]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/audit.c
net/mlx5e: Do not produce metadata freelist entries in Tx port ts WQE xmit
[thirdparty/kernel/stable.git] / kernel / audit.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60
61 #include "audit.h"
62
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64 * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED -1
66 #define AUDIT_UNINITIALIZED 0
67 #define AUDIT_INITIALIZED 1
68 static int audit_initialized = AUDIT_UNINITIALIZED;
69
70 u32 audit_enabled = AUDIT_OFF;
71 bool audit_ever_enabled = !!AUDIT_OFF;
72
73 EXPORT_SYMBOL_GPL(audit_enabled);
74
75 /* Default state when kernel boots without any parameters. */
76 static u32 audit_default = AUDIT_OFF;
77
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32 audit_failure = AUDIT_FAIL_PRINTK;
80
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83
84 /**
85 * struct audit_net - audit private network namespace data
86 * @sk: communication socket
87 */
88 struct audit_net {
89 struct sock *sk;
90 };
91
92 /**
93 * struct auditd_connection - kernel/auditd connection state
94 * @pid: auditd PID
95 * @portid: netlink portid
96 * @net: the associated network namespace
97 * @rcu: RCU head
98 *
99 * Description:
100 * This struct is RCU protected; you must either hold the RCU lock for reading
101 * or the associated spinlock for writing.
102 */
103 struct auditd_connection {
104 struct pid *pid;
105 u32 portid;
106 struct net *net;
107 struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113 * to that number per second. This prevents DoS attacks, but results in
114 * audit records being dropped. */
115 static u32 audit_rate_limit;
116
117 /* Number of outstanding audit_buffers allowed.
118 * When set to zero, this means unlimited. */
119 static u32 audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t audit_sig_uid = INVALID_UID;
125 static pid_t audit_sig_pid = -1;
126 static u32 audit_sig_sid;
127
128 /* Records can be lost in several ways:
129 0) [suppressed in audit_alloc]
130 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131 2) out of memory in audit_log_move [alloc_skb]
132 3) suppressed due to audit_rate_limit
133 4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t audit_lost = ATOMIC_INIT(0);
136
137 /* Monotonically increasing sum of time the kernel has spent
138 * waiting while the backlog limit is exceeded.
139 */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145 static struct kmem_cache *audit_buffer_cache;
146
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 .mask = -1,
163 .features = 0,
164 .lock = 0,};
165
166 static char *audit_feature_names[2] = {
167 "only_unset_loginuid",
168 "loginuid_immutable",
169 };
170
171 /**
172 * struct audit_ctl_mutex - serialize requests from userspace
173 * @lock: the mutex used for locking
174 * @owner: the task which owns the lock
175 *
176 * Description:
177 * This is the lock struct used to ensure we only process userspace requests
178 * in an orderly fashion. We can't simply use a mutex/lock here because we
179 * need to track lock ownership so we don't end up blocking the lock owner in
180 * audit_log_start() or similar.
181 */
182 static struct audit_ctl_mutex {
183 struct mutex lock;
184 void *owner;
185 } audit_cmd_mutex;
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * audit_ctl_lock - Take the audit control lock
231 */
232 void audit_ctl_lock(void)
233 {
234 mutex_lock(&audit_cmd_mutex.lock);
235 audit_cmd_mutex.owner = current;
236 }
237
238 /**
239 * audit_ctl_unlock - Drop the audit control lock
240 */
241 void audit_ctl_unlock(void)
242 {
243 audit_cmd_mutex.owner = NULL;
244 mutex_unlock(&audit_cmd_mutex.lock);
245 }
246
247 /**
248 * audit_ctl_owner_current - Test to see if the current task owns the lock
249 *
250 * Description:
251 * Return true if the current task owns the audit control lock, false if it
252 * doesn't own the lock.
253 */
254 static bool audit_ctl_owner_current(void)
255 {
256 return (current == audit_cmd_mutex.owner);
257 }
258
259 /**
260 * auditd_pid_vnr - Return the auditd PID relative to the namespace
261 *
262 * Description:
263 * Returns the PID in relation to the namespace, 0 on failure.
264 */
265 static pid_t auditd_pid_vnr(void)
266 {
267 pid_t pid;
268 const struct auditd_connection *ac;
269
270 rcu_read_lock();
271 ac = rcu_dereference(auditd_conn);
272 if (!ac || !ac->pid)
273 pid = 0;
274 else
275 pid = pid_vnr(ac->pid);
276 rcu_read_unlock();
277
278 return pid;
279 }
280
281 /**
282 * audit_get_sk - Return the audit socket for the given network namespace
283 * @net: the destination network namespace
284 *
285 * Description:
286 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
287 * that a reference is held for the network namespace while the sock is in use.
288 */
289 static struct sock *audit_get_sk(const struct net *net)
290 {
291 struct audit_net *aunet;
292
293 if (!net)
294 return NULL;
295
296 aunet = net_generic(net, audit_net_id);
297 return aunet->sk;
298 }
299
300 void audit_panic(const char *message)
301 {
302 switch (audit_failure) {
303 case AUDIT_FAIL_SILENT:
304 break;
305 case AUDIT_FAIL_PRINTK:
306 if (printk_ratelimit())
307 pr_err("%s\n", message);
308 break;
309 case AUDIT_FAIL_PANIC:
310 panic("audit: %s\n", message);
311 break;
312 }
313 }
314
315 static inline int audit_rate_check(void)
316 {
317 static unsigned long last_check = 0;
318 static int messages = 0;
319 static DEFINE_SPINLOCK(lock);
320 unsigned long flags;
321 unsigned long now;
322 int retval = 0;
323
324 if (!audit_rate_limit)
325 return 1;
326
327 spin_lock_irqsave(&lock, flags);
328 if (++messages < audit_rate_limit) {
329 retval = 1;
330 } else {
331 now = jiffies;
332 if (time_after(now, last_check + HZ)) {
333 last_check = now;
334 messages = 0;
335 retval = 1;
336 }
337 }
338 spin_unlock_irqrestore(&lock, flags);
339
340 return retval;
341 }
342
343 /**
344 * audit_log_lost - conditionally log lost audit message event
345 * @message: the message stating reason for lost audit message
346 *
347 * Emit at least 1 message per second, even if audit_rate_check is
348 * throttling.
349 * Always increment the lost messages counter.
350 */
351 void audit_log_lost(const char *message)
352 {
353 static unsigned long last_msg = 0;
354 static DEFINE_SPINLOCK(lock);
355 unsigned long flags;
356 unsigned long now;
357 int print;
358
359 atomic_inc(&audit_lost);
360
361 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363 if (!print) {
364 spin_lock_irqsave(&lock, flags);
365 now = jiffies;
366 if (time_after(now, last_msg + HZ)) {
367 print = 1;
368 last_msg = now;
369 }
370 spin_unlock_irqrestore(&lock, flags);
371 }
372
373 if (print) {
374 if (printk_ratelimit())
375 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376 atomic_read(&audit_lost),
377 audit_rate_limit,
378 audit_backlog_limit);
379 audit_panic(message);
380 }
381 }
382
383 static int audit_log_config_change(char *function_name, u32 new, u32 old,
384 int allow_changes)
385 {
386 struct audit_buffer *ab;
387 int rc = 0;
388
389 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390 if (unlikely(!ab))
391 return rc;
392 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393 audit_log_session_info(ab);
394 rc = audit_log_task_context(ab);
395 if (rc)
396 allow_changes = 0; /* Something weird, deny request */
397 audit_log_format(ab, " res=%d", allow_changes);
398 audit_log_end(ab);
399 return rc;
400 }
401
402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403 {
404 int allow_changes, rc = 0;
405 u32 old = *to_change;
406
407 /* check if we are locked */
408 if (audit_enabled == AUDIT_LOCKED)
409 allow_changes = 0;
410 else
411 allow_changes = 1;
412
413 if (audit_enabled != AUDIT_OFF) {
414 rc = audit_log_config_change(function_name, new, old, allow_changes);
415 if (rc)
416 allow_changes = 0;
417 }
418
419 /* If we are allowed, make the change */
420 if (allow_changes == 1)
421 *to_change = new;
422 /* Not allowed, update reason */
423 else if (rc == 0)
424 rc = -EPERM;
425 return rc;
426 }
427
428 static int audit_set_rate_limit(u32 limit)
429 {
430 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 }
432
433 static int audit_set_backlog_limit(u32 limit)
434 {
435 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 }
437
438 static int audit_set_backlog_wait_time(u32 timeout)
439 {
440 return audit_do_config_change("audit_backlog_wait_time",
441 &audit_backlog_wait_time, timeout);
442 }
443
444 static int audit_set_enabled(u32 state)
445 {
446 int rc;
447 if (state > AUDIT_LOCKED)
448 return -EINVAL;
449
450 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
451 if (!rc)
452 audit_ever_enabled |= !!state;
453
454 return rc;
455 }
456
457 static int audit_set_failure(u32 state)
458 {
459 if (state != AUDIT_FAIL_SILENT
460 && state != AUDIT_FAIL_PRINTK
461 && state != AUDIT_FAIL_PANIC)
462 return -EINVAL;
463
464 return audit_do_config_change("audit_failure", &audit_failure, state);
465 }
466
467 /**
468 * auditd_conn_free - RCU helper to release an auditd connection struct
469 * @rcu: RCU head
470 *
471 * Description:
472 * Drop any references inside the auditd connection tracking struct and free
473 * the memory.
474 */
475 static void auditd_conn_free(struct rcu_head *rcu)
476 {
477 struct auditd_connection *ac;
478
479 ac = container_of(rcu, struct auditd_connection, rcu);
480 put_pid(ac->pid);
481 put_net(ac->net);
482 kfree(ac);
483 }
484
485 /**
486 * auditd_set - Set/Reset the auditd connection state
487 * @pid: auditd PID
488 * @portid: auditd netlink portid
489 * @net: auditd network namespace pointer
490 * @skb: the netlink command from the audit daemon
491 * @ack: netlink ack flag, cleared if ack'd here
492 *
493 * Description:
494 * This function will obtain and drop network namespace references as
495 * necessary. Returns zero on success, negative values on failure.
496 */
497 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498 struct sk_buff *skb, bool *ack)
499 {
500 unsigned long flags;
501 struct auditd_connection *ac_old, *ac_new;
502 struct nlmsghdr *nlh;
503
504 if (!pid || !net)
505 return -EINVAL;
506
507 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508 if (!ac_new)
509 return -ENOMEM;
510 ac_new->pid = get_pid(pid);
511 ac_new->portid = portid;
512 ac_new->net = get_net(net);
513
514 /* send the ack now to avoid a race with the queue backlog */
515 if (*ack) {
516 nlh = nlmsg_hdr(skb);
517 netlink_ack(skb, nlh, 0, NULL);
518 *ack = false;
519 }
520
521 spin_lock_irqsave(&auditd_conn_lock, flags);
522 ac_old = rcu_dereference_protected(auditd_conn,
523 lockdep_is_held(&auditd_conn_lock));
524 rcu_assign_pointer(auditd_conn, ac_new);
525 spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527 if (ac_old)
528 call_rcu(&ac_old->rcu, auditd_conn_free);
529
530 return 0;
531 }
532
533 /**
534 * kauditd_printk_skb - Print the audit record to the ring buffer
535 * @skb: audit record
536 *
537 * Whatever the reason, this packet may not make it to the auditd connection
538 * so write it via printk so the information isn't completely lost.
539 */
540 static void kauditd_printk_skb(struct sk_buff *skb)
541 {
542 struct nlmsghdr *nlh = nlmsg_hdr(skb);
543 char *data = nlmsg_data(nlh);
544
545 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547 }
548
549 /**
550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551 * @skb: audit record
552 * @error: error code (unused)
553 *
554 * Description:
555 * This should only be used by the kauditd_thread when it fails to flush the
556 * hold queue.
557 */
558 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559 {
560 /* put the record back in the queue */
561 skb_queue_tail(&audit_hold_queue, skb);
562 }
563
564 /**
565 * kauditd_hold_skb - Queue an audit record, waiting for auditd
566 * @skb: audit record
567 * @error: error code
568 *
569 * Description:
570 * Queue the audit record, waiting for an instance of auditd. When this
571 * function is called we haven't given up yet on sending the record, but things
572 * are not looking good. The first thing we want to do is try to write the
573 * record via printk and then see if we want to try and hold on to the record
574 * and queue it, if we have room. If we want to hold on to the record, but we
575 * don't have room, record a record lost message.
576 */
577 static void kauditd_hold_skb(struct sk_buff *skb, int error)
578 {
579 /* at this point it is uncertain if we will ever send this to auditd so
580 * try to send the message via printk before we go any further */
581 kauditd_printk_skb(skb);
582
583 /* can we just silently drop the message? */
584 if (!audit_default)
585 goto drop;
586
587 /* the hold queue is only for when the daemon goes away completely,
588 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589 * record on the retry queue unless it's full, in which case drop it
590 */
591 if (error == -EAGAIN) {
592 if (!audit_backlog_limit ||
593 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594 skb_queue_tail(&audit_retry_queue, skb);
595 return;
596 }
597 audit_log_lost("kauditd retry queue overflow");
598 goto drop;
599 }
600
601 /* if we have room in the hold queue, queue the message */
602 if (!audit_backlog_limit ||
603 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604 skb_queue_tail(&audit_hold_queue, skb);
605 return;
606 }
607
608 /* we have no other options - drop the message */
609 audit_log_lost("kauditd hold queue overflow");
610 drop:
611 kfree_skb(skb);
612 }
613
614 /**
615 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616 * @skb: audit record
617 * @error: error code (unused)
618 *
619 * Description:
620 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621 * but for some reason we are having problems sending it audit records so
622 * queue the given record and attempt to resend.
623 */
624 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625 {
626 if (!audit_backlog_limit ||
627 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628 skb_queue_tail(&audit_retry_queue, skb);
629 return;
630 }
631
632 /* we have to drop the record, send it via printk as a last effort */
633 kauditd_printk_skb(skb);
634 audit_log_lost("kauditd retry queue overflow");
635 kfree_skb(skb);
636 }
637
638 /**
639 * auditd_reset - Disconnect the auditd connection
640 * @ac: auditd connection state
641 *
642 * Description:
643 * Break the auditd/kauditd connection and move all the queued records into the
644 * hold queue in case auditd reconnects. It is important to note that the @ac
645 * pointer should never be dereferenced inside this function as it may be NULL
646 * or invalid, you can only compare the memory address! If @ac is NULL then
647 * the connection will always be reset.
648 */
649 static void auditd_reset(const struct auditd_connection *ac)
650 {
651 unsigned long flags;
652 struct sk_buff *skb;
653 struct auditd_connection *ac_old;
654
655 /* if it isn't already broken, break the connection */
656 spin_lock_irqsave(&auditd_conn_lock, flags);
657 ac_old = rcu_dereference_protected(auditd_conn,
658 lockdep_is_held(&auditd_conn_lock));
659 if (ac && ac != ac_old) {
660 /* someone already registered a new auditd connection */
661 spin_unlock_irqrestore(&auditd_conn_lock, flags);
662 return;
663 }
664 rcu_assign_pointer(auditd_conn, NULL);
665 spin_unlock_irqrestore(&auditd_conn_lock, flags);
666
667 if (ac_old)
668 call_rcu(&ac_old->rcu, auditd_conn_free);
669
670 /* flush the retry queue to the hold queue, but don't touch the main
671 * queue since we need to process that normally for multicast */
672 while ((skb = skb_dequeue(&audit_retry_queue)))
673 kauditd_hold_skb(skb, -ECONNREFUSED);
674 }
675
676 /**
677 * auditd_send_unicast_skb - Send a record via unicast to auditd
678 * @skb: audit record
679 *
680 * Description:
681 * Send a skb to the audit daemon, returns positive/zero values on success and
682 * negative values on failure; in all cases the skb will be consumed by this
683 * function. If the send results in -ECONNREFUSED the connection with auditd
684 * will be reset. This function may sleep so callers should not hold any locks
685 * where this would cause a problem.
686 */
687 static int auditd_send_unicast_skb(struct sk_buff *skb)
688 {
689 int rc;
690 u32 portid;
691 struct net *net;
692 struct sock *sk;
693 struct auditd_connection *ac;
694
695 /* NOTE: we can't call netlink_unicast while in the RCU section so
696 * take a reference to the network namespace and grab local
697 * copies of the namespace, the sock, and the portid; the
698 * namespace and sock aren't going to go away while we hold a
699 * reference and if the portid does become invalid after the RCU
700 * section netlink_unicast() should safely return an error */
701
702 rcu_read_lock();
703 ac = rcu_dereference(auditd_conn);
704 if (!ac) {
705 rcu_read_unlock();
706 kfree_skb(skb);
707 rc = -ECONNREFUSED;
708 goto err;
709 }
710 net = get_net(ac->net);
711 sk = audit_get_sk(net);
712 portid = ac->portid;
713 rcu_read_unlock();
714
715 rc = netlink_unicast(sk, skb, portid, 0);
716 put_net(net);
717 if (rc < 0)
718 goto err;
719
720 return rc;
721
722 err:
723 if (ac && rc == -ECONNREFUSED)
724 auditd_reset(ac);
725 return rc;
726 }
727
728 /**
729 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730 * @sk: the sending sock
731 * @portid: the netlink destination
732 * @queue: the skb queue to process
733 * @retry_limit: limit on number of netlink unicast failures
734 * @skb_hook: per-skb hook for additional processing
735 * @err_hook: hook called if the skb fails the netlink unicast send
736 *
737 * Description:
738 * Run through the given queue and attempt to send the audit records to auditd,
739 * returns zero on success, negative values on failure. It is up to the caller
740 * to ensure that the @sk is valid for the duration of this function.
741 *
742 */
743 static int kauditd_send_queue(struct sock *sk, u32 portid,
744 struct sk_buff_head *queue,
745 unsigned int retry_limit,
746 void (*skb_hook)(struct sk_buff *skb),
747 void (*err_hook)(struct sk_buff *skb, int error))
748 {
749 int rc = 0;
750 struct sk_buff *skb = NULL;
751 struct sk_buff *skb_tail;
752 unsigned int failed = 0;
753
754 /* NOTE: kauditd_thread takes care of all our locking, we just use
755 * the netlink info passed to us (e.g. sk and portid) */
756
757 skb_tail = skb_peek_tail(queue);
758 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759 /* call the skb_hook for each skb we touch */
760 if (skb_hook)
761 (*skb_hook)(skb);
762
763 /* can we send to anyone via unicast? */
764 if (!sk) {
765 if (err_hook)
766 (*err_hook)(skb, -ECONNREFUSED);
767 continue;
768 }
769
770 retry:
771 /* grab an extra skb reference in case of error */
772 skb_get(skb);
773 rc = netlink_unicast(sk, skb, portid, 0);
774 if (rc < 0) {
775 /* send failed - try a few times unless fatal error */
776 if (++failed >= retry_limit ||
777 rc == -ECONNREFUSED || rc == -EPERM) {
778 sk = NULL;
779 if (err_hook)
780 (*err_hook)(skb, rc);
781 if (rc == -EAGAIN)
782 rc = 0;
783 /* continue to drain the queue */
784 continue;
785 } else
786 goto retry;
787 } else {
788 /* skb sent - drop the extra reference and continue */
789 consume_skb(skb);
790 failed = 0;
791 }
792 }
793
794 return (rc >= 0 ? 0 : rc);
795 }
796
797 /*
798 * kauditd_send_multicast_skb - Send a record to any multicast listeners
799 * @skb: audit record
800 *
801 * Description:
802 * Write a multicast message to anyone listening in the initial network
803 * namespace. This function doesn't consume an skb as might be expected since
804 * it has to copy it anyways.
805 */
806 static void kauditd_send_multicast_skb(struct sk_buff *skb)
807 {
808 struct sk_buff *copy;
809 struct sock *sock = audit_get_sk(&init_net);
810 struct nlmsghdr *nlh;
811
812 /* NOTE: we are not taking an additional reference for init_net since
813 * we don't have to worry about it going away */
814
815 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816 return;
817
818 /*
819 * The seemingly wasteful skb_copy() rather than bumping the refcount
820 * using skb_get() is necessary because non-standard mods are made to
821 * the skb by the original kaudit unicast socket send routine. The
822 * existing auditd daemon assumes this breakage. Fixing this would
823 * require co-ordinating a change in the established protocol between
824 * the kaudit kernel subsystem and the auditd userspace code. There is
825 * no reason for new multicast clients to continue with this
826 * non-compliance.
827 */
828 copy = skb_copy(skb, GFP_KERNEL);
829 if (!copy)
830 return;
831 nlh = nlmsg_hdr(copy);
832 nlh->nlmsg_len = skb->len;
833
834 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835 }
836
837 /**
838 * kauditd_thread - Worker thread to send audit records to userspace
839 * @dummy: unused
840 */
841 static int kauditd_thread(void *dummy)
842 {
843 int rc;
844 u32 portid = 0;
845 struct net *net = NULL;
846 struct sock *sk = NULL;
847 struct auditd_connection *ac;
848
849 #define UNICAST_RETRIES 5
850
851 set_freezable();
852 while (!kthread_should_stop()) {
853 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
854 rcu_read_lock();
855 ac = rcu_dereference(auditd_conn);
856 if (!ac) {
857 rcu_read_unlock();
858 goto main_queue;
859 }
860 net = get_net(ac->net);
861 sk = audit_get_sk(net);
862 portid = ac->portid;
863 rcu_read_unlock();
864
865 /* attempt to flush the hold queue */
866 rc = kauditd_send_queue(sk, portid,
867 &audit_hold_queue, UNICAST_RETRIES,
868 NULL, kauditd_rehold_skb);
869 if (rc < 0) {
870 sk = NULL;
871 auditd_reset(ac);
872 goto main_queue;
873 }
874
875 /* attempt to flush the retry queue */
876 rc = kauditd_send_queue(sk, portid,
877 &audit_retry_queue, UNICAST_RETRIES,
878 NULL, kauditd_hold_skb);
879 if (rc < 0) {
880 sk = NULL;
881 auditd_reset(ac);
882 goto main_queue;
883 }
884
885 main_queue:
886 /* process the main queue - do the multicast send and attempt
887 * unicast, dump failed record sends to the retry queue; if
888 * sk == NULL due to previous failures we will just do the
889 * multicast send and move the record to the hold queue */
890 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891 kauditd_send_multicast_skb,
892 (sk ?
893 kauditd_retry_skb : kauditd_hold_skb));
894 if (ac && rc < 0)
895 auditd_reset(ac);
896 sk = NULL;
897
898 /* drop our netns reference, no auditd sends past this line */
899 if (net) {
900 put_net(net);
901 net = NULL;
902 }
903
904 /* we have processed all the queues so wake everyone */
905 wake_up(&audit_backlog_wait);
906
907 /* NOTE: we want to wake up if there is anything on the queue,
908 * regardless of if an auditd is connected, as we need to
909 * do the multicast send and rotate records from the
910 * main queue to the retry/hold queues */
911 wait_event_freezable(kauditd_wait,
912 (skb_queue_len(&audit_queue) ? 1 : 0));
913 }
914
915 return 0;
916 }
917
918 int audit_send_list_thread(void *_dest)
919 {
920 struct audit_netlink_list *dest = _dest;
921 struct sk_buff *skb;
922 struct sock *sk = audit_get_sk(dest->net);
923
924 /* wait for parent to finish and send an ACK */
925 audit_ctl_lock();
926 audit_ctl_unlock();
927
928 while ((skb = __skb_dequeue(&dest->q)) != NULL)
929 netlink_unicast(sk, skb, dest->portid, 0);
930
931 put_net(dest->net);
932 kfree(dest);
933
934 return 0;
935 }
936
937 struct sk_buff *audit_make_reply(int seq, int type, int done,
938 int multi, const void *payload, int size)
939 {
940 struct sk_buff *skb;
941 struct nlmsghdr *nlh;
942 void *data;
943 int flags = multi ? NLM_F_MULTI : 0;
944 int t = done ? NLMSG_DONE : type;
945
946 skb = nlmsg_new(size, GFP_KERNEL);
947 if (!skb)
948 return NULL;
949
950 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
951 if (!nlh)
952 goto out_kfree_skb;
953 data = nlmsg_data(nlh);
954 memcpy(data, payload, size);
955 return skb;
956
957 out_kfree_skb:
958 kfree_skb(skb);
959 return NULL;
960 }
961
962 static void audit_free_reply(struct audit_reply *reply)
963 {
964 if (!reply)
965 return;
966
967 kfree_skb(reply->skb);
968 if (reply->net)
969 put_net(reply->net);
970 kfree(reply);
971 }
972
973 static int audit_send_reply_thread(void *arg)
974 {
975 struct audit_reply *reply = (struct audit_reply *)arg;
976
977 audit_ctl_lock();
978 audit_ctl_unlock();
979
980 /* Ignore failure. It'll only happen if the sender goes away,
981 because our timeout is set to infinite. */
982 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983 reply->skb = NULL;
984 audit_free_reply(reply);
985 return 0;
986 }
987
988 /**
989 * audit_send_reply - send an audit reply message via netlink
990 * @request_skb: skb of request we are replying to (used to target the reply)
991 * @seq: sequence number
992 * @type: audit message type
993 * @done: done (last) flag
994 * @multi: multi-part message flag
995 * @payload: payload data
996 * @size: payload size
997 *
998 * Allocates a skb, builds the netlink message, and sends it to the port id.
999 */
1000 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001 int multi, const void *payload, int size)
1002 {
1003 struct task_struct *tsk;
1004 struct audit_reply *reply;
1005
1006 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007 if (!reply)
1008 return;
1009
1010 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011 if (!reply->skb)
1012 goto err;
1013 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014 reply->portid = NETLINK_CB(request_skb).portid;
1015
1016 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017 if (IS_ERR(tsk))
1018 goto err;
1019
1020 return;
1021
1022 err:
1023 audit_free_reply(reply);
1024 }
1025
1026 /*
1027 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028 * control messages.
1029 */
1030 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031 {
1032 int err = 0;
1033
1034 /* Only support initial user namespace for now. */
1035 /*
1036 * We return ECONNREFUSED because it tricks userspace into thinking
1037 * that audit was not configured into the kernel. Lots of users
1038 * configure their PAM stack (because that's what the distro does)
1039 * to reject login if unable to send messages to audit. If we return
1040 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041 * configured in and will let login proceed. If we return EPERM
1042 * userspace will reject all logins. This should be removed when we
1043 * support non init namespaces!!
1044 */
1045 if (current_user_ns() != &init_user_ns)
1046 return -ECONNREFUSED;
1047
1048 switch (msg_type) {
1049 case AUDIT_LIST:
1050 case AUDIT_ADD:
1051 case AUDIT_DEL:
1052 return -EOPNOTSUPP;
1053 case AUDIT_GET:
1054 case AUDIT_SET:
1055 case AUDIT_GET_FEATURE:
1056 case AUDIT_SET_FEATURE:
1057 case AUDIT_LIST_RULES:
1058 case AUDIT_ADD_RULE:
1059 case AUDIT_DEL_RULE:
1060 case AUDIT_SIGNAL_INFO:
1061 case AUDIT_TTY_GET:
1062 case AUDIT_TTY_SET:
1063 case AUDIT_TRIM:
1064 case AUDIT_MAKE_EQUIV:
1065 /* Only support auditd and auditctl in initial pid namespace
1066 * for now. */
1067 if (task_active_pid_ns(current) != &init_pid_ns)
1068 return -EPERM;
1069
1070 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071 err = -EPERM;
1072 break;
1073 case AUDIT_USER:
1074 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077 err = -EPERM;
1078 break;
1079 default: /* bad msg */
1080 err = -EINVAL;
1081 }
1082
1083 return err;
1084 }
1085
1086 static void audit_log_common_recv_msg(struct audit_context *context,
1087 struct audit_buffer **ab, u16 msg_type)
1088 {
1089 uid_t uid = from_kuid(&init_user_ns, current_uid());
1090 pid_t pid = task_tgid_nr(current);
1091
1092 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093 *ab = NULL;
1094 return;
1095 }
1096
1097 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098 if (unlikely(!*ab))
1099 return;
1100 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101 audit_log_session_info(*ab);
1102 audit_log_task_context(*ab);
1103 }
1104
1105 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106 u16 msg_type)
1107 {
1108 audit_log_common_recv_msg(NULL, ab, msg_type);
1109 }
1110
1111 static int is_audit_feature_set(int i)
1112 {
1113 return af.features & AUDIT_FEATURE_TO_MASK(i);
1114 }
1115
1116
1117 static int audit_get_feature(struct sk_buff *skb)
1118 {
1119 u32 seq;
1120
1121 seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125 return 0;
1126 }
1127
1128 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129 u32 old_lock, u32 new_lock, int res)
1130 {
1131 struct audit_buffer *ab;
1132
1133 if (audit_enabled == AUDIT_OFF)
1134 return;
1135
1136 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137 if (!ab)
1138 return;
1139 audit_log_task_info(ab);
1140 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141 audit_feature_names[which], !!old_feature, !!new_feature,
1142 !!old_lock, !!new_lock, res);
1143 audit_log_end(ab);
1144 }
1145
1146 static int audit_set_feature(struct audit_features *uaf)
1147 {
1148 int i;
1149
1150 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151
1152 /* if there is ever a version 2 we should handle that here */
1153
1154 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156 u32 old_feature, new_feature, old_lock, new_lock;
1157
1158 /* if we are not changing this feature, move along */
1159 if (!(feature & uaf->mask))
1160 continue;
1161
1162 old_feature = af.features & feature;
1163 new_feature = uaf->features & feature;
1164 new_lock = (uaf->lock | af.lock) & feature;
1165 old_lock = af.lock & feature;
1166
1167 /* are we changing a locked feature? */
1168 if (old_lock && (new_feature != old_feature)) {
1169 audit_log_feature_change(i, old_feature, new_feature,
1170 old_lock, new_lock, 0);
1171 return -EPERM;
1172 }
1173 }
1174 /* nothing invalid, do the changes */
1175 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177 u32 old_feature, new_feature, old_lock, new_lock;
1178
1179 /* if we are not changing this feature, move along */
1180 if (!(feature & uaf->mask))
1181 continue;
1182
1183 old_feature = af.features & feature;
1184 new_feature = uaf->features & feature;
1185 old_lock = af.lock & feature;
1186 new_lock = (uaf->lock | af.lock) & feature;
1187
1188 if (new_feature != old_feature)
1189 audit_log_feature_change(i, old_feature, new_feature,
1190 old_lock, new_lock, 1);
1191
1192 if (new_feature)
1193 af.features |= feature;
1194 else
1195 af.features &= ~feature;
1196 af.lock |= new_lock;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static int audit_replace(struct pid *pid)
1203 {
1204 pid_t pvnr;
1205 struct sk_buff *skb;
1206
1207 pvnr = pid_vnr(pid);
1208 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209 if (!skb)
1210 return -ENOMEM;
1211 return auditd_send_unicast_skb(skb);
1212 }
1213
1214 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215 bool *ack)
1216 {
1217 u32 seq;
1218 void *data;
1219 int data_len;
1220 int err;
1221 struct audit_buffer *ab;
1222 u16 msg_type = nlh->nlmsg_type;
1223 struct audit_sig_info *sig_data;
1224 char *ctx = NULL;
1225 u32 len;
1226
1227 err = audit_netlink_ok(skb, msg_type);
1228 if (err)
1229 return err;
1230
1231 seq = nlh->nlmsg_seq;
1232 data = nlmsg_data(nlh);
1233 data_len = nlmsg_len(nlh);
1234
1235 switch (msg_type) {
1236 case AUDIT_GET: {
1237 struct audit_status s;
1238 memset(&s, 0, sizeof(s));
1239 s.enabled = audit_enabled;
1240 s.failure = audit_failure;
1241 /* NOTE: use pid_vnr() so the PID is relative to the current
1242 * namespace */
1243 s.pid = auditd_pid_vnr();
1244 s.rate_limit = audit_rate_limit;
1245 s.backlog_limit = audit_backlog_limit;
1246 s.lost = atomic_read(&audit_lost);
1247 s.backlog = skb_queue_len(&audit_queue);
1248 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1249 s.backlog_wait_time = audit_backlog_wait_time;
1250 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252 break;
1253 }
1254 case AUDIT_SET: {
1255 struct audit_status s;
1256 memset(&s, 0, sizeof(s));
1257 /* guard against past and future API changes */
1258 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259 if (s.mask & AUDIT_STATUS_ENABLED) {
1260 err = audit_set_enabled(s.enabled);
1261 if (err < 0)
1262 return err;
1263 }
1264 if (s.mask & AUDIT_STATUS_FAILURE) {
1265 err = audit_set_failure(s.failure);
1266 if (err < 0)
1267 return err;
1268 }
1269 if (s.mask & AUDIT_STATUS_PID) {
1270 /* NOTE: we are using the vnr PID functions below
1271 * because the s.pid value is relative to the
1272 * namespace of the caller; at present this
1273 * doesn't matter much since you can really only
1274 * run auditd from the initial pid namespace, but
1275 * something to keep in mind if this changes */
1276 pid_t new_pid = s.pid;
1277 pid_t auditd_pid;
1278 struct pid *req_pid = task_tgid(current);
1279
1280 /* Sanity check - PID values must match. Setting
1281 * pid to 0 is how auditd ends auditing. */
1282 if (new_pid && (new_pid != pid_vnr(req_pid)))
1283 return -EINVAL;
1284
1285 /* test the auditd connection */
1286 audit_replace(req_pid);
1287
1288 auditd_pid = auditd_pid_vnr();
1289 if (auditd_pid) {
1290 /* replacing a healthy auditd is not allowed */
1291 if (new_pid) {
1292 audit_log_config_change("audit_pid",
1293 new_pid, auditd_pid, 0);
1294 return -EEXIST;
1295 }
1296 /* only current auditd can unregister itself */
1297 if (pid_vnr(req_pid) != auditd_pid) {
1298 audit_log_config_change("audit_pid",
1299 new_pid, auditd_pid, 0);
1300 return -EACCES;
1301 }
1302 }
1303
1304 if (new_pid) {
1305 /* register a new auditd connection */
1306 err = auditd_set(req_pid,
1307 NETLINK_CB(skb).portid,
1308 sock_net(NETLINK_CB(skb).sk),
1309 skb, ack);
1310 if (audit_enabled != AUDIT_OFF)
1311 audit_log_config_change("audit_pid",
1312 new_pid,
1313 auditd_pid,
1314 err ? 0 : 1);
1315 if (err)
1316 return err;
1317
1318 /* try to process any backlog */
1319 wake_up_interruptible(&kauditd_wait);
1320 } else {
1321 if (audit_enabled != AUDIT_OFF)
1322 audit_log_config_change("audit_pid",
1323 new_pid,
1324 auditd_pid, 1);
1325
1326 /* unregister the auditd connection */
1327 auditd_reset(NULL);
1328 }
1329 }
1330 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331 err = audit_set_rate_limit(s.rate_limit);
1332 if (err < 0)
1333 return err;
1334 }
1335 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336 err = audit_set_backlog_limit(s.backlog_limit);
1337 if (err < 0)
1338 return err;
1339 }
1340 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342 return -EINVAL;
1343 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344 return -EINVAL;
1345 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346 if (err < 0)
1347 return err;
1348 }
1349 if (s.mask == AUDIT_STATUS_LOST) {
1350 u32 lost = atomic_xchg(&audit_lost, 0);
1351
1352 audit_log_config_change("lost", 0, lost, 1);
1353 return lost;
1354 }
1355 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357
1358 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359 return actual;
1360 }
1361 break;
1362 }
1363 case AUDIT_GET_FEATURE:
1364 err = audit_get_feature(skb);
1365 if (err)
1366 return err;
1367 break;
1368 case AUDIT_SET_FEATURE:
1369 if (data_len < sizeof(struct audit_features))
1370 return -EINVAL;
1371 err = audit_set_feature(data);
1372 if (err)
1373 return err;
1374 break;
1375 case AUDIT_USER:
1376 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379 return 0;
1380 /* exit early if there isn't at least one character to print */
1381 if (data_len < 2)
1382 return -EINVAL;
1383
1384 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385 if (err == 1) { /* match or error */
1386 char *str = data;
1387
1388 err = 0;
1389 if (msg_type == AUDIT_USER_TTY) {
1390 err = tty_audit_push();
1391 if (err)
1392 break;
1393 }
1394 audit_log_user_recv_msg(&ab, msg_type);
1395 if (msg_type != AUDIT_USER_TTY) {
1396 /* ensure NULL termination */
1397 str[data_len - 1] = '\0';
1398 audit_log_format(ab, " msg='%.*s'",
1399 AUDIT_MESSAGE_TEXT_MAX,
1400 str);
1401 } else {
1402 audit_log_format(ab, " data=");
1403 if (str[data_len - 1] == '\0')
1404 data_len--;
1405 audit_log_n_untrustedstring(ab, str, data_len);
1406 }
1407 audit_log_end(ab);
1408 }
1409 break;
1410 case AUDIT_ADD_RULE:
1411 case AUDIT_DEL_RULE:
1412 if (data_len < sizeof(struct audit_rule_data))
1413 return -EINVAL;
1414 if (audit_enabled == AUDIT_LOCKED) {
1415 audit_log_common_recv_msg(audit_context(), &ab,
1416 AUDIT_CONFIG_CHANGE);
1417 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418 msg_type == AUDIT_ADD_RULE ?
1419 "add_rule" : "remove_rule",
1420 audit_enabled);
1421 audit_log_end(ab);
1422 return -EPERM;
1423 }
1424 err = audit_rule_change(msg_type, seq, data, data_len);
1425 break;
1426 case AUDIT_LIST_RULES:
1427 err = audit_list_rules_send(skb, seq);
1428 break;
1429 case AUDIT_TRIM:
1430 audit_trim_trees();
1431 audit_log_common_recv_msg(audit_context(), &ab,
1432 AUDIT_CONFIG_CHANGE);
1433 audit_log_format(ab, " op=trim res=1");
1434 audit_log_end(ab);
1435 break;
1436 case AUDIT_MAKE_EQUIV: {
1437 void *bufp = data;
1438 u32 sizes[2];
1439 size_t msglen = data_len;
1440 char *old, *new;
1441
1442 err = -EINVAL;
1443 if (msglen < 2 * sizeof(u32))
1444 break;
1445 memcpy(sizes, bufp, 2 * sizeof(u32));
1446 bufp += 2 * sizeof(u32);
1447 msglen -= 2 * sizeof(u32);
1448 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449 if (IS_ERR(old)) {
1450 err = PTR_ERR(old);
1451 break;
1452 }
1453 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454 if (IS_ERR(new)) {
1455 err = PTR_ERR(new);
1456 kfree(old);
1457 break;
1458 }
1459 /* OK, here comes... */
1460 err = audit_tag_tree(old, new);
1461
1462 audit_log_common_recv_msg(audit_context(), &ab,
1463 AUDIT_CONFIG_CHANGE);
1464 audit_log_format(ab, " op=make_equiv old=");
1465 audit_log_untrustedstring(ab, old);
1466 audit_log_format(ab, " new=");
1467 audit_log_untrustedstring(ab, new);
1468 audit_log_format(ab, " res=%d", !err);
1469 audit_log_end(ab);
1470 kfree(old);
1471 kfree(new);
1472 break;
1473 }
1474 case AUDIT_SIGNAL_INFO:
1475 len = 0;
1476 if (audit_sig_sid) {
1477 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478 if (err)
1479 return err;
1480 }
1481 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482 if (!sig_data) {
1483 if (audit_sig_sid)
1484 security_release_secctx(ctx, len);
1485 return -ENOMEM;
1486 }
1487 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488 sig_data->pid = audit_sig_pid;
1489 if (audit_sig_sid) {
1490 memcpy(sig_data->ctx, ctx, len);
1491 security_release_secctx(ctx, len);
1492 }
1493 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494 sig_data, struct_size(sig_data, ctx, len));
1495 kfree(sig_data);
1496 break;
1497 case AUDIT_TTY_GET: {
1498 struct audit_tty_status s;
1499 unsigned int t;
1500
1501 t = READ_ONCE(current->signal->audit_tty);
1502 s.enabled = t & AUDIT_TTY_ENABLE;
1503 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504
1505 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506 break;
1507 }
1508 case AUDIT_TTY_SET: {
1509 struct audit_tty_status s, old;
1510 struct audit_buffer *ab;
1511 unsigned int t;
1512
1513 memset(&s, 0, sizeof(s));
1514 /* guard against past and future API changes */
1515 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516 /* check if new data is valid */
1517 if ((s.enabled != 0 && s.enabled != 1) ||
1518 (s.log_passwd != 0 && s.log_passwd != 1))
1519 err = -EINVAL;
1520
1521 if (err)
1522 t = READ_ONCE(current->signal->audit_tty);
1523 else {
1524 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525 t = xchg(&current->signal->audit_tty, t);
1526 }
1527 old.enabled = t & AUDIT_TTY_ENABLE;
1528 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529
1530 audit_log_common_recv_msg(audit_context(), &ab,
1531 AUDIT_CONFIG_CHANGE);
1532 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533 " old-log_passwd=%d new-log_passwd=%d res=%d",
1534 old.enabled, s.enabled, old.log_passwd,
1535 s.log_passwd, !err);
1536 audit_log_end(ab);
1537 break;
1538 }
1539 default:
1540 err = -EINVAL;
1541 break;
1542 }
1543
1544 return err < 0 ? err : 0;
1545 }
1546
1547 /**
1548 * audit_receive - receive messages from a netlink control socket
1549 * @skb: the message buffer
1550 *
1551 * Parse the provided skb and deal with any messages that may be present,
1552 * malformed skbs are discarded.
1553 */
1554 static void audit_receive(struct sk_buff *skb)
1555 {
1556 struct nlmsghdr *nlh;
1557 bool ack;
1558 /*
1559 * len MUST be signed for nlmsg_next to be able to dec it below 0
1560 * if the nlmsg_len was not aligned
1561 */
1562 int len;
1563 int err;
1564
1565 nlh = nlmsg_hdr(skb);
1566 len = skb->len;
1567
1568 audit_ctl_lock();
1569 while (nlmsg_ok(nlh, len)) {
1570 ack = nlh->nlmsg_flags & NLM_F_ACK;
1571 err = audit_receive_msg(skb, nlh, &ack);
1572
1573 /* send an ack if the user asked for one and audit_receive_msg
1574 * didn't already do it, or if there was an error. */
1575 if (ack || err)
1576 netlink_ack(skb, nlh, err, NULL);
1577
1578 nlh = nlmsg_next(nlh, &len);
1579 }
1580 audit_ctl_unlock();
1581
1582 /* can't block with the ctrl lock, so penalize the sender now */
1583 if (audit_backlog_limit &&
1584 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585 DECLARE_WAITQUEUE(wait, current);
1586
1587 /* wake kauditd to try and flush the queue */
1588 wake_up_interruptible(&kauditd_wait);
1589
1590 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591 set_current_state(TASK_UNINTERRUPTIBLE);
1592 schedule_timeout(audit_backlog_wait_time);
1593 remove_wait_queue(&audit_backlog_wait, &wait);
1594 }
1595 }
1596
1597 /* Log information about who is connecting to the audit multicast socket */
1598 static void audit_log_multicast(int group, const char *op, int err)
1599 {
1600 const struct cred *cred;
1601 struct tty_struct *tty;
1602 char comm[sizeof(current->comm)];
1603 struct audit_buffer *ab;
1604
1605 if (!audit_enabled)
1606 return;
1607
1608 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609 if (!ab)
1610 return;
1611
1612 cred = current_cred();
1613 tty = audit_get_tty();
1614 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615 task_pid_nr(current),
1616 from_kuid(&init_user_ns, cred->uid),
1617 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618 tty ? tty_name(tty) : "(none)",
1619 audit_get_sessionid(current));
1620 audit_put_tty(tty);
1621 audit_log_task_context(ab); /* subj= */
1622 audit_log_format(ab, " comm=");
1623 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624 audit_log_d_path_exe(ab, current->mm); /* exe= */
1625 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626 audit_log_end(ab);
1627 }
1628
1629 /* Run custom bind function on netlink socket group connect or bind requests. */
1630 static int audit_multicast_bind(struct net *net, int group)
1631 {
1632 int err = 0;
1633
1634 if (!capable(CAP_AUDIT_READ))
1635 err = -EPERM;
1636 audit_log_multicast(group, "connect", err);
1637 return err;
1638 }
1639
1640 static void audit_multicast_unbind(struct net *net, int group)
1641 {
1642 audit_log_multicast(group, "disconnect", 0);
1643 }
1644
1645 static int __net_init audit_net_init(struct net *net)
1646 {
1647 struct netlink_kernel_cfg cfg = {
1648 .input = audit_receive,
1649 .bind = audit_multicast_bind,
1650 .unbind = audit_multicast_unbind,
1651 .flags = NL_CFG_F_NONROOT_RECV,
1652 .groups = AUDIT_NLGRP_MAX,
1653 };
1654
1655 struct audit_net *aunet = net_generic(net, audit_net_id);
1656
1657 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658 if (aunet->sk == NULL) {
1659 audit_panic("cannot initialize netlink socket in namespace");
1660 return -ENOMEM;
1661 }
1662 /* limit the timeout in case auditd is blocked/stopped */
1663 aunet->sk->sk_sndtimeo = HZ / 10;
1664
1665 return 0;
1666 }
1667
1668 static void __net_exit audit_net_exit(struct net *net)
1669 {
1670 struct audit_net *aunet = net_generic(net, audit_net_id);
1671
1672 /* NOTE: you would think that we would want to check the auditd
1673 * connection and potentially reset it here if it lives in this
1674 * namespace, but since the auditd connection tracking struct holds a
1675 * reference to this namespace (see auditd_set()) we are only ever
1676 * going to get here after that connection has been released */
1677
1678 netlink_kernel_release(aunet->sk);
1679 }
1680
1681 static struct pernet_operations audit_net_ops __net_initdata = {
1682 .init = audit_net_init,
1683 .exit = audit_net_exit,
1684 .id = &audit_net_id,
1685 .size = sizeof(struct audit_net),
1686 };
1687
1688 /* Initialize audit support at boot time. */
1689 static int __init audit_init(void)
1690 {
1691 int i;
1692
1693 if (audit_initialized == AUDIT_DISABLED)
1694 return 0;
1695
1696 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1697
1698 skb_queue_head_init(&audit_queue);
1699 skb_queue_head_init(&audit_retry_queue);
1700 skb_queue_head_init(&audit_hold_queue);
1701
1702 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1703 INIT_LIST_HEAD(&audit_inode_hash[i]);
1704
1705 mutex_init(&audit_cmd_mutex.lock);
1706 audit_cmd_mutex.owner = NULL;
1707
1708 pr_info("initializing netlink subsys (%s)\n",
1709 audit_default ? "enabled" : "disabled");
1710 register_pernet_subsys(&audit_net_ops);
1711
1712 audit_initialized = AUDIT_INITIALIZED;
1713
1714 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1715 if (IS_ERR(kauditd_task)) {
1716 int err = PTR_ERR(kauditd_task);
1717 panic("audit: failed to start the kauditd thread (%d)\n", err);
1718 }
1719
1720 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1721 "state=initialized audit_enabled=%u res=1",
1722 audit_enabled);
1723
1724 return 0;
1725 }
1726 postcore_initcall(audit_init);
1727
1728 /*
1729 * Process kernel command-line parameter at boot time.
1730 * audit={0|off} or audit={1|on}.
1731 */
1732 static int __init audit_enable(char *str)
1733 {
1734 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1735 audit_default = AUDIT_OFF;
1736 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1737 audit_default = AUDIT_ON;
1738 else {
1739 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1740 audit_default = AUDIT_ON;
1741 }
1742
1743 if (audit_default == AUDIT_OFF)
1744 audit_initialized = AUDIT_DISABLED;
1745 if (audit_set_enabled(audit_default))
1746 pr_err("audit: error setting audit state (%d)\n",
1747 audit_default);
1748
1749 pr_info("%s\n", audit_default ?
1750 "enabled (after initialization)" : "disabled (until reboot)");
1751
1752 return 1;
1753 }
1754 __setup("audit=", audit_enable);
1755
1756 /* Process kernel command-line parameter at boot time.
1757 * audit_backlog_limit=<n> */
1758 static int __init audit_backlog_limit_set(char *str)
1759 {
1760 u32 audit_backlog_limit_arg;
1761
1762 pr_info("audit_backlog_limit: ");
1763 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1764 pr_cont("using default of %u, unable to parse %s\n",
1765 audit_backlog_limit, str);
1766 return 1;
1767 }
1768
1769 audit_backlog_limit = audit_backlog_limit_arg;
1770 pr_cont("%d\n", audit_backlog_limit);
1771
1772 return 1;
1773 }
1774 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1775
1776 static void audit_buffer_free(struct audit_buffer *ab)
1777 {
1778 if (!ab)
1779 return;
1780
1781 kfree_skb(ab->skb);
1782 kmem_cache_free(audit_buffer_cache, ab);
1783 }
1784
1785 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1786 gfp_t gfp_mask, int type)
1787 {
1788 struct audit_buffer *ab;
1789
1790 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1791 if (!ab)
1792 return NULL;
1793
1794 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1795 if (!ab->skb)
1796 goto err;
1797 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1798 goto err;
1799
1800 ab->ctx = ctx;
1801 ab->gfp_mask = gfp_mask;
1802
1803 return ab;
1804
1805 err:
1806 audit_buffer_free(ab);
1807 return NULL;
1808 }
1809
1810 /**
1811 * audit_serial - compute a serial number for the audit record
1812 *
1813 * Compute a serial number for the audit record. Audit records are
1814 * written to user-space as soon as they are generated, so a complete
1815 * audit record may be written in several pieces. The timestamp of the
1816 * record and this serial number are used by the user-space tools to
1817 * determine which pieces belong to the same audit record. The
1818 * (timestamp,serial) tuple is unique for each syscall and is live from
1819 * syscall entry to syscall exit.
1820 *
1821 * NOTE: Another possibility is to store the formatted records off the
1822 * audit context (for those records that have a context), and emit them
1823 * all at syscall exit. However, this could delay the reporting of
1824 * significant errors until syscall exit (or never, if the system
1825 * halts).
1826 */
1827 unsigned int audit_serial(void)
1828 {
1829 static atomic_t serial = ATOMIC_INIT(0);
1830
1831 return atomic_inc_return(&serial);
1832 }
1833
1834 static inline void audit_get_stamp(struct audit_context *ctx,
1835 struct timespec64 *t, unsigned int *serial)
1836 {
1837 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1838 ktime_get_coarse_real_ts64(t);
1839 *serial = audit_serial();
1840 }
1841 }
1842
1843 /**
1844 * audit_log_start - obtain an audit buffer
1845 * @ctx: audit_context (may be NULL)
1846 * @gfp_mask: type of allocation
1847 * @type: audit message type
1848 *
1849 * Returns audit_buffer pointer on success or NULL on error.
1850 *
1851 * Obtain an audit buffer. This routine does locking to obtain the
1852 * audit buffer, but then no locking is required for calls to
1853 * audit_log_*format. If the task (ctx) is a task that is currently in a
1854 * syscall, then the syscall is marked as auditable and an audit record
1855 * will be written at syscall exit. If there is no associated task, then
1856 * task context (ctx) should be NULL.
1857 */
1858 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1859 int type)
1860 {
1861 struct audit_buffer *ab;
1862 struct timespec64 t;
1863 unsigned int serial;
1864
1865 if (audit_initialized != AUDIT_INITIALIZED)
1866 return NULL;
1867
1868 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1869 return NULL;
1870
1871 /* NOTE: don't ever fail/sleep on these two conditions:
1872 * 1. auditd generated record - since we need auditd to drain the
1873 * queue; also, when we are checking for auditd, compare PIDs using
1874 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1875 * using a PID anchored in the caller's namespace
1876 * 2. generator holding the audit_cmd_mutex - we don't want to block
1877 * while holding the mutex, although we do penalize the sender
1878 * later in audit_receive() when it is safe to block
1879 */
1880 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1881 long stime = audit_backlog_wait_time;
1882
1883 while (audit_backlog_limit &&
1884 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1885 /* wake kauditd to try and flush the queue */
1886 wake_up_interruptible(&kauditd_wait);
1887
1888 /* sleep if we are allowed and we haven't exhausted our
1889 * backlog wait limit */
1890 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1891 long rtime = stime;
1892
1893 DECLARE_WAITQUEUE(wait, current);
1894
1895 add_wait_queue_exclusive(&audit_backlog_wait,
1896 &wait);
1897 set_current_state(TASK_UNINTERRUPTIBLE);
1898 stime = schedule_timeout(rtime);
1899 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1900 remove_wait_queue(&audit_backlog_wait, &wait);
1901 } else {
1902 if (audit_rate_check() && printk_ratelimit())
1903 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1904 skb_queue_len(&audit_queue),
1905 audit_backlog_limit);
1906 audit_log_lost("backlog limit exceeded");
1907 return NULL;
1908 }
1909 }
1910 }
1911
1912 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1913 if (!ab) {
1914 audit_log_lost("out of memory in audit_log_start");
1915 return NULL;
1916 }
1917
1918 audit_get_stamp(ab->ctx, &t, &serial);
1919 /* cancel dummy context to enable supporting records */
1920 if (ctx)
1921 ctx->dummy = 0;
1922 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1923 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1924
1925 return ab;
1926 }
1927
1928 /**
1929 * audit_expand - expand skb in the audit buffer
1930 * @ab: audit_buffer
1931 * @extra: space to add at tail of the skb
1932 *
1933 * Returns 0 (no space) on failed expansion, or available space if
1934 * successful.
1935 */
1936 static inline int audit_expand(struct audit_buffer *ab, int extra)
1937 {
1938 struct sk_buff *skb = ab->skb;
1939 int oldtail = skb_tailroom(skb);
1940 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1941 int newtail = skb_tailroom(skb);
1942
1943 if (ret < 0) {
1944 audit_log_lost("out of memory in audit_expand");
1945 return 0;
1946 }
1947
1948 skb->truesize += newtail - oldtail;
1949 return newtail;
1950 }
1951
1952 /*
1953 * Format an audit message into the audit buffer. If there isn't enough
1954 * room in the audit buffer, more room will be allocated and vsnprint
1955 * will be called a second time. Currently, we assume that a printk
1956 * can't format message larger than 1024 bytes, so we don't either.
1957 */
1958 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1959 va_list args)
1960 {
1961 int len, avail;
1962 struct sk_buff *skb;
1963 va_list args2;
1964
1965 if (!ab)
1966 return;
1967
1968 BUG_ON(!ab->skb);
1969 skb = ab->skb;
1970 avail = skb_tailroom(skb);
1971 if (avail == 0) {
1972 avail = audit_expand(ab, AUDIT_BUFSIZ);
1973 if (!avail)
1974 goto out;
1975 }
1976 va_copy(args2, args);
1977 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1978 if (len >= avail) {
1979 /* The printk buffer is 1024 bytes long, so if we get
1980 * here and AUDIT_BUFSIZ is at least 1024, then we can
1981 * log everything that printk could have logged. */
1982 avail = audit_expand(ab,
1983 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1984 if (!avail)
1985 goto out_va_end;
1986 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1987 }
1988 if (len > 0)
1989 skb_put(skb, len);
1990 out_va_end:
1991 va_end(args2);
1992 out:
1993 return;
1994 }
1995
1996 /**
1997 * audit_log_format - format a message into the audit buffer.
1998 * @ab: audit_buffer
1999 * @fmt: format string
2000 * @...: optional parameters matching @fmt string
2001 *
2002 * All the work is done in audit_log_vformat.
2003 */
2004 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2005 {
2006 va_list args;
2007
2008 if (!ab)
2009 return;
2010 va_start(args, fmt);
2011 audit_log_vformat(ab, fmt, args);
2012 va_end(args);
2013 }
2014
2015 /**
2016 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2017 * @ab: the audit_buffer
2018 * @buf: buffer to convert to hex
2019 * @len: length of @buf to be converted
2020 *
2021 * No return value; failure to expand is silently ignored.
2022 *
2023 * This function will take the passed buf and convert it into a string of
2024 * ascii hex digits. The new string is placed onto the skb.
2025 */
2026 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2027 size_t len)
2028 {
2029 int i, avail, new_len;
2030 unsigned char *ptr;
2031 struct sk_buff *skb;
2032
2033 if (!ab)
2034 return;
2035
2036 BUG_ON(!ab->skb);
2037 skb = ab->skb;
2038 avail = skb_tailroom(skb);
2039 new_len = len<<1;
2040 if (new_len >= avail) {
2041 /* Round the buffer request up to the next multiple */
2042 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2043 avail = audit_expand(ab, new_len);
2044 if (!avail)
2045 return;
2046 }
2047
2048 ptr = skb_tail_pointer(skb);
2049 for (i = 0; i < len; i++)
2050 ptr = hex_byte_pack_upper(ptr, buf[i]);
2051 *ptr = 0;
2052 skb_put(skb, len << 1); /* new string is twice the old string */
2053 }
2054
2055 /*
2056 * Format a string of no more than slen characters into the audit buffer,
2057 * enclosed in quote marks.
2058 */
2059 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2060 size_t slen)
2061 {
2062 int avail, new_len;
2063 unsigned char *ptr;
2064 struct sk_buff *skb;
2065
2066 if (!ab)
2067 return;
2068
2069 BUG_ON(!ab->skb);
2070 skb = ab->skb;
2071 avail = skb_tailroom(skb);
2072 new_len = slen + 3; /* enclosing quotes + null terminator */
2073 if (new_len > avail) {
2074 avail = audit_expand(ab, new_len);
2075 if (!avail)
2076 return;
2077 }
2078 ptr = skb_tail_pointer(skb);
2079 *ptr++ = '"';
2080 memcpy(ptr, string, slen);
2081 ptr += slen;
2082 *ptr++ = '"';
2083 *ptr = 0;
2084 skb_put(skb, slen + 2); /* don't include null terminator */
2085 }
2086
2087 /**
2088 * audit_string_contains_control - does a string need to be logged in hex
2089 * @string: string to be checked
2090 * @len: max length of the string to check
2091 */
2092 bool audit_string_contains_control(const char *string, size_t len)
2093 {
2094 const unsigned char *p;
2095 for (p = string; p < (const unsigned char *)string + len; p++) {
2096 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2097 return true;
2098 }
2099 return false;
2100 }
2101
2102 /**
2103 * audit_log_n_untrustedstring - log a string that may contain random characters
2104 * @ab: audit_buffer
2105 * @len: length of string (not including trailing null)
2106 * @string: string to be logged
2107 *
2108 * This code will escape a string that is passed to it if the string
2109 * contains a control character, unprintable character, double quote mark,
2110 * or a space. Unescaped strings will start and end with a double quote mark.
2111 * Strings that are escaped are printed in hex (2 digits per char).
2112 *
2113 * The caller specifies the number of characters in the string to log, which may
2114 * or may not be the entire string.
2115 */
2116 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2117 size_t len)
2118 {
2119 if (audit_string_contains_control(string, len))
2120 audit_log_n_hex(ab, string, len);
2121 else
2122 audit_log_n_string(ab, string, len);
2123 }
2124
2125 /**
2126 * audit_log_untrustedstring - log a string that may contain random characters
2127 * @ab: audit_buffer
2128 * @string: string to be logged
2129 *
2130 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2131 * determine string length.
2132 */
2133 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2134 {
2135 audit_log_n_untrustedstring(ab, string, strlen(string));
2136 }
2137
2138 /* This is a helper-function to print the escaped d_path */
2139 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2140 const struct path *path)
2141 {
2142 char *p, *pathname;
2143
2144 if (prefix)
2145 audit_log_format(ab, "%s", prefix);
2146
2147 /* We will allow 11 spaces for ' (deleted)' to be appended */
2148 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2149 if (!pathname) {
2150 audit_log_format(ab, "\"<no_memory>\"");
2151 return;
2152 }
2153 p = d_path(path, pathname, PATH_MAX+11);
2154 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2155 /* FIXME: can we save some information here? */
2156 audit_log_format(ab, "\"<too_long>\"");
2157 } else
2158 audit_log_untrustedstring(ab, p);
2159 kfree(pathname);
2160 }
2161
2162 void audit_log_session_info(struct audit_buffer *ab)
2163 {
2164 unsigned int sessionid = audit_get_sessionid(current);
2165 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2166
2167 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2168 }
2169
2170 void audit_log_key(struct audit_buffer *ab, char *key)
2171 {
2172 audit_log_format(ab, " key=");
2173 if (key)
2174 audit_log_untrustedstring(ab, key);
2175 else
2176 audit_log_format(ab, "(null)");
2177 }
2178
2179 int audit_log_task_context(struct audit_buffer *ab)
2180 {
2181 char *ctx = NULL;
2182 unsigned len;
2183 int error;
2184 u32 sid;
2185
2186 security_current_getsecid_subj(&sid);
2187 if (!sid)
2188 return 0;
2189
2190 error = security_secid_to_secctx(sid, &ctx, &len);
2191 if (error) {
2192 if (error != -EINVAL)
2193 goto error_path;
2194 return 0;
2195 }
2196
2197 audit_log_format(ab, " subj=%s", ctx);
2198 security_release_secctx(ctx, len);
2199 return 0;
2200
2201 error_path:
2202 audit_panic("error in audit_log_task_context");
2203 return error;
2204 }
2205 EXPORT_SYMBOL(audit_log_task_context);
2206
2207 void audit_log_d_path_exe(struct audit_buffer *ab,
2208 struct mm_struct *mm)
2209 {
2210 struct file *exe_file;
2211
2212 if (!mm)
2213 goto out_null;
2214
2215 exe_file = get_mm_exe_file(mm);
2216 if (!exe_file)
2217 goto out_null;
2218
2219 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220 fput(exe_file);
2221 return;
2222 out_null:
2223 audit_log_format(ab, " exe=(null)");
2224 }
2225
2226 struct tty_struct *audit_get_tty(void)
2227 {
2228 struct tty_struct *tty = NULL;
2229 unsigned long flags;
2230
2231 spin_lock_irqsave(&current->sighand->siglock, flags);
2232 if (current->signal)
2233 tty = tty_kref_get(current->signal->tty);
2234 spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235 return tty;
2236 }
2237
2238 void audit_put_tty(struct tty_struct *tty)
2239 {
2240 tty_kref_put(tty);
2241 }
2242
2243 void audit_log_task_info(struct audit_buffer *ab)
2244 {
2245 const struct cred *cred;
2246 char comm[sizeof(current->comm)];
2247 struct tty_struct *tty;
2248
2249 if (!ab)
2250 return;
2251
2252 cred = current_cred();
2253 tty = audit_get_tty();
2254 audit_log_format(ab,
2255 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256 " euid=%u suid=%u fsuid=%u"
2257 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258 task_ppid_nr(current),
2259 task_tgid_nr(current),
2260 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261 from_kuid(&init_user_ns, cred->uid),
2262 from_kgid(&init_user_ns, cred->gid),
2263 from_kuid(&init_user_ns, cred->euid),
2264 from_kuid(&init_user_ns, cred->suid),
2265 from_kuid(&init_user_ns, cred->fsuid),
2266 from_kgid(&init_user_ns, cred->egid),
2267 from_kgid(&init_user_ns, cred->sgid),
2268 from_kgid(&init_user_ns, cred->fsgid),
2269 tty ? tty_name(tty) : "(none)",
2270 audit_get_sessionid(current));
2271 audit_put_tty(tty);
2272 audit_log_format(ab, " comm=");
2273 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274 audit_log_d_path_exe(ab, current->mm);
2275 audit_log_task_context(ab);
2276 }
2277 EXPORT_SYMBOL(audit_log_task_info);
2278
2279 /**
2280 * audit_log_path_denied - report a path restriction denial
2281 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282 * @operation: specific operation name
2283 */
2284 void audit_log_path_denied(int type, const char *operation)
2285 {
2286 struct audit_buffer *ab;
2287
2288 if (!audit_enabled || audit_dummy_context())
2289 return;
2290
2291 /* Generate log with subject, operation, outcome. */
2292 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293 if (!ab)
2294 return;
2295 audit_log_format(ab, "op=%s", operation);
2296 audit_log_task_info(ab);
2297 audit_log_format(ab, " res=0");
2298 audit_log_end(ab);
2299 }
2300
2301 /* global counter which is incremented every time something logs in */
2302 static atomic_t session_id = ATOMIC_INIT(0);
2303
2304 static int audit_set_loginuid_perm(kuid_t loginuid)
2305 {
2306 /* if we are unset, we don't need privs */
2307 if (!audit_loginuid_set(current))
2308 return 0;
2309 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311 return -EPERM;
2312 /* it is set, you need permission */
2313 if (!capable(CAP_AUDIT_CONTROL))
2314 return -EPERM;
2315 /* reject if this is not an unset and we don't allow that */
2316 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317 && uid_valid(loginuid))
2318 return -EPERM;
2319 return 0;
2320 }
2321
2322 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323 unsigned int oldsessionid,
2324 unsigned int sessionid, int rc)
2325 {
2326 struct audit_buffer *ab;
2327 uid_t uid, oldloginuid, loginuid;
2328 struct tty_struct *tty;
2329
2330 if (!audit_enabled)
2331 return;
2332
2333 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334 if (!ab)
2335 return;
2336
2337 uid = from_kuid(&init_user_ns, task_uid(current));
2338 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339 loginuid = from_kuid(&init_user_ns, kloginuid);
2340 tty = audit_get_tty();
2341
2342 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343 audit_log_task_context(ab);
2344 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346 oldsessionid, sessionid, !rc);
2347 audit_put_tty(tty);
2348 audit_log_end(ab);
2349 }
2350
2351 /**
2352 * audit_set_loginuid - set current task's loginuid
2353 * @loginuid: loginuid value
2354 *
2355 * Returns 0.
2356 *
2357 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2358 */
2359 int audit_set_loginuid(kuid_t loginuid)
2360 {
2361 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362 kuid_t oldloginuid;
2363 int rc;
2364
2365 oldloginuid = audit_get_loginuid(current);
2366 oldsessionid = audit_get_sessionid(current);
2367
2368 rc = audit_set_loginuid_perm(loginuid);
2369 if (rc)
2370 goto out;
2371
2372 /* are we setting or clearing? */
2373 if (uid_valid(loginuid)) {
2374 sessionid = (unsigned int)atomic_inc_return(&session_id);
2375 if (unlikely(sessionid == AUDIT_SID_UNSET))
2376 sessionid = (unsigned int)atomic_inc_return(&session_id);
2377 }
2378
2379 current->sessionid = sessionid;
2380 current->loginuid = loginuid;
2381 out:
2382 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383 return rc;
2384 }
2385
2386 /**
2387 * audit_signal_info - record signal info for shutting down audit subsystem
2388 * @sig: signal value
2389 * @t: task being signaled
2390 *
2391 * If the audit subsystem is being terminated, record the task (pid)
2392 * and uid that is doing that.
2393 */
2394 int audit_signal_info(int sig, struct task_struct *t)
2395 {
2396 kuid_t uid = current_uid(), auid;
2397
2398 if (auditd_test_task(t) &&
2399 (sig == SIGTERM || sig == SIGHUP ||
2400 sig == SIGUSR1 || sig == SIGUSR2)) {
2401 audit_sig_pid = task_tgid_nr(current);
2402 auid = audit_get_loginuid(current);
2403 if (uid_valid(auid))
2404 audit_sig_uid = auid;
2405 else
2406 audit_sig_uid = uid;
2407 security_current_getsecid_subj(&audit_sig_sid);
2408 }
2409
2410 return audit_signal_info_syscall(t);
2411 }
2412
2413 /**
2414 * audit_log_end - end one audit record
2415 * @ab: the audit_buffer
2416 *
2417 * We can not do a netlink send inside an irq context because it blocks (last
2418 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419 * queue and a kthread is scheduled to remove them from the queue outside the
2420 * irq context. May be called in any context.
2421 */
2422 void audit_log_end(struct audit_buffer *ab)
2423 {
2424 struct sk_buff *skb;
2425 struct nlmsghdr *nlh;
2426
2427 if (!ab)
2428 return;
2429
2430 if (audit_rate_check()) {
2431 skb = ab->skb;
2432 ab->skb = NULL;
2433
2434 /* setup the netlink header, see the comments in
2435 * kauditd_send_multicast_skb() for length quirks */
2436 nlh = nlmsg_hdr(skb);
2437 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438
2439 /* queue the netlink packet and poke the kauditd thread */
2440 skb_queue_tail(&audit_queue, skb);
2441 wake_up_interruptible(&kauditd_wait);
2442 } else
2443 audit_log_lost("rate limit exceeded");
2444
2445 audit_buffer_free(ab);
2446 }
2447
2448 /**
2449 * audit_log - Log an audit record
2450 * @ctx: audit context
2451 * @gfp_mask: type of allocation
2452 * @type: audit message type
2453 * @fmt: format string to use
2454 * @...: variable parameters matching the format string
2455 *
2456 * This is a convenience function that calls audit_log_start,
2457 * audit_log_vformat, and audit_log_end. It may be called
2458 * in any context.
2459 */
2460 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461 const char *fmt, ...)
2462 {
2463 struct audit_buffer *ab;
2464 va_list args;
2465
2466 ab = audit_log_start(ctx, gfp_mask, type);
2467 if (ab) {
2468 va_start(args, fmt);
2469 audit_log_vformat(ab, fmt, args);
2470 va_end(args);
2471 audit_log_end(ab);
2472 }
2473 }
2474
2475 EXPORT_SYMBOL(audit_log_start);
2476 EXPORT_SYMBOL(audit_log_end);
2477 EXPORT_SYMBOL(audit_log_format);
2478 EXPORT_SYMBOL(audit_log);