]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/audit.c
Merge tag 'upstream-4.4-rc1' of git://git.infradead.org/linux-ubifs
[people/ms/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32 audit_backlog_wait_overflow = 0;
114
115 /* The identity of the user shutting down the audit system. */
116 kuid_t audit_sig_uid = INVALID_UID;
117 pid_t audit_sig_pid = -1;
118 u32 audit_sig_sid = 0;
119
120 /* Records can be lost in several ways:
121 0) [suppressed in audit_alloc]
122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123 2) out of memory in audit_log_move [alloc_skb]
124 3) suppressed due to audit_rate_limit
125 4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t audit_lost = ATOMIC_INIT(0);
128
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138 * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 .mask = -1,
152 .features = 0,
153 .lock = 0,};
154
155 static char *audit_feature_names[2] = {
156 "only_unset_loginuid",
157 "loginuid_immutable",
158 };
159
160
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165 * audit records. Since printk uses a 1024 byte buffer, this buffer
166 * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE (2*NR_CPUS)
172
173 /* The audit_buffer is used when formatting an audit record. The caller
174 * locks briefly to get the record off the freelist or to allocate the
175 * buffer, and locks briefly to send the buffer to the netlink layer or
176 * to place it on a transmit queue. Multiple audit_buffers can be in
177 * use simultaneously. */
178 struct audit_buffer {
179 struct list_head list;
180 struct sk_buff *skb; /* formatted skb ready to send */
181 struct audit_context *ctx; /* NULL or associated context */
182 gfp_t gfp_mask;
183 };
184
185 struct audit_reply {
186 __u32 portid;
187 struct net *net;
188 struct sk_buff *skb;
189 };
190
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 if (ab) {
194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 nlh->nlmsg_pid = portid;
196 }
197 }
198
199 void audit_panic(const char *message)
200 {
201 switch (audit_failure) {
202 case AUDIT_FAIL_SILENT:
203 break;
204 case AUDIT_FAIL_PRINTK:
205 if (printk_ratelimit())
206 pr_err("%s\n", message);
207 break;
208 case AUDIT_FAIL_PANIC:
209 /* test audit_pid since printk is always losey, why bother? */
210 if (audit_pid)
211 panic("audit: %s\n", message);
212 break;
213 }
214 }
215
216 static inline int audit_rate_check(void)
217 {
218 static unsigned long last_check = 0;
219 static int messages = 0;
220 static DEFINE_SPINLOCK(lock);
221 unsigned long flags;
222 unsigned long now;
223 unsigned long elapsed;
224 int retval = 0;
225
226 if (!audit_rate_limit) return 1;
227
228 spin_lock_irqsave(&lock, flags);
229 if (++messages < audit_rate_limit) {
230 retval = 1;
231 } else {
232 now = jiffies;
233 elapsed = now - last_check;
234 if (elapsed > HZ) {
235 last_check = now;
236 messages = 0;
237 retval = 1;
238 }
239 }
240 spin_unlock_irqrestore(&lock, flags);
241
242 return retval;
243 }
244
245 /**
246 * audit_log_lost - conditionally log lost audit message event
247 * @message: the message stating reason for lost audit message
248 *
249 * Emit at least 1 message per second, even if audit_rate_check is
250 * throttling.
251 * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 static unsigned long last_msg = 0;
256 static DEFINE_SPINLOCK(lock);
257 unsigned long flags;
258 unsigned long now;
259 int print;
260
261 atomic_inc(&audit_lost);
262
263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264
265 if (!print) {
266 spin_lock_irqsave(&lock, flags);
267 now = jiffies;
268 if (now - last_msg > HZ) {
269 print = 1;
270 last_msg = now;
271 }
272 spin_unlock_irqrestore(&lock, flags);
273 }
274
275 if (print) {
276 if (printk_ratelimit())
277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 atomic_read(&audit_lost),
279 audit_rate_limit,
280 audit_backlog_limit);
281 audit_panic(message);
282 }
283 }
284
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 int allow_changes)
287 {
288 struct audit_buffer *ab;
289 int rc = 0;
290
291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 if (unlikely(!ab))
293 return rc;
294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 audit_log_session_info(ab);
296 rc = audit_log_task_context(ab);
297 if (rc)
298 allow_changes = 0; /* Something weird, deny request */
299 audit_log_format(ab, " res=%d", allow_changes);
300 audit_log_end(ab);
301 return rc;
302 }
303
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 int allow_changes, rc = 0;
307 u32 old = *to_change;
308
309 /* check if we are locked */
310 if (audit_enabled == AUDIT_LOCKED)
311 allow_changes = 0;
312 else
313 allow_changes = 1;
314
315 if (audit_enabled != AUDIT_OFF) {
316 rc = audit_log_config_change(function_name, new, old, allow_changes);
317 if (rc)
318 allow_changes = 0;
319 }
320
321 /* If we are allowed, make the change */
322 if (allow_changes == 1)
323 *to_change = new;
324 /* Not allowed, update reason */
325 else if (rc == 0)
326 rc = -EPERM;
327 return rc;
328 }
329
330 static int audit_set_rate_limit(u32 limit)
331 {
332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 return audit_do_config_change("audit_backlog_wait_time",
343 &audit_backlog_wait_time_master, timeout);
344 }
345
346 static int audit_set_enabled(u32 state)
347 {
348 int rc;
349 if (state > AUDIT_LOCKED)
350 return -EINVAL;
351
352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
353 if (!rc)
354 audit_ever_enabled |= !!state;
355
356 return rc;
357 }
358
359 static int audit_set_failure(u32 state)
360 {
361 if (state != AUDIT_FAIL_SILENT
362 && state != AUDIT_FAIL_PRINTK
363 && state != AUDIT_FAIL_PANIC)
364 return -EINVAL;
365
366 return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368
369 /*
370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
371 * already have been sent via prink/syslog and so if these messages are dropped
372 * it is not a huge concern since we already passed the audit_log_lost()
373 * notification and stuff. This is just nice to get audit messages during
374 * boot before auditd is running or messages generated while auditd is stopped.
375 * This only holds messages is audit_default is set, aka booting with audit=1
376 * or building your kernel that way.
377 */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 if (audit_default &&
381 (!audit_backlog_limit ||
382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 skb_queue_tail(&audit_skb_hold_queue, skb);
384 else
385 kfree_skb(skb);
386 }
387
388 /*
389 * For one reason or another this nlh isn't getting delivered to the userspace
390 * audit daemon, just send it to printk.
391 */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 char *data = nlmsg_data(nlh);
396
397 if (nlh->nlmsg_type != AUDIT_EOE) {
398 if (printk_ratelimit())
399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 else
401 audit_log_lost("printk limit exceeded");
402 }
403
404 audit_hold_skb(skb);
405 }
406
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 int err;
410 int attempts = 0;
411 #define AUDITD_RETRIES 5
412
413 restart:
414 /* take a reference in case we can't send it and we want to hold it */
415 skb_get(skb);
416 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
417 if (err < 0) {
418 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
419 audit_pid, err);
420 if (audit_pid) {
421 if (err == -ECONNREFUSED || err == -EPERM
422 || ++attempts >= AUDITD_RETRIES) {
423 char s[32];
424
425 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
426 audit_log_lost(s);
427 audit_pid = 0;
428 audit_sock = NULL;
429 } else {
430 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
431 attempts, audit_pid);
432 set_current_state(TASK_INTERRUPTIBLE);
433 schedule();
434 __set_current_state(TASK_RUNNING);
435 goto restart;
436 }
437 }
438 /* we might get lucky and get this in the next auditd */
439 audit_hold_skb(skb);
440 } else
441 /* drop the extra reference if sent ok */
442 consume_skb(skb);
443 }
444
445 /*
446 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
447 *
448 * This function doesn't consume an skb as might be expected since it has to
449 * copy it anyways.
450 */
451 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
452 {
453 struct sk_buff *copy;
454 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
455 struct sock *sock = aunet->nlsk;
456
457 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
458 return;
459
460 /*
461 * The seemingly wasteful skb_copy() rather than bumping the refcount
462 * using skb_get() is necessary because non-standard mods are made to
463 * the skb by the original kaudit unicast socket send routine. The
464 * existing auditd daemon assumes this breakage. Fixing this would
465 * require co-ordinating a change in the established protocol between
466 * the kaudit kernel subsystem and the auditd userspace code. There is
467 * no reason for new multicast clients to continue with this
468 * non-compliance.
469 */
470 copy = skb_copy(skb, gfp_mask);
471 if (!copy)
472 return;
473
474 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
475 }
476
477 /*
478 * flush_hold_queue - empty the hold queue if auditd appears
479 *
480 * If auditd just started, drain the queue of messages already
481 * sent to syslog/printk. Remember loss here is ok. We already
482 * called audit_log_lost() if it didn't go out normally. so the
483 * race between the skb_dequeue and the next check for audit_pid
484 * doesn't matter.
485 *
486 * If you ever find kauditd to be too slow we can get a perf win
487 * by doing our own locking and keeping better track if there
488 * are messages in this queue. I don't see the need now, but
489 * in 5 years when I want to play with this again I'll see this
490 * note and still have no friggin idea what i'm thinking today.
491 */
492 static void flush_hold_queue(void)
493 {
494 struct sk_buff *skb;
495
496 if (!audit_default || !audit_pid)
497 return;
498
499 skb = skb_dequeue(&audit_skb_hold_queue);
500 if (likely(!skb))
501 return;
502
503 while (skb && audit_pid) {
504 kauditd_send_skb(skb);
505 skb = skb_dequeue(&audit_skb_hold_queue);
506 }
507
508 /*
509 * if auditd just disappeared but we
510 * dequeued an skb we need to drop ref
511 */
512 if (skb)
513 consume_skb(skb);
514 }
515
516 static int kauditd_thread(void *dummy)
517 {
518 set_freezable();
519 while (!kthread_should_stop()) {
520 struct sk_buff *skb;
521
522 flush_hold_queue();
523
524 skb = skb_dequeue(&audit_skb_queue);
525
526 if (skb) {
527 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
528 wake_up(&audit_backlog_wait);
529 if (audit_pid)
530 kauditd_send_skb(skb);
531 else
532 audit_printk_skb(skb);
533 continue;
534 }
535
536 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
537 }
538 return 0;
539 }
540
541 int audit_send_list(void *_dest)
542 {
543 struct audit_netlink_list *dest = _dest;
544 struct sk_buff *skb;
545 struct net *net = dest->net;
546 struct audit_net *aunet = net_generic(net, audit_net_id);
547
548 /* wait for parent to finish and send an ACK */
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
551
552 while ((skb = __skb_dequeue(&dest->q)) != NULL)
553 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
554
555 put_net(net);
556 kfree(dest);
557
558 return 0;
559 }
560
561 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
562 int multi, const void *payload, int size)
563 {
564 struct sk_buff *skb;
565 struct nlmsghdr *nlh;
566 void *data;
567 int flags = multi ? NLM_F_MULTI : 0;
568 int t = done ? NLMSG_DONE : type;
569
570 skb = nlmsg_new(size, GFP_KERNEL);
571 if (!skb)
572 return NULL;
573
574 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
575 if (!nlh)
576 goto out_kfree_skb;
577 data = nlmsg_data(nlh);
578 memcpy(data, payload, size);
579 return skb;
580
581 out_kfree_skb:
582 kfree_skb(skb);
583 return NULL;
584 }
585
586 static int audit_send_reply_thread(void *arg)
587 {
588 struct audit_reply *reply = (struct audit_reply *)arg;
589 struct net *net = reply->net;
590 struct audit_net *aunet = net_generic(net, audit_net_id);
591
592 mutex_lock(&audit_cmd_mutex);
593 mutex_unlock(&audit_cmd_mutex);
594
595 /* Ignore failure. It'll only happen if the sender goes away,
596 because our timeout is set to infinite. */
597 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
598 put_net(net);
599 kfree(reply);
600 return 0;
601 }
602 /**
603 * audit_send_reply - send an audit reply message via netlink
604 * @request_skb: skb of request we are replying to (used to target the reply)
605 * @seq: sequence number
606 * @type: audit message type
607 * @done: done (last) flag
608 * @multi: multi-part message flag
609 * @payload: payload data
610 * @size: payload size
611 *
612 * Allocates an skb, builds the netlink message, and sends it to the port id.
613 * No failure notifications.
614 */
615 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
616 int multi, const void *payload, int size)
617 {
618 u32 portid = NETLINK_CB(request_skb).portid;
619 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
620 struct sk_buff *skb;
621 struct task_struct *tsk;
622 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
623 GFP_KERNEL);
624
625 if (!reply)
626 return;
627
628 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
629 if (!skb)
630 goto out;
631
632 reply->net = get_net(net);
633 reply->portid = portid;
634 reply->skb = skb;
635
636 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
637 if (!IS_ERR(tsk))
638 return;
639 kfree_skb(skb);
640 out:
641 kfree(reply);
642 }
643
644 /*
645 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
646 * control messages.
647 */
648 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
649 {
650 int err = 0;
651
652 /* Only support initial user namespace for now. */
653 /*
654 * We return ECONNREFUSED because it tricks userspace into thinking
655 * that audit was not configured into the kernel. Lots of users
656 * configure their PAM stack (because that's what the distro does)
657 * to reject login if unable to send messages to audit. If we return
658 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
659 * configured in and will let login proceed. If we return EPERM
660 * userspace will reject all logins. This should be removed when we
661 * support non init namespaces!!
662 */
663 if (current_user_ns() != &init_user_ns)
664 return -ECONNREFUSED;
665
666 switch (msg_type) {
667 case AUDIT_LIST:
668 case AUDIT_ADD:
669 case AUDIT_DEL:
670 return -EOPNOTSUPP;
671 case AUDIT_GET:
672 case AUDIT_SET:
673 case AUDIT_GET_FEATURE:
674 case AUDIT_SET_FEATURE:
675 case AUDIT_LIST_RULES:
676 case AUDIT_ADD_RULE:
677 case AUDIT_DEL_RULE:
678 case AUDIT_SIGNAL_INFO:
679 case AUDIT_TTY_GET:
680 case AUDIT_TTY_SET:
681 case AUDIT_TRIM:
682 case AUDIT_MAKE_EQUIV:
683 /* Only support auditd and auditctl in initial pid namespace
684 * for now. */
685 if (task_active_pid_ns(current) != &init_pid_ns)
686 return -EPERM;
687
688 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
689 err = -EPERM;
690 break;
691 case AUDIT_USER:
692 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
693 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
694 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
695 err = -EPERM;
696 break;
697 default: /* bad msg */
698 err = -EINVAL;
699 }
700
701 return err;
702 }
703
704 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
705 {
706 uid_t uid = from_kuid(&init_user_ns, current_uid());
707 pid_t pid = task_tgid_nr(current);
708
709 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
710 *ab = NULL;
711 return;
712 }
713
714 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
715 if (unlikely(!*ab))
716 return;
717 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
718 audit_log_session_info(*ab);
719 audit_log_task_context(*ab);
720 }
721
722 int is_audit_feature_set(int i)
723 {
724 return af.features & AUDIT_FEATURE_TO_MASK(i);
725 }
726
727
728 static int audit_get_feature(struct sk_buff *skb)
729 {
730 u32 seq;
731
732 seq = nlmsg_hdr(skb)->nlmsg_seq;
733
734 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
735
736 return 0;
737 }
738
739 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
740 u32 old_lock, u32 new_lock, int res)
741 {
742 struct audit_buffer *ab;
743
744 if (audit_enabled == AUDIT_OFF)
745 return;
746
747 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
748 audit_log_task_info(ab, current);
749 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
750 audit_feature_names[which], !!old_feature, !!new_feature,
751 !!old_lock, !!new_lock, res);
752 audit_log_end(ab);
753 }
754
755 static int audit_set_feature(struct sk_buff *skb)
756 {
757 struct audit_features *uaf;
758 int i;
759
760 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
761 uaf = nlmsg_data(nlmsg_hdr(skb));
762
763 /* if there is ever a version 2 we should handle that here */
764
765 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
766 u32 feature = AUDIT_FEATURE_TO_MASK(i);
767 u32 old_feature, new_feature, old_lock, new_lock;
768
769 /* if we are not changing this feature, move along */
770 if (!(feature & uaf->mask))
771 continue;
772
773 old_feature = af.features & feature;
774 new_feature = uaf->features & feature;
775 new_lock = (uaf->lock | af.lock) & feature;
776 old_lock = af.lock & feature;
777
778 /* are we changing a locked feature? */
779 if (old_lock && (new_feature != old_feature)) {
780 audit_log_feature_change(i, old_feature, new_feature,
781 old_lock, new_lock, 0);
782 return -EPERM;
783 }
784 }
785 /* nothing invalid, do the changes */
786 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
787 u32 feature = AUDIT_FEATURE_TO_MASK(i);
788 u32 old_feature, new_feature, old_lock, new_lock;
789
790 /* if we are not changing this feature, move along */
791 if (!(feature & uaf->mask))
792 continue;
793
794 old_feature = af.features & feature;
795 new_feature = uaf->features & feature;
796 old_lock = af.lock & feature;
797 new_lock = (uaf->lock | af.lock) & feature;
798
799 if (new_feature != old_feature)
800 audit_log_feature_change(i, old_feature, new_feature,
801 old_lock, new_lock, 1);
802
803 if (new_feature)
804 af.features |= feature;
805 else
806 af.features &= ~feature;
807 af.lock |= new_lock;
808 }
809
810 return 0;
811 }
812
813 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
814 {
815 u32 seq;
816 void *data;
817 int err;
818 struct audit_buffer *ab;
819 u16 msg_type = nlh->nlmsg_type;
820 struct audit_sig_info *sig_data;
821 char *ctx = NULL;
822 u32 len;
823
824 err = audit_netlink_ok(skb, msg_type);
825 if (err)
826 return err;
827
828 /* As soon as there's any sign of userspace auditd,
829 * start kauditd to talk to it */
830 if (!kauditd_task) {
831 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
832 if (IS_ERR(kauditd_task)) {
833 err = PTR_ERR(kauditd_task);
834 kauditd_task = NULL;
835 return err;
836 }
837 }
838 seq = nlh->nlmsg_seq;
839 data = nlmsg_data(nlh);
840
841 switch (msg_type) {
842 case AUDIT_GET: {
843 struct audit_status s;
844 memset(&s, 0, sizeof(s));
845 s.enabled = audit_enabled;
846 s.failure = audit_failure;
847 s.pid = audit_pid;
848 s.rate_limit = audit_rate_limit;
849 s.backlog_limit = audit_backlog_limit;
850 s.lost = atomic_read(&audit_lost);
851 s.backlog = skb_queue_len(&audit_skb_queue);
852 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
853 s.backlog_wait_time = audit_backlog_wait_time_master;
854 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
855 break;
856 }
857 case AUDIT_SET: {
858 struct audit_status s;
859 memset(&s, 0, sizeof(s));
860 /* guard against past and future API changes */
861 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
862 if (s.mask & AUDIT_STATUS_ENABLED) {
863 err = audit_set_enabled(s.enabled);
864 if (err < 0)
865 return err;
866 }
867 if (s.mask & AUDIT_STATUS_FAILURE) {
868 err = audit_set_failure(s.failure);
869 if (err < 0)
870 return err;
871 }
872 if (s.mask & AUDIT_STATUS_PID) {
873 int new_pid = s.pid;
874
875 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
876 return -EACCES;
877 if (audit_enabled != AUDIT_OFF)
878 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
879 audit_pid = new_pid;
880 audit_nlk_portid = NETLINK_CB(skb).portid;
881 audit_sock = skb->sk;
882 }
883 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
884 err = audit_set_rate_limit(s.rate_limit);
885 if (err < 0)
886 return err;
887 }
888 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
889 err = audit_set_backlog_limit(s.backlog_limit);
890 if (err < 0)
891 return err;
892 }
893 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
894 if (sizeof(s) > (size_t)nlh->nlmsg_len)
895 return -EINVAL;
896 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
897 return -EINVAL;
898 err = audit_set_backlog_wait_time(s.backlog_wait_time);
899 if (err < 0)
900 return err;
901 }
902 break;
903 }
904 case AUDIT_GET_FEATURE:
905 err = audit_get_feature(skb);
906 if (err)
907 return err;
908 break;
909 case AUDIT_SET_FEATURE:
910 err = audit_set_feature(skb);
911 if (err)
912 return err;
913 break;
914 case AUDIT_USER:
915 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
916 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
917 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
918 return 0;
919
920 err = audit_filter_user(msg_type);
921 if (err == 1) { /* match or error */
922 err = 0;
923 if (msg_type == AUDIT_USER_TTY) {
924 err = tty_audit_push_current();
925 if (err)
926 break;
927 }
928 mutex_unlock(&audit_cmd_mutex);
929 audit_log_common_recv_msg(&ab, msg_type);
930 if (msg_type != AUDIT_USER_TTY)
931 audit_log_format(ab, " msg='%.*s'",
932 AUDIT_MESSAGE_TEXT_MAX,
933 (char *)data);
934 else {
935 int size;
936
937 audit_log_format(ab, " data=");
938 size = nlmsg_len(nlh);
939 if (size > 0 &&
940 ((unsigned char *)data)[size - 1] == '\0')
941 size--;
942 audit_log_n_untrustedstring(ab, data, size);
943 }
944 audit_set_portid(ab, NETLINK_CB(skb).portid);
945 audit_log_end(ab);
946 mutex_lock(&audit_cmd_mutex);
947 }
948 break;
949 case AUDIT_ADD_RULE:
950 case AUDIT_DEL_RULE:
951 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
952 return -EINVAL;
953 if (audit_enabled == AUDIT_LOCKED) {
954 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
955 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
956 audit_log_end(ab);
957 return -EPERM;
958 }
959 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
960 seq, data, nlmsg_len(nlh));
961 break;
962 case AUDIT_LIST_RULES:
963 err = audit_list_rules_send(skb, seq);
964 break;
965 case AUDIT_TRIM:
966 audit_trim_trees();
967 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
968 audit_log_format(ab, " op=trim res=1");
969 audit_log_end(ab);
970 break;
971 case AUDIT_MAKE_EQUIV: {
972 void *bufp = data;
973 u32 sizes[2];
974 size_t msglen = nlmsg_len(nlh);
975 char *old, *new;
976
977 err = -EINVAL;
978 if (msglen < 2 * sizeof(u32))
979 break;
980 memcpy(sizes, bufp, 2 * sizeof(u32));
981 bufp += 2 * sizeof(u32);
982 msglen -= 2 * sizeof(u32);
983 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
984 if (IS_ERR(old)) {
985 err = PTR_ERR(old);
986 break;
987 }
988 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
989 if (IS_ERR(new)) {
990 err = PTR_ERR(new);
991 kfree(old);
992 break;
993 }
994 /* OK, here comes... */
995 err = audit_tag_tree(old, new);
996
997 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
998
999 audit_log_format(ab, " op=make_equiv old=");
1000 audit_log_untrustedstring(ab, old);
1001 audit_log_format(ab, " new=");
1002 audit_log_untrustedstring(ab, new);
1003 audit_log_format(ab, " res=%d", !err);
1004 audit_log_end(ab);
1005 kfree(old);
1006 kfree(new);
1007 break;
1008 }
1009 case AUDIT_SIGNAL_INFO:
1010 len = 0;
1011 if (audit_sig_sid) {
1012 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1013 if (err)
1014 return err;
1015 }
1016 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1017 if (!sig_data) {
1018 if (audit_sig_sid)
1019 security_release_secctx(ctx, len);
1020 return -ENOMEM;
1021 }
1022 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1023 sig_data->pid = audit_sig_pid;
1024 if (audit_sig_sid) {
1025 memcpy(sig_data->ctx, ctx, len);
1026 security_release_secctx(ctx, len);
1027 }
1028 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1029 sig_data, sizeof(*sig_data) + len);
1030 kfree(sig_data);
1031 break;
1032 case AUDIT_TTY_GET: {
1033 struct audit_tty_status s;
1034 struct task_struct *tsk = current;
1035
1036 spin_lock(&tsk->sighand->siglock);
1037 s.enabled = tsk->signal->audit_tty;
1038 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1039 spin_unlock(&tsk->sighand->siglock);
1040
1041 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1042 break;
1043 }
1044 case AUDIT_TTY_SET: {
1045 struct audit_tty_status s, old;
1046 struct task_struct *tsk = current;
1047 struct audit_buffer *ab;
1048
1049 memset(&s, 0, sizeof(s));
1050 /* guard against past and future API changes */
1051 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1052 /* check if new data is valid */
1053 if ((s.enabled != 0 && s.enabled != 1) ||
1054 (s.log_passwd != 0 && s.log_passwd != 1))
1055 err = -EINVAL;
1056
1057 spin_lock(&tsk->sighand->siglock);
1058 old.enabled = tsk->signal->audit_tty;
1059 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1060 if (!err) {
1061 tsk->signal->audit_tty = s.enabled;
1062 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1063 }
1064 spin_unlock(&tsk->sighand->siglock);
1065
1066 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1067 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1068 " old-log_passwd=%d new-log_passwd=%d res=%d",
1069 old.enabled, s.enabled, old.log_passwd,
1070 s.log_passwd, !err);
1071 audit_log_end(ab);
1072 break;
1073 }
1074 default:
1075 err = -EINVAL;
1076 break;
1077 }
1078
1079 return err < 0 ? err : 0;
1080 }
1081
1082 /*
1083 * Get message from skb. Each message is processed by audit_receive_msg.
1084 * Malformed skbs with wrong length are discarded silently.
1085 */
1086 static void audit_receive_skb(struct sk_buff *skb)
1087 {
1088 struct nlmsghdr *nlh;
1089 /*
1090 * len MUST be signed for nlmsg_next to be able to dec it below 0
1091 * if the nlmsg_len was not aligned
1092 */
1093 int len;
1094 int err;
1095
1096 nlh = nlmsg_hdr(skb);
1097 len = skb->len;
1098
1099 while (nlmsg_ok(nlh, len)) {
1100 err = audit_receive_msg(skb, nlh);
1101 /* if err or if this message says it wants a response */
1102 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1103 netlink_ack(skb, nlh, err);
1104
1105 nlh = nlmsg_next(nlh, &len);
1106 }
1107 }
1108
1109 /* Receive messages from netlink socket. */
1110 static void audit_receive(struct sk_buff *skb)
1111 {
1112 mutex_lock(&audit_cmd_mutex);
1113 audit_receive_skb(skb);
1114 mutex_unlock(&audit_cmd_mutex);
1115 }
1116
1117 /* Run custom bind function on netlink socket group connect or bind requests. */
1118 static int audit_bind(struct net *net, int group)
1119 {
1120 if (!capable(CAP_AUDIT_READ))
1121 return -EPERM;
1122
1123 return 0;
1124 }
1125
1126 static int __net_init audit_net_init(struct net *net)
1127 {
1128 struct netlink_kernel_cfg cfg = {
1129 .input = audit_receive,
1130 .bind = audit_bind,
1131 .flags = NL_CFG_F_NONROOT_RECV,
1132 .groups = AUDIT_NLGRP_MAX,
1133 };
1134
1135 struct audit_net *aunet = net_generic(net, audit_net_id);
1136
1137 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1138 if (aunet->nlsk == NULL) {
1139 audit_panic("cannot initialize netlink socket in namespace");
1140 return -ENOMEM;
1141 }
1142 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1143 return 0;
1144 }
1145
1146 static void __net_exit audit_net_exit(struct net *net)
1147 {
1148 struct audit_net *aunet = net_generic(net, audit_net_id);
1149 struct sock *sock = aunet->nlsk;
1150 if (sock == audit_sock) {
1151 audit_pid = 0;
1152 audit_sock = NULL;
1153 }
1154
1155 RCU_INIT_POINTER(aunet->nlsk, NULL);
1156 synchronize_net();
1157 netlink_kernel_release(sock);
1158 }
1159
1160 static struct pernet_operations audit_net_ops __net_initdata = {
1161 .init = audit_net_init,
1162 .exit = audit_net_exit,
1163 .id = &audit_net_id,
1164 .size = sizeof(struct audit_net),
1165 };
1166
1167 /* Initialize audit support at boot time. */
1168 static int __init audit_init(void)
1169 {
1170 int i;
1171
1172 if (audit_initialized == AUDIT_DISABLED)
1173 return 0;
1174
1175 pr_info("initializing netlink subsys (%s)\n",
1176 audit_default ? "enabled" : "disabled");
1177 register_pernet_subsys(&audit_net_ops);
1178
1179 skb_queue_head_init(&audit_skb_queue);
1180 skb_queue_head_init(&audit_skb_hold_queue);
1181 audit_initialized = AUDIT_INITIALIZED;
1182 audit_enabled = audit_default;
1183 audit_ever_enabled |= !!audit_default;
1184
1185 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1186
1187 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1188 INIT_LIST_HEAD(&audit_inode_hash[i]);
1189
1190 return 0;
1191 }
1192 __initcall(audit_init);
1193
1194 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1195 static int __init audit_enable(char *str)
1196 {
1197 audit_default = !!simple_strtol(str, NULL, 0);
1198 if (!audit_default)
1199 audit_initialized = AUDIT_DISABLED;
1200
1201 pr_info("%s\n", audit_default ?
1202 "enabled (after initialization)" : "disabled (until reboot)");
1203
1204 return 1;
1205 }
1206 __setup("audit=", audit_enable);
1207
1208 /* Process kernel command-line parameter at boot time.
1209 * audit_backlog_limit=<n> */
1210 static int __init audit_backlog_limit_set(char *str)
1211 {
1212 u32 audit_backlog_limit_arg;
1213
1214 pr_info("audit_backlog_limit: ");
1215 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1216 pr_cont("using default of %u, unable to parse %s\n",
1217 audit_backlog_limit, str);
1218 return 1;
1219 }
1220
1221 audit_backlog_limit = audit_backlog_limit_arg;
1222 pr_cont("%d\n", audit_backlog_limit);
1223
1224 return 1;
1225 }
1226 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1227
1228 static void audit_buffer_free(struct audit_buffer *ab)
1229 {
1230 unsigned long flags;
1231
1232 if (!ab)
1233 return;
1234
1235 if (ab->skb)
1236 kfree_skb(ab->skb);
1237
1238 spin_lock_irqsave(&audit_freelist_lock, flags);
1239 if (audit_freelist_count > AUDIT_MAXFREE)
1240 kfree(ab);
1241 else {
1242 audit_freelist_count++;
1243 list_add(&ab->list, &audit_freelist);
1244 }
1245 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1246 }
1247
1248 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1249 gfp_t gfp_mask, int type)
1250 {
1251 unsigned long flags;
1252 struct audit_buffer *ab = NULL;
1253 struct nlmsghdr *nlh;
1254
1255 spin_lock_irqsave(&audit_freelist_lock, flags);
1256 if (!list_empty(&audit_freelist)) {
1257 ab = list_entry(audit_freelist.next,
1258 struct audit_buffer, list);
1259 list_del(&ab->list);
1260 --audit_freelist_count;
1261 }
1262 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1263
1264 if (!ab) {
1265 ab = kmalloc(sizeof(*ab), gfp_mask);
1266 if (!ab)
1267 goto err;
1268 }
1269
1270 ab->ctx = ctx;
1271 ab->gfp_mask = gfp_mask;
1272
1273 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1274 if (!ab->skb)
1275 goto err;
1276
1277 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1278 if (!nlh)
1279 goto out_kfree_skb;
1280
1281 return ab;
1282
1283 out_kfree_skb:
1284 kfree_skb(ab->skb);
1285 ab->skb = NULL;
1286 err:
1287 audit_buffer_free(ab);
1288 return NULL;
1289 }
1290
1291 /**
1292 * audit_serial - compute a serial number for the audit record
1293 *
1294 * Compute a serial number for the audit record. Audit records are
1295 * written to user-space as soon as they are generated, so a complete
1296 * audit record may be written in several pieces. The timestamp of the
1297 * record and this serial number are used by the user-space tools to
1298 * determine which pieces belong to the same audit record. The
1299 * (timestamp,serial) tuple is unique for each syscall and is live from
1300 * syscall entry to syscall exit.
1301 *
1302 * NOTE: Another possibility is to store the formatted records off the
1303 * audit context (for those records that have a context), and emit them
1304 * all at syscall exit. However, this could delay the reporting of
1305 * significant errors until syscall exit (or never, if the system
1306 * halts).
1307 */
1308 unsigned int audit_serial(void)
1309 {
1310 static atomic_t serial = ATOMIC_INIT(0);
1311
1312 return atomic_add_return(1, &serial);
1313 }
1314
1315 static inline void audit_get_stamp(struct audit_context *ctx,
1316 struct timespec *t, unsigned int *serial)
1317 {
1318 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1319 *t = CURRENT_TIME;
1320 *serial = audit_serial();
1321 }
1322 }
1323
1324 /*
1325 * Wait for auditd to drain the queue a little
1326 */
1327 static long wait_for_auditd(long sleep_time)
1328 {
1329 DECLARE_WAITQUEUE(wait, current);
1330 set_current_state(TASK_UNINTERRUPTIBLE);
1331 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1332
1333 if (audit_backlog_limit &&
1334 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1335 sleep_time = schedule_timeout(sleep_time);
1336
1337 __set_current_state(TASK_RUNNING);
1338 remove_wait_queue(&audit_backlog_wait, &wait);
1339
1340 return sleep_time;
1341 }
1342
1343 /**
1344 * audit_log_start - obtain an audit buffer
1345 * @ctx: audit_context (may be NULL)
1346 * @gfp_mask: type of allocation
1347 * @type: audit message type
1348 *
1349 * Returns audit_buffer pointer on success or NULL on error.
1350 *
1351 * Obtain an audit buffer. This routine does locking to obtain the
1352 * audit buffer, but then no locking is required for calls to
1353 * audit_log_*format. If the task (ctx) is a task that is currently in a
1354 * syscall, then the syscall is marked as auditable and an audit record
1355 * will be written at syscall exit. If there is no associated task, then
1356 * task context (ctx) should be NULL.
1357 */
1358 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1359 int type)
1360 {
1361 struct audit_buffer *ab = NULL;
1362 struct timespec t;
1363 unsigned int uninitialized_var(serial);
1364 int reserve = 5; /* Allow atomic callers to go up to five
1365 entries over the normal backlog limit */
1366 unsigned long timeout_start = jiffies;
1367
1368 if (audit_initialized != AUDIT_INITIALIZED)
1369 return NULL;
1370
1371 if (unlikely(audit_filter_type(type)))
1372 return NULL;
1373
1374 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1375 if (audit_pid && audit_pid == current->pid)
1376 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1377 else
1378 reserve = 0;
1379 }
1380
1381 while (audit_backlog_limit
1382 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1383 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1384 long sleep_time;
1385
1386 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1387 if (sleep_time > 0) {
1388 sleep_time = wait_for_auditd(sleep_time);
1389 if (sleep_time > 0)
1390 continue;
1391 }
1392 }
1393 if (audit_rate_check() && printk_ratelimit())
1394 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1395 skb_queue_len(&audit_skb_queue),
1396 audit_backlog_limit);
1397 audit_log_lost("backlog limit exceeded");
1398 audit_backlog_wait_time = audit_backlog_wait_overflow;
1399 wake_up(&audit_backlog_wait);
1400 return NULL;
1401 }
1402
1403 if (!reserve)
1404 audit_backlog_wait_time = audit_backlog_wait_time_master;
1405
1406 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1407 if (!ab) {
1408 audit_log_lost("out of memory in audit_log_start");
1409 return NULL;
1410 }
1411
1412 audit_get_stamp(ab->ctx, &t, &serial);
1413
1414 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1415 t.tv_sec, t.tv_nsec/1000000, serial);
1416 return ab;
1417 }
1418
1419 /**
1420 * audit_expand - expand skb in the audit buffer
1421 * @ab: audit_buffer
1422 * @extra: space to add at tail of the skb
1423 *
1424 * Returns 0 (no space) on failed expansion, or available space if
1425 * successful.
1426 */
1427 static inline int audit_expand(struct audit_buffer *ab, int extra)
1428 {
1429 struct sk_buff *skb = ab->skb;
1430 int oldtail = skb_tailroom(skb);
1431 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1432 int newtail = skb_tailroom(skb);
1433
1434 if (ret < 0) {
1435 audit_log_lost("out of memory in audit_expand");
1436 return 0;
1437 }
1438
1439 skb->truesize += newtail - oldtail;
1440 return newtail;
1441 }
1442
1443 /*
1444 * Format an audit message into the audit buffer. If there isn't enough
1445 * room in the audit buffer, more room will be allocated and vsnprint
1446 * will be called a second time. Currently, we assume that a printk
1447 * can't format message larger than 1024 bytes, so we don't either.
1448 */
1449 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1450 va_list args)
1451 {
1452 int len, avail;
1453 struct sk_buff *skb;
1454 va_list args2;
1455
1456 if (!ab)
1457 return;
1458
1459 BUG_ON(!ab->skb);
1460 skb = ab->skb;
1461 avail = skb_tailroom(skb);
1462 if (avail == 0) {
1463 avail = audit_expand(ab, AUDIT_BUFSIZ);
1464 if (!avail)
1465 goto out;
1466 }
1467 va_copy(args2, args);
1468 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1469 if (len >= avail) {
1470 /* The printk buffer is 1024 bytes long, so if we get
1471 * here and AUDIT_BUFSIZ is at least 1024, then we can
1472 * log everything that printk could have logged. */
1473 avail = audit_expand(ab,
1474 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1475 if (!avail)
1476 goto out_va_end;
1477 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1478 }
1479 if (len > 0)
1480 skb_put(skb, len);
1481 out_va_end:
1482 va_end(args2);
1483 out:
1484 return;
1485 }
1486
1487 /**
1488 * audit_log_format - format a message into the audit buffer.
1489 * @ab: audit_buffer
1490 * @fmt: format string
1491 * @...: optional parameters matching @fmt string
1492 *
1493 * All the work is done in audit_log_vformat.
1494 */
1495 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1496 {
1497 va_list args;
1498
1499 if (!ab)
1500 return;
1501 va_start(args, fmt);
1502 audit_log_vformat(ab, fmt, args);
1503 va_end(args);
1504 }
1505
1506 /**
1507 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1508 * @ab: the audit_buffer
1509 * @buf: buffer to convert to hex
1510 * @len: length of @buf to be converted
1511 *
1512 * No return value; failure to expand is silently ignored.
1513 *
1514 * This function will take the passed buf and convert it into a string of
1515 * ascii hex digits. The new string is placed onto the skb.
1516 */
1517 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1518 size_t len)
1519 {
1520 int i, avail, new_len;
1521 unsigned char *ptr;
1522 struct sk_buff *skb;
1523
1524 if (!ab)
1525 return;
1526
1527 BUG_ON(!ab->skb);
1528 skb = ab->skb;
1529 avail = skb_tailroom(skb);
1530 new_len = len<<1;
1531 if (new_len >= avail) {
1532 /* Round the buffer request up to the next multiple */
1533 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1534 avail = audit_expand(ab, new_len);
1535 if (!avail)
1536 return;
1537 }
1538
1539 ptr = skb_tail_pointer(skb);
1540 for (i = 0; i < len; i++)
1541 ptr = hex_byte_pack_upper(ptr, buf[i]);
1542 *ptr = 0;
1543 skb_put(skb, len << 1); /* new string is twice the old string */
1544 }
1545
1546 /*
1547 * Format a string of no more than slen characters into the audit buffer,
1548 * enclosed in quote marks.
1549 */
1550 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1551 size_t slen)
1552 {
1553 int avail, new_len;
1554 unsigned char *ptr;
1555 struct sk_buff *skb;
1556
1557 if (!ab)
1558 return;
1559
1560 BUG_ON(!ab->skb);
1561 skb = ab->skb;
1562 avail = skb_tailroom(skb);
1563 new_len = slen + 3; /* enclosing quotes + null terminator */
1564 if (new_len > avail) {
1565 avail = audit_expand(ab, new_len);
1566 if (!avail)
1567 return;
1568 }
1569 ptr = skb_tail_pointer(skb);
1570 *ptr++ = '"';
1571 memcpy(ptr, string, slen);
1572 ptr += slen;
1573 *ptr++ = '"';
1574 *ptr = 0;
1575 skb_put(skb, slen + 2); /* don't include null terminator */
1576 }
1577
1578 /**
1579 * audit_string_contains_control - does a string need to be logged in hex
1580 * @string: string to be checked
1581 * @len: max length of the string to check
1582 */
1583 bool audit_string_contains_control(const char *string, size_t len)
1584 {
1585 const unsigned char *p;
1586 for (p = string; p < (const unsigned char *)string + len; p++) {
1587 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1588 return true;
1589 }
1590 return false;
1591 }
1592
1593 /**
1594 * audit_log_n_untrustedstring - log a string that may contain random characters
1595 * @ab: audit_buffer
1596 * @len: length of string (not including trailing null)
1597 * @string: string to be logged
1598 *
1599 * This code will escape a string that is passed to it if the string
1600 * contains a control character, unprintable character, double quote mark,
1601 * or a space. Unescaped strings will start and end with a double quote mark.
1602 * Strings that are escaped are printed in hex (2 digits per char).
1603 *
1604 * The caller specifies the number of characters in the string to log, which may
1605 * or may not be the entire string.
1606 */
1607 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1608 size_t len)
1609 {
1610 if (audit_string_contains_control(string, len))
1611 audit_log_n_hex(ab, string, len);
1612 else
1613 audit_log_n_string(ab, string, len);
1614 }
1615
1616 /**
1617 * audit_log_untrustedstring - log a string that may contain random characters
1618 * @ab: audit_buffer
1619 * @string: string to be logged
1620 *
1621 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1622 * determine string length.
1623 */
1624 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1625 {
1626 audit_log_n_untrustedstring(ab, string, strlen(string));
1627 }
1628
1629 /* This is a helper-function to print the escaped d_path */
1630 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1631 const struct path *path)
1632 {
1633 char *p, *pathname;
1634
1635 if (prefix)
1636 audit_log_format(ab, "%s", prefix);
1637
1638 /* We will allow 11 spaces for ' (deleted)' to be appended */
1639 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1640 if (!pathname) {
1641 audit_log_string(ab, "<no_memory>");
1642 return;
1643 }
1644 p = d_path(path, pathname, PATH_MAX+11);
1645 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1646 /* FIXME: can we save some information here? */
1647 audit_log_string(ab, "<too_long>");
1648 } else
1649 audit_log_untrustedstring(ab, p);
1650 kfree(pathname);
1651 }
1652
1653 void audit_log_session_info(struct audit_buffer *ab)
1654 {
1655 unsigned int sessionid = audit_get_sessionid(current);
1656 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1657
1658 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1659 }
1660
1661 void audit_log_key(struct audit_buffer *ab, char *key)
1662 {
1663 audit_log_format(ab, " key=");
1664 if (key)
1665 audit_log_untrustedstring(ab, key);
1666 else
1667 audit_log_format(ab, "(null)");
1668 }
1669
1670 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1671 {
1672 int i;
1673
1674 audit_log_format(ab, " %s=", prefix);
1675 CAP_FOR_EACH_U32(i) {
1676 audit_log_format(ab, "%08x",
1677 cap->cap[CAP_LAST_U32 - i]);
1678 }
1679 }
1680
1681 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1682 {
1683 kernel_cap_t *perm = &name->fcap.permitted;
1684 kernel_cap_t *inh = &name->fcap.inheritable;
1685 int log = 0;
1686
1687 if (!cap_isclear(*perm)) {
1688 audit_log_cap(ab, "cap_fp", perm);
1689 log = 1;
1690 }
1691 if (!cap_isclear(*inh)) {
1692 audit_log_cap(ab, "cap_fi", inh);
1693 log = 1;
1694 }
1695
1696 if (log)
1697 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1698 name->fcap.fE, name->fcap_ver);
1699 }
1700
1701 static inline int audit_copy_fcaps(struct audit_names *name,
1702 const struct dentry *dentry)
1703 {
1704 struct cpu_vfs_cap_data caps;
1705 int rc;
1706
1707 if (!dentry)
1708 return 0;
1709
1710 rc = get_vfs_caps_from_disk(dentry, &caps);
1711 if (rc)
1712 return rc;
1713
1714 name->fcap.permitted = caps.permitted;
1715 name->fcap.inheritable = caps.inheritable;
1716 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1717 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1718 VFS_CAP_REVISION_SHIFT;
1719
1720 return 0;
1721 }
1722
1723 /* Copy inode data into an audit_names. */
1724 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1725 const struct inode *inode)
1726 {
1727 name->ino = inode->i_ino;
1728 name->dev = inode->i_sb->s_dev;
1729 name->mode = inode->i_mode;
1730 name->uid = inode->i_uid;
1731 name->gid = inode->i_gid;
1732 name->rdev = inode->i_rdev;
1733 security_inode_getsecid(inode, &name->osid);
1734 audit_copy_fcaps(name, dentry);
1735 }
1736
1737 /**
1738 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1739 * @context: audit_context for the task
1740 * @n: audit_names structure with reportable details
1741 * @path: optional path to report instead of audit_names->name
1742 * @record_num: record number to report when handling a list of names
1743 * @call_panic: optional pointer to int that will be updated if secid fails
1744 */
1745 void audit_log_name(struct audit_context *context, struct audit_names *n,
1746 struct path *path, int record_num, int *call_panic)
1747 {
1748 struct audit_buffer *ab;
1749 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1750 if (!ab)
1751 return;
1752
1753 audit_log_format(ab, "item=%d", record_num);
1754
1755 if (path)
1756 audit_log_d_path(ab, " name=", path);
1757 else if (n->name) {
1758 switch (n->name_len) {
1759 case AUDIT_NAME_FULL:
1760 /* log the full path */
1761 audit_log_format(ab, " name=");
1762 audit_log_untrustedstring(ab, n->name->name);
1763 break;
1764 case 0:
1765 /* name was specified as a relative path and the
1766 * directory component is the cwd */
1767 audit_log_d_path(ab, " name=", &context->pwd);
1768 break;
1769 default:
1770 /* log the name's directory component */
1771 audit_log_format(ab, " name=");
1772 audit_log_n_untrustedstring(ab, n->name->name,
1773 n->name_len);
1774 }
1775 } else
1776 audit_log_format(ab, " name=(null)");
1777
1778 if (n->ino != AUDIT_INO_UNSET)
1779 audit_log_format(ab, " inode=%lu"
1780 " dev=%02x:%02x mode=%#ho"
1781 " ouid=%u ogid=%u rdev=%02x:%02x",
1782 n->ino,
1783 MAJOR(n->dev),
1784 MINOR(n->dev),
1785 n->mode,
1786 from_kuid(&init_user_ns, n->uid),
1787 from_kgid(&init_user_ns, n->gid),
1788 MAJOR(n->rdev),
1789 MINOR(n->rdev));
1790 if (n->osid != 0) {
1791 char *ctx = NULL;
1792 u32 len;
1793 if (security_secid_to_secctx(
1794 n->osid, &ctx, &len)) {
1795 audit_log_format(ab, " osid=%u", n->osid);
1796 if (call_panic)
1797 *call_panic = 2;
1798 } else {
1799 audit_log_format(ab, " obj=%s", ctx);
1800 security_release_secctx(ctx, len);
1801 }
1802 }
1803
1804 /* log the audit_names record type */
1805 audit_log_format(ab, " nametype=");
1806 switch(n->type) {
1807 case AUDIT_TYPE_NORMAL:
1808 audit_log_format(ab, "NORMAL");
1809 break;
1810 case AUDIT_TYPE_PARENT:
1811 audit_log_format(ab, "PARENT");
1812 break;
1813 case AUDIT_TYPE_CHILD_DELETE:
1814 audit_log_format(ab, "DELETE");
1815 break;
1816 case AUDIT_TYPE_CHILD_CREATE:
1817 audit_log_format(ab, "CREATE");
1818 break;
1819 default:
1820 audit_log_format(ab, "UNKNOWN");
1821 break;
1822 }
1823
1824 audit_log_fcaps(ab, n);
1825 audit_log_end(ab);
1826 }
1827
1828 int audit_log_task_context(struct audit_buffer *ab)
1829 {
1830 char *ctx = NULL;
1831 unsigned len;
1832 int error;
1833 u32 sid;
1834
1835 security_task_getsecid(current, &sid);
1836 if (!sid)
1837 return 0;
1838
1839 error = security_secid_to_secctx(sid, &ctx, &len);
1840 if (error) {
1841 if (error != -EINVAL)
1842 goto error_path;
1843 return 0;
1844 }
1845
1846 audit_log_format(ab, " subj=%s", ctx);
1847 security_release_secctx(ctx, len);
1848 return 0;
1849
1850 error_path:
1851 audit_panic("error in audit_log_task_context");
1852 return error;
1853 }
1854 EXPORT_SYMBOL(audit_log_task_context);
1855
1856 void audit_log_d_path_exe(struct audit_buffer *ab,
1857 struct mm_struct *mm)
1858 {
1859 struct file *exe_file;
1860
1861 if (!mm)
1862 goto out_null;
1863
1864 exe_file = get_mm_exe_file(mm);
1865 if (!exe_file)
1866 goto out_null;
1867
1868 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1869 fput(exe_file);
1870 return;
1871 out_null:
1872 audit_log_format(ab, " exe=(null)");
1873 }
1874
1875 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1876 {
1877 const struct cred *cred;
1878 char comm[sizeof(tsk->comm)];
1879 char *tty;
1880
1881 if (!ab)
1882 return;
1883
1884 /* tsk == current */
1885 cred = current_cred();
1886
1887 spin_lock_irq(&tsk->sighand->siglock);
1888 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1889 tty = tsk->signal->tty->name;
1890 else
1891 tty = "(none)";
1892 spin_unlock_irq(&tsk->sighand->siglock);
1893
1894 audit_log_format(ab,
1895 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1896 " euid=%u suid=%u fsuid=%u"
1897 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1898 task_ppid_nr(tsk),
1899 task_pid_nr(tsk),
1900 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1901 from_kuid(&init_user_ns, cred->uid),
1902 from_kgid(&init_user_ns, cred->gid),
1903 from_kuid(&init_user_ns, cred->euid),
1904 from_kuid(&init_user_ns, cred->suid),
1905 from_kuid(&init_user_ns, cred->fsuid),
1906 from_kgid(&init_user_ns, cred->egid),
1907 from_kgid(&init_user_ns, cred->sgid),
1908 from_kgid(&init_user_ns, cred->fsgid),
1909 tty, audit_get_sessionid(tsk));
1910
1911 audit_log_format(ab, " comm=");
1912 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1913
1914 audit_log_d_path_exe(ab, tsk->mm);
1915 audit_log_task_context(ab);
1916 }
1917 EXPORT_SYMBOL(audit_log_task_info);
1918
1919 /**
1920 * audit_log_link_denied - report a link restriction denial
1921 * @operation: specific link operation
1922 * @link: the path that triggered the restriction
1923 */
1924 void audit_log_link_denied(const char *operation, struct path *link)
1925 {
1926 struct audit_buffer *ab;
1927 struct audit_names *name;
1928
1929 name = kzalloc(sizeof(*name), GFP_NOFS);
1930 if (!name)
1931 return;
1932
1933 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1934 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1935 AUDIT_ANOM_LINK);
1936 if (!ab)
1937 goto out;
1938 audit_log_format(ab, "op=%s", operation);
1939 audit_log_task_info(ab, current);
1940 audit_log_format(ab, " res=0");
1941 audit_log_end(ab);
1942
1943 /* Generate AUDIT_PATH record with object. */
1944 name->type = AUDIT_TYPE_NORMAL;
1945 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1946 audit_log_name(current->audit_context, name, link, 0, NULL);
1947 out:
1948 kfree(name);
1949 }
1950
1951 /**
1952 * audit_log_end - end one audit record
1953 * @ab: the audit_buffer
1954 *
1955 * netlink_unicast() cannot be called inside an irq context because it blocks
1956 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1957 * on a queue and a tasklet is scheduled to remove them from the queue outside
1958 * the irq context. May be called in any context.
1959 */
1960 void audit_log_end(struct audit_buffer *ab)
1961 {
1962 if (!ab)
1963 return;
1964 if (!audit_rate_check()) {
1965 audit_log_lost("rate limit exceeded");
1966 } else {
1967 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1968
1969 nlh->nlmsg_len = ab->skb->len;
1970 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1971
1972 /*
1973 * The original kaudit unicast socket sends up messages with
1974 * nlmsg_len set to the payload length rather than the entire
1975 * message length. This breaks the standard set by netlink.
1976 * The existing auditd daemon assumes this breakage. Fixing
1977 * this would require co-ordinating a change in the established
1978 * protocol between the kaudit kernel subsystem and the auditd
1979 * userspace code.
1980 */
1981 nlh->nlmsg_len -= NLMSG_HDRLEN;
1982
1983 if (audit_pid) {
1984 skb_queue_tail(&audit_skb_queue, ab->skb);
1985 wake_up_interruptible(&kauditd_wait);
1986 } else {
1987 audit_printk_skb(ab->skb);
1988 }
1989 ab->skb = NULL;
1990 }
1991 audit_buffer_free(ab);
1992 }
1993
1994 /**
1995 * audit_log - Log an audit record
1996 * @ctx: audit context
1997 * @gfp_mask: type of allocation
1998 * @type: audit message type
1999 * @fmt: format string to use
2000 * @...: variable parameters matching the format string
2001 *
2002 * This is a convenience function that calls audit_log_start,
2003 * audit_log_vformat, and audit_log_end. It may be called
2004 * in any context.
2005 */
2006 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2007 const char *fmt, ...)
2008 {
2009 struct audit_buffer *ab;
2010 va_list args;
2011
2012 ab = audit_log_start(ctx, gfp_mask, type);
2013 if (ab) {
2014 va_start(args, fmt);
2015 audit_log_vformat(ab, fmt, args);
2016 va_end(args);
2017 audit_log_end(ab);
2018 }
2019 }
2020
2021 #ifdef CONFIG_SECURITY
2022 /**
2023 * audit_log_secctx - Converts and logs SELinux context
2024 * @ab: audit_buffer
2025 * @secid: security number
2026 *
2027 * This is a helper function that calls security_secid_to_secctx to convert
2028 * secid to secctx and then adds the (converted) SELinux context to the audit
2029 * log by calling audit_log_format, thus also preventing leak of internal secid
2030 * to userspace. If secid cannot be converted audit_panic is called.
2031 */
2032 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2033 {
2034 u32 len;
2035 char *secctx;
2036
2037 if (security_secid_to_secctx(secid, &secctx, &len)) {
2038 audit_panic("Cannot convert secid to context");
2039 } else {
2040 audit_log_format(ab, " obj=%s", secctx);
2041 security_release_secctx(secctx, len);
2042 }
2043 }
2044 EXPORT_SYMBOL(audit_log_secctx);
2045 #endif
2046
2047 EXPORT_SYMBOL(audit_log_start);
2048 EXPORT_SYMBOL(audit_log_end);
2049 EXPORT_SYMBOL(audit_log_format);
2050 EXPORT_SYMBOL(audit_log);