]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/auditsc.c
arm64: tegra: Remove current-speed for SBSA UART
[thirdparty/linux.git] / kernel / auditsc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
37 #include <linux/fs.h>
38 #include <linux/namei.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
68
69 #include "audit.h"
70
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
75
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
79
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
82
83 /* number of audit rules */
84 int audit_n_rules;
85
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
88
89 struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92 };
93
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
96
97 struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 u32 target_sid[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105 int pid_count;
106 };
107
108 struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
114 };
115
116 struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
119 };
120
121 struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
123 const char *s;
124 };
125
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
147 };
148
149 static int audit_match_perm(struct audit_context *ctx, int mask)
150 {
151 unsigned n;
152
153 if (unlikely(!ctx))
154 return 0;
155 n = ctx->major;
156
157 switch (audit_classify_syscall(ctx->arch, n)) {
158 case AUDITSC_NATIVE:
159 if ((mask & AUDIT_PERM_WRITE) &&
160 audit_match_class(AUDIT_CLASS_WRITE, n))
161 return 1;
162 if ((mask & AUDIT_PERM_READ) &&
163 audit_match_class(AUDIT_CLASS_READ, n))
164 return 1;
165 if ((mask & AUDIT_PERM_ATTR) &&
166 audit_match_class(AUDIT_CLASS_CHATTR, n))
167 return 1;
168 return 0;
169 case AUDITSC_COMPAT: /* 32bit on biarch */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE_32, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ_32, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
178 return 1;
179 return 0;
180 case AUDITSC_OPEN:
181 return mask & ACC_MODE(ctx->argv[1]);
182 case AUDITSC_OPENAT:
183 return mask & ACC_MODE(ctx->argv[2]);
184 case AUDITSC_SOCKETCALL:
185 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
186 case AUDITSC_EXECVE:
187 return mask & AUDIT_PERM_EXEC;
188 case AUDITSC_OPENAT2:
189 return mask & ACC_MODE((u32)ctx->openat2.flags);
190 default:
191 return 0;
192 }
193 }
194
195 static int audit_match_filetype(struct audit_context *ctx, int val)
196 {
197 struct audit_names *n;
198 umode_t mode = (umode_t)val;
199
200 if (unlikely(!ctx))
201 return 0;
202
203 list_for_each_entry(n, &ctx->names_list, list) {
204 if ((n->ino != AUDIT_INO_UNSET) &&
205 ((n->mode & S_IFMT) == mode))
206 return 1;
207 }
208
209 return 0;
210 }
211
212 /*
213 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
214 * ->first_trees points to its beginning, ->trees - to the current end of data.
215 * ->tree_count is the number of free entries in array pointed to by ->trees.
216 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
217 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
218 * it's going to remain 1-element for almost any setup) until we free context itself.
219 * References in it _are_ dropped - at the same time we free/drop aux stuff.
220 */
221
222 static void audit_set_auditable(struct audit_context *ctx)
223 {
224 if (!ctx->prio) {
225 ctx->prio = 1;
226 ctx->current_state = AUDIT_STATE_RECORD;
227 }
228 }
229
230 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
231 {
232 struct audit_tree_refs *p = ctx->trees;
233 int left = ctx->tree_count;
234
235 if (likely(left)) {
236 p->c[--left] = chunk;
237 ctx->tree_count = left;
238 return 1;
239 }
240 if (!p)
241 return 0;
242 p = p->next;
243 if (p) {
244 p->c[30] = chunk;
245 ctx->trees = p;
246 ctx->tree_count = 30;
247 return 1;
248 }
249 return 0;
250 }
251
252 static int grow_tree_refs(struct audit_context *ctx)
253 {
254 struct audit_tree_refs *p = ctx->trees;
255
256 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
257 if (!ctx->trees) {
258 ctx->trees = p;
259 return 0;
260 }
261 if (p)
262 p->next = ctx->trees;
263 else
264 ctx->first_trees = ctx->trees;
265 ctx->tree_count = 31;
266 return 1;
267 }
268
269 static void unroll_tree_refs(struct audit_context *ctx,
270 struct audit_tree_refs *p, int count)
271 {
272 struct audit_tree_refs *q;
273 int n;
274
275 if (!p) {
276 /* we started with empty chain */
277 p = ctx->first_trees;
278 count = 31;
279 /* if the very first allocation has failed, nothing to do */
280 if (!p)
281 return;
282 }
283 n = count;
284 for (q = p; q != ctx->trees; q = q->next, n = 31) {
285 while (n--) {
286 audit_put_chunk(q->c[n]);
287 q->c[n] = NULL;
288 }
289 }
290 while (n-- > ctx->tree_count) {
291 audit_put_chunk(q->c[n]);
292 q->c[n] = NULL;
293 }
294 ctx->trees = p;
295 ctx->tree_count = count;
296 }
297
298 static void free_tree_refs(struct audit_context *ctx)
299 {
300 struct audit_tree_refs *p, *q;
301
302 for (p = ctx->first_trees; p; p = q) {
303 q = p->next;
304 kfree(p);
305 }
306 }
307
308 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
309 {
310 struct audit_tree_refs *p;
311 int n;
312
313 if (!tree)
314 return 0;
315 /* full ones */
316 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
317 for (n = 0; n < 31; n++)
318 if (audit_tree_match(p->c[n], tree))
319 return 1;
320 }
321 /* partial */
322 if (p) {
323 for (n = ctx->tree_count; n < 31; n++)
324 if (audit_tree_match(p->c[n], tree))
325 return 1;
326 }
327 return 0;
328 }
329
330 static int audit_compare_uid(kuid_t uid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_uid_comparator(uid, f->op, name->uid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_uid_comparator(uid, f->op, n->uid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_compare_gid(kgid_t gid,
355 struct audit_names *name,
356 struct audit_field *f,
357 struct audit_context *ctx)
358 {
359 struct audit_names *n;
360 int rc;
361
362 if (name) {
363 rc = audit_gid_comparator(gid, f->op, name->gid);
364 if (rc)
365 return rc;
366 }
367
368 if (ctx) {
369 list_for_each_entry(n, &ctx->names_list, list) {
370 rc = audit_gid_comparator(gid, f->op, n->gid);
371 if (rc)
372 return rc;
373 }
374 }
375 return 0;
376 }
377
378 static int audit_field_compare(struct task_struct *tsk,
379 const struct cred *cred,
380 struct audit_field *f,
381 struct audit_context *ctx,
382 struct audit_names *name)
383 {
384 switch (f->val) {
385 /* process to file object comparisons */
386 case AUDIT_COMPARE_UID_TO_OBJ_UID:
387 return audit_compare_uid(cred->uid, name, f, ctx);
388 case AUDIT_COMPARE_GID_TO_OBJ_GID:
389 return audit_compare_gid(cred->gid, name, f, ctx);
390 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
391 return audit_compare_uid(cred->euid, name, f, ctx);
392 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
393 return audit_compare_gid(cred->egid, name, f, ctx);
394 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
395 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
396 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
397 return audit_compare_uid(cred->suid, name, f, ctx);
398 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
399 return audit_compare_gid(cred->sgid, name, f, ctx);
400 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
401 return audit_compare_uid(cred->fsuid, name, f, ctx);
402 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
403 return audit_compare_gid(cred->fsgid, name, f, ctx);
404 /* uid comparisons */
405 case AUDIT_COMPARE_UID_TO_AUID:
406 return audit_uid_comparator(cred->uid, f->op,
407 audit_get_loginuid(tsk));
408 case AUDIT_COMPARE_UID_TO_EUID:
409 return audit_uid_comparator(cred->uid, f->op, cred->euid);
410 case AUDIT_COMPARE_UID_TO_SUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->suid);
412 case AUDIT_COMPARE_UID_TO_FSUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
414 /* auid comparisons */
415 case AUDIT_COMPARE_AUID_TO_EUID:
416 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
417 cred->euid);
418 case AUDIT_COMPARE_AUID_TO_SUID:
419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 cred->suid);
421 case AUDIT_COMPARE_AUID_TO_FSUID:
422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 cred->fsuid);
424 /* euid comparisons */
425 case AUDIT_COMPARE_EUID_TO_SUID:
426 return audit_uid_comparator(cred->euid, f->op, cred->suid);
427 case AUDIT_COMPARE_EUID_TO_FSUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
429 /* suid comparisons */
430 case AUDIT_COMPARE_SUID_TO_FSUID:
431 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
432 /* gid comparisons */
433 case AUDIT_COMPARE_GID_TO_EGID:
434 return audit_gid_comparator(cred->gid, f->op, cred->egid);
435 case AUDIT_COMPARE_GID_TO_SGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
437 case AUDIT_COMPARE_GID_TO_FSGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
439 /* egid comparisons */
440 case AUDIT_COMPARE_EGID_TO_SGID:
441 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
442 case AUDIT_COMPARE_EGID_TO_FSGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
444 /* sgid comparison */
445 case AUDIT_COMPARE_SGID_TO_FSGID:
446 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
447 default:
448 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
449 return 0;
450 }
451 return 0;
452 }
453
454 /* Determine if any context name data matches a rule's watch data */
455 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
456 * otherwise.
457 *
458 * If task_creation is true, this is an explicit indication that we are
459 * filtering a task rule at task creation time. This and tsk == current are
460 * the only situations where tsk->cred may be accessed without an rcu read lock.
461 */
462 static int audit_filter_rules(struct task_struct *tsk,
463 struct audit_krule *rule,
464 struct audit_context *ctx,
465 struct audit_names *name,
466 enum audit_state *state,
467 bool task_creation)
468 {
469 const struct cred *cred;
470 int i, need_sid = 1;
471 u32 sid;
472 unsigned int sessionid;
473
474 if (ctx && rule->prio <= ctx->prio)
475 return 0;
476
477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478
479 for (i = 0; i < rule->field_count; i++) {
480 struct audit_field *f = &rule->fields[i];
481 struct audit_names *n;
482 int result = 0;
483 pid_t pid;
484
485 switch (f->type) {
486 case AUDIT_PID:
487 pid = task_tgid_nr(tsk);
488 result = audit_comparator(pid, f->op, f->val);
489 break;
490 case AUDIT_PPID:
491 if (ctx) {
492 if (!ctx->ppid)
493 ctx->ppid = task_ppid_nr(tsk);
494 result = audit_comparator(ctx->ppid, f->op, f->val);
495 }
496 break;
497 case AUDIT_EXE:
498 result = audit_exe_compare(tsk, rule->exe);
499 if (f->op == Audit_not_equal)
500 result = !result;
501 break;
502 case AUDIT_UID:
503 result = audit_uid_comparator(cred->uid, f->op, f->uid);
504 break;
505 case AUDIT_EUID:
506 result = audit_uid_comparator(cred->euid, f->op, f->uid);
507 break;
508 case AUDIT_SUID:
509 result = audit_uid_comparator(cred->suid, f->op, f->uid);
510 break;
511 case AUDIT_FSUID:
512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
513 break;
514 case AUDIT_GID:
515 result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 if (f->op == Audit_equal) {
517 if (!result)
518 result = groups_search(cred->group_info, f->gid);
519 } else if (f->op == Audit_not_equal) {
520 if (result)
521 result = !groups_search(cred->group_info, f->gid);
522 }
523 break;
524 case AUDIT_EGID:
525 result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 if (f->op == Audit_equal) {
527 if (!result)
528 result = groups_search(cred->group_info, f->gid);
529 } else if (f->op == Audit_not_equal) {
530 if (result)
531 result = !groups_search(cred->group_info, f->gid);
532 }
533 break;
534 case AUDIT_SGID:
535 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
536 break;
537 case AUDIT_FSGID:
538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 break;
540 case AUDIT_SESSIONID:
541 sessionid = audit_get_sessionid(tsk);
542 result = audit_comparator(sessionid, f->op, f->val);
543 break;
544 case AUDIT_PERS:
545 result = audit_comparator(tsk->personality, f->op, f->val);
546 break;
547 case AUDIT_ARCH:
548 if (ctx)
549 result = audit_comparator(ctx->arch, f->op, f->val);
550 break;
551
552 case AUDIT_EXIT:
553 if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 result = audit_comparator(ctx->return_code, f->op, f->val);
555 break;
556 case AUDIT_SUCCESS:
557 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 if (f->val)
559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 else
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
562 }
563 break;
564 case AUDIT_DEVMAJOR:
565 if (name) {
566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 audit_comparator(MAJOR(name->rdev), f->op, f->val))
568 ++result;
569 } else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_DEVMINOR:
580 if (name) {
581 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 audit_comparator(MINOR(name->rdev), f->op, f->val))
583 ++result;
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
588 ++result;
589 break;
590 }
591 }
592 }
593 break;
594 case AUDIT_INODE:
595 if (name)
596 result = audit_comparator(name->ino, f->op, f->val);
597 else if (ctx) {
598 list_for_each_entry(n, &ctx->names_list, list) {
599 if (audit_comparator(n->ino, f->op, f->val)) {
600 ++result;
601 break;
602 }
603 }
604 }
605 break;
606 case AUDIT_OBJ_UID:
607 if (name) {
608 result = audit_uid_comparator(name->uid, f->op, f->uid);
609 } else if (ctx) {
610 list_for_each_entry(n, &ctx->names_list, list) {
611 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
612 ++result;
613 break;
614 }
615 }
616 }
617 break;
618 case AUDIT_OBJ_GID:
619 if (name) {
620 result = audit_gid_comparator(name->gid, f->op, f->gid);
621 } else if (ctx) {
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
624 ++result;
625 break;
626 }
627 }
628 }
629 break;
630 case AUDIT_WATCH:
631 if (name) {
632 result = audit_watch_compare(rule->watch,
633 name->ino,
634 name->dev);
635 if (f->op == Audit_not_equal)
636 result = !result;
637 }
638 break;
639 case AUDIT_DIR:
640 if (ctx) {
641 result = match_tree_refs(ctx, rule->tree);
642 if (f->op == Audit_not_equal)
643 result = !result;
644 }
645 break;
646 case AUDIT_LOGINUID:
647 result = audit_uid_comparator(audit_get_loginuid(tsk),
648 f->op, f->uid);
649 break;
650 case AUDIT_LOGINUID_SET:
651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 break;
653 case AUDIT_SADDR_FAM:
654 if (ctx && ctx->sockaddr)
655 result = audit_comparator(ctx->sockaddr->ss_family,
656 f->op, f->val);
657 break;
658 case AUDIT_SUBJ_USER:
659 case AUDIT_SUBJ_ROLE:
660 case AUDIT_SUBJ_TYPE:
661 case AUDIT_SUBJ_SEN:
662 case AUDIT_SUBJ_CLR:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
667 logged upon error */
668 if (f->lsm_rule) {
669 if (need_sid) {
670 /* @tsk should always be equal to
671 * @current with the exception of
672 * fork()/copy_process() in which case
673 * the new @tsk creds are still a dup
674 * of @current's creds so we can still
675 * use security_current_getsecid_subj()
676 * here even though it always refs
677 * @current's creds
678 */
679 security_current_getsecid_subj(&sid);
680 need_sid = 0;
681 }
682 result = security_audit_rule_match(sid, f->type,
683 f->op,
684 f->lsm_rule);
685 }
686 break;
687 case AUDIT_OBJ_USER:
688 case AUDIT_OBJ_ROLE:
689 case AUDIT_OBJ_TYPE:
690 case AUDIT_OBJ_LEV_LOW:
691 case AUDIT_OBJ_LEV_HIGH:
692 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
693 also applies here */
694 if (f->lsm_rule) {
695 /* Find files that match */
696 if (name) {
697 result = security_audit_rule_match(
698 name->osid,
699 f->type,
700 f->op,
701 f->lsm_rule);
702 } else if (ctx) {
703 list_for_each_entry(n, &ctx->names_list, list) {
704 if (security_audit_rule_match(
705 n->osid,
706 f->type,
707 f->op,
708 f->lsm_rule)) {
709 ++result;
710 break;
711 }
712 }
713 }
714 /* Find ipc objects that match */
715 if (!ctx || ctx->type != AUDIT_IPC)
716 break;
717 if (security_audit_rule_match(ctx->ipc.osid,
718 f->type, f->op,
719 f->lsm_rule))
720 ++result;
721 }
722 break;
723 case AUDIT_ARG0:
724 case AUDIT_ARG1:
725 case AUDIT_ARG2:
726 case AUDIT_ARG3:
727 if (ctx)
728 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
729 break;
730 case AUDIT_FILTERKEY:
731 /* ignore this field for filtering */
732 result = 1;
733 break;
734 case AUDIT_PERM:
735 result = audit_match_perm(ctx, f->val);
736 if (f->op == Audit_not_equal)
737 result = !result;
738 break;
739 case AUDIT_FILETYPE:
740 result = audit_match_filetype(ctx, f->val);
741 if (f->op == Audit_not_equal)
742 result = !result;
743 break;
744 case AUDIT_FIELD_COMPARE:
745 result = audit_field_compare(tsk, cred, f, ctx, name);
746 break;
747 }
748 if (!result)
749 return 0;
750 }
751
752 if (ctx) {
753 if (rule->filterkey) {
754 kfree(ctx->filterkey);
755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
756 }
757 ctx->prio = rule->prio;
758 }
759 switch (rule->action) {
760 case AUDIT_NEVER:
761 *state = AUDIT_STATE_DISABLED;
762 break;
763 case AUDIT_ALWAYS:
764 *state = AUDIT_STATE_RECORD;
765 break;
766 }
767 return 1;
768 }
769
770 /* At process creation time, we can determine if system-call auditing is
771 * completely disabled for this task. Since we only have the task
772 * structure at this point, we can only check uid and gid.
773 */
774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
775 {
776 struct audit_entry *e;
777 enum audit_state state;
778
779 rcu_read_lock();
780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
782 &state, true)) {
783 if (state == AUDIT_STATE_RECORD)
784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
785 rcu_read_unlock();
786 return state;
787 }
788 }
789 rcu_read_unlock();
790 return AUDIT_STATE_BUILD;
791 }
792
793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
794 {
795 int word, bit;
796
797 if (val > 0xffffffff)
798 return false;
799
800 word = AUDIT_WORD(val);
801 if (word >= AUDIT_BITMASK_SIZE)
802 return false;
803
804 bit = AUDIT_BIT(val);
805
806 return rule->mask[word] & bit;
807 }
808
809 /**
810 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
811 * @tsk: associated task
812 * @ctx: audit context
813 * @list: audit filter list
814 * @name: audit_name (can be NULL)
815 * @op: current syscall/uring_op
816 *
817 * Run the udit filters specified in @list against @tsk using @ctx,
818 * @name, and @op, as necessary; the caller is responsible for ensuring
819 * that the call is made while the RCU read lock is held. The @name
820 * parameter can be NULL, but all others must be specified.
821 * Returns 1/true if the filter finds a match, 0/false if none are found.
822 */
823 static int __audit_filter_op(struct task_struct *tsk,
824 struct audit_context *ctx,
825 struct list_head *list,
826 struct audit_names *name,
827 unsigned long op)
828 {
829 struct audit_entry *e;
830 enum audit_state state;
831
832 list_for_each_entry_rcu(e, list, list) {
833 if (audit_in_mask(&e->rule, op) &&
834 audit_filter_rules(tsk, &e->rule, ctx, name,
835 &state, false)) {
836 ctx->current_state = state;
837 return 1;
838 }
839 }
840 return 0;
841 }
842
843 /**
844 * audit_filter_uring - apply filters to an io_uring operation
845 * @tsk: associated task
846 * @ctx: audit context
847 */
848 static void audit_filter_uring(struct task_struct *tsk,
849 struct audit_context *ctx)
850 {
851 if (auditd_test_task(tsk))
852 return;
853
854 rcu_read_lock();
855 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
856 NULL, ctx->uring_op);
857 rcu_read_unlock();
858 }
859
860 /* At syscall exit time, this filter is called if the audit_state is
861 * not low enough that auditing cannot take place, but is also not
862 * high enough that we already know we have to write an audit record
863 * (i.e., the state is AUDIT_STATE_BUILD).
864 */
865 static void audit_filter_syscall(struct task_struct *tsk,
866 struct audit_context *ctx)
867 {
868 if (auditd_test_task(tsk))
869 return;
870
871 rcu_read_lock();
872 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
873 NULL, ctx->major);
874 rcu_read_unlock();
875 }
876
877 /*
878 * Given an audit_name check the inode hash table to see if they match.
879 * Called holding the rcu read lock to protect the use of audit_inode_hash
880 */
881 static int audit_filter_inode_name(struct task_struct *tsk,
882 struct audit_names *n,
883 struct audit_context *ctx) {
884 int h = audit_hash_ino((u32)n->ino);
885 struct list_head *list = &audit_inode_hash[h];
886
887 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
888 }
889
890 /* At syscall exit time, this filter is called if any audit_names have been
891 * collected during syscall processing. We only check rules in sublists at hash
892 * buckets applicable to the inode numbers in audit_names.
893 * Regarding audit_state, same rules apply as for audit_filter_syscall().
894 */
895 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
896 {
897 struct audit_names *n;
898
899 if (auditd_test_task(tsk))
900 return;
901
902 rcu_read_lock();
903
904 list_for_each_entry(n, &ctx->names_list, list) {
905 if (audit_filter_inode_name(tsk, n, ctx))
906 break;
907 }
908 rcu_read_unlock();
909 }
910
911 static inline void audit_proctitle_free(struct audit_context *context)
912 {
913 kfree(context->proctitle.value);
914 context->proctitle.value = NULL;
915 context->proctitle.len = 0;
916 }
917
918 static inline void audit_free_module(struct audit_context *context)
919 {
920 if (context->type == AUDIT_KERN_MODULE) {
921 kfree(context->module.name);
922 context->module.name = NULL;
923 }
924 }
925 static inline void audit_free_names(struct audit_context *context)
926 {
927 struct audit_names *n, *next;
928
929 list_for_each_entry_safe(n, next, &context->names_list, list) {
930 list_del(&n->list);
931 if (n->name)
932 putname(n->name);
933 if (n->should_free)
934 kfree(n);
935 }
936 context->name_count = 0;
937 path_put(&context->pwd);
938 context->pwd.dentry = NULL;
939 context->pwd.mnt = NULL;
940 }
941
942 static inline void audit_free_aux(struct audit_context *context)
943 {
944 struct audit_aux_data *aux;
945
946 while ((aux = context->aux)) {
947 context->aux = aux->next;
948 kfree(aux);
949 }
950 context->aux = NULL;
951 while ((aux = context->aux_pids)) {
952 context->aux_pids = aux->next;
953 kfree(aux);
954 }
955 context->aux_pids = NULL;
956 }
957
958 /**
959 * audit_reset_context - reset a audit_context structure
960 * @ctx: the audit_context to reset
961 *
962 * All fields in the audit_context will be reset to an initial state, all
963 * references held by fields will be dropped, and private memory will be
964 * released. When this function returns the audit_context will be suitable
965 * for reuse, so long as the passed context is not NULL or a dummy context.
966 */
967 static void audit_reset_context(struct audit_context *ctx)
968 {
969 if (!ctx)
970 return;
971
972 /* if ctx is non-null, reset the "ctx->context" regardless */
973 ctx->context = AUDIT_CTX_UNUSED;
974 if (ctx->dummy)
975 return;
976
977 /*
978 * NOTE: It shouldn't matter in what order we release the fields, so
979 * release them in the order in which they appear in the struct;
980 * this gives us some hope of quickly making sure we are
981 * resetting the audit_context properly.
982 *
983 * Other things worth mentioning:
984 * - we don't reset "dummy"
985 * - we don't reset "state", we do reset "current_state"
986 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
987 * - much of this is likely overkill, but play it safe for now
988 * - we really need to work on improving the audit_context struct
989 */
990
991 ctx->current_state = ctx->state;
992 ctx->serial = 0;
993 ctx->major = 0;
994 ctx->uring_op = 0;
995 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
996 memset(ctx->argv, 0, sizeof(ctx->argv));
997 ctx->return_code = 0;
998 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
999 ctx->return_valid = AUDITSC_INVALID;
1000 audit_free_names(ctx);
1001 if (ctx->state != AUDIT_STATE_RECORD) {
1002 kfree(ctx->filterkey);
1003 ctx->filterkey = NULL;
1004 }
1005 audit_free_aux(ctx);
1006 kfree(ctx->sockaddr);
1007 ctx->sockaddr = NULL;
1008 ctx->sockaddr_len = 0;
1009 ctx->ppid = 0;
1010 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1011 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1012 ctx->personality = 0;
1013 ctx->arch = 0;
1014 ctx->target_pid = 0;
1015 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1016 ctx->target_sessionid = 0;
1017 ctx->target_sid = 0;
1018 ctx->target_comm[0] = '\0';
1019 unroll_tree_refs(ctx, NULL, 0);
1020 WARN_ON(!list_empty(&ctx->killed_trees));
1021 audit_free_module(ctx);
1022 ctx->fds[0] = -1;
1023 ctx->type = 0; /* reset last for audit_free_*() */
1024 }
1025
1026 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1027 {
1028 struct audit_context *context;
1029
1030 context = kzalloc(sizeof(*context), GFP_KERNEL);
1031 if (!context)
1032 return NULL;
1033 context->context = AUDIT_CTX_UNUSED;
1034 context->state = state;
1035 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1036 INIT_LIST_HEAD(&context->killed_trees);
1037 INIT_LIST_HEAD(&context->names_list);
1038 context->fds[0] = -1;
1039 context->return_valid = AUDITSC_INVALID;
1040 return context;
1041 }
1042
1043 /**
1044 * audit_alloc - allocate an audit context block for a task
1045 * @tsk: task
1046 *
1047 * Filter on the task information and allocate a per-task audit context
1048 * if necessary. Doing so turns on system call auditing for the
1049 * specified task. This is called from copy_process, so no lock is
1050 * needed.
1051 */
1052 int audit_alloc(struct task_struct *tsk)
1053 {
1054 struct audit_context *context;
1055 enum audit_state state;
1056 char *key = NULL;
1057
1058 if (likely(!audit_ever_enabled))
1059 return 0;
1060
1061 state = audit_filter_task(tsk, &key);
1062 if (state == AUDIT_STATE_DISABLED) {
1063 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1064 return 0;
1065 }
1066
1067 if (!(context = audit_alloc_context(state))) {
1068 kfree(key);
1069 audit_log_lost("out of memory in audit_alloc");
1070 return -ENOMEM;
1071 }
1072 context->filterkey = key;
1073
1074 audit_set_context(tsk, context);
1075 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1076 return 0;
1077 }
1078
1079 static inline void audit_free_context(struct audit_context *context)
1080 {
1081 /* resetting is extra work, but it is likely just noise */
1082 audit_reset_context(context);
1083 audit_proctitle_free(context);
1084 free_tree_refs(context);
1085 kfree(context->filterkey);
1086 kfree(context);
1087 }
1088
1089 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1090 kuid_t auid, kuid_t uid, unsigned int sessionid,
1091 u32 sid, char *comm)
1092 {
1093 struct audit_buffer *ab;
1094 char *ctx = NULL;
1095 u32 len;
1096 int rc = 0;
1097
1098 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1099 if (!ab)
1100 return rc;
1101
1102 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1103 from_kuid(&init_user_ns, auid),
1104 from_kuid(&init_user_ns, uid), sessionid);
1105 if (sid) {
1106 if (security_secid_to_secctx(sid, &ctx, &len)) {
1107 audit_log_format(ab, " obj=(none)");
1108 rc = 1;
1109 } else {
1110 audit_log_format(ab, " obj=%s", ctx);
1111 security_release_secctx(ctx, len);
1112 }
1113 }
1114 audit_log_format(ab, " ocomm=");
1115 audit_log_untrustedstring(ab, comm);
1116 audit_log_end(ab);
1117
1118 return rc;
1119 }
1120
1121 static void audit_log_execve_info(struct audit_context *context,
1122 struct audit_buffer **ab)
1123 {
1124 long len_max;
1125 long len_rem;
1126 long len_full;
1127 long len_buf;
1128 long len_abuf = 0;
1129 long len_tmp;
1130 bool require_data;
1131 bool encode;
1132 unsigned int iter;
1133 unsigned int arg;
1134 char *buf_head;
1135 char *buf;
1136 const char __user *p = (const char __user *)current->mm->arg_start;
1137
1138 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1139 * data we put in the audit record for this argument (see the
1140 * code below) ... at this point in time 96 is plenty */
1141 char abuf[96];
1142
1143 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1144 * current value of 7500 is not as important as the fact that it
1145 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1146 * room if we go over a little bit in the logging below */
1147 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1148 len_max = MAX_EXECVE_AUDIT_LEN;
1149
1150 /* scratch buffer to hold the userspace args */
1151 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1152 if (!buf_head) {
1153 audit_panic("out of memory for argv string");
1154 return;
1155 }
1156 buf = buf_head;
1157
1158 audit_log_format(*ab, "argc=%d", context->execve.argc);
1159
1160 len_rem = len_max;
1161 len_buf = 0;
1162 len_full = 0;
1163 require_data = true;
1164 encode = false;
1165 iter = 0;
1166 arg = 0;
1167 do {
1168 /* NOTE: we don't ever want to trust this value for anything
1169 * serious, but the audit record format insists we
1170 * provide an argument length for really long arguments,
1171 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1172 * to use strncpy_from_user() to obtain this value for
1173 * recording in the log, although we don't use it
1174 * anywhere here to avoid a double-fetch problem */
1175 if (len_full == 0)
1176 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1177
1178 /* read more data from userspace */
1179 if (require_data) {
1180 /* can we make more room in the buffer? */
1181 if (buf != buf_head) {
1182 memmove(buf_head, buf, len_buf);
1183 buf = buf_head;
1184 }
1185
1186 /* fetch as much as we can of the argument */
1187 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1188 len_max - len_buf);
1189 if (len_tmp == -EFAULT) {
1190 /* unable to copy from userspace */
1191 send_sig(SIGKILL, current, 0);
1192 goto out;
1193 } else if (len_tmp == (len_max - len_buf)) {
1194 /* buffer is not large enough */
1195 require_data = true;
1196 /* NOTE: if we are going to span multiple
1197 * buffers force the encoding so we stand
1198 * a chance at a sane len_full value and
1199 * consistent record encoding */
1200 encode = true;
1201 len_full = len_full * 2;
1202 p += len_tmp;
1203 } else {
1204 require_data = false;
1205 if (!encode)
1206 encode = audit_string_contains_control(
1207 buf, len_tmp);
1208 /* try to use a trusted value for len_full */
1209 if (len_full < len_max)
1210 len_full = (encode ?
1211 len_tmp * 2 : len_tmp);
1212 p += len_tmp + 1;
1213 }
1214 len_buf += len_tmp;
1215 buf_head[len_buf] = '\0';
1216
1217 /* length of the buffer in the audit record? */
1218 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1219 }
1220
1221 /* write as much as we can to the audit log */
1222 if (len_buf >= 0) {
1223 /* NOTE: some magic numbers here - basically if we
1224 * can't fit a reasonable amount of data into the
1225 * existing audit buffer, flush it and start with
1226 * a new buffer */
1227 if ((sizeof(abuf) + 8) > len_rem) {
1228 len_rem = len_max;
1229 audit_log_end(*ab);
1230 *ab = audit_log_start(context,
1231 GFP_KERNEL, AUDIT_EXECVE);
1232 if (!*ab)
1233 goto out;
1234 }
1235
1236 /* create the non-arg portion of the arg record */
1237 len_tmp = 0;
1238 if (require_data || (iter > 0) ||
1239 ((len_abuf + sizeof(abuf)) > len_rem)) {
1240 if (iter == 0) {
1241 len_tmp += snprintf(&abuf[len_tmp],
1242 sizeof(abuf) - len_tmp,
1243 " a%d_len=%lu",
1244 arg, len_full);
1245 }
1246 len_tmp += snprintf(&abuf[len_tmp],
1247 sizeof(abuf) - len_tmp,
1248 " a%d[%d]=", arg, iter++);
1249 } else
1250 len_tmp += snprintf(&abuf[len_tmp],
1251 sizeof(abuf) - len_tmp,
1252 " a%d=", arg);
1253 WARN_ON(len_tmp >= sizeof(abuf));
1254 abuf[sizeof(abuf) - 1] = '\0';
1255
1256 /* log the arg in the audit record */
1257 audit_log_format(*ab, "%s", abuf);
1258 len_rem -= len_tmp;
1259 len_tmp = len_buf;
1260 if (encode) {
1261 if (len_abuf > len_rem)
1262 len_tmp = len_rem / 2; /* encoding */
1263 audit_log_n_hex(*ab, buf, len_tmp);
1264 len_rem -= len_tmp * 2;
1265 len_abuf -= len_tmp * 2;
1266 } else {
1267 if (len_abuf > len_rem)
1268 len_tmp = len_rem - 2; /* quotes */
1269 audit_log_n_string(*ab, buf, len_tmp);
1270 len_rem -= len_tmp + 2;
1271 /* don't subtract the "2" because we still need
1272 * to add quotes to the remaining string */
1273 len_abuf -= len_tmp;
1274 }
1275 len_buf -= len_tmp;
1276 buf += len_tmp;
1277 }
1278
1279 /* ready to move to the next argument? */
1280 if ((len_buf == 0) && !require_data) {
1281 arg++;
1282 iter = 0;
1283 len_full = 0;
1284 require_data = true;
1285 encode = false;
1286 }
1287 } while (arg < context->execve.argc);
1288
1289 /* NOTE: the caller handles the final audit_log_end() call */
1290
1291 out:
1292 kfree(buf_head);
1293 }
1294
1295 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1296 kernel_cap_t *cap)
1297 {
1298 if (cap_isclear(*cap)) {
1299 audit_log_format(ab, " %s=0", prefix);
1300 return;
1301 }
1302 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1303 }
1304
1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1306 {
1307 if (name->fcap_ver == -1) {
1308 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1309 return;
1310 }
1311 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1312 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1313 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1314 name->fcap.fE, name->fcap_ver,
1315 from_kuid(&init_user_ns, name->fcap.rootid));
1316 }
1317
1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1319 {
1320 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1321 const struct timespec64 *tk = &context->time.tk_injoffset;
1322 static const char * const ntp_name[] = {
1323 "offset",
1324 "freq",
1325 "status",
1326 "tai",
1327 "tick",
1328 "adjust",
1329 };
1330 int type;
1331
1332 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1333 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1334 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1335 if (!*ab) {
1336 *ab = audit_log_start(context,
1337 GFP_KERNEL,
1338 AUDIT_TIME_ADJNTPVAL);
1339 if (!*ab)
1340 return;
1341 }
1342 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1343 ntp_name[type],
1344 ntp->vals[type].oldval,
1345 ntp->vals[type].newval);
1346 audit_log_end(*ab);
1347 *ab = NULL;
1348 }
1349 }
1350 }
1351 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1352 if (!*ab) {
1353 *ab = audit_log_start(context, GFP_KERNEL,
1354 AUDIT_TIME_INJOFFSET);
1355 if (!*ab)
1356 return;
1357 }
1358 audit_log_format(*ab, "sec=%lli nsec=%li",
1359 (long long)tk->tv_sec, tk->tv_nsec);
1360 audit_log_end(*ab);
1361 *ab = NULL;
1362 }
1363 }
1364
1365 static void show_special(struct audit_context *context, int *call_panic)
1366 {
1367 struct audit_buffer *ab;
1368 int i;
1369
1370 ab = audit_log_start(context, GFP_KERNEL, context->type);
1371 if (!ab)
1372 return;
1373
1374 switch (context->type) {
1375 case AUDIT_SOCKETCALL: {
1376 int nargs = context->socketcall.nargs;
1377
1378 audit_log_format(ab, "nargs=%d", nargs);
1379 for (i = 0; i < nargs; i++)
1380 audit_log_format(ab, " a%d=%lx", i,
1381 context->socketcall.args[i]);
1382 break; }
1383 case AUDIT_IPC: {
1384 u32 osid = context->ipc.osid;
1385
1386 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1387 from_kuid(&init_user_ns, context->ipc.uid),
1388 from_kgid(&init_user_ns, context->ipc.gid),
1389 context->ipc.mode);
1390 if (osid) {
1391 char *ctx = NULL;
1392 u32 len;
1393
1394 if (security_secid_to_secctx(osid, &ctx, &len)) {
1395 audit_log_format(ab, " osid=%u", osid);
1396 *call_panic = 1;
1397 } else {
1398 audit_log_format(ab, " obj=%s", ctx);
1399 security_release_secctx(ctx, len);
1400 }
1401 }
1402 if (context->ipc.has_perm) {
1403 audit_log_end(ab);
1404 ab = audit_log_start(context, GFP_KERNEL,
1405 AUDIT_IPC_SET_PERM);
1406 if (unlikely(!ab))
1407 return;
1408 audit_log_format(ab,
1409 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1410 context->ipc.qbytes,
1411 context->ipc.perm_uid,
1412 context->ipc.perm_gid,
1413 context->ipc.perm_mode);
1414 }
1415 break; }
1416 case AUDIT_MQ_OPEN:
1417 audit_log_format(ab,
1418 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1419 "mq_msgsize=%ld mq_curmsgs=%ld",
1420 context->mq_open.oflag, context->mq_open.mode,
1421 context->mq_open.attr.mq_flags,
1422 context->mq_open.attr.mq_maxmsg,
1423 context->mq_open.attr.mq_msgsize,
1424 context->mq_open.attr.mq_curmsgs);
1425 break;
1426 case AUDIT_MQ_SENDRECV:
1427 audit_log_format(ab,
1428 "mqdes=%d msg_len=%zd msg_prio=%u "
1429 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1430 context->mq_sendrecv.mqdes,
1431 context->mq_sendrecv.msg_len,
1432 context->mq_sendrecv.msg_prio,
1433 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1434 context->mq_sendrecv.abs_timeout.tv_nsec);
1435 break;
1436 case AUDIT_MQ_NOTIFY:
1437 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1438 context->mq_notify.mqdes,
1439 context->mq_notify.sigev_signo);
1440 break;
1441 case AUDIT_MQ_GETSETATTR: {
1442 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1443
1444 audit_log_format(ab,
1445 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1446 "mq_curmsgs=%ld ",
1447 context->mq_getsetattr.mqdes,
1448 attr->mq_flags, attr->mq_maxmsg,
1449 attr->mq_msgsize, attr->mq_curmsgs);
1450 break; }
1451 case AUDIT_CAPSET:
1452 audit_log_format(ab, "pid=%d", context->capset.pid);
1453 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1454 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1455 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1456 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1457 break;
1458 case AUDIT_MMAP:
1459 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1460 context->mmap.flags);
1461 break;
1462 case AUDIT_OPENAT2:
1463 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1464 context->openat2.flags,
1465 context->openat2.mode,
1466 context->openat2.resolve);
1467 break;
1468 case AUDIT_EXECVE:
1469 audit_log_execve_info(context, &ab);
1470 break;
1471 case AUDIT_KERN_MODULE:
1472 audit_log_format(ab, "name=");
1473 if (context->module.name) {
1474 audit_log_untrustedstring(ab, context->module.name);
1475 } else
1476 audit_log_format(ab, "(null)");
1477
1478 break;
1479 case AUDIT_TIME_ADJNTPVAL:
1480 case AUDIT_TIME_INJOFFSET:
1481 /* this call deviates from the rest, eating the buffer */
1482 audit_log_time(context, &ab);
1483 break;
1484 }
1485 audit_log_end(ab);
1486 }
1487
1488 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1489 {
1490 char *end = proctitle + len - 1;
1491
1492 while (end > proctitle && !isprint(*end))
1493 end--;
1494
1495 /* catch the case where proctitle is only 1 non-print character */
1496 len = end - proctitle + 1;
1497 len -= isprint(proctitle[len-1]) == 0;
1498 return len;
1499 }
1500
1501 /*
1502 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1503 * @context: audit_context for the task
1504 * @n: audit_names structure with reportable details
1505 * @path: optional path to report instead of audit_names->name
1506 * @record_num: record number to report when handling a list of names
1507 * @call_panic: optional pointer to int that will be updated if secid fails
1508 */
1509 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1510 const struct path *path, int record_num, int *call_panic)
1511 {
1512 struct audit_buffer *ab;
1513
1514 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1515 if (!ab)
1516 return;
1517
1518 audit_log_format(ab, "item=%d", record_num);
1519
1520 if (path)
1521 audit_log_d_path(ab, " name=", path);
1522 else if (n->name) {
1523 switch (n->name_len) {
1524 case AUDIT_NAME_FULL:
1525 /* log the full path */
1526 audit_log_format(ab, " name=");
1527 audit_log_untrustedstring(ab, n->name->name);
1528 break;
1529 case 0:
1530 /* name was specified as a relative path and the
1531 * directory component is the cwd
1532 */
1533 if (context->pwd.dentry && context->pwd.mnt)
1534 audit_log_d_path(ab, " name=", &context->pwd);
1535 else
1536 audit_log_format(ab, " name=(null)");
1537 break;
1538 default:
1539 /* log the name's directory component */
1540 audit_log_format(ab, " name=");
1541 audit_log_n_untrustedstring(ab, n->name->name,
1542 n->name_len);
1543 }
1544 } else
1545 audit_log_format(ab, " name=(null)");
1546
1547 if (n->ino != AUDIT_INO_UNSET)
1548 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1549 n->ino,
1550 MAJOR(n->dev),
1551 MINOR(n->dev),
1552 n->mode,
1553 from_kuid(&init_user_ns, n->uid),
1554 from_kgid(&init_user_ns, n->gid),
1555 MAJOR(n->rdev),
1556 MINOR(n->rdev));
1557 if (n->osid != 0) {
1558 char *ctx = NULL;
1559 u32 len;
1560
1561 if (security_secid_to_secctx(
1562 n->osid, &ctx, &len)) {
1563 audit_log_format(ab, " osid=%u", n->osid);
1564 if (call_panic)
1565 *call_panic = 2;
1566 } else {
1567 audit_log_format(ab, " obj=%s", ctx);
1568 security_release_secctx(ctx, len);
1569 }
1570 }
1571
1572 /* log the audit_names record type */
1573 switch (n->type) {
1574 case AUDIT_TYPE_NORMAL:
1575 audit_log_format(ab, " nametype=NORMAL");
1576 break;
1577 case AUDIT_TYPE_PARENT:
1578 audit_log_format(ab, " nametype=PARENT");
1579 break;
1580 case AUDIT_TYPE_CHILD_DELETE:
1581 audit_log_format(ab, " nametype=DELETE");
1582 break;
1583 case AUDIT_TYPE_CHILD_CREATE:
1584 audit_log_format(ab, " nametype=CREATE");
1585 break;
1586 default:
1587 audit_log_format(ab, " nametype=UNKNOWN");
1588 break;
1589 }
1590
1591 audit_log_fcaps(ab, n);
1592 audit_log_end(ab);
1593 }
1594
1595 static void audit_log_proctitle(void)
1596 {
1597 int res;
1598 char *buf;
1599 char *msg = "(null)";
1600 int len = strlen(msg);
1601 struct audit_context *context = audit_context();
1602 struct audit_buffer *ab;
1603
1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1605 if (!ab)
1606 return; /* audit_panic or being filtered */
1607
1608 audit_log_format(ab, "proctitle=");
1609
1610 /* Not cached */
1611 if (!context->proctitle.value) {
1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1613 if (!buf)
1614 goto out;
1615 /* Historically called this from procfs naming */
1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1617 if (res == 0) {
1618 kfree(buf);
1619 goto out;
1620 }
1621 res = audit_proctitle_rtrim(buf, res);
1622 if (res == 0) {
1623 kfree(buf);
1624 goto out;
1625 }
1626 context->proctitle.value = buf;
1627 context->proctitle.len = res;
1628 }
1629 msg = context->proctitle.value;
1630 len = context->proctitle.len;
1631 out:
1632 audit_log_n_untrustedstring(ab, msg, len);
1633 audit_log_end(ab);
1634 }
1635
1636 /**
1637 * audit_log_uring - generate a AUDIT_URINGOP record
1638 * @ctx: the audit context
1639 */
1640 static void audit_log_uring(struct audit_context *ctx)
1641 {
1642 struct audit_buffer *ab;
1643 const struct cred *cred;
1644
1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1646 if (!ab)
1647 return;
1648 cred = current_cred();
1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650 if (ctx->return_valid != AUDITSC_INVALID)
1651 audit_log_format(ab, " success=%s exit=%ld",
1652 (ctx->return_valid == AUDITSC_SUCCESS ?
1653 "yes" : "no"),
1654 ctx->return_code);
1655 audit_log_format(ab,
1656 " items=%d"
1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1659 ctx->name_count,
1660 task_ppid_nr(current), task_tgid_nr(current),
1661 from_kuid(&init_user_ns, cred->uid),
1662 from_kgid(&init_user_ns, cred->gid),
1663 from_kuid(&init_user_ns, cred->euid),
1664 from_kuid(&init_user_ns, cred->suid),
1665 from_kuid(&init_user_ns, cred->fsuid),
1666 from_kgid(&init_user_ns, cred->egid),
1667 from_kgid(&init_user_ns, cred->sgid),
1668 from_kgid(&init_user_ns, cred->fsgid));
1669 audit_log_task_context(ab);
1670 audit_log_key(ab, ctx->filterkey);
1671 audit_log_end(ab);
1672 }
1673
1674 static void audit_log_exit(void)
1675 {
1676 int i, call_panic = 0;
1677 struct audit_context *context = audit_context();
1678 struct audit_buffer *ab;
1679 struct audit_aux_data *aux;
1680 struct audit_names *n;
1681
1682 context->personality = current->personality;
1683
1684 switch (context->context) {
1685 case AUDIT_CTX_SYSCALL:
1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1687 if (!ab)
1688 return;
1689 audit_log_format(ab, "arch=%x syscall=%d",
1690 context->arch, context->major);
1691 if (context->personality != PER_LINUX)
1692 audit_log_format(ab, " per=%lx", context->personality);
1693 if (context->return_valid != AUDITSC_INVALID)
1694 audit_log_format(ab, " success=%s exit=%ld",
1695 (context->return_valid == AUDITSC_SUCCESS ?
1696 "yes" : "no"),
1697 context->return_code);
1698 audit_log_format(ab,
1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1700 context->argv[0],
1701 context->argv[1],
1702 context->argv[2],
1703 context->argv[3],
1704 context->name_count);
1705 audit_log_task_info(ab);
1706 audit_log_key(ab, context->filterkey);
1707 audit_log_end(ab);
1708 break;
1709 case AUDIT_CTX_URING:
1710 audit_log_uring(context);
1711 break;
1712 default:
1713 BUG();
1714 break;
1715 }
1716
1717 for (aux = context->aux; aux; aux = aux->next) {
1718
1719 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1720 if (!ab)
1721 continue; /* audit_panic has been called */
1722
1723 switch (aux->type) {
1724
1725 case AUDIT_BPRM_FCAPS: {
1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1727
1728 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1740 audit_log_format(ab, " frootid=%d",
1741 from_kuid(&init_user_ns,
1742 axs->fcap.rootid));
1743 break; }
1744
1745 }
1746 audit_log_end(ab);
1747 }
1748
1749 if (context->type)
1750 show_special(context, &call_panic);
1751
1752 if (context->fds[0] >= 0) {
1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1754 if (ab) {
1755 audit_log_format(ab, "fd0=%d fd1=%d",
1756 context->fds[0], context->fds[1]);
1757 audit_log_end(ab);
1758 }
1759 }
1760
1761 if (context->sockaddr_len) {
1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1763 if (ab) {
1764 audit_log_format(ab, "saddr=");
1765 audit_log_n_hex(ab, (void *)context->sockaddr,
1766 context->sockaddr_len);
1767 audit_log_end(ab);
1768 }
1769 }
1770
1771 for (aux = context->aux_pids; aux; aux = aux->next) {
1772 struct audit_aux_data_pids *axs = (void *)aux;
1773
1774 for (i = 0; i < axs->pid_count; i++)
1775 if (audit_log_pid_context(context, axs->target_pid[i],
1776 axs->target_auid[i],
1777 axs->target_uid[i],
1778 axs->target_sessionid[i],
1779 axs->target_sid[i],
1780 axs->target_comm[i]))
1781 call_panic = 1;
1782 }
1783
1784 if (context->target_pid &&
1785 audit_log_pid_context(context, context->target_pid,
1786 context->target_auid, context->target_uid,
1787 context->target_sessionid,
1788 context->target_sid, context->target_comm))
1789 call_panic = 1;
1790
1791 if (context->pwd.dentry && context->pwd.mnt) {
1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1793 if (ab) {
1794 audit_log_d_path(ab, "cwd=", &context->pwd);
1795 audit_log_end(ab);
1796 }
1797 }
1798
1799 i = 0;
1800 list_for_each_entry(n, &context->names_list, list) {
1801 if (n->hidden)
1802 continue;
1803 audit_log_name(context, n, NULL, i++, &call_panic);
1804 }
1805
1806 if (context->context == AUDIT_CTX_SYSCALL)
1807 audit_log_proctitle();
1808
1809 /* Send end of event record to help user space know we are finished */
1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1811 if (ab)
1812 audit_log_end(ab);
1813 if (call_panic)
1814 audit_panic("error in audit_log_exit()");
1815 }
1816
1817 /**
1818 * __audit_free - free a per-task audit context
1819 * @tsk: task whose audit context block to free
1820 *
1821 * Called from copy_process, do_exit, and the io_uring code
1822 */
1823 void __audit_free(struct task_struct *tsk)
1824 {
1825 struct audit_context *context = tsk->audit_context;
1826
1827 if (!context)
1828 return;
1829
1830 /* this may generate CONFIG_CHANGE records */
1831 if (!list_empty(&context->killed_trees))
1832 audit_kill_trees(context);
1833
1834 /* We are called either by do_exit() or the fork() error handling code;
1835 * in the former case tsk == current and in the latter tsk is a
1836 * random task_struct that doesn't have any meaningful data we
1837 * need to log via audit_log_exit().
1838 */
1839 if (tsk == current && !context->dummy) {
1840 context->return_valid = AUDITSC_INVALID;
1841 context->return_code = 0;
1842 if (context->context == AUDIT_CTX_SYSCALL) {
1843 audit_filter_syscall(tsk, context);
1844 audit_filter_inodes(tsk, context);
1845 if (context->current_state == AUDIT_STATE_RECORD)
1846 audit_log_exit();
1847 } else if (context->context == AUDIT_CTX_URING) {
1848 /* TODO: verify this case is real and valid */
1849 audit_filter_uring(tsk, context);
1850 audit_filter_inodes(tsk, context);
1851 if (context->current_state == AUDIT_STATE_RECORD)
1852 audit_log_uring(context);
1853 }
1854 }
1855
1856 audit_set_context(tsk, NULL);
1857 audit_free_context(context);
1858 }
1859
1860 /**
1861 * audit_return_fixup - fixup the return codes in the audit_context
1862 * @ctx: the audit_context
1863 * @success: true/false value to indicate if the operation succeeded or not
1864 * @code: operation return code
1865 *
1866 * We need to fixup the return code in the audit logs if the actual return
1867 * codes are later going to be fixed by the arch specific signal handlers.
1868 */
1869 static void audit_return_fixup(struct audit_context *ctx,
1870 int success, long code)
1871 {
1872 /*
1873 * This is actually a test for:
1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1876 *
1877 * but is faster than a bunch of ||
1878 */
1879 if (unlikely(code <= -ERESTARTSYS) &&
1880 (code >= -ERESTART_RESTARTBLOCK) &&
1881 (code != -ENOIOCTLCMD))
1882 ctx->return_code = -EINTR;
1883 else
1884 ctx->return_code = code;
1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1886 }
1887
1888 /**
1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890 * @op: the io_uring opcode
1891 *
1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1893 * operations. This function should only ever be called from
1894 * audit_uring_entry() as we rely on the audit context checking present in that
1895 * function.
1896 */
1897 void __audit_uring_entry(u8 op)
1898 {
1899 struct audit_context *ctx = audit_context();
1900
1901 if (ctx->state == AUDIT_STATE_DISABLED)
1902 return;
1903
1904 /*
1905 * NOTE: It's possible that we can be called from the process' context
1906 * before it returns to userspace, and before audit_syscall_exit()
1907 * is called. In this case there is not much to do, just record
1908 * the io_uring details and return.
1909 */
1910 ctx->uring_op = op;
1911 if (ctx->context == AUDIT_CTX_SYSCALL)
1912 return;
1913
1914 ctx->dummy = !audit_n_rules;
1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1916 ctx->prio = 0;
1917
1918 ctx->context = AUDIT_CTX_URING;
1919 ctx->current_state = ctx->state;
1920 ktime_get_coarse_real_ts64(&ctx->ctime);
1921 }
1922
1923 /**
1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925 * @success: true/false value to indicate if the operation succeeded or not
1926 * @code: operation return code
1927 *
1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1929 * operations. This function should only ever be called from
1930 * audit_uring_exit() as we rely on the audit context checking present in that
1931 * function.
1932 */
1933 void __audit_uring_exit(int success, long code)
1934 {
1935 struct audit_context *ctx = audit_context();
1936
1937 if (ctx->dummy) {
1938 if (ctx->context != AUDIT_CTX_URING)
1939 return;
1940 goto out;
1941 }
1942
1943 audit_return_fixup(ctx, success, code);
1944 if (ctx->context == AUDIT_CTX_SYSCALL) {
1945 /*
1946 * NOTE: See the note in __audit_uring_entry() about the case
1947 * where we may be called from process context before we
1948 * return to userspace via audit_syscall_exit(). In this
1949 * case we simply emit a URINGOP record and bail, the
1950 * normal syscall exit handling will take care of
1951 * everything else.
1952 * It is also worth mentioning that when we are called,
1953 * the current process creds may differ from the creds
1954 * used during the normal syscall processing; keep that
1955 * in mind if/when we move the record generation code.
1956 */
1957
1958 /*
1959 * We need to filter on the syscall info here to decide if we
1960 * should emit a URINGOP record. I know it seems odd but this
1961 * solves the problem where users have a filter to block *all*
1962 * syscall records in the "exit" filter; we want to preserve
1963 * the behavior here.
1964 */
1965 audit_filter_syscall(current, ctx);
1966 if (ctx->current_state != AUDIT_STATE_RECORD)
1967 audit_filter_uring(current, ctx);
1968 audit_filter_inodes(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 return;
1971
1972 audit_log_uring(ctx);
1973 return;
1974 }
1975
1976 /* this may generate CONFIG_CHANGE records */
1977 if (!list_empty(&ctx->killed_trees))
1978 audit_kill_trees(ctx);
1979
1980 /* run through both filters to ensure we set the filterkey properly */
1981 audit_filter_uring(current, ctx);
1982 audit_filter_inodes(current, ctx);
1983 if (ctx->current_state != AUDIT_STATE_RECORD)
1984 goto out;
1985 audit_log_exit();
1986
1987 out:
1988 audit_reset_context(ctx);
1989 }
1990
1991 /**
1992 * __audit_syscall_entry - fill in an audit record at syscall entry
1993 * @major: major syscall type (function)
1994 * @a1: additional syscall register 1
1995 * @a2: additional syscall register 2
1996 * @a3: additional syscall register 3
1997 * @a4: additional syscall register 4
1998 *
1999 * Fill in audit context at syscall entry. This only happens if the
2000 * audit context was created when the task was created and the state or
2001 * filters demand the audit context be built. If the state from the
2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2003 * then the record will be written at syscall exit time (otherwise, it
2004 * will only be written if another part of the kernel requests that it
2005 * be written).
2006 */
2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008 unsigned long a3, unsigned long a4)
2009 {
2010 struct audit_context *context = audit_context();
2011 enum audit_state state;
2012
2013 if (!audit_enabled || !context)
2014 return;
2015
2016 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017 WARN_ON(context->name_count);
2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019 audit_panic("unrecoverable error in audit_syscall_entry()");
2020 return;
2021 }
2022
2023 state = context->state;
2024 if (state == AUDIT_STATE_DISABLED)
2025 return;
2026
2027 context->dummy = !audit_n_rules;
2028 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2029 context->prio = 0;
2030 if (auditd_test_task(current))
2031 return;
2032 }
2033
2034 context->arch = syscall_get_arch(current);
2035 context->major = major;
2036 context->argv[0] = a1;
2037 context->argv[1] = a2;
2038 context->argv[2] = a3;
2039 context->argv[3] = a4;
2040 context->context = AUDIT_CTX_SYSCALL;
2041 context->current_state = state;
2042 ktime_get_coarse_real_ts64(&context->ctime);
2043 }
2044
2045 /**
2046 * __audit_syscall_exit - deallocate audit context after a system call
2047 * @success: success value of the syscall
2048 * @return_code: return value of the syscall
2049 *
2050 * Tear down after system call. If the audit context has been marked as
2051 * auditable (either because of the AUDIT_STATE_RECORD state from
2052 * filtering, or because some other part of the kernel wrote an audit
2053 * message), then write out the syscall information. In call cases,
2054 * free the names stored from getname().
2055 */
2056 void __audit_syscall_exit(int success, long return_code)
2057 {
2058 struct audit_context *context = audit_context();
2059
2060 if (!context || context->dummy ||
2061 context->context != AUDIT_CTX_SYSCALL)
2062 goto out;
2063
2064 /* this may generate CONFIG_CHANGE records */
2065 if (!list_empty(&context->killed_trees))
2066 audit_kill_trees(context);
2067
2068 audit_return_fixup(context, success, return_code);
2069 /* run through both filters to ensure we set the filterkey properly */
2070 audit_filter_syscall(current, context);
2071 audit_filter_inodes(current, context);
2072 if (context->current_state != AUDIT_STATE_RECORD)
2073 goto out;
2074
2075 audit_log_exit();
2076
2077 out:
2078 audit_reset_context(context);
2079 }
2080
2081 static inline void handle_one(const struct inode *inode)
2082 {
2083 struct audit_context *context;
2084 struct audit_tree_refs *p;
2085 struct audit_chunk *chunk;
2086 int count;
2087
2088 if (likely(!inode->i_fsnotify_marks))
2089 return;
2090 context = audit_context();
2091 p = context->trees;
2092 count = context->tree_count;
2093 rcu_read_lock();
2094 chunk = audit_tree_lookup(inode);
2095 rcu_read_unlock();
2096 if (!chunk)
2097 return;
2098 if (likely(put_tree_ref(context, chunk)))
2099 return;
2100 if (unlikely(!grow_tree_refs(context))) {
2101 pr_warn("out of memory, audit has lost a tree reference\n");
2102 audit_set_auditable(context);
2103 audit_put_chunk(chunk);
2104 unroll_tree_refs(context, p, count);
2105 return;
2106 }
2107 put_tree_ref(context, chunk);
2108 }
2109
2110 static void handle_path(const struct dentry *dentry)
2111 {
2112 struct audit_context *context;
2113 struct audit_tree_refs *p;
2114 const struct dentry *d, *parent;
2115 struct audit_chunk *drop;
2116 unsigned long seq;
2117 int count;
2118
2119 context = audit_context();
2120 p = context->trees;
2121 count = context->tree_count;
2122 retry:
2123 drop = NULL;
2124 d = dentry;
2125 rcu_read_lock();
2126 seq = read_seqbegin(&rename_lock);
2127 for(;;) {
2128 struct inode *inode = d_backing_inode(d);
2129
2130 if (inode && unlikely(inode->i_fsnotify_marks)) {
2131 struct audit_chunk *chunk;
2132
2133 chunk = audit_tree_lookup(inode);
2134 if (chunk) {
2135 if (unlikely(!put_tree_ref(context, chunk))) {
2136 drop = chunk;
2137 break;
2138 }
2139 }
2140 }
2141 parent = d->d_parent;
2142 if (parent == d)
2143 break;
2144 d = parent;
2145 }
2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2147 rcu_read_unlock();
2148 if (!drop) {
2149 /* just a race with rename */
2150 unroll_tree_refs(context, p, count);
2151 goto retry;
2152 }
2153 audit_put_chunk(drop);
2154 if (grow_tree_refs(context)) {
2155 /* OK, got more space */
2156 unroll_tree_refs(context, p, count);
2157 goto retry;
2158 }
2159 /* too bad */
2160 pr_warn("out of memory, audit has lost a tree reference\n");
2161 unroll_tree_refs(context, p, count);
2162 audit_set_auditable(context);
2163 return;
2164 }
2165 rcu_read_unlock();
2166 }
2167
2168 static struct audit_names *audit_alloc_name(struct audit_context *context,
2169 unsigned char type)
2170 {
2171 struct audit_names *aname;
2172
2173 if (context->name_count < AUDIT_NAMES) {
2174 aname = &context->preallocated_names[context->name_count];
2175 memset(aname, 0, sizeof(*aname));
2176 } else {
2177 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2178 if (!aname)
2179 return NULL;
2180 aname->should_free = true;
2181 }
2182
2183 aname->ino = AUDIT_INO_UNSET;
2184 aname->type = type;
2185 list_add_tail(&aname->list, &context->names_list);
2186
2187 context->name_count++;
2188 if (!context->pwd.dentry)
2189 get_fs_pwd(current->fs, &context->pwd);
2190 return aname;
2191 }
2192
2193 /**
2194 * __audit_reusename - fill out filename with info from existing entry
2195 * @uptr: userland ptr to pathname
2196 *
2197 * Search the audit_names list for the current audit context. If there is an
2198 * existing entry with a matching "uptr" then return the filename
2199 * associated with that audit_name. If not, return NULL.
2200 */
2201 struct filename *
2202 __audit_reusename(const __user char *uptr)
2203 {
2204 struct audit_context *context = audit_context();
2205 struct audit_names *n;
2206
2207 list_for_each_entry(n, &context->names_list, list) {
2208 if (!n->name)
2209 continue;
2210 if (n->name->uptr == uptr) {
2211 n->name->refcnt++;
2212 return n->name;
2213 }
2214 }
2215 return NULL;
2216 }
2217
2218 /**
2219 * __audit_getname - add a name to the list
2220 * @name: name to add
2221 *
2222 * Add a name to the list of audit names for this context.
2223 * Called from fs/namei.c:getname().
2224 */
2225 void __audit_getname(struct filename *name)
2226 {
2227 struct audit_context *context = audit_context();
2228 struct audit_names *n;
2229
2230 if (context->context == AUDIT_CTX_UNUSED)
2231 return;
2232
2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2234 if (!n)
2235 return;
2236
2237 n->name = name;
2238 n->name_len = AUDIT_NAME_FULL;
2239 name->aname = n;
2240 name->refcnt++;
2241 }
2242
2243 static inline int audit_copy_fcaps(struct audit_names *name,
2244 const struct dentry *dentry)
2245 {
2246 struct cpu_vfs_cap_data caps;
2247 int rc;
2248
2249 if (!dentry)
2250 return 0;
2251
2252 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2253 if (rc)
2254 return rc;
2255
2256 name->fcap.permitted = caps.permitted;
2257 name->fcap.inheritable = caps.inheritable;
2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2259 name->fcap.rootid = caps.rootid;
2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2261 VFS_CAP_REVISION_SHIFT;
2262
2263 return 0;
2264 }
2265
2266 /* Copy inode data into an audit_names. */
2267 static void audit_copy_inode(struct audit_names *name,
2268 const struct dentry *dentry,
2269 struct inode *inode, unsigned int flags)
2270 {
2271 name->ino = inode->i_ino;
2272 name->dev = inode->i_sb->s_dev;
2273 name->mode = inode->i_mode;
2274 name->uid = inode->i_uid;
2275 name->gid = inode->i_gid;
2276 name->rdev = inode->i_rdev;
2277 security_inode_getsecid(inode, &name->osid);
2278 if (flags & AUDIT_INODE_NOEVAL) {
2279 name->fcap_ver = -1;
2280 return;
2281 }
2282 audit_copy_fcaps(name, dentry);
2283 }
2284
2285 /**
2286 * __audit_inode - store the inode and device from a lookup
2287 * @name: name being audited
2288 * @dentry: dentry being audited
2289 * @flags: attributes for this particular entry
2290 */
2291 void __audit_inode(struct filename *name, const struct dentry *dentry,
2292 unsigned int flags)
2293 {
2294 struct audit_context *context = audit_context();
2295 struct inode *inode = d_backing_inode(dentry);
2296 struct audit_names *n;
2297 bool parent = flags & AUDIT_INODE_PARENT;
2298 struct audit_entry *e;
2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2300 int i;
2301
2302 if (context->context == AUDIT_CTX_UNUSED)
2303 return;
2304
2305 rcu_read_lock();
2306 list_for_each_entry_rcu(e, list, list) {
2307 for (i = 0; i < e->rule.field_count; i++) {
2308 struct audit_field *f = &e->rule.fields[i];
2309
2310 if (f->type == AUDIT_FSTYPE
2311 && audit_comparator(inode->i_sb->s_magic,
2312 f->op, f->val)
2313 && e->rule.action == AUDIT_NEVER) {
2314 rcu_read_unlock();
2315 return;
2316 }
2317 }
2318 }
2319 rcu_read_unlock();
2320
2321 if (!name)
2322 goto out_alloc;
2323
2324 /*
2325 * If we have a pointer to an audit_names entry already, then we can
2326 * just use it directly if the type is correct.
2327 */
2328 n = name->aname;
2329 if (n) {
2330 if (parent) {
2331 if (n->type == AUDIT_TYPE_PARENT ||
2332 n->type == AUDIT_TYPE_UNKNOWN)
2333 goto out;
2334 } else {
2335 if (n->type != AUDIT_TYPE_PARENT)
2336 goto out;
2337 }
2338 }
2339
2340 list_for_each_entry_reverse(n, &context->names_list, list) {
2341 if (n->ino) {
2342 /* valid inode number, use that for the comparison */
2343 if (n->ino != inode->i_ino ||
2344 n->dev != inode->i_sb->s_dev)
2345 continue;
2346 } else if (n->name) {
2347 /* inode number has not been set, check the name */
2348 if (strcmp(n->name->name, name->name))
2349 continue;
2350 } else
2351 /* no inode and no name (?!) ... this is odd ... */
2352 continue;
2353
2354 /* match the correct record type */
2355 if (parent) {
2356 if (n->type == AUDIT_TYPE_PARENT ||
2357 n->type == AUDIT_TYPE_UNKNOWN)
2358 goto out;
2359 } else {
2360 if (n->type != AUDIT_TYPE_PARENT)
2361 goto out;
2362 }
2363 }
2364
2365 out_alloc:
2366 /* unable to find an entry with both a matching name and type */
2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2368 if (!n)
2369 return;
2370 if (name) {
2371 n->name = name;
2372 name->refcnt++;
2373 }
2374
2375 out:
2376 if (parent) {
2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2378 n->type = AUDIT_TYPE_PARENT;
2379 if (flags & AUDIT_INODE_HIDDEN)
2380 n->hidden = true;
2381 } else {
2382 n->name_len = AUDIT_NAME_FULL;
2383 n->type = AUDIT_TYPE_NORMAL;
2384 }
2385 handle_path(dentry);
2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2387 }
2388
2389 void __audit_file(const struct file *file)
2390 {
2391 __audit_inode(NULL, file->f_path.dentry, 0);
2392 }
2393
2394 /**
2395 * __audit_inode_child - collect inode info for created/removed objects
2396 * @parent: inode of dentry parent
2397 * @dentry: dentry being audited
2398 * @type: AUDIT_TYPE_* value that we're looking for
2399 *
2400 * For syscalls that create or remove filesystem objects, audit_inode
2401 * can only collect information for the filesystem object's parent.
2402 * This call updates the audit context with the child's information.
2403 * Syscalls that create a new filesystem object must be hooked after
2404 * the object is created. Syscalls that remove a filesystem object
2405 * must be hooked prior, in order to capture the target inode during
2406 * unsuccessful attempts.
2407 */
2408 void __audit_inode_child(struct inode *parent,
2409 const struct dentry *dentry,
2410 const unsigned char type)
2411 {
2412 struct audit_context *context = audit_context();
2413 struct inode *inode = d_backing_inode(dentry);
2414 const struct qstr *dname = &dentry->d_name;
2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2416 struct audit_entry *e;
2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2418 int i;
2419
2420 if (context->context == AUDIT_CTX_UNUSED)
2421 return;
2422
2423 rcu_read_lock();
2424 list_for_each_entry_rcu(e, list, list) {
2425 for (i = 0; i < e->rule.field_count; i++) {
2426 struct audit_field *f = &e->rule.fields[i];
2427
2428 if (f->type == AUDIT_FSTYPE
2429 && audit_comparator(parent->i_sb->s_magic,
2430 f->op, f->val)
2431 && e->rule.action == AUDIT_NEVER) {
2432 rcu_read_unlock();
2433 return;
2434 }
2435 }
2436 }
2437 rcu_read_unlock();
2438
2439 if (inode)
2440 handle_one(inode);
2441
2442 /* look for a parent entry first */
2443 list_for_each_entry(n, &context->names_list, list) {
2444 if (!n->name ||
2445 (n->type != AUDIT_TYPE_PARENT &&
2446 n->type != AUDIT_TYPE_UNKNOWN))
2447 continue;
2448
2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2450 !audit_compare_dname_path(dname,
2451 n->name->name, n->name_len)) {
2452 if (n->type == AUDIT_TYPE_UNKNOWN)
2453 n->type = AUDIT_TYPE_PARENT;
2454 found_parent = n;
2455 break;
2456 }
2457 }
2458
2459 /* is there a matching child entry? */
2460 list_for_each_entry(n, &context->names_list, list) {
2461 /* can only match entries that have a name */
2462 if (!n->name ||
2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2464 continue;
2465
2466 if (!strcmp(dname->name, n->name->name) ||
2467 !audit_compare_dname_path(dname, n->name->name,
2468 found_parent ?
2469 found_parent->name_len :
2470 AUDIT_NAME_FULL)) {
2471 if (n->type == AUDIT_TYPE_UNKNOWN)
2472 n->type = type;
2473 found_child = n;
2474 break;
2475 }
2476 }
2477
2478 if (!found_parent) {
2479 /* create a new, "anonymous" parent record */
2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2481 if (!n)
2482 return;
2483 audit_copy_inode(n, NULL, parent, 0);
2484 }
2485
2486 if (!found_child) {
2487 found_child = audit_alloc_name(context, type);
2488 if (!found_child)
2489 return;
2490
2491 /* Re-use the name belonging to the slot for a matching parent
2492 * directory. All names for this context are relinquished in
2493 * audit_free_names() */
2494 if (found_parent) {
2495 found_child->name = found_parent->name;
2496 found_child->name_len = AUDIT_NAME_FULL;
2497 found_child->name->refcnt++;
2498 }
2499 }
2500
2501 if (inode)
2502 audit_copy_inode(found_child, dentry, inode, 0);
2503 else
2504 found_child->ino = AUDIT_INO_UNSET;
2505 }
2506 EXPORT_SYMBOL_GPL(__audit_inode_child);
2507
2508 /**
2509 * auditsc_get_stamp - get local copies of audit_context values
2510 * @ctx: audit_context for the task
2511 * @t: timespec64 to store time recorded in the audit_context
2512 * @serial: serial value that is recorded in the audit_context
2513 *
2514 * Also sets the context as auditable.
2515 */
2516 int auditsc_get_stamp(struct audit_context *ctx,
2517 struct timespec64 *t, unsigned int *serial)
2518 {
2519 if (ctx->context == AUDIT_CTX_UNUSED)
2520 return 0;
2521 if (!ctx->serial)
2522 ctx->serial = audit_serial();
2523 t->tv_sec = ctx->ctime.tv_sec;
2524 t->tv_nsec = ctx->ctime.tv_nsec;
2525 *serial = ctx->serial;
2526 if (!ctx->prio) {
2527 ctx->prio = 1;
2528 ctx->current_state = AUDIT_STATE_RECORD;
2529 }
2530 return 1;
2531 }
2532
2533 /**
2534 * __audit_mq_open - record audit data for a POSIX MQ open
2535 * @oflag: open flag
2536 * @mode: mode bits
2537 * @attr: queue attributes
2538 *
2539 */
2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2541 {
2542 struct audit_context *context = audit_context();
2543
2544 if (attr)
2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2546 else
2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2548
2549 context->mq_open.oflag = oflag;
2550 context->mq_open.mode = mode;
2551
2552 context->type = AUDIT_MQ_OPEN;
2553 }
2554
2555 /**
2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2557 * @mqdes: MQ descriptor
2558 * @msg_len: Message length
2559 * @msg_prio: Message priority
2560 * @abs_timeout: Message timeout in absolute time
2561 *
2562 */
2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2564 const struct timespec64 *abs_timeout)
2565 {
2566 struct audit_context *context = audit_context();
2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2568
2569 if (abs_timeout)
2570 memcpy(p, abs_timeout, sizeof(*p));
2571 else
2572 memset(p, 0, sizeof(*p));
2573
2574 context->mq_sendrecv.mqdes = mqdes;
2575 context->mq_sendrecv.msg_len = msg_len;
2576 context->mq_sendrecv.msg_prio = msg_prio;
2577
2578 context->type = AUDIT_MQ_SENDRECV;
2579 }
2580
2581 /**
2582 * __audit_mq_notify - record audit data for a POSIX MQ notify
2583 * @mqdes: MQ descriptor
2584 * @notification: Notification event
2585 *
2586 */
2587
2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2589 {
2590 struct audit_context *context = audit_context();
2591
2592 if (notification)
2593 context->mq_notify.sigev_signo = notification->sigev_signo;
2594 else
2595 context->mq_notify.sigev_signo = 0;
2596
2597 context->mq_notify.mqdes = mqdes;
2598 context->type = AUDIT_MQ_NOTIFY;
2599 }
2600
2601 /**
2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2603 * @mqdes: MQ descriptor
2604 * @mqstat: MQ flags
2605 *
2606 */
2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2608 {
2609 struct audit_context *context = audit_context();
2610
2611 context->mq_getsetattr.mqdes = mqdes;
2612 context->mq_getsetattr.mqstat = *mqstat;
2613 context->type = AUDIT_MQ_GETSETATTR;
2614 }
2615
2616 /**
2617 * __audit_ipc_obj - record audit data for ipc object
2618 * @ipcp: ipc permissions
2619 *
2620 */
2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2622 {
2623 struct audit_context *context = audit_context();
2624
2625 context->ipc.uid = ipcp->uid;
2626 context->ipc.gid = ipcp->gid;
2627 context->ipc.mode = ipcp->mode;
2628 context->ipc.has_perm = 0;
2629 security_ipc_getsecid(ipcp, &context->ipc.osid);
2630 context->type = AUDIT_IPC;
2631 }
2632
2633 /**
2634 * __audit_ipc_set_perm - record audit data for new ipc permissions
2635 * @qbytes: msgq bytes
2636 * @uid: msgq user id
2637 * @gid: msgq group id
2638 * @mode: msgq mode (permissions)
2639 *
2640 * Called only after audit_ipc_obj().
2641 */
2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2643 {
2644 struct audit_context *context = audit_context();
2645
2646 context->ipc.qbytes = qbytes;
2647 context->ipc.perm_uid = uid;
2648 context->ipc.perm_gid = gid;
2649 context->ipc.perm_mode = mode;
2650 context->ipc.has_perm = 1;
2651 }
2652
2653 void __audit_bprm(struct linux_binprm *bprm)
2654 {
2655 struct audit_context *context = audit_context();
2656
2657 context->type = AUDIT_EXECVE;
2658 context->execve.argc = bprm->argc;
2659 }
2660
2661
2662 /**
2663 * __audit_socketcall - record audit data for sys_socketcall
2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2665 * @args: args array
2666 *
2667 */
2668 int __audit_socketcall(int nargs, unsigned long *args)
2669 {
2670 struct audit_context *context = audit_context();
2671
2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2673 return -EINVAL;
2674 context->type = AUDIT_SOCKETCALL;
2675 context->socketcall.nargs = nargs;
2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2677 return 0;
2678 }
2679
2680 /**
2681 * __audit_fd_pair - record audit data for pipe and socketpair
2682 * @fd1: the first file descriptor
2683 * @fd2: the second file descriptor
2684 *
2685 */
2686 void __audit_fd_pair(int fd1, int fd2)
2687 {
2688 struct audit_context *context = audit_context();
2689
2690 context->fds[0] = fd1;
2691 context->fds[1] = fd2;
2692 }
2693
2694 /**
2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2696 * @len: data length in user space
2697 * @a: data address in kernel space
2698 *
2699 * Returns 0 for success or NULL context or < 0 on error.
2700 */
2701 int __audit_sockaddr(int len, void *a)
2702 {
2703 struct audit_context *context = audit_context();
2704
2705 if (!context->sockaddr) {
2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2707
2708 if (!p)
2709 return -ENOMEM;
2710 context->sockaddr = p;
2711 }
2712
2713 context->sockaddr_len = len;
2714 memcpy(context->sockaddr, a, len);
2715 return 0;
2716 }
2717
2718 void __audit_ptrace(struct task_struct *t)
2719 {
2720 struct audit_context *context = audit_context();
2721
2722 context->target_pid = task_tgid_nr(t);
2723 context->target_auid = audit_get_loginuid(t);
2724 context->target_uid = task_uid(t);
2725 context->target_sessionid = audit_get_sessionid(t);
2726 security_task_getsecid_obj(t, &context->target_sid);
2727 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2728 }
2729
2730 /**
2731 * audit_signal_info_syscall - record signal info for syscalls
2732 * @t: task being signaled
2733 *
2734 * If the audit subsystem is being terminated, record the task (pid)
2735 * and uid that is doing that.
2736 */
2737 int audit_signal_info_syscall(struct task_struct *t)
2738 {
2739 struct audit_aux_data_pids *axp;
2740 struct audit_context *ctx = audit_context();
2741 kuid_t t_uid = task_uid(t);
2742
2743 if (!audit_signals || audit_dummy_context())
2744 return 0;
2745
2746 /* optimize the common case by putting first signal recipient directly
2747 * in audit_context */
2748 if (!ctx->target_pid) {
2749 ctx->target_pid = task_tgid_nr(t);
2750 ctx->target_auid = audit_get_loginuid(t);
2751 ctx->target_uid = t_uid;
2752 ctx->target_sessionid = audit_get_sessionid(t);
2753 security_task_getsecid_obj(t, &ctx->target_sid);
2754 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2755 return 0;
2756 }
2757
2758 axp = (void *)ctx->aux_pids;
2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2761 if (!axp)
2762 return -ENOMEM;
2763
2764 axp->d.type = AUDIT_OBJ_PID;
2765 axp->d.next = ctx->aux_pids;
2766 ctx->aux_pids = (void *)axp;
2767 }
2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2769
2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2772 axp->target_uid[axp->pid_count] = t_uid;
2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2774 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2775 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2776 axp->pid_count++;
2777
2778 return 0;
2779 }
2780
2781 /**
2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2783 * @bprm: pointer to the bprm being processed
2784 * @new: the proposed new credentials
2785 * @old: the old credentials
2786 *
2787 * Simply check if the proc already has the caps given by the file and if not
2788 * store the priv escalation info for later auditing at the end of the syscall
2789 *
2790 * -Eric
2791 */
2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2793 const struct cred *new, const struct cred *old)
2794 {
2795 struct audit_aux_data_bprm_fcaps *ax;
2796 struct audit_context *context = audit_context();
2797 struct cpu_vfs_cap_data vcaps;
2798
2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2800 if (!ax)
2801 return -ENOMEM;
2802
2803 ax->d.type = AUDIT_BPRM_FCAPS;
2804 ax->d.next = context->aux;
2805 context->aux = (void *)ax;
2806
2807 get_vfs_caps_from_disk(&nop_mnt_idmap,
2808 bprm->file->f_path.dentry, &vcaps);
2809
2810 ax->fcap.permitted = vcaps.permitted;
2811 ax->fcap.inheritable = vcaps.inheritable;
2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2813 ax->fcap.rootid = vcaps.rootid;
2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2815
2816 ax->old_pcap.permitted = old->cap_permitted;
2817 ax->old_pcap.inheritable = old->cap_inheritable;
2818 ax->old_pcap.effective = old->cap_effective;
2819 ax->old_pcap.ambient = old->cap_ambient;
2820
2821 ax->new_pcap.permitted = new->cap_permitted;
2822 ax->new_pcap.inheritable = new->cap_inheritable;
2823 ax->new_pcap.effective = new->cap_effective;
2824 ax->new_pcap.ambient = new->cap_ambient;
2825 return 0;
2826 }
2827
2828 /**
2829 * __audit_log_capset - store information about the arguments to the capset syscall
2830 * @new: the new credentials
2831 * @old: the old (current) credentials
2832 *
2833 * Record the arguments userspace sent to sys_capset for later printing by the
2834 * audit system if applicable
2835 */
2836 void __audit_log_capset(const struct cred *new, const struct cred *old)
2837 {
2838 struct audit_context *context = audit_context();
2839
2840 context->capset.pid = task_tgid_nr(current);
2841 context->capset.cap.effective = new->cap_effective;
2842 context->capset.cap.inheritable = new->cap_effective;
2843 context->capset.cap.permitted = new->cap_permitted;
2844 context->capset.cap.ambient = new->cap_ambient;
2845 context->type = AUDIT_CAPSET;
2846 }
2847
2848 void __audit_mmap_fd(int fd, int flags)
2849 {
2850 struct audit_context *context = audit_context();
2851
2852 context->mmap.fd = fd;
2853 context->mmap.flags = flags;
2854 context->type = AUDIT_MMAP;
2855 }
2856
2857 void __audit_openat2_how(struct open_how *how)
2858 {
2859 struct audit_context *context = audit_context();
2860
2861 context->openat2.flags = how->flags;
2862 context->openat2.mode = how->mode;
2863 context->openat2.resolve = how->resolve;
2864 context->type = AUDIT_OPENAT2;
2865 }
2866
2867 void __audit_log_kern_module(char *name)
2868 {
2869 struct audit_context *context = audit_context();
2870
2871 context->module.name = kstrdup(name, GFP_KERNEL);
2872 if (!context->module.name)
2873 audit_log_lost("out of memory in __audit_log_kern_module");
2874 context->type = AUDIT_KERN_MODULE;
2875 }
2876
2877 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2878 {
2879 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2880 switch (friar->hdr.type) {
2881 case FAN_RESPONSE_INFO_NONE:
2882 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2883 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2884 response, FAN_RESPONSE_INFO_NONE);
2885 break;
2886 case FAN_RESPONSE_INFO_AUDIT_RULE:
2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2889 response, friar->hdr.type, friar->rule_number,
2890 friar->subj_trust, friar->obj_trust);
2891 }
2892 }
2893
2894 void __audit_tk_injoffset(struct timespec64 offset)
2895 {
2896 struct audit_context *context = audit_context();
2897
2898 /* only set type if not already set by NTP */
2899 if (!context->type)
2900 context->type = AUDIT_TIME_INJOFFSET;
2901 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2902 }
2903
2904 void __audit_ntp_log(const struct audit_ntp_data *ad)
2905 {
2906 struct audit_context *context = audit_context();
2907 int type;
2908
2909 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2910 if (ad->vals[type].newval != ad->vals[type].oldval) {
2911 /* unconditionally set type, overwriting TK */
2912 context->type = AUDIT_TIME_ADJNTPVAL;
2913 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2914 break;
2915 }
2916 }
2917
2918 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2919 enum audit_nfcfgop op, gfp_t gfp)
2920 {
2921 struct audit_buffer *ab;
2922 char comm[sizeof(current->comm)];
2923
2924 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2925 if (!ab)
2926 return;
2927 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2928 name, af, nentries, audit_nfcfgs[op].s);
2929
2930 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2931 audit_log_task_context(ab); /* subj= */
2932 audit_log_format(ab, " comm=");
2933 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2934 audit_log_end(ab);
2935 }
2936 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2937
2938 static void audit_log_task(struct audit_buffer *ab)
2939 {
2940 kuid_t auid, uid;
2941 kgid_t gid;
2942 unsigned int sessionid;
2943 char comm[sizeof(current->comm)];
2944
2945 auid = audit_get_loginuid(current);
2946 sessionid = audit_get_sessionid(current);
2947 current_uid_gid(&uid, &gid);
2948
2949 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2950 from_kuid(&init_user_ns, auid),
2951 from_kuid(&init_user_ns, uid),
2952 from_kgid(&init_user_ns, gid),
2953 sessionid);
2954 audit_log_task_context(ab);
2955 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2956 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2957 audit_log_d_path_exe(ab, current->mm);
2958 }
2959
2960 /**
2961 * audit_core_dumps - record information about processes that end abnormally
2962 * @signr: signal value
2963 *
2964 * If a process ends with a core dump, something fishy is going on and we
2965 * should record the event for investigation.
2966 */
2967 void audit_core_dumps(long signr)
2968 {
2969 struct audit_buffer *ab;
2970
2971 if (!audit_enabled)
2972 return;
2973
2974 if (signr == SIGQUIT) /* don't care for those */
2975 return;
2976
2977 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2978 if (unlikely(!ab))
2979 return;
2980 audit_log_task(ab);
2981 audit_log_format(ab, " sig=%ld res=1", signr);
2982 audit_log_end(ab);
2983 }
2984
2985 /**
2986 * audit_seccomp - record information about a seccomp action
2987 * @syscall: syscall number
2988 * @signr: signal value
2989 * @code: the seccomp action
2990 *
2991 * Record the information associated with a seccomp action. Event filtering for
2992 * seccomp actions that are not to be logged is done in seccomp_log().
2993 * Therefore, this function forces auditing independent of the audit_enabled
2994 * and dummy context state because seccomp actions should be logged even when
2995 * audit is not in use.
2996 */
2997 void audit_seccomp(unsigned long syscall, long signr, int code)
2998 {
2999 struct audit_buffer *ab;
3000
3001 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3002 if (unlikely(!ab))
3003 return;
3004 audit_log_task(ab);
3005 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3006 signr, syscall_get_arch(current), syscall,
3007 in_compat_syscall(), KSTK_EIP(current), code);
3008 audit_log_end(ab);
3009 }
3010
3011 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3012 int res)
3013 {
3014 struct audit_buffer *ab;
3015
3016 if (!audit_enabled)
3017 return;
3018
3019 ab = audit_log_start(audit_context(), GFP_KERNEL,
3020 AUDIT_CONFIG_CHANGE);
3021 if (unlikely(!ab))
3022 return;
3023
3024 audit_log_format(ab,
3025 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3026 names, old_names, res);
3027 audit_log_end(ab);
3028 }
3029
3030 struct list_head *audit_killed_trees(void)
3031 {
3032 struct audit_context *ctx = audit_context();
3033 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3034 return NULL;
3035 return &ctx->killed_trees;
3036 }