = ns->sc_semopm;
1325 seminfo.semvmx = SEMVMX;
1326 seminfo.semmnu = SEMMNU;
1327 seminfo.semmap = SEMMAP;
1328 seminfo.semume = SEMUME;
1329 down_read(&sem_ids(ns).rwsem);
1330 if (cmd == SEM_INFO) {
1331 seminfo.semusz = sem_ids(ns).in_use;
1332 seminfo.semaem = ns->used_sems;
1333 } else {
1334 seminfo.semusz = SEMUSZ;
1335 seminfo.semaem = SEMAEM;
1336 }
1337 max_idx = ipc_get_maxidx(&sem_ids(ns));
1338 up_read(&sem_ids(ns).rwsem);
1339 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1340 return -EFAULT;
1341 return (max_idx < 0) ? 0 : max_idx;
1342 }
1343
1344 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1345 int val)
1346 {
1347 struct sem_undo *un;
1348 struct sem_array *sma;
1349 struct sem *curr;
1350 int err;
1351 DEFINE_WAKE_Q(wake_q);
1352
1353 if (val > SEMVMX || val < 0)
1354 return -ERANGE;
1355
1356 rcu_read_lock();
1357 sma = sem_obtain_object_check(ns, semid);
1358 if (IS_ERR(sma)) {
1359 rcu_read_unlock();
1360 return PTR_ERR(sma);
1361 }
1362
1363 if (semnum < 0 || semnum >= sma->sem_nsems) {
1364 rcu_read_unlock();
1365 return -EINVAL;
1366 }
1367
1368
1369 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1370 rcu_read_unlock();
1371 return -EACCES;
1372 }
1373
1374 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1375 if (err) {
1376 rcu_read_unlock();
1377 return -EACCES;
1378 }
1379
1380 sem_lock(sma, NULL, -1);
1381
1382 if (!ipc_valid_object(&sma->sem_perm)) {
1383 sem_unlock(sma, -1);
1384 rcu_read_unlock();
1385 return -EIDRM;
1386 }
1387
1388 semnum = array_index_nospec(semnum, sma->sem_nsems);
1389 curr = &sma->sems[semnum];
1390
1391 ipc_assert_locked_object(&sma->sem_perm);
1392 list_for_each_entry(un, &sma->list_id, list_id)
1393 un->semadj[semnum] = 0;
1394
1395 curr->semval = val;
1396 ipc_update_pid(&curr->sempid, task_tgid(current));
1397 sma->sem_ctime = ktime_get_real_seconds();
1398 /* maybe some queued-up processes were waiting for this */
1399 do_smart_update(sma, NULL, 0, 0, &wake_q);
1400 sem_unlock(sma, -1);
1401 rcu_read_unlock();
1402 wake_up_q(&wake_q);
1403 return 0;
1404 }
1405
1406 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1407 int cmd, void __user *p)
1408 {
1409 struct sem_array *sma;
1410 struct sem *curr;
1411 int err, nsems;
1412 ushort fast_sem_io[SEMMSL_FAST];
1413 ushort *sem_io = fast_sem_io;
1414 DEFINE_WAKE_Q(wake_q);
1415
1416 rcu_read_lock();
1417 sma = sem_obtain_object_check(ns, semid);
1418 if (IS_ERR(sma)) {
1419 rcu_read_unlock();
1420 return PTR_ERR(sma);
1421 }
1422
1423 nsems = sma->sem_nsems;
1424
1425 err = -EACCES;
1426 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1427 goto out_rcu_wakeup;
1428
1429 err = security_sem_semctl(&sma->sem_perm, cmd);
1430 if (err)
1431 goto out_rcu_wakeup;
1432
1433 err = -EACCES;
1434 switch (cmd) {
1435 case GETALL:
1436 {
1437 ushort __user *array = p;
1438 int i;
1439
1440 sem_lock(sma, NULL, -1);
1441 if (!ipc_valid_object(&sma->sem_perm)) {
1442 err = -EIDRM;
1443 goto out_unlock;
1444 }
1445 if (nsems > SEMMSL_FAST) {
1446 if (!ipc_rcu_getref(&sma->sem_perm)) {
1447 err = -EIDRM;
1448 goto out_unlock;
1449 }
1450 sem_unlock(sma, -1);
1451 rcu_read_unlock();
1452 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1453 GFP_KERNEL);
1454 if (sem_io == NULL) {
1455 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1456 return -ENOMEM;
1457 }
1458
1459 rcu_read_lock();
1460 sem_lock_and_putref(sma);
1461 if (!ipc_valid_object(&sma->sem_perm)) {
1462 err = -EIDRM;
1463 goto out_unlock;
1464 }
1465 }
1466 for (i = 0; i < sma->sem_nsems; i++)
1467 sem_io[i] = sma->sems[i].semval;
1468 sem_unlock(sma, -1);
1469 rcu_read_unlock();
1470 err = 0;
1471 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1472 err = -EFAULT;
1473 goto out_free;
1474 }
1475 case SETALL:
1476 {
1477 int i;
1478 struct sem_undo *un;
1479
1480 if (!ipc_rcu_getref(&sma->sem_perm)) {
1481 err = -EIDRM;
1482 goto out_rcu_wakeup;
1483 }
1484 rcu_read_unlock();
1485
1486 if (nsems > SEMMSL_FAST) {
1487 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1488 GFP_KERNEL);
1489 if (sem_io == NULL) {
1490 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1491 return -ENOMEM;
1492 }
1493 }
1494
1495 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1496 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1497 err = -EFAULT;
1498 goto out_free;
1499 }
1500
1501 for (i = 0; i < nsems; i++) {
1502 if (sem_io[i] > SEMVMX) {
1503 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1504 err = -ERANGE;
1505 goto out_free;
1506 }
1507 }
1508 rcu_read_lock();
1509 sem_lock_and_putref(sma);
1510 if (!ipc_valid_object(&sma->sem_perm)) {
1511 err = -EIDRM;
1512 goto out_unlock;
1513 }
1514
1515 for (i = 0; i < nsems; i++) {
1516 sma->sems[i].semval = sem_io[i];
1517 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1518 }
1519
1520 ipc_assert_locked_object(&sma->sem_perm);
1521 list_for_each_entry(un, &sma->list_id, list_id) {
1522 for (i = 0; i < nsems; i++)
1523 un->semadj[i] = 0;
1524 }
1525 sma->sem_ctime = ktime_get_real_seconds();
1526 /* maybe some queued-up processes were waiting for this */
1527 do_smart_update(sma, NULL, 0, 0, &wake_q);
1528 err = 0;
1529 goto out_unlock;
1530 }
1531 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1532 }
1533 err = -EINVAL;
1534 if (semnum < 0 || semnum >= nsems)
1535 goto out_rcu_wakeup;
1536
1537 sem_lock(sma, NULL, -1);
1538 if (!ipc_valid_object(&sma->sem_perm)) {
1539 err = -EIDRM;
1540 goto out_unlock;
1541 }
1542
1543 semnum = array_index_nospec(semnum, nsems);
1544 curr = &sma->sems[semnum];
1545
1546 switch (cmd) {
1547 case GETVAL:
1548 err = curr->semval;
1549 goto out_unlock;
1550 case GETPID:
1551 err = pid_vnr(curr->sempid);
1552 goto out_unlock;
1553 case GETNCNT:
1554 err = count_semcnt(sma, semnum, 0);
1555 goto out_unlock;
1556 case GETZCNT:
1557 err = count_semcnt(sma, semnum, 1);
1558 goto out_unlock;
1559 }
1560
1561 out_unlock:
1562 sem_unlock(sma, -1);
1563 out_rcu_wakeup:
1564 rcu_read_unlock();
1565 wake_up_q(&wake_q);
1566 out_free:
1567 if (sem_io != fast_sem_io)
1568 kvfree(sem_io);
1569 return err;
1570 }
1571
1572 static inline unsigned long
1573 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1574 {
1575 switch (version) {
1576 case IPC_64:
1577 if (copy_from_user(out, buf, sizeof(*out)))
1578 return -EFAULT;
1579 return 0;
1580 case IPC_OLD:
1581 {
1582 struct semid_ds tbuf_old;
1583
1584 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1585 return -EFAULT;
1586
1587 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1588 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1589 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1590
1591 return 0;
1592 }
1593 default:
1594 return -EINVAL;
1595 }
1596 }
1597
1598 /*
1599 * This function handles some semctl commands which require the rwsem
1600 * to be held in write mode.
1601 * NOTE: no locks must be held, the rwsem is taken inside this function.
1602 */
1603 static int semctl_down(struct ipc_namespace *ns, int semid,
1604 int cmd, struct semid64_ds *semid64)
1605 {
1606 struct sem_array *sma;
1607 int err;
1608 struct kern_ipc_perm *ipcp;
1609
1610 down_write(&sem_ids(ns).rwsem);
1611 rcu_read_lock();
1612
1613 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1614 &semid64->sem_perm, 0);
1615 if (IS_ERR(ipcp)) {
1616 err = PTR_ERR(ipcp);
1617 goto out_unlock1;
1618 }
1619
1620 sma = container_of(ipcp, struct sem_array, sem_perm);
1621
1622 err = security_sem_semctl(&sma->sem_perm, cmd);
1623 if (err)
1624 goto out_unlock1;
1625
1626 switch (cmd) {
1627 case IPC_RMID:
1628 sem_lock(sma, NULL, -1);
1629 /* freeary unlocks the ipc object and rcu */
1630 freeary(ns, ipcp);
1631 goto out_up;
1632 case IPC_SET:
1633 sem_lock(sma, NULL, -1);
1634 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1635 if (err)
1636 goto out_unlock0;
1637 sma->sem_ctime = ktime_get_real_seconds();
1638 break;
1639 default:
1640 err = -EINVAL;
1641 goto out_unlock1;
1642 }
1643
1644 out_unlock0:
1645 sem_unlock(sma, -1);
1646 out_unlock1:
1647 rcu_read_unlock();
1648 out_up:
1649 up_write(&sem_ids(ns).rwsem);
1650 return err;
1651 }
1652
1653 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1654 {
1655 struct ipc_namespace *ns;
1656 void __user *p = (void __user *)arg;
1657 struct semid64_ds semid64;
1658 int err;
1659
1660 if (semid < 0)
1661 return -EINVAL;
1662
1663 ns = current->nsproxy->ipc_ns;
1664
1665 switch (cmd) {
1666 case IPC_INFO:
1667 case SEM_INFO:
1668 return semctl_info(ns, semid, cmd, p);
1669 case IPC_STAT:
1670 case SEM_STAT:
1671 case SEM_STAT_ANY:
1672 err = semctl_stat(ns, semid, cmd, &semid64);
1673 if (err < 0)
1674 return err;
1675 if (copy_semid_to_user(p, &semid64, version))
1676 err = -EFAULT;
1677 return err;
1678 case GETALL:
1679 case GETVAL:
1680 case GETPID:
1681 case GETNCNT:
1682 case GETZCNT:
1683 case SETALL:
1684 return semctl_main(ns, semid, semnum, cmd, p);
1685 case SETVAL: {
1686 int val;
1687 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1688 /* big-endian 64bit */
1689 val = arg >> 32;
1690 #else
1691 /* 32bit or little-endian 64bit */
1692 val = arg;
1693 #endif
1694 return semctl_setval(ns, semid, semnum, val);
1695 }
1696 case IPC_SET:
1697 if (copy_semid_from_user(&semid64, p, version))
1698 return -EFAULT;
1699 fallthrough;
1700 case IPC_RMID:
1701 return semctl_down(ns, semid, cmd, &semid64);
1702 default:
1703 return -EINVAL;
1704 }
1705 }
1706
1707 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1708 {
1709 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1710 }
1711
1712 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1713 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1714 {
1715 int version = ipc_parse_version(&cmd);
1716
1717 return ksys_semctl(semid, semnum, cmd, arg, version);
1718 }
1719
1720 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1721 {
1722 return ksys_old_semctl(semid, semnum, cmd, arg);
1723 }
1724 #endif
1725
1726 #ifdef CONFIG_COMPAT
1727
1728 struct compat_semid_ds {
1729 struct compat_ipc_perm sem_perm;
1730 old_time32_t sem_otime;
1731 old_time32_t sem_ctime;
1732 compat_uptr_t sem_base;
1733 compat_uptr_t sem_pending;
1734 compat_uptr_t sem_pending_last;
1735 compat_uptr_t undo;
1736 unsigned short sem_nsems;
1737 };
1738
1739 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1740 int version)
1741 {
1742 memset(out, 0, sizeof(*out));
1743 if (version == IPC_64) {
1744 struct compat_semid64_ds __user *p = buf;
1745 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1746 } else {
1747 struct compat_semid_ds __user *p = buf;
1748 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1749 }
1750 }
1751
1752 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1753 int version)
1754 {
1755 if (version == IPC_64) {
1756 struct compat_semid64_ds v;
1757 memset(&v, 0, sizeof(v));
1758 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1759 v.sem_otime = lower_32_bits(in->sem_otime);
1760 v.sem_otime_high = upper_32_bits(in->sem_otime);
1761 v.sem_ctime = lower_32_bits(in->sem_ctime);
1762 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1763 v.sem_nsems = in->sem_nsems;
1764 return copy_to_user(buf, &v, sizeof(v));
1765 } else {
1766 struct compat_semid_ds v;
1767 memset(&v, 0, sizeof(v));
1768 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1769 v.sem_otime = in->sem_otime;
1770 v.sem_ctime = in->sem_ctime;
1771 v.sem_nsems = in->sem_nsems;
1772 return copy_to_user(buf, &v, sizeof(v));
1773 }
1774 }
1775
1776 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1777 {
1778 void __user *p = compat_ptr(arg);
1779 struct ipc_namespace *ns;
1780 struct semid64_ds semid64;
1781 int err;
1782
1783 ns = current->nsproxy->ipc_ns;
1784
1785 if (semid < 0)
1786 return -EINVAL;
1787
1788 switch (cmd & (~IPC_64)) {
1789 case IPC_INFO:
1790 case SEM_INFO:
1791 return semctl_info(ns, semid, cmd, p);
1792 case IPC_STAT:
1793 case SEM_STAT:
1794 case SEM_STAT_ANY:
1795 err = semctl_stat(ns, semid, cmd, &semid64);
1796 if (err < 0)
1797 return err;
1798 if (copy_compat_semid_to_user(p, &semid64, version))
1799 err = -EFAULT;
1800 return err;
1801 case GETVAL:
1802 case GETPID:
1803 case GETNCNT:
1804 case GETZCNT:
1805 case GETALL:
1806 case SETALL:
1807 return semctl_main(ns, semid, semnum, cmd, p);
1808 case SETVAL:
1809 return semctl_setval(ns, semid, semnum, arg);
1810 case IPC_SET:
1811 if (copy_compat_semid_from_user(&semid64, p, version))
1812 return -EFAULT;
1813 fallthrough;
1814 case IPC_RMID:
1815 return semctl_down(ns, semid, cmd, &semid64);
1816 default:
1817 return -EINVAL;
1818 }
1819 }
1820
1821 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1822 {
1823 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1824 }
1825
1826 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1827 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1828 {
1829 int version = compat_ipc_parse_version(&cmd);
1830
1831 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1832 }
1833
1834 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1835 {
1836 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1837 }
1838 #endif
1839 #endif
1840
1841 /* If the task doesn't already have a undo_list, then allocate one
1842 * here. We guarantee there is only one thread using this undo list,
1843 * and current is THE ONE
1844 *
1845 * If this allocation and assignment succeeds, but later
1846 * portions of this code fail, there is no need to free the sem_undo_list.
1847 * Just let it stay associated with the task, and it'll be freed later
1848 * at exit time.
1849 *
1850 * This can block, so callers must hold no locks.
1851 */
1852 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1853 {
1854 struct sem_undo_list *undo_list;
1855
1856 undo_list = current->sysvsem.undo_list;
1857 if (!undo_list) {
1858 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1859 if (undo_list == NULL)
1860 return -ENOMEM;
1861 spin_lock_init(&undo_list->lock);
1862 refcount_set(&undo_list->refcnt, 1);
1863 INIT_LIST_HEAD(&undo_list->list_proc);
1864
1865 current->sysvsem.undo_list = undo_list;
1866 }
1867 *undo_listp = undo_list;
1868 return 0;
1869 }
1870
1871 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1872 {
1873 struct sem_undo *un;
1874
1875 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1876 spin_is_locked(&ulp->lock)) {
1877 if (un->semid == semid)
1878 return un;
1879 }
1880 return NULL;
1881 }
1882
1883 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1884 {
1885 struct sem_undo *un;
1886
1887 assert_spin_locked(&ulp->lock);
1888
1889 un = __lookup_undo(ulp, semid);
1890 if (un) {
1891 list_del_rcu(&un->list_proc);
1892 list_add_rcu(&un->list_proc, &ulp->list_proc);
1893 }
1894 return un;
1895 }
1896
1897 /**
1898 * find_alloc_undo - lookup (and if not present create) undo array
1899 * @ns: namespace
1900 * @semid: semaphore array id
1901 *
1902 * The function looks up (and if not present creates) the undo structure.
1903 * The size of the undo structure depends on the size of the semaphore
1904 * array, thus the alloc path is not that straightforward.
1905 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1906 * performs a rcu_read_lock().
1907 */
1908 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1909 {
1910 struct sem_array *sma;
1911 struct sem_undo_list *ulp;
1912 struct sem_undo *un, *new;
1913 int nsems, error;
1914
1915 error = get_undo_list(&ulp);
1916 if (error)
1917 return ERR_PTR(error);
1918
1919 rcu_read_lock();
1920 spin_lock(&ulp->lock);
1921 un = lookup_undo(ulp, semid);
1922 spin_unlock(&ulp->lock);
1923 if (likely(un != NULL))
1924 goto out;
1925
1926 /* no undo structure around - allocate one. */
1927 /* step 1: figure out the size of the semaphore array */
1928 sma = sem_obtain_object_check(ns, semid);
1929 if (IS_ERR(sma)) {
1930 rcu_read_unlock();
1931 return ERR_CAST(sma);
1932 }
1933
1934 nsems = sma->sem_nsems;
1935 if (!ipc_rcu_getref(&sma->sem_perm)) {
1936 rcu_read_unlock();
1937 un = ERR_PTR(-EIDRM);
1938 goto out;
1939 }
1940 rcu_read_unlock();
1941
1942 /* step 2: allocate new undo structure */
1943 new = kvzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems,
1944 GFP_KERNEL_ACCOUNT);
1945 if (!new) {
1946 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1947 return ERR_PTR(-ENOMEM);
1948 }
1949
1950 /* step 3: Acquire the lock on semaphore array */
1951 rcu_read_lock();
1952 sem_lock_and_putref(sma);
1953 if (!ipc_valid_object(&sma->sem_perm)) {
1954 sem_unlock(sma, -1);
1955 rcu_read_unlock();
1956 kvfree(new);
1957 un = ERR_PTR(-EIDRM);
1958 goto out;
1959 }
1960 spin_lock(&ulp->lock);
1961
1962 /*
1963 * step 4: check for races: did someone else allocate the undo struct?
1964 */
1965 un = lookup_undo(ulp, semid);
1966 if (un) {
1967 kvfree(new);
1968 goto success;
1969 }
1970 /* step 5: initialize & link new undo structure */
1971 new->semadj = (short *) &new[1];
1972 new->ulp = ulp;
1973 new->semid = semid;
1974 assert_spin_locked(&ulp->lock);
1975 list_add_rcu(&new->list_proc, &ulp->list_proc);
1976 ipc_assert_locked_object(&sma->sem_perm);
1977 list_add(&new->list_id, &sma->list_id);
1978 un = new;
1979
1980 success:
1981 spin_unlock(&ulp->lock);
1982 sem_unlock(sma, -1);
1983 out:
1984 return un;
1985 }
1986
1987 long __do_semtimedop(int semid, struct sembuf *sops,
1988 unsigned nsops, const struct timespec64 *timeout,
1989 struct ipc_namespace *ns)
1990 {
1991 int error = -EINVAL;
1992 struct sem_array *sma;
1993 struct sembuf *sop;
1994 struct sem_undo *un;
1995 int max, locknum;
1996 bool undos = false, alter = false, dupsop = false;
1997 struct sem_queue queue;
1998 unsigned long dup = 0, jiffies_left = 0;
1999
2000 if (nsops < 1 || semid < 0)
2001 return -EINVAL;
2002 if (nsops > ns->sc_semopm)
2003 return -E2BIG;
2004
2005 if (timeout) {
2006 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2007 timeout->tv_nsec >= 1000000000L) {
2008 error = -EINVAL;
2009 goto out;
2010 }
2011 jiffies_left = timespec64_to_jiffies(timeout);
2012 }
2013
2014
2015 max = 0;
2016 for (sop = sops; sop < sops + nsops; sop++) {
2017 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2018
2019 if (sop->sem_num >= max)
2020 max = sop->sem_num;
2021 if (sop->sem_flg & SEM_UNDO)
2022 undos = true;
2023 if (dup & mask) {
2024 /*
2025 * There was a previous alter access that appears
2026 * to have accessed the same semaphore, thus use
2027 * the dupsop logic. "appears", because the detection
2028 * can only check % BITS_PER_LONG.
2029 */
2030 dupsop = true;
2031 }
2032 if (sop->sem_op != 0) {
2033 alter = true;
2034 dup |= mask;
2035 }
2036 }
2037
2038 if (undos) {
2039 /* On success, find_alloc_undo takes the rcu_read_lock */
2040 un = find_alloc_undo(ns, semid);
2041 if (IS_ERR(un)) {
2042 error = PTR_ERR(un);
2043 goto out;
2044 }
2045 } else {
2046 un = NULL;
2047 rcu_read_lock();
2048 }
2049
2050 sma = sem_obtain_object_check(ns, semid);
2051 if (IS_ERR(sma)) {
2052 rcu_read_unlock();
2053 error = PTR_ERR(sma);
2054 goto out;
2055 }
2056
2057 error = -EFBIG;
2058 if (max >= sma->sem_nsems) {
2059 rcu_read_unlock();
2060 goto out;
2061 }
2062
2063 error = -EACCES;
2064 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2065 rcu_read_unlock();
2066 goto out;
2067 }
2068
2069 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2070 if (error) {
2071 rcu_read_unlock();
2072 goto out;
2073 }
2074
2075 error = -EIDRM;
2076 locknum = sem_lock(sma, sops, nsops);
2077 /*
2078 * We eventually might perform the following check in a lockless
2079 * fashion, considering ipc_valid_object() locking constraints.
2080 * If nsops == 1 and there is no contention for sem_perm.lock, then
2081 * only a per-semaphore lock is held and it's OK to proceed with the
2082 * check below. More details on the fine grained locking scheme
2083 * entangled here and why it's RMID race safe on comments at sem_lock()
2084 */
2085 if (!ipc_valid_object(&sma->sem_perm))
2086 goto out_unlock;
2087 /*
2088 * semid identifiers are not unique - find_alloc_undo may have
2089 * allocated an undo structure, it was invalidated by an RMID
2090 * and now a new array with received the same id. Check and fail.
2091 * This case can be detected checking un->semid. The existence of
2092 * "un" itself is guaranteed by rcu.
2093 */
2094 if (un && un->semid == -1)
2095 goto out_unlock;
2096
2097 queue.sops = sops;
2098 queue.nsops = nsops;
2099 queue.undo = un;
2100 queue.pid = task_tgid(current);
2101 queue.alter = alter;
2102 queue.dupsop = dupsop;
2103
2104 error = perform_atomic_semop(sma, &queue);
2105 if (error == 0) { /* non-blocking successful path */
2106 DEFINE_WAKE_Q(wake_q);
2107
2108 /*
2109 * If the operation was successful, then do
2110 * the required updates.
2111 */
2112 if (alter)
2113 do_smart_update(sma, sops, nsops, 1, &wake_q);
2114 else
2115 set_semotime(sma, sops);
2116
2117 sem_unlock(sma, locknum);
2118 rcu_read_unlock();
2119 wake_up_q(&wake_q);
2120
2121 goto out;
2122 }
2123 if (error < 0) /* non-blocking error path */
2124 goto out_unlock;
2125
2126 /*
2127 * We need to sleep on this operation, so we put the current
2128 * task into the pending queue and go to sleep.
2129 */
2130 if (nsops == 1) {
2131 struct sem *curr;
2132 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2133 curr = &sma->sems[idx];
2134
2135 if (alter) {
2136 if (sma->complex_count) {
2137 list_add_tail(&queue.list,
2138 &sma->pending_alter);
2139 } else {
2140
2141 list_add_tail(&queue.list,
2142 &curr->pending_alter);
2143 }
2144 } else {
2145 list_add_tail(&queue.list, &curr->pending_const);
2146 }
2147 } else {
2148 if (!sma->complex_count)
2149 merge_queues(sma);
2150
2151 if (alter)
2152 list_add_tail(&queue.list, &sma->pending_alter);
2153 else
2154 list_add_tail(&queue.list, &sma->pending_const);
2155
2156 sma->complex_count++;
2157 }
2158
2159 do {
2160 /* memory ordering ensured by the lock in sem_lock() */
2161 WRITE_ONCE(queue.status, -EINTR);
2162 queue.sleeper = current;
2163
2164 /* memory ordering is ensured by the lock in sem_lock() */
2165 __set_current_state(TASK_INTERRUPTIBLE);
2166 sem_unlock(sma, locknum);
2167 rcu_read_unlock();
2168
2169 if (timeout)
2170 jiffies_left = schedule_timeout(jiffies_left);
2171 else
2172 schedule();
2173
2174 /*
2175 * fastpath: the semop has completed, either successfully or
2176 * not, from the syscall pov, is quite irrelevant to us at this
2177 * point; we're done.
2178 *
2179 * We _do_ care, nonetheless, about being awoken by a signal or
2180 * spuriously. The queue.status is checked again in the
2181 * slowpath (aka after taking sem_lock), such that we can detect
2182 * scenarios where we were awakened externally, during the
2183 * window between wake_q_add() and wake_up_q().
2184 */
2185 error = READ_ONCE(queue.status);
2186 if (error != -EINTR) {
2187 /* see SEM_BARRIER_2 for purpose/pairing */
2188 smp_acquire__after_ctrl_dep();
2189 goto out;
2190 }
2191
2192 rcu_read_lock();
2193 locknum = sem_lock(sma, sops, nsops);
2194
2195 if (!ipc_valid_object(&sma->sem_perm))
2196 goto out_unlock;
2197
2198 /*
2199 * No necessity for any barrier: We are protect by sem_lock()
2200 */
2201 error = READ_ONCE(queue.status);
2202
2203 /*
2204 * If queue.status != -EINTR we are woken up by another process.
2205 * Leave without unlink_queue(), but with sem_unlock().
2206 */
2207 if (error != -EINTR)
2208 goto out_unlock;
2209
2210 /*
2211 * If an interrupt occurred we have to clean up the queue.
2212 */
2213 if (timeout && jiffies_left == 0)
2214 error = -EAGAIN;
2215 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2216
2217 unlink_queue(sma, &queue);
2218
2219 out_unlock:
2220 sem_unlock(sma, locknum);
2221 rcu_read_unlock();
2222 out:
2223 return error;
2224 }
2225
2226 static long do_semtimedop(int semid, struct sembuf __user *tsops,
2227 unsigned nsops, const struct timespec64 *timeout)
2228 {
2229 struct sembuf fast_sops[SEMOPM_FAST];
2230 struct sembuf *sops = fast_sops;
2231 struct ipc_namespace *ns;
2232 int ret;
2233
2234 ns = current->nsproxy->ipc_ns;
2235 if (nsops > ns->sc_semopm)
2236 return -E2BIG;
2237 if (nsops < 1)
2238 return -EINVAL;
2239
2240 if (nsops > SEMOPM_FAST) {
2241 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL_ACCOUNT);
2242 if (sops == NULL)
2243 return -ENOMEM;
2244 }
2245
2246 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2247 ret = -EFAULT;
2248 goto out_free;
2249 }
2250
2251 ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2252
2253 out_free:
2254 if (sops != fast_sops)
2255 kvfree(sops);
2256
2257 return ret;
2258 }
2259
2260 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2261 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2262 {
2263 if (timeout) {
2264 struct timespec64 ts;
2265 if (get_timespec64(&ts, timeout))
2266 return -EFAULT;
2267 return do_semtimedop(semid, tsops, nsops, &ts);
2268 }
2269 return do_semtimedop(semid, tsops, nsops, NULL);
2270 }
2271
2272 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2273 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2274 {
2275 return ksys_semtimedop(semid, tsops, nsops, timeout);
2276 }
2277
2278 #ifdef CONFIG_COMPAT_32BIT_TIME
2279 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2280 unsigned int nsops,
2281 const struct old_timespec32 __user *timeout)
2282 {
2283 if (timeout) {
2284 struct timespec64 ts;
2285 if (get_old_timespec32(&ts, timeout))
2286 return -EFAULT;
2287 return do_semtimedop(semid, tsems, nsops, &ts);
2288 }
2289 return do_semtimedop(semid, tsems, nsops, NULL);
2290 }
2291
2292 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2293 unsigned int, nsops,
2294 const struct old_timespec32 __user *, timeout)
2295 {
2296 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2297 }
2298 #endif
2299
2300 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2301 unsigned, nsops)
2302 {
2303 return do_semtimedop(semid, tsops, nsops, NULL);
2304 }
2305
2306 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2307 * parent and child tasks.
2308 */
2309
2310 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2311 {
2312 struct sem_undo_list *undo_list;
2313 int error;
2314
2315 if (clone_flags & CLONE_SYSVSEM) {
2316 error = get_undo_list(&undo_list);
2317 if (error)
2318 return error;
2319 refcount_inc(&undo_list->refcnt);
2320 tsk->sysvsem.undo_list = undo_list;
2321 } else
2322 tsk->sysvsem.undo_list = NULL;
2323
2324 return 0;
2325 }
2326
2327 /*
2328 * add semadj values to semaphores, free undo structures.
2329 * undo structures are not freed when semaphore arrays are destroyed
2330 * so some of them may be out of date.
2331 * IMPLEMENTATION NOTE: There is some confusion over whether the
2332 * set of adjustments that needs to be done should be done in an atomic
2333 * manner or not. That is, if we are attempting to decrement the semval
2334 * should we queue up and wait until we can do so legally?
2335 * The original implementation attempted to do this (queue and wait).
2336 * The current implementation does not do so. The POSIX standard
2337 * and SVID should be consulted to determine what behavior is mandated.
2338 */
2339 void exit_sem(struct task_struct *tsk)
2340 {
2341 struct sem_undo_list *ulp;
2342
2343 ulp = tsk->sysvsem.undo_list;
2344 if (!ulp)
2345 return;
2346 tsk->sysvsem.undo_list = NULL;
2347
2348 if (!refcount_dec_and_test(&ulp->refcnt))
2349 return;
2350
2351 for (;;) {
2352 struct sem_array *sma;
2353 struct sem_undo *un;
2354 int semid, i;
2355 DEFINE_WAKE_Q(wake_q);
2356
2357 cond_resched();
2358
2359 rcu_read_lock();
2360 un = list_entry_rcu(ulp->list_proc.next,
2361 struct sem_undo, list_proc);
2362 if (&un->list_proc == &ulp->list_proc) {
2363 /*
2364 * We must wait for freeary() before freeing this ulp,
2365 * in case we raced with last sem_undo. There is a small
2366 * possibility where we exit while freeary() didn't
2367 * finish unlocking sem_undo_list.
2368 */
2369 spin_lock(&ulp->lock);
2370 spin_unlock(&ulp->lock);
2371 rcu_read_unlock();
2372 break;
2373 }
2374 spin_lock(&ulp->lock);
2375 semid = un->semid;
2376 spin_unlock(&ulp->lock);
2377
2378 /* exit_sem raced with IPC_RMID, nothing to do */
2379 if (semid == -1) {
2380 rcu_read_unlock();
2381 continue;
2382 }
2383
2384 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2385 /* exit_sem raced with IPC_RMID, nothing to do */
2386 if (IS_ERR(sma)) {
2387 rcu_read_unlock();
2388 continue;
2389 }
2390
2391 sem_lock(sma, NULL, -1);
2392 /* exit_sem raced with IPC_RMID, nothing to do */
2393 if (!ipc_valid_object(&sma->sem_perm)) {
2394 sem_unlock(sma, -1);
2395 rcu_read_unlock();
2396 continue;
2397 }
2398 un = __lookup_undo(ulp, semid);
2399 if (un == NULL) {
2400 /* exit_sem raced with IPC_RMID+semget() that created
2401 * exactly the same semid. Nothing to do.
2402 */
2403 sem_unlock(sma, -1);
2404 rcu_read_unlock();
2405 continue;
2406 }
2407
2408 /* remove un from the linked lists */
2409 ipc_assert_locked_object(&sma->sem_perm);
2410 list_del(&un->list_id);
2411
2412 spin_lock(&ulp->lock);
2413 list_del_rcu(&un->list_proc);
2414 spin_unlock(&ulp->lock);
2415
2416 /* perform adjustments registered in un */
2417 for (i = 0; i < sma->sem_nsems; i++) {
2418 struct sem *semaphore = &sma->sems[i];
2419 if (un->semadj[i]) {
2420 semaphore->semval += un->semadj[i];
2421 /*
2422 * Range checks of the new semaphore value,
2423 * not defined by sus:
2424 * - Some unices ignore the undo entirely
2425 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2426 * - some cap the value (e.g. FreeBSD caps
2427 * at 0, but doesn't enforce SEMVMX)
2428 *
2429 * Linux caps the semaphore value, both at 0
2430 * and at SEMVMX.
2431 *
2432 * Manfred <manfred@colorfullife.com>
2433 */
2434 if (semaphore->semval < 0)
2435 semaphore->semval = 0;
2436 if (semaphore->semval > SEMVMX)
2437 semaphore->semval = SEMVMX;
2438 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2439 }
2440 }
2441 /* maybe some queued-up processes were waiting for this */
2442 do_smart_update(sma, NULL, 0, 1, &wake_q);
2443 sem_unlock(sma, -1);
2444 rcu_read_unlock();
2445 wake_up_q(&wake_q);
2446
2447 kvfree_rcu(un, rcu);
2448 }
2449 kfree(ulp);
2450 }
2451
2452 #ifdef CONFIG_PROC_FS
2453 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2454 {
2455 struct user_namespace *user_ns = seq_user_ns(s);
2456 struct kern_ipc_perm *ipcp = it;
2457 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2458 time64_t sem_otime;
2459
2460 /*
2461 * The proc interface isn't aware of sem_lock(), it calls
2462 * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2463 * (in sysvipc_find_ipc)
2464 * In order to stay compatible with sem_lock(), we must
2465 * enter / leave complex_mode.
2466 */
2467 complexmode_enter(sma);
2468
2469 sem_otime = get_semotime(sma);
2470
2471 seq_printf(s,
2472 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2473 sma->sem_perm.key,
2474 sma->sem_perm.id,
2475 sma->sem_perm.mode,
2476 sma->sem_nsems,
2477 from_kuid_munged(user_ns, sma->sem_perm.uid),
2478 from_kgid_munged(user_ns, sma->sem_perm.gid),
2479 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2480 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2481 sem_otime,
2482 sma->sem_ctime);
2483
2484 complexmode_tryleave(sma);
2485
2486 return 0;
2487 }
2488 #endif