]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/auditsc.c
Merge tag 'powerpc-5.7-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name) {
605 result = audit_watch_compare(rule->watch,
606 name->ino,
607 name->dev);
608 if (f->op == Audit_not_equal)
609 result = !result;
610 }
611 break;
612 case AUDIT_DIR:
613 if (ctx) {
614 result = match_tree_refs(ctx, rule->tree);
615 if (f->op == Audit_not_equal)
616 result = !result;
617 }
618 break;
619 case AUDIT_LOGINUID:
620 result = audit_uid_comparator(audit_get_loginuid(tsk),
621 f->op, f->uid);
622 break;
623 case AUDIT_LOGINUID_SET:
624 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625 break;
626 case AUDIT_SADDR_FAM:
627 if (ctx->sockaddr)
628 result = audit_comparator(ctx->sockaddr->ss_family,
629 f->op, f->val);
630 break;
631 case AUDIT_SUBJ_USER:
632 case AUDIT_SUBJ_ROLE:
633 case AUDIT_SUBJ_TYPE:
634 case AUDIT_SUBJ_SEN:
635 case AUDIT_SUBJ_CLR:
636 /* NOTE: this may return negative values indicating
637 a temporary error. We simply treat this as a
638 match for now to avoid losing information that
639 may be wanted. An error message will also be
640 logged upon error */
641 if (f->lsm_rule) {
642 if (need_sid) {
643 security_task_getsecid(tsk, &sid);
644 need_sid = 0;
645 }
646 result = security_audit_rule_match(sid, f->type,
647 f->op,
648 f->lsm_rule);
649 }
650 break;
651 case AUDIT_OBJ_USER:
652 case AUDIT_OBJ_ROLE:
653 case AUDIT_OBJ_TYPE:
654 case AUDIT_OBJ_LEV_LOW:
655 case AUDIT_OBJ_LEV_HIGH:
656 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
657 also applies here */
658 if (f->lsm_rule) {
659 /* Find files that match */
660 if (name) {
661 result = security_audit_rule_match(
662 name->osid,
663 f->type,
664 f->op,
665 f->lsm_rule);
666 } else if (ctx) {
667 list_for_each_entry(n, &ctx->names_list, list) {
668 if (security_audit_rule_match(
669 n->osid,
670 f->type,
671 f->op,
672 f->lsm_rule)) {
673 ++result;
674 break;
675 }
676 }
677 }
678 /* Find ipc objects that match */
679 if (!ctx || ctx->type != AUDIT_IPC)
680 break;
681 if (security_audit_rule_match(ctx->ipc.osid,
682 f->type, f->op,
683 f->lsm_rule))
684 ++result;
685 }
686 break;
687 case AUDIT_ARG0:
688 case AUDIT_ARG1:
689 case AUDIT_ARG2:
690 case AUDIT_ARG3:
691 if (ctx)
692 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
693 break;
694 case AUDIT_FILTERKEY:
695 /* ignore this field for filtering */
696 result = 1;
697 break;
698 case AUDIT_PERM:
699 result = audit_match_perm(ctx, f->val);
700 if (f->op == Audit_not_equal)
701 result = !result;
702 break;
703 case AUDIT_FILETYPE:
704 result = audit_match_filetype(ctx, f->val);
705 if (f->op == Audit_not_equal)
706 result = !result;
707 break;
708 case AUDIT_FIELD_COMPARE:
709 result = audit_field_compare(tsk, cred, f, ctx, name);
710 break;
711 }
712 if (!result)
713 return 0;
714 }
715
716 if (ctx) {
717 if (rule->prio <= ctx->prio)
718 return 0;
719 if (rule->filterkey) {
720 kfree(ctx->filterkey);
721 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722 }
723 ctx->prio = rule->prio;
724 }
725 switch (rule->action) {
726 case AUDIT_NEVER:
727 *state = AUDIT_DISABLED;
728 break;
729 case AUDIT_ALWAYS:
730 *state = AUDIT_RECORD_CONTEXT;
731 break;
732 }
733 return 1;
734 }
735
736 /* At process creation time, we can determine if system-call auditing is
737 * completely disabled for this task. Since we only have the task
738 * structure at this point, we can only check uid and gid.
739 */
740 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
741 {
742 struct audit_entry *e;
743 enum audit_state state;
744
745 rcu_read_lock();
746 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
747 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748 &state, true)) {
749 if (state == AUDIT_RECORD_CONTEXT)
750 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
751 rcu_read_unlock();
752 return state;
753 }
754 }
755 rcu_read_unlock();
756 return AUDIT_BUILD_CONTEXT;
757 }
758
759 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760 {
761 int word, bit;
762
763 if (val > 0xffffffff)
764 return false;
765
766 word = AUDIT_WORD(val);
767 if (word >= AUDIT_BITMASK_SIZE)
768 return false;
769
770 bit = AUDIT_BIT(val);
771
772 return rule->mask[word] & bit;
773 }
774
775 /* At syscall entry and exit time, this filter is called if the
776 * audit_state is not low enough that auditing cannot take place, but is
777 * also not high enough that we already know we have to write an audit
778 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
779 */
780 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781 struct audit_context *ctx,
782 struct list_head *list)
783 {
784 struct audit_entry *e;
785 enum audit_state state;
786
787 if (auditd_test_task(tsk))
788 return AUDIT_DISABLED;
789
790 rcu_read_lock();
791 list_for_each_entry_rcu(e, list, list) {
792 if (audit_in_mask(&e->rule, ctx->major) &&
793 audit_filter_rules(tsk, &e->rule, ctx, NULL,
794 &state, false)) {
795 rcu_read_unlock();
796 ctx->current_state = state;
797 return state;
798 }
799 }
800 rcu_read_unlock();
801 return AUDIT_BUILD_CONTEXT;
802 }
803
804 /*
805 * Given an audit_name check the inode hash table to see if they match.
806 * Called holding the rcu read lock to protect the use of audit_inode_hash
807 */
808 static int audit_filter_inode_name(struct task_struct *tsk,
809 struct audit_names *n,
810 struct audit_context *ctx) {
811 int h = audit_hash_ino((u32)n->ino);
812 struct list_head *list = &audit_inode_hash[h];
813 struct audit_entry *e;
814 enum audit_state state;
815
816 list_for_each_entry_rcu(e, list, list) {
817 if (audit_in_mask(&e->rule, ctx->major) &&
818 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819 ctx->current_state = state;
820 return 1;
821 }
822 }
823 return 0;
824 }
825
826 /* At syscall exit time, this filter is called if any audit_names have been
827 * collected during syscall processing. We only check rules in sublists at hash
828 * buckets applicable to the inode numbers in audit_names.
829 * Regarding audit_state, same rules apply as for audit_filter_syscall().
830 */
831 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
832 {
833 struct audit_names *n;
834
835 if (auditd_test_task(tsk))
836 return;
837
838 rcu_read_lock();
839
840 list_for_each_entry(n, &ctx->names_list, list) {
841 if (audit_filter_inode_name(tsk, n, ctx))
842 break;
843 }
844 rcu_read_unlock();
845 }
846
847 static inline void audit_proctitle_free(struct audit_context *context)
848 {
849 kfree(context->proctitle.value);
850 context->proctitle.value = NULL;
851 context->proctitle.len = 0;
852 }
853
854 static inline void audit_free_module(struct audit_context *context)
855 {
856 if (context->type == AUDIT_KERN_MODULE) {
857 kfree(context->module.name);
858 context->module.name = NULL;
859 }
860 }
861 static inline void audit_free_names(struct audit_context *context)
862 {
863 struct audit_names *n, *next;
864
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
867 if (n->name)
868 putname(n->name);
869 if (n->should_free)
870 kfree(n);
871 }
872 context->name_count = 0;
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
876 }
877
878 static inline void audit_free_aux(struct audit_context *context)
879 {
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
890 }
891
892 static inline struct audit_context *audit_alloc_context(enum audit_state state)
893 {
894 struct audit_context *context;
895
896 context = kzalloc(sizeof(*context), GFP_KERNEL);
897 if (!context)
898 return NULL;
899 context->state = state;
900 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
901 INIT_LIST_HEAD(&context->killed_trees);
902 INIT_LIST_HEAD(&context->names_list);
903 return context;
904 }
905
906 /**
907 * audit_alloc - allocate an audit context block for a task
908 * @tsk: task
909 *
910 * Filter on the task information and allocate a per-task audit context
911 * if necessary. Doing so turns on system call auditing for the
912 * specified task. This is called from copy_process, so no lock is
913 * needed.
914 */
915 int audit_alloc(struct task_struct *tsk)
916 {
917 struct audit_context *context;
918 enum audit_state state;
919 char *key = NULL;
920
921 if (likely(!audit_ever_enabled))
922 return 0; /* Return if not auditing. */
923
924 state = audit_filter_task(tsk, &key);
925 if (state == AUDIT_DISABLED) {
926 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
927 return 0;
928 }
929
930 if (!(context = audit_alloc_context(state))) {
931 kfree(key);
932 audit_log_lost("out of memory in audit_alloc");
933 return -ENOMEM;
934 }
935 context->filterkey = key;
936
937 audit_set_context(tsk, context);
938 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 return 0;
940 }
941
942 static inline void audit_free_context(struct audit_context *context)
943 {
944 audit_free_module(context);
945 audit_free_names(context);
946 unroll_tree_refs(context, NULL, 0);
947 free_tree_refs(context);
948 audit_free_aux(context);
949 kfree(context->filterkey);
950 kfree(context->sockaddr);
951 audit_proctitle_free(context);
952 kfree(context);
953 }
954
955 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
956 kuid_t auid, kuid_t uid, unsigned int sessionid,
957 u32 sid, char *comm)
958 {
959 struct audit_buffer *ab;
960 char *ctx = NULL;
961 u32 len;
962 int rc = 0;
963
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965 if (!ab)
966 return rc;
967
968 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969 from_kuid(&init_user_ns, auid),
970 from_kuid(&init_user_ns, uid), sessionid);
971 if (sid) {
972 if (security_secid_to_secctx(sid, &ctx, &len)) {
973 audit_log_format(ab, " obj=(none)");
974 rc = 1;
975 } else {
976 audit_log_format(ab, " obj=%s", ctx);
977 security_release_secctx(ctx, len);
978 }
979 }
980 audit_log_format(ab, " ocomm=");
981 audit_log_untrustedstring(ab, comm);
982 audit_log_end(ab);
983
984 return rc;
985 }
986
987 static void audit_log_execve_info(struct audit_context *context,
988 struct audit_buffer **ab)
989 {
990 long len_max;
991 long len_rem;
992 long len_full;
993 long len_buf;
994 long len_abuf = 0;
995 long len_tmp;
996 bool require_data;
997 bool encode;
998 unsigned int iter;
999 unsigned int arg;
1000 char *buf_head;
1001 char *buf;
1002 const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005 * data we put in the audit record for this argument (see the
1006 * code below) ... at this point in time 96 is plenty */
1007 char abuf[96];
1008
1009 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010 * current value of 7500 is not as important as the fact that it
1011 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1012 * room if we go over a little bit in the logging below */
1013 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014 len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016 /* scratch buffer to hold the userspace args */
1017 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018 if (!buf_head) {
1019 audit_panic("out of memory for argv string");
1020 return;
1021 }
1022 buf = buf_head;
1023
1024 audit_log_format(*ab, "argc=%d", context->execve.argc);
1025
1026 len_rem = len_max;
1027 len_buf = 0;
1028 len_full = 0;
1029 require_data = true;
1030 encode = false;
1031 iter = 0;
1032 arg = 0;
1033 do {
1034 /* NOTE: we don't ever want to trust this value for anything
1035 * serious, but the audit record format insists we
1036 * provide an argument length for really long arguments,
1037 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038 * to use strncpy_from_user() to obtain this value for
1039 * recording in the log, although we don't use it
1040 * anywhere here to avoid a double-fetch problem */
1041 if (len_full == 0)
1042 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044 /* read more data from userspace */
1045 if (require_data) {
1046 /* can we make more room in the buffer? */
1047 if (buf != buf_head) {
1048 memmove(buf_head, buf, len_buf);
1049 buf = buf_head;
1050 }
1051
1052 /* fetch as much as we can of the argument */
1053 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054 len_max - len_buf);
1055 if (len_tmp == -EFAULT) {
1056 /* unable to copy from userspace */
1057 send_sig(SIGKILL, current, 0);
1058 goto out;
1059 } else if (len_tmp == (len_max - len_buf)) {
1060 /* buffer is not large enough */
1061 require_data = true;
1062 /* NOTE: if we are going to span multiple
1063 * buffers force the encoding so we stand
1064 * a chance at a sane len_full value and
1065 * consistent record encoding */
1066 encode = true;
1067 len_full = len_full * 2;
1068 p += len_tmp;
1069 } else {
1070 require_data = false;
1071 if (!encode)
1072 encode = audit_string_contains_control(
1073 buf, len_tmp);
1074 /* try to use a trusted value for len_full */
1075 if (len_full < len_max)
1076 len_full = (encode ?
1077 len_tmp * 2 : len_tmp);
1078 p += len_tmp + 1;
1079 }
1080 len_buf += len_tmp;
1081 buf_head[len_buf] = '\0';
1082
1083 /* length of the buffer in the audit record? */
1084 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085 }
1086
1087 /* write as much as we can to the audit log */
1088 if (len_buf >= 0) {
1089 /* NOTE: some magic numbers here - basically if we
1090 * can't fit a reasonable amount of data into the
1091 * existing audit buffer, flush it and start with
1092 * a new buffer */
1093 if ((sizeof(abuf) + 8) > len_rem) {
1094 len_rem = len_max;
1095 audit_log_end(*ab);
1096 *ab = audit_log_start(context,
1097 GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 goto out;
1100 }
1101
1102 /* create the non-arg portion of the arg record */
1103 len_tmp = 0;
1104 if (require_data || (iter > 0) ||
1105 ((len_abuf + sizeof(abuf)) > len_rem)) {
1106 if (iter == 0) {
1107 len_tmp += snprintf(&abuf[len_tmp],
1108 sizeof(abuf) - len_tmp,
1109 " a%d_len=%lu",
1110 arg, len_full);
1111 }
1112 len_tmp += snprintf(&abuf[len_tmp],
1113 sizeof(abuf) - len_tmp,
1114 " a%d[%d]=", arg, iter++);
1115 } else
1116 len_tmp += snprintf(&abuf[len_tmp],
1117 sizeof(abuf) - len_tmp,
1118 " a%d=", arg);
1119 WARN_ON(len_tmp >= sizeof(abuf));
1120 abuf[sizeof(abuf) - 1] = '\0';
1121
1122 /* log the arg in the audit record */
1123 audit_log_format(*ab, "%s", abuf);
1124 len_rem -= len_tmp;
1125 len_tmp = len_buf;
1126 if (encode) {
1127 if (len_abuf > len_rem)
1128 len_tmp = len_rem / 2; /* encoding */
1129 audit_log_n_hex(*ab, buf, len_tmp);
1130 len_rem -= len_tmp * 2;
1131 len_abuf -= len_tmp * 2;
1132 } else {
1133 if (len_abuf > len_rem)
1134 len_tmp = len_rem - 2; /* quotes */
1135 audit_log_n_string(*ab, buf, len_tmp);
1136 len_rem -= len_tmp + 2;
1137 /* don't subtract the "2" because we still need
1138 * to add quotes to the remaining string */
1139 len_abuf -= len_tmp;
1140 }
1141 len_buf -= len_tmp;
1142 buf += len_tmp;
1143 }
1144
1145 /* ready to move to the next argument? */
1146 if ((len_buf == 0) && !require_data) {
1147 arg++;
1148 iter = 0;
1149 len_full = 0;
1150 require_data = true;
1151 encode = false;
1152 }
1153 } while (arg < context->execve.argc);
1154
1155 /* NOTE: the caller handles the final audit_log_end() call */
1156
1157 out:
1158 kfree(buf_head);
1159 }
1160
1161 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162 kernel_cap_t *cap)
1163 {
1164 int i;
1165
1166 if (cap_isclear(*cap)) {
1167 audit_log_format(ab, " %s=0", prefix);
1168 return;
1169 }
1170 audit_log_format(ab, " %s=", prefix);
1171 CAP_FOR_EACH_U32(i)
1172 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173 }
1174
1175 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176 {
1177 if (name->fcap_ver == -1) {
1178 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179 return;
1180 }
1181 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 name->fcap.fE, name->fcap_ver,
1185 from_kuid(&init_user_ns, name->fcap.rootid));
1186 }
1187
1188 static void show_special(struct audit_context *context, int *call_panic)
1189 {
1190 struct audit_buffer *ab;
1191 int i;
1192
1193 ab = audit_log_start(context, GFP_KERNEL, context->type);
1194 if (!ab)
1195 return;
1196
1197 switch (context->type) {
1198 case AUDIT_SOCKETCALL: {
1199 int nargs = context->socketcall.nargs;
1200 audit_log_format(ab, "nargs=%d", nargs);
1201 for (i = 0; i < nargs; i++)
1202 audit_log_format(ab, " a%d=%lx", i,
1203 context->socketcall.args[i]);
1204 break; }
1205 case AUDIT_IPC: {
1206 u32 osid = context->ipc.osid;
1207
1208 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1209 from_kuid(&init_user_ns, context->ipc.uid),
1210 from_kgid(&init_user_ns, context->ipc.gid),
1211 context->ipc.mode);
1212 if (osid) {
1213 char *ctx = NULL;
1214 u32 len;
1215 if (security_secid_to_secctx(osid, &ctx, &len)) {
1216 audit_log_format(ab, " osid=%u", osid);
1217 *call_panic = 1;
1218 } else {
1219 audit_log_format(ab, " obj=%s", ctx);
1220 security_release_secctx(ctx, len);
1221 }
1222 }
1223 if (context->ipc.has_perm) {
1224 audit_log_end(ab);
1225 ab = audit_log_start(context, GFP_KERNEL,
1226 AUDIT_IPC_SET_PERM);
1227 if (unlikely(!ab))
1228 return;
1229 audit_log_format(ab,
1230 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231 context->ipc.qbytes,
1232 context->ipc.perm_uid,
1233 context->ipc.perm_gid,
1234 context->ipc.perm_mode);
1235 }
1236 break; }
1237 case AUDIT_MQ_OPEN:
1238 audit_log_format(ab,
1239 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240 "mq_msgsize=%ld mq_curmsgs=%ld",
1241 context->mq_open.oflag, context->mq_open.mode,
1242 context->mq_open.attr.mq_flags,
1243 context->mq_open.attr.mq_maxmsg,
1244 context->mq_open.attr.mq_msgsize,
1245 context->mq_open.attr.mq_curmsgs);
1246 break;
1247 case AUDIT_MQ_SENDRECV:
1248 audit_log_format(ab,
1249 "mqdes=%d msg_len=%zd msg_prio=%u "
1250 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251 context->mq_sendrecv.mqdes,
1252 context->mq_sendrecv.msg_len,
1253 context->mq_sendrecv.msg_prio,
1254 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1255 context->mq_sendrecv.abs_timeout.tv_nsec);
1256 break;
1257 case AUDIT_MQ_NOTIFY:
1258 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259 context->mq_notify.mqdes,
1260 context->mq_notify.sigev_signo);
1261 break;
1262 case AUDIT_MQ_GETSETATTR: {
1263 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264 audit_log_format(ab,
1265 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266 "mq_curmsgs=%ld ",
1267 context->mq_getsetattr.mqdes,
1268 attr->mq_flags, attr->mq_maxmsg,
1269 attr->mq_msgsize, attr->mq_curmsgs);
1270 break; }
1271 case AUDIT_CAPSET:
1272 audit_log_format(ab, "pid=%d", context->capset.pid);
1273 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1277 break;
1278 case AUDIT_MMAP:
1279 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280 context->mmap.flags);
1281 break;
1282 case AUDIT_EXECVE:
1283 audit_log_execve_info(context, &ab);
1284 break;
1285 case AUDIT_KERN_MODULE:
1286 audit_log_format(ab, "name=");
1287 if (context->module.name) {
1288 audit_log_untrustedstring(ab, context->module.name);
1289 } else
1290 audit_log_format(ab, "(null)");
1291
1292 break;
1293 }
1294 audit_log_end(ab);
1295 }
1296
1297 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1298 {
1299 char *end = proctitle + len - 1;
1300 while (end > proctitle && !isprint(*end))
1301 end--;
1302
1303 /* catch the case where proctitle is only 1 non-print character */
1304 len = end - proctitle + 1;
1305 len -= isprint(proctitle[len-1]) == 0;
1306 return len;
1307 }
1308
1309 /*
1310 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1311 * @context: audit_context for the task
1312 * @n: audit_names structure with reportable details
1313 * @path: optional path to report instead of audit_names->name
1314 * @record_num: record number to report when handling a list of names
1315 * @call_panic: optional pointer to int that will be updated if secid fails
1316 */
1317 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1318 const struct path *path, int record_num, int *call_panic)
1319 {
1320 struct audit_buffer *ab;
1321
1322 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1323 if (!ab)
1324 return;
1325
1326 audit_log_format(ab, "item=%d", record_num);
1327
1328 if (path)
1329 audit_log_d_path(ab, " name=", path);
1330 else if (n->name) {
1331 switch (n->name_len) {
1332 case AUDIT_NAME_FULL:
1333 /* log the full path */
1334 audit_log_format(ab, " name=");
1335 audit_log_untrustedstring(ab, n->name->name);
1336 break;
1337 case 0:
1338 /* name was specified as a relative path and the
1339 * directory component is the cwd
1340 */
1341 audit_log_d_path(ab, " name=", &context->pwd);
1342 break;
1343 default:
1344 /* log the name's directory component */
1345 audit_log_format(ab, " name=");
1346 audit_log_n_untrustedstring(ab, n->name->name,
1347 n->name_len);
1348 }
1349 } else
1350 audit_log_format(ab, " name=(null)");
1351
1352 if (n->ino != AUDIT_INO_UNSET)
1353 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1354 n->ino,
1355 MAJOR(n->dev),
1356 MINOR(n->dev),
1357 n->mode,
1358 from_kuid(&init_user_ns, n->uid),
1359 from_kgid(&init_user_ns, n->gid),
1360 MAJOR(n->rdev),
1361 MINOR(n->rdev));
1362 if (n->osid != 0) {
1363 char *ctx = NULL;
1364 u32 len;
1365
1366 if (security_secid_to_secctx(
1367 n->osid, &ctx, &len)) {
1368 audit_log_format(ab, " osid=%u", n->osid);
1369 if (call_panic)
1370 *call_panic = 2;
1371 } else {
1372 audit_log_format(ab, " obj=%s", ctx);
1373 security_release_secctx(ctx, len);
1374 }
1375 }
1376
1377 /* log the audit_names record type */
1378 switch (n->type) {
1379 case AUDIT_TYPE_NORMAL:
1380 audit_log_format(ab, " nametype=NORMAL");
1381 break;
1382 case AUDIT_TYPE_PARENT:
1383 audit_log_format(ab, " nametype=PARENT");
1384 break;
1385 case AUDIT_TYPE_CHILD_DELETE:
1386 audit_log_format(ab, " nametype=DELETE");
1387 break;
1388 case AUDIT_TYPE_CHILD_CREATE:
1389 audit_log_format(ab, " nametype=CREATE");
1390 break;
1391 default:
1392 audit_log_format(ab, " nametype=UNKNOWN");
1393 break;
1394 }
1395
1396 audit_log_fcaps(ab, n);
1397 audit_log_end(ab);
1398 }
1399
1400 static void audit_log_proctitle(void)
1401 {
1402 int res;
1403 char *buf;
1404 char *msg = "(null)";
1405 int len = strlen(msg);
1406 struct audit_context *context = audit_context();
1407 struct audit_buffer *ab;
1408
1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1410 if (!ab)
1411 return; /* audit_panic or being filtered */
1412
1413 audit_log_format(ab, "proctitle=");
1414
1415 /* Not cached */
1416 if (!context->proctitle.value) {
1417 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1418 if (!buf)
1419 goto out;
1420 /* Historically called this from procfs naming */
1421 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1422 if (res == 0) {
1423 kfree(buf);
1424 goto out;
1425 }
1426 res = audit_proctitle_rtrim(buf, res);
1427 if (res == 0) {
1428 kfree(buf);
1429 goto out;
1430 }
1431 context->proctitle.value = buf;
1432 context->proctitle.len = res;
1433 }
1434 msg = context->proctitle.value;
1435 len = context->proctitle.len;
1436 out:
1437 audit_log_n_untrustedstring(ab, msg, len);
1438 audit_log_end(ab);
1439 }
1440
1441 static void audit_log_exit(void)
1442 {
1443 int i, call_panic = 0;
1444 struct audit_context *context = audit_context();
1445 struct audit_buffer *ab;
1446 struct audit_aux_data *aux;
1447 struct audit_names *n;
1448
1449 context->personality = current->personality;
1450
1451 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1452 if (!ab)
1453 return; /* audit_panic has been called */
1454 audit_log_format(ab, "arch=%x syscall=%d",
1455 context->arch, context->major);
1456 if (context->personality != PER_LINUX)
1457 audit_log_format(ab, " per=%lx", context->personality);
1458 if (context->return_valid)
1459 audit_log_format(ab, " success=%s exit=%ld",
1460 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1461 context->return_code);
1462
1463 audit_log_format(ab,
1464 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1465 context->argv[0],
1466 context->argv[1],
1467 context->argv[2],
1468 context->argv[3],
1469 context->name_count);
1470
1471 audit_log_task_info(ab);
1472 audit_log_key(ab, context->filterkey);
1473 audit_log_end(ab);
1474
1475 for (aux = context->aux; aux; aux = aux->next) {
1476
1477 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1478 if (!ab)
1479 continue; /* audit_panic has been called */
1480
1481 switch (aux->type) {
1482
1483 case AUDIT_BPRM_FCAPS: {
1484 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1485 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1486 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1487 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1488 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1489 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1490 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1491 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1492 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1493 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1494 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1495 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1496 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1497 audit_log_format(ab, " frootid=%d",
1498 from_kuid(&init_user_ns,
1499 axs->fcap.rootid));
1500 break; }
1501
1502 }
1503 audit_log_end(ab);
1504 }
1505
1506 if (context->type)
1507 show_special(context, &call_panic);
1508
1509 if (context->fds[0] >= 0) {
1510 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1511 if (ab) {
1512 audit_log_format(ab, "fd0=%d fd1=%d",
1513 context->fds[0], context->fds[1]);
1514 audit_log_end(ab);
1515 }
1516 }
1517
1518 if (context->sockaddr_len) {
1519 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1520 if (ab) {
1521 audit_log_format(ab, "saddr=");
1522 audit_log_n_hex(ab, (void *)context->sockaddr,
1523 context->sockaddr_len);
1524 audit_log_end(ab);
1525 }
1526 }
1527
1528 for (aux = context->aux_pids; aux; aux = aux->next) {
1529 struct audit_aux_data_pids *axs = (void *)aux;
1530
1531 for (i = 0; i < axs->pid_count; i++)
1532 if (audit_log_pid_context(context, axs->target_pid[i],
1533 axs->target_auid[i],
1534 axs->target_uid[i],
1535 axs->target_sessionid[i],
1536 axs->target_sid[i],
1537 axs->target_comm[i]))
1538 call_panic = 1;
1539 }
1540
1541 if (context->target_pid &&
1542 audit_log_pid_context(context, context->target_pid,
1543 context->target_auid, context->target_uid,
1544 context->target_sessionid,
1545 context->target_sid, context->target_comm))
1546 call_panic = 1;
1547
1548 if (context->pwd.dentry && context->pwd.mnt) {
1549 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1550 if (ab) {
1551 audit_log_d_path(ab, "cwd=", &context->pwd);
1552 audit_log_end(ab);
1553 }
1554 }
1555
1556 i = 0;
1557 list_for_each_entry(n, &context->names_list, list) {
1558 if (n->hidden)
1559 continue;
1560 audit_log_name(context, n, NULL, i++, &call_panic);
1561 }
1562
1563 audit_log_proctitle();
1564
1565 /* Send end of event record to help user space know we are finished */
1566 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1567 if (ab)
1568 audit_log_end(ab);
1569 if (call_panic)
1570 audit_panic("error converting sid to string");
1571 }
1572
1573 /**
1574 * __audit_free - free a per-task audit context
1575 * @tsk: task whose audit context block to free
1576 *
1577 * Called from copy_process and do_exit
1578 */
1579 void __audit_free(struct task_struct *tsk)
1580 {
1581 struct audit_context *context = tsk->audit_context;
1582
1583 if (!context)
1584 return;
1585
1586 if (!list_empty(&context->killed_trees))
1587 audit_kill_trees(context);
1588
1589 /* We are called either by do_exit() or the fork() error handling code;
1590 * in the former case tsk == current and in the latter tsk is a
1591 * random task_struct that doesn't doesn't have any meaningful data we
1592 * need to log via audit_log_exit().
1593 */
1594 if (tsk == current && !context->dummy && context->in_syscall) {
1595 context->return_valid = 0;
1596 context->return_code = 0;
1597
1598 audit_filter_syscall(tsk, context,
1599 &audit_filter_list[AUDIT_FILTER_EXIT]);
1600 audit_filter_inodes(tsk, context);
1601 if (context->current_state == AUDIT_RECORD_CONTEXT)
1602 audit_log_exit();
1603 }
1604
1605 audit_set_context(tsk, NULL);
1606 audit_free_context(context);
1607 }
1608
1609 /**
1610 * __audit_syscall_entry - fill in an audit record at syscall entry
1611 * @major: major syscall type (function)
1612 * @a1: additional syscall register 1
1613 * @a2: additional syscall register 2
1614 * @a3: additional syscall register 3
1615 * @a4: additional syscall register 4
1616 *
1617 * Fill in audit context at syscall entry. This only happens if the
1618 * audit context was created when the task was created and the state or
1619 * filters demand the audit context be built. If the state from the
1620 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1621 * then the record will be written at syscall exit time (otherwise, it
1622 * will only be written if another part of the kernel requests that it
1623 * be written).
1624 */
1625 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1626 unsigned long a3, unsigned long a4)
1627 {
1628 struct audit_context *context = audit_context();
1629 enum audit_state state;
1630
1631 if (!audit_enabled || !context)
1632 return;
1633
1634 BUG_ON(context->in_syscall || context->name_count);
1635
1636 state = context->state;
1637 if (state == AUDIT_DISABLED)
1638 return;
1639
1640 context->dummy = !audit_n_rules;
1641 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1642 context->prio = 0;
1643 if (auditd_test_task(current))
1644 return;
1645 }
1646
1647 context->arch = syscall_get_arch(current);
1648 context->major = major;
1649 context->argv[0] = a1;
1650 context->argv[1] = a2;
1651 context->argv[2] = a3;
1652 context->argv[3] = a4;
1653 context->serial = 0;
1654 context->in_syscall = 1;
1655 context->current_state = state;
1656 context->ppid = 0;
1657 ktime_get_coarse_real_ts64(&context->ctime);
1658 }
1659
1660 /**
1661 * __audit_syscall_exit - deallocate audit context after a system call
1662 * @success: success value of the syscall
1663 * @return_code: return value of the syscall
1664 *
1665 * Tear down after system call. If the audit context has been marked as
1666 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1667 * filtering, or because some other part of the kernel wrote an audit
1668 * message), then write out the syscall information. In call cases,
1669 * free the names stored from getname().
1670 */
1671 void __audit_syscall_exit(int success, long return_code)
1672 {
1673 struct audit_context *context;
1674
1675 context = audit_context();
1676 if (!context)
1677 return;
1678
1679 if (!list_empty(&context->killed_trees))
1680 audit_kill_trees(context);
1681
1682 if (!context->dummy && context->in_syscall) {
1683 if (success)
1684 context->return_valid = AUDITSC_SUCCESS;
1685 else
1686 context->return_valid = AUDITSC_FAILURE;
1687
1688 /*
1689 * we need to fix up the return code in the audit logs if the
1690 * actual return codes are later going to be fixed up by the
1691 * arch specific signal handlers
1692 *
1693 * This is actually a test for:
1694 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1695 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1696 *
1697 * but is faster than a bunch of ||
1698 */
1699 if (unlikely(return_code <= -ERESTARTSYS) &&
1700 (return_code >= -ERESTART_RESTARTBLOCK) &&
1701 (return_code != -ENOIOCTLCMD))
1702 context->return_code = -EINTR;
1703 else
1704 context->return_code = return_code;
1705
1706 audit_filter_syscall(current, context,
1707 &audit_filter_list[AUDIT_FILTER_EXIT]);
1708 audit_filter_inodes(current, context);
1709 if (context->current_state == AUDIT_RECORD_CONTEXT)
1710 audit_log_exit();
1711 }
1712
1713 context->in_syscall = 0;
1714 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1715
1716 audit_free_module(context);
1717 audit_free_names(context);
1718 unroll_tree_refs(context, NULL, 0);
1719 audit_free_aux(context);
1720 context->aux = NULL;
1721 context->aux_pids = NULL;
1722 context->target_pid = 0;
1723 context->target_sid = 0;
1724 context->sockaddr_len = 0;
1725 context->type = 0;
1726 context->fds[0] = -1;
1727 if (context->state != AUDIT_RECORD_CONTEXT) {
1728 kfree(context->filterkey);
1729 context->filterkey = NULL;
1730 }
1731 }
1732
1733 static inline void handle_one(const struct inode *inode)
1734 {
1735 struct audit_context *context;
1736 struct audit_tree_refs *p;
1737 struct audit_chunk *chunk;
1738 int count;
1739 if (likely(!inode->i_fsnotify_marks))
1740 return;
1741 context = audit_context();
1742 p = context->trees;
1743 count = context->tree_count;
1744 rcu_read_lock();
1745 chunk = audit_tree_lookup(inode);
1746 rcu_read_unlock();
1747 if (!chunk)
1748 return;
1749 if (likely(put_tree_ref(context, chunk)))
1750 return;
1751 if (unlikely(!grow_tree_refs(context))) {
1752 pr_warn("out of memory, audit has lost a tree reference\n");
1753 audit_set_auditable(context);
1754 audit_put_chunk(chunk);
1755 unroll_tree_refs(context, p, count);
1756 return;
1757 }
1758 put_tree_ref(context, chunk);
1759 }
1760
1761 static void handle_path(const struct dentry *dentry)
1762 {
1763 struct audit_context *context;
1764 struct audit_tree_refs *p;
1765 const struct dentry *d, *parent;
1766 struct audit_chunk *drop;
1767 unsigned long seq;
1768 int count;
1769
1770 context = audit_context();
1771 p = context->trees;
1772 count = context->tree_count;
1773 retry:
1774 drop = NULL;
1775 d = dentry;
1776 rcu_read_lock();
1777 seq = read_seqbegin(&rename_lock);
1778 for(;;) {
1779 struct inode *inode = d_backing_inode(d);
1780 if (inode && unlikely(inode->i_fsnotify_marks)) {
1781 struct audit_chunk *chunk;
1782 chunk = audit_tree_lookup(inode);
1783 if (chunk) {
1784 if (unlikely(!put_tree_ref(context, chunk))) {
1785 drop = chunk;
1786 break;
1787 }
1788 }
1789 }
1790 parent = d->d_parent;
1791 if (parent == d)
1792 break;
1793 d = parent;
1794 }
1795 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1796 rcu_read_unlock();
1797 if (!drop) {
1798 /* just a race with rename */
1799 unroll_tree_refs(context, p, count);
1800 goto retry;
1801 }
1802 audit_put_chunk(drop);
1803 if (grow_tree_refs(context)) {
1804 /* OK, got more space */
1805 unroll_tree_refs(context, p, count);
1806 goto retry;
1807 }
1808 /* too bad */
1809 pr_warn("out of memory, audit has lost a tree reference\n");
1810 unroll_tree_refs(context, p, count);
1811 audit_set_auditable(context);
1812 return;
1813 }
1814 rcu_read_unlock();
1815 }
1816
1817 static struct audit_names *audit_alloc_name(struct audit_context *context,
1818 unsigned char type)
1819 {
1820 struct audit_names *aname;
1821
1822 if (context->name_count < AUDIT_NAMES) {
1823 aname = &context->preallocated_names[context->name_count];
1824 memset(aname, 0, sizeof(*aname));
1825 } else {
1826 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1827 if (!aname)
1828 return NULL;
1829 aname->should_free = true;
1830 }
1831
1832 aname->ino = AUDIT_INO_UNSET;
1833 aname->type = type;
1834 list_add_tail(&aname->list, &context->names_list);
1835
1836 context->name_count++;
1837 return aname;
1838 }
1839
1840 /**
1841 * __audit_reusename - fill out filename with info from existing entry
1842 * @uptr: userland ptr to pathname
1843 *
1844 * Search the audit_names list for the current audit context. If there is an
1845 * existing entry with a matching "uptr" then return the filename
1846 * associated with that audit_name. If not, return NULL.
1847 */
1848 struct filename *
1849 __audit_reusename(const __user char *uptr)
1850 {
1851 struct audit_context *context = audit_context();
1852 struct audit_names *n;
1853
1854 list_for_each_entry(n, &context->names_list, list) {
1855 if (!n->name)
1856 continue;
1857 if (n->name->uptr == uptr) {
1858 n->name->refcnt++;
1859 return n->name;
1860 }
1861 }
1862 return NULL;
1863 }
1864
1865 /**
1866 * __audit_getname - add a name to the list
1867 * @name: name to add
1868 *
1869 * Add a name to the list of audit names for this context.
1870 * Called from fs/namei.c:getname().
1871 */
1872 void __audit_getname(struct filename *name)
1873 {
1874 struct audit_context *context = audit_context();
1875 struct audit_names *n;
1876
1877 if (!context->in_syscall)
1878 return;
1879
1880 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1881 if (!n)
1882 return;
1883
1884 n->name = name;
1885 n->name_len = AUDIT_NAME_FULL;
1886 name->aname = n;
1887 name->refcnt++;
1888
1889 if (!context->pwd.dentry)
1890 get_fs_pwd(current->fs, &context->pwd);
1891 }
1892
1893 static inline int audit_copy_fcaps(struct audit_names *name,
1894 const struct dentry *dentry)
1895 {
1896 struct cpu_vfs_cap_data caps;
1897 int rc;
1898
1899 if (!dentry)
1900 return 0;
1901
1902 rc = get_vfs_caps_from_disk(dentry, &caps);
1903 if (rc)
1904 return rc;
1905
1906 name->fcap.permitted = caps.permitted;
1907 name->fcap.inheritable = caps.inheritable;
1908 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1909 name->fcap.rootid = caps.rootid;
1910 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1911 VFS_CAP_REVISION_SHIFT;
1912
1913 return 0;
1914 }
1915
1916 /* Copy inode data into an audit_names. */
1917 static void audit_copy_inode(struct audit_names *name,
1918 const struct dentry *dentry,
1919 struct inode *inode, unsigned int flags)
1920 {
1921 name->ino = inode->i_ino;
1922 name->dev = inode->i_sb->s_dev;
1923 name->mode = inode->i_mode;
1924 name->uid = inode->i_uid;
1925 name->gid = inode->i_gid;
1926 name->rdev = inode->i_rdev;
1927 security_inode_getsecid(inode, &name->osid);
1928 if (flags & AUDIT_INODE_NOEVAL) {
1929 name->fcap_ver = -1;
1930 return;
1931 }
1932 audit_copy_fcaps(name, dentry);
1933 }
1934
1935 /**
1936 * __audit_inode - store the inode and device from a lookup
1937 * @name: name being audited
1938 * @dentry: dentry being audited
1939 * @flags: attributes for this particular entry
1940 */
1941 void __audit_inode(struct filename *name, const struct dentry *dentry,
1942 unsigned int flags)
1943 {
1944 struct audit_context *context = audit_context();
1945 struct inode *inode = d_backing_inode(dentry);
1946 struct audit_names *n;
1947 bool parent = flags & AUDIT_INODE_PARENT;
1948 struct audit_entry *e;
1949 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1950 int i;
1951
1952 if (!context->in_syscall)
1953 return;
1954
1955 rcu_read_lock();
1956 list_for_each_entry_rcu(e, list, list) {
1957 for (i = 0; i < e->rule.field_count; i++) {
1958 struct audit_field *f = &e->rule.fields[i];
1959
1960 if (f->type == AUDIT_FSTYPE
1961 && audit_comparator(inode->i_sb->s_magic,
1962 f->op, f->val)
1963 && e->rule.action == AUDIT_NEVER) {
1964 rcu_read_unlock();
1965 return;
1966 }
1967 }
1968 }
1969 rcu_read_unlock();
1970
1971 if (!name)
1972 goto out_alloc;
1973
1974 /*
1975 * If we have a pointer to an audit_names entry already, then we can
1976 * just use it directly if the type is correct.
1977 */
1978 n = name->aname;
1979 if (n) {
1980 if (parent) {
1981 if (n->type == AUDIT_TYPE_PARENT ||
1982 n->type == AUDIT_TYPE_UNKNOWN)
1983 goto out;
1984 } else {
1985 if (n->type != AUDIT_TYPE_PARENT)
1986 goto out;
1987 }
1988 }
1989
1990 list_for_each_entry_reverse(n, &context->names_list, list) {
1991 if (n->ino) {
1992 /* valid inode number, use that for the comparison */
1993 if (n->ino != inode->i_ino ||
1994 n->dev != inode->i_sb->s_dev)
1995 continue;
1996 } else if (n->name) {
1997 /* inode number has not been set, check the name */
1998 if (strcmp(n->name->name, name->name))
1999 continue;
2000 } else
2001 /* no inode and no name (?!) ... this is odd ... */
2002 continue;
2003
2004 /* match the correct record type */
2005 if (parent) {
2006 if (n->type == AUDIT_TYPE_PARENT ||
2007 n->type == AUDIT_TYPE_UNKNOWN)
2008 goto out;
2009 } else {
2010 if (n->type != AUDIT_TYPE_PARENT)
2011 goto out;
2012 }
2013 }
2014
2015 out_alloc:
2016 /* unable to find an entry with both a matching name and type */
2017 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2018 if (!n)
2019 return;
2020 if (name) {
2021 n->name = name;
2022 name->refcnt++;
2023 }
2024
2025 out:
2026 if (parent) {
2027 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2028 n->type = AUDIT_TYPE_PARENT;
2029 if (flags & AUDIT_INODE_HIDDEN)
2030 n->hidden = true;
2031 } else {
2032 n->name_len = AUDIT_NAME_FULL;
2033 n->type = AUDIT_TYPE_NORMAL;
2034 }
2035 handle_path(dentry);
2036 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2037 }
2038
2039 void __audit_file(const struct file *file)
2040 {
2041 __audit_inode(NULL, file->f_path.dentry, 0);
2042 }
2043
2044 /**
2045 * __audit_inode_child - collect inode info for created/removed objects
2046 * @parent: inode of dentry parent
2047 * @dentry: dentry being audited
2048 * @type: AUDIT_TYPE_* value that we're looking for
2049 *
2050 * For syscalls that create or remove filesystem objects, audit_inode
2051 * can only collect information for the filesystem object's parent.
2052 * This call updates the audit context with the child's information.
2053 * Syscalls that create a new filesystem object must be hooked after
2054 * the object is created. Syscalls that remove a filesystem object
2055 * must be hooked prior, in order to capture the target inode during
2056 * unsuccessful attempts.
2057 */
2058 void __audit_inode_child(struct inode *parent,
2059 const struct dentry *dentry,
2060 const unsigned char type)
2061 {
2062 struct audit_context *context = audit_context();
2063 struct inode *inode = d_backing_inode(dentry);
2064 const struct qstr *dname = &dentry->d_name;
2065 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2066 struct audit_entry *e;
2067 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2068 int i;
2069
2070 if (!context->in_syscall)
2071 return;
2072
2073 rcu_read_lock();
2074 list_for_each_entry_rcu(e, list, list) {
2075 for (i = 0; i < e->rule.field_count; i++) {
2076 struct audit_field *f = &e->rule.fields[i];
2077
2078 if (f->type == AUDIT_FSTYPE
2079 && audit_comparator(parent->i_sb->s_magic,
2080 f->op, f->val)
2081 && e->rule.action == AUDIT_NEVER) {
2082 rcu_read_unlock();
2083 return;
2084 }
2085 }
2086 }
2087 rcu_read_unlock();
2088
2089 if (inode)
2090 handle_one(inode);
2091
2092 /* look for a parent entry first */
2093 list_for_each_entry(n, &context->names_list, list) {
2094 if (!n->name ||
2095 (n->type != AUDIT_TYPE_PARENT &&
2096 n->type != AUDIT_TYPE_UNKNOWN))
2097 continue;
2098
2099 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2100 !audit_compare_dname_path(dname,
2101 n->name->name, n->name_len)) {
2102 if (n->type == AUDIT_TYPE_UNKNOWN)
2103 n->type = AUDIT_TYPE_PARENT;
2104 found_parent = n;
2105 break;
2106 }
2107 }
2108
2109 /* is there a matching child entry? */
2110 list_for_each_entry(n, &context->names_list, list) {
2111 /* can only match entries that have a name */
2112 if (!n->name ||
2113 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2114 continue;
2115
2116 if (!strcmp(dname->name, n->name->name) ||
2117 !audit_compare_dname_path(dname, n->name->name,
2118 found_parent ?
2119 found_parent->name_len :
2120 AUDIT_NAME_FULL)) {
2121 if (n->type == AUDIT_TYPE_UNKNOWN)
2122 n->type = type;
2123 found_child = n;
2124 break;
2125 }
2126 }
2127
2128 if (!found_parent) {
2129 /* create a new, "anonymous" parent record */
2130 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2131 if (!n)
2132 return;
2133 audit_copy_inode(n, NULL, parent, 0);
2134 }
2135
2136 if (!found_child) {
2137 found_child = audit_alloc_name(context, type);
2138 if (!found_child)
2139 return;
2140
2141 /* Re-use the name belonging to the slot for a matching parent
2142 * directory. All names for this context are relinquished in
2143 * audit_free_names() */
2144 if (found_parent) {
2145 found_child->name = found_parent->name;
2146 found_child->name_len = AUDIT_NAME_FULL;
2147 found_child->name->refcnt++;
2148 }
2149 }
2150
2151 if (inode)
2152 audit_copy_inode(found_child, dentry, inode, 0);
2153 else
2154 found_child->ino = AUDIT_INO_UNSET;
2155 }
2156 EXPORT_SYMBOL_GPL(__audit_inode_child);
2157
2158 /**
2159 * auditsc_get_stamp - get local copies of audit_context values
2160 * @ctx: audit_context for the task
2161 * @t: timespec64 to store time recorded in the audit_context
2162 * @serial: serial value that is recorded in the audit_context
2163 *
2164 * Also sets the context as auditable.
2165 */
2166 int auditsc_get_stamp(struct audit_context *ctx,
2167 struct timespec64 *t, unsigned int *serial)
2168 {
2169 if (!ctx->in_syscall)
2170 return 0;
2171 if (!ctx->serial)
2172 ctx->serial = audit_serial();
2173 t->tv_sec = ctx->ctime.tv_sec;
2174 t->tv_nsec = ctx->ctime.tv_nsec;
2175 *serial = ctx->serial;
2176 if (!ctx->prio) {
2177 ctx->prio = 1;
2178 ctx->current_state = AUDIT_RECORD_CONTEXT;
2179 }
2180 return 1;
2181 }
2182
2183 /**
2184 * __audit_mq_open - record audit data for a POSIX MQ open
2185 * @oflag: open flag
2186 * @mode: mode bits
2187 * @attr: queue attributes
2188 *
2189 */
2190 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2191 {
2192 struct audit_context *context = audit_context();
2193
2194 if (attr)
2195 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2196 else
2197 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2198
2199 context->mq_open.oflag = oflag;
2200 context->mq_open.mode = mode;
2201
2202 context->type = AUDIT_MQ_OPEN;
2203 }
2204
2205 /**
2206 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2207 * @mqdes: MQ descriptor
2208 * @msg_len: Message length
2209 * @msg_prio: Message priority
2210 * @abs_timeout: Message timeout in absolute time
2211 *
2212 */
2213 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2214 const struct timespec64 *abs_timeout)
2215 {
2216 struct audit_context *context = audit_context();
2217 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2218
2219 if (abs_timeout)
2220 memcpy(p, abs_timeout, sizeof(*p));
2221 else
2222 memset(p, 0, sizeof(*p));
2223
2224 context->mq_sendrecv.mqdes = mqdes;
2225 context->mq_sendrecv.msg_len = msg_len;
2226 context->mq_sendrecv.msg_prio = msg_prio;
2227
2228 context->type = AUDIT_MQ_SENDRECV;
2229 }
2230
2231 /**
2232 * __audit_mq_notify - record audit data for a POSIX MQ notify
2233 * @mqdes: MQ descriptor
2234 * @notification: Notification event
2235 *
2236 */
2237
2238 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2239 {
2240 struct audit_context *context = audit_context();
2241
2242 if (notification)
2243 context->mq_notify.sigev_signo = notification->sigev_signo;
2244 else
2245 context->mq_notify.sigev_signo = 0;
2246
2247 context->mq_notify.mqdes = mqdes;
2248 context->type = AUDIT_MQ_NOTIFY;
2249 }
2250
2251 /**
2252 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2253 * @mqdes: MQ descriptor
2254 * @mqstat: MQ flags
2255 *
2256 */
2257 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2258 {
2259 struct audit_context *context = audit_context();
2260 context->mq_getsetattr.mqdes = mqdes;
2261 context->mq_getsetattr.mqstat = *mqstat;
2262 context->type = AUDIT_MQ_GETSETATTR;
2263 }
2264
2265 /**
2266 * __audit_ipc_obj - record audit data for ipc object
2267 * @ipcp: ipc permissions
2268 *
2269 */
2270 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2271 {
2272 struct audit_context *context = audit_context();
2273 context->ipc.uid = ipcp->uid;
2274 context->ipc.gid = ipcp->gid;
2275 context->ipc.mode = ipcp->mode;
2276 context->ipc.has_perm = 0;
2277 security_ipc_getsecid(ipcp, &context->ipc.osid);
2278 context->type = AUDIT_IPC;
2279 }
2280
2281 /**
2282 * __audit_ipc_set_perm - record audit data for new ipc permissions
2283 * @qbytes: msgq bytes
2284 * @uid: msgq user id
2285 * @gid: msgq group id
2286 * @mode: msgq mode (permissions)
2287 *
2288 * Called only after audit_ipc_obj().
2289 */
2290 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2291 {
2292 struct audit_context *context = audit_context();
2293
2294 context->ipc.qbytes = qbytes;
2295 context->ipc.perm_uid = uid;
2296 context->ipc.perm_gid = gid;
2297 context->ipc.perm_mode = mode;
2298 context->ipc.has_perm = 1;
2299 }
2300
2301 void __audit_bprm(struct linux_binprm *bprm)
2302 {
2303 struct audit_context *context = audit_context();
2304
2305 context->type = AUDIT_EXECVE;
2306 context->execve.argc = bprm->argc;
2307 }
2308
2309
2310 /**
2311 * __audit_socketcall - record audit data for sys_socketcall
2312 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2313 * @args: args array
2314 *
2315 */
2316 int __audit_socketcall(int nargs, unsigned long *args)
2317 {
2318 struct audit_context *context = audit_context();
2319
2320 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2321 return -EINVAL;
2322 context->type = AUDIT_SOCKETCALL;
2323 context->socketcall.nargs = nargs;
2324 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2325 return 0;
2326 }
2327
2328 /**
2329 * __audit_fd_pair - record audit data for pipe and socketpair
2330 * @fd1: the first file descriptor
2331 * @fd2: the second file descriptor
2332 *
2333 */
2334 void __audit_fd_pair(int fd1, int fd2)
2335 {
2336 struct audit_context *context = audit_context();
2337 context->fds[0] = fd1;
2338 context->fds[1] = fd2;
2339 }
2340
2341 /**
2342 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2343 * @len: data length in user space
2344 * @a: data address in kernel space
2345 *
2346 * Returns 0 for success or NULL context or < 0 on error.
2347 */
2348 int __audit_sockaddr(int len, void *a)
2349 {
2350 struct audit_context *context = audit_context();
2351
2352 if (!context->sockaddr) {
2353 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2354 if (!p)
2355 return -ENOMEM;
2356 context->sockaddr = p;
2357 }
2358
2359 context->sockaddr_len = len;
2360 memcpy(context->sockaddr, a, len);
2361 return 0;
2362 }
2363
2364 void __audit_ptrace(struct task_struct *t)
2365 {
2366 struct audit_context *context = audit_context();
2367
2368 context->target_pid = task_tgid_nr(t);
2369 context->target_auid = audit_get_loginuid(t);
2370 context->target_uid = task_uid(t);
2371 context->target_sessionid = audit_get_sessionid(t);
2372 security_task_getsecid(t, &context->target_sid);
2373 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2374 }
2375
2376 /**
2377 * audit_signal_info_syscall - record signal info for syscalls
2378 * @t: task being signaled
2379 *
2380 * If the audit subsystem is being terminated, record the task (pid)
2381 * and uid that is doing that.
2382 */
2383 int audit_signal_info_syscall(struct task_struct *t)
2384 {
2385 struct audit_aux_data_pids *axp;
2386 struct audit_context *ctx = audit_context();
2387 kuid_t t_uid = task_uid(t);
2388
2389 if (!audit_signals || audit_dummy_context())
2390 return 0;
2391
2392 /* optimize the common case by putting first signal recipient directly
2393 * in audit_context */
2394 if (!ctx->target_pid) {
2395 ctx->target_pid = task_tgid_nr(t);
2396 ctx->target_auid = audit_get_loginuid(t);
2397 ctx->target_uid = t_uid;
2398 ctx->target_sessionid = audit_get_sessionid(t);
2399 security_task_getsecid(t, &ctx->target_sid);
2400 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2401 return 0;
2402 }
2403
2404 axp = (void *)ctx->aux_pids;
2405 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2406 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2407 if (!axp)
2408 return -ENOMEM;
2409
2410 axp->d.type = AUDIT_OBJ_PID;
2411 axp->d.next = ctx->aux_pids;
2412 ctx->aux_pids = (void *)axp;
2413 }
2414 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2415
2416 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2417 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2418 axp->target_uid[axp->pid_count] = t_uid;
2419 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2420 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2421 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2422 axp->pid_count++;
2423
2424 return 0;
2425 }
2426
2427 /**
2428 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2429 * @bprm: pointer to the bprm being processed
2430 * @new: the proposed new credentials
2431 * @old: the old credentials
2432 *
2433 * Simply check if the proc already has the caps given by the file and if not
2434 * store the priv escalation info for later auditing at the end of the syscall
2435 *
2436 * -Eric
2437 */
2438 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2439 const struct cred *new, const struct cred *old)
2440 {
2441 struct audit_aux_data_bprm_fcaps *ax;
2442 struct audit_context *context = audit_context();
2443 struct cpu_vfs_cap_data vcaps;
2444
2445 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2446 if (!ax)
2447 return -ENOMEM;
2448
2449 ax->d.type = AUDIT_BPRM_FCAPS;
2450 ax->d.next = context->aux;
2451 context->aux = (void *)ax;
2452
2453 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2454
2455 ax->fcap.permitted = vcaps.permitted;
2456 ax->fcap.inheritable = vcaps.inheritable;
2457 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2458 ax->fcap.rootid = vcaps.rootid;
2459 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2460
2461 ax->old_pcap.permitted = old->cap_permitted;
2462 ax->old_pcap.inheritable = old->cap_inheritable;
2463 ax->old_pcap.effective = old->cap_effective;
2464 ax->old_pcap.ambient = old->cap_ambient;
2465
2466 ax->new_pcap.permitted = new->cap_permitted;
2467 ax->new_pcap.inheritable = new->cap_inheritable;
2468 ax->new_pcap.effective = new->cap_effective;
2469 ax->new_pcap.ambient = new->cap_ambient;
2470 return 0;
2471 }
2472
2473 /**
2474 * __audit_log_capset - store information about the arguments to the capset syscall
2475 * @new: the new credentials
2476 * @old: the old (current) credentials
2477 *
2478 * Record the arguments userspace sent to sys_capset for later printing by the
2479 * audit system if applicable
2480 */
2481 void __audit_log_capset(const struct cred *new, const struct cred *old)
2482 {
2483 struct audit_context *context = audit_context();
2484 context->capset.pid = task_tgid_nr(current);
2485 context->capset.cap.effective = new->cap_effective;
2486 context->capset.cap.inheritable = new->cap_effective;
2487 context->capset.cap.permitted = new->cap_permitted;
2488 context->capset.cap.ambient = new->cap_ambient;
2489 context->type = AUDIT_CAPSET;
2490 }
2491
2492 void __audit_mmap_fd(int fd, int flags)
2493 {
2494 struct audit_context *context = audit_context();
2495 context->mmap.fd = fd;
2496 context->mmap.flags = flags;
2497 context->type = AUDIT_MMAP;
2498 }
2499
2500 void __audit_log_kern_module(char *name)
2501 {
2502 struct audit_context *context = audit_context();
2503
2504 context->module.name = kstrdup(name, GFP_KERNEL);
2505 if (!context->module.name)
2506 audit_log_lost("out of memory in __audit_log_kern_module");
2507 context->type = AUDIT_KERN_MODULE;
2508 }
2509
2510 void __audit_fanotify(unsigned int response)
2511 {
2512 audit_log(audit_context(), GFP_KERNEL,
2513 AUDIT_FANOTIFY, "resp=%u", response);
2514 }
2515
2516 void __audit_tk_injoffset(struct timespec64 offset)
2517 {
2518 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2519 "sec=%lli nsec=%li",
2520 (long long)offset.tv_sec, offset.tv_nsec);
2521 }
2522
2523 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2524 const char *op, enum audit_ntp_type type)
2525 {
2526 const struct audit_ntp_val *val = &ad->vals[type];
2527
2528 if (val->newval == val->oldval)
2529 return;
2530
2531 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2532 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2533 }
2534
2535 void __audit_ntp_log(const struct audit_ntp_data *ad)
2536 {
2537 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2538 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2539 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2540 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2541 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2542 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2543 }
2544
2545 static void audit_log_task(struct audit_buffer *ab)
2546 {
2547 kuid_t auid, uid;
2548 kgid_t gid;
2549 unsigned int sessionid;
2550 char comm[sizeof(current->comm)];
2551
2552 auid = audit_get_loginuid(current);
2553 sessionid = audit_get_sessionid(current);
2554 current_uid_gid(&uid, &gid);
2555
2556 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2557 from_kuid(&init_user_ns, auid),
2558 from_kuid(&init_user_ns, uid),
2559 from_kgid(&init_user_ns, gid),
2560 sessionid);
2561 audit_log_task_context(ab);
2562 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2563 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2564 audit_log_d_path_exe(ab, current->mm);
2565 }
2566
2567 /**
2568 * audit_core_dumps - record information about processes that end abnormally
2569 * @signr: signal value
2570 *
2571 * If a process ends with a core dump, something fishy is going on and we
2572 * should record the event for investigation.
2573 */
2574 void audit_core_dumps(long signr)
2575 {
2576 struct audit_buffer *ab;
2577
2578 if (!audit_enabled)
2579 return;
2580
2581 if (signr == SIGQUIT) /* don't care for those */
2582 return;
2583
2584 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2585 if (unlikely(!ab))
2586 return;
2587 audit_log_task(ab);
2588 audit_log_format(ab, " sig=%ld res=1", signr);
2589 audit_log_end(ab);
2590 }
2591
2592 /**
2593 * audit_seccomp - record information about a seccomp action
2594 * @syscall: syscall number
2595 * @signr: signal value
2596 * @code: the seccomp action
2597 *
2598 * Record the information associated with a seccomp action. Event filtering for
2599 * seccomp actions that are not to be logged is done in seccomp_log().
2600 * Therefore, this function forces auditing independent of the audit_enabled
2601 * and dummy context state because seccomp actions should be logged even when
2602 * audit is not in use.
2603 */
2604 void audit_seccomp(unsigned long syscall, long signr, int code)
2605 {
2606 struct audit_buffer *ab;
2607
2608 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2609 if (unlikely(!ab))
2610 return;
2611 audit_log_task(ab);
2612 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2613 signr, syscall_get_arch(current), syscall,
2614 in_compat_syscall(), KSTK_EIP(current), code);
2615 audit_log_end(ab);
2616 }
2617
2618 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2619 int res)
2620 {
2621 struct audit_buffer *ab;
2622
2623 if (!audit_enabled)
2624 return;
2625
2626 ab = audit_log_start(audit_context(), GFP_KERNEL,
2627 AUDIT_CONFIG_CHANGE);
2628 if (unlikely(!ab))
2629 return;
2630
2631 audit_log_format(ab,
2632 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2633 names, old_names, res);
2634 audit_log_end(ab);
2635 }
2636
2637 struct list_head *audit_killed_trees(void)
2638 {
2639 struct audit_context *ctx = audit_context();
2640 if (likely(!ctx || !ctx->in_syscall))
2641 return NULL;
2642 return &ctx->killed_trees;
2643 }