]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/auditsc.c
kprobes: Mark ftrace mcount handler functions nokprobe
[thirdparty/kernel/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
614 break;
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
628 if (f->lsm_rule) {
629 if (need_sid) {
630 security_task_getsecid(tsk, &sid);
631 need_sid = 0;
632 }
633 result = security_audit_rule_match(sid, f->type,
634 f->op,
635 f->lsm_rule);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid,
650 f->type,
651 f->op,
652 f->lsm_rule);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(
656 n->osid,
657 f->type,
658 f->op,
659 f->lsm_rule)) {
660 ++result;
661 break;
662 }
663 }
664 }
665 /* Find ipc objects that match */
666 if (!ctx || ctx->type != AUDIT_IPC)
667 break;
668 if (security_audit_rule_match(ctx->ipc.osid,
669 f->type, f->op,
670 f->lsm_rule))
671 ++result;
672 }
673 break;
674 case AUDIT_ARG0:
675 case AUDIT_ARG1:
676 case AUDIT_ARG2:
677 case AUDIT_ARG3:
678 if (ctx)
679 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
680 break;
681 case AUDIT_FILTERKEY:
682 /* ignore this field for filtering */
683 result = 1;
684 break;
685 case AUDIT_PERM:
686 result = audit_match_perm(ctx, f->val);
687 break;
688 case AUDIT_FILETYPE:
689 result = audit_match_filetype(ctx, f->val);
690 break;
691 case AUDIT_FIELD_COMPARE:
692 result = audit_field_compare(tsk, cred, f, ctx, name);
693 break;
694 }
695 if (!result)
696 return 0;
697 }
698
699 if (ctx) {
700 if (rule->prio <= ctx->prio)
701 return 0;
702 if (rule->filterkey) {
703 kfree(ctx->filterkey);
704 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
705 }
706 ctx->prio = rule->prio;
707 }
708 switch (rule->action) {
709 case AUDIT_NEVER:
710 *state = AUDIT_DISABLED;
711 break;
712 case AUDIT_ALWAYS:
713 *state = AUDIT_RECORD_CONTEXT;
714 break;
715 }
716 return 1;
717 }
718
719 /* At process creation time, we can determine if system-call auditing is
720 * completely disabled for this task. Since we only have the task
721 * structure at this point, we can only check uid and gid.
722 */
723 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
724 {
725 struct audit_entry *e;
726 enum audit_state state;
727
728 rcu_read_lock();
729 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
730 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
731 &state, true)) {
732 if (state == AUDIT_RECORD_CONTEXT)
733 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
734 rcu_read_unlock();
735 return state;
736 }
737 }
738 rcu_read_unlock();
739 return AUDIT_BUILD_CONTEXT;
740 }
741
742 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
743 {
744 int word, bit;
745
746 if (val > 0xffffffff)
747 return false;
748
749 word = AUDIT_WORD(val);
750 if (word >= AUDIT_BITMASK_SIZE)
751 return false;
752
753 bit = AUDIT_BIT(val);
754
755 return rule->mask[word] & bit;
756 }
757
758 /* At syscall entry and exit time, this filter is called if the
759 * audit_state is not low enough that auditing cannot take place, but is
760 * also not high enough that we already know we have to write an audit
761 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
762 */
763 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
764 struct audit_context *ctx,
765 struct list_head *list)
766 {
767 struct audit_entry *e;
768 enum audit_state state;
769
770 if (auditd_test_task(tsk))
771 return AUDIT_DISABLED;
772
773 rcu_read_lock();
774 if (!list_empty(list)) {
775 list_for_each_entry_rcu(e, list, list) {
776 if (audit_in_mask(&e->rule, ctx->major) &&
777 audit_filter_rules(tsk, &e->rule, ctx, NULL,
778 &state, false)) {
779 rcu_read_unlock();
780 ctx->current_state = state;
781 return state;
782 }
783 }
784 }
785 rcu_read_unlock();
786 return AUDIT_BUILD_CONTEXT;
787 }
788
789 /*
790 * Given an audit_name check the inode hash table to see if they match.
791 * Called holding the rcu read lock to protect the use of audit_inode_hash
792 */
793 static int audit_filter_inode_name(struct task_struct *tsk,
794 struct audit_names *n,
795 struct audit_context *ctx) {
796 int h = audit_hash_ino((u32)n->ino);
797 struct list_head *list = &audit_inode_hash[h];
798 struct audit_entry *e;
799 enum audit_state state;
800
801 if (list_empty(list))
802 return 0;
803
804 list_for_each_entry_rcu(e, list, list) {
805 if (audit_in_mask(&e->rule, ctx->major) &&
806 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
807 ctx->current_state = state;
808 return 1;
809 }
810 }
811
812 return 0;
813 }
814
815 /* At syscall exit time, this filter is called if any audit_names have been
816 * collected during syscall processing. We only check rules in sublists at hash
817 * buckets applicable to the inode numbers in audit_names.
818 * Regarding audit_state, same rules apply as for audit_filter_syscall().
819 */
820 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
821 {
822 struct audit_names *n;
823
824 if (auditd_test_task(tsk))
825 return;
826
827 rcu_read_lock();
828
829 list_for_each_entry(n, &ctx->names_list, list) {
830 if (audit_filter_inode_name(tsk, n, ctx))
831 break;
832 }
833 rcu_read_unlock();
834 }
835
836 static inline void audit_proctitle_free(struct audit_context *context)
837 {
838 kfree(context->proctitle.value);
839 context->proctitle.value = NULL;
840 context->proctitle.len = 0;
841 }
842
843 static inline void audit_free_names(struct audit_context *context)
844 {
845 struct audit_names *n, *next;
846
847 list_for_each_entry_safe(n, next, &context->names_list, list) {
848 list_del(&n->list);
849 if (n->name)
850 putname(n->name);
851 if (n->should_free)
852 kfree(n);
853 }
854 context->name_count = 0;
855 path_put(&context->pwd);
856 context->pwd.dentry = NULL;
857 context->pwd.mnt = NULL;
858 }
859
860 static inline void audit_free_aux(struct audit_context *context)
861 {
862 struct audit_aux_data *aux;
863
864 while ((aux = context->aux)) {
865 context->aux = aux->next;
866 kfree(aux);
867 }
868 while ((aux = context->aux_pids)) {
869 context->aux_pids = aux->next;
870 kfree(aux);
871 }
872 }
873
874 static inline struct audit_context *audit_alloc_context(enum audit_state state)
875 {
876 struct audit_context *context;
877
878 context = kzalloc(sizeof(*context), GFP_KERNEL);
879 if (!context)
880 return NULL;
881 context->state = state;
882 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
883 INIT_LIST_HEAD(&context->killed_trees);
884 INIT_LIST_HEAD(&context->names_list);
885 return context;
886 }
887
888 /**
889 * audit_alloc - allocate an audit context block for a task
890 * @tsk: task
891 *
892 * Filter on the task information and allocate a per-task audit context
893 * if necessary. Doing so turns on system call auditing for the
894 * specified task. This is called from copy_process, so no lock is
895 * needed.
896 */
897 int audit_alloc(struct task_struct *tsk)
898 {
899 struct audit_context *context;
900 enum audit_state state;
901 char *key = NULL;
902
903 if (likely(!audit_ever_enabled))
904 return 0; /* Return if not auditing. */
905
906 state = audit_filter_task(tsk, &key);
907 if (state == AUDIT_DISABLED) {
908 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
909 return 0;
910 }
911
912 if (!(context = audit_alloc_context(state))) {
913 kfree(key);
914 audit_log_lost("out of memory in audit_alloc");
915 return -ENOMEM;
916 }
917 context->filterkey = key;
918
919 audit_set_context(tsk, context);
920 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
921 return 0;
922 }
923
924 static inline void audit_free_context(struct audit_context *context)
925 {
926 audit_free_names(context);
927 unroll_tree_refs(context, NULL, 0);
928 free_tree_refs(context);
929 audit_free_aux(context);
930 kfree(context->filterkey);
931 kfree(context->sockaddr);
932 audit_proctitle_free(context);
933 kfree(context);
934 }
935
936 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
937 kuid_t auid, kuid_t uid, unsigned int sessionid,
938 u32 sid, char *comm)
939 {
940 struct audit_buffer *ab;
941 char *ctx = NULL;
942 u32 len;
943 int rc = 0;
944
945 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
946 if (!ab)
947 return rc;
948
949 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
950 from_kuid(&init_user_ns, auid),
951 from_kuid(&init_user_ns, uid), sessionid);
952 if (sid) {
953 if (security_secid_to_secctx(sid, &ctx, &len)) {
954 audit_log_format(ab, " obj=(none)");
955 rc = 1;
956 } else {
957 audit_log_format(ab, " obj=%s", ctx);
958 security_release_secctx(ctx, len);
959 }
960 }
961 audit_log_format(ab, " ocomm=");
962 audit_log_untrustedstring(ab, comm);
963 audit_log_end(ab);
964
965 return rc;
966 }
967
968 static void audit_log_execve_info(struct audit_context *context,
969 struct audit_buffer **ab)
970 {
971 long len_max;
972 long len_rem;
973 long len_full;
974 long len_buf;
975 long len_abuf = 0;
976 long len_tmp;
977 bool require_data;
978 bool encode;
979 unsigned int iter;
980 unsigned int arg;
981 char *buf_head;
982 char *buf;
983 const char __user *p = (const char __user *)current->mm->arg_start;
984
985 /* NOTE: this buffer needs to be large enough to hold all the non-arg
986 * data we put in the audit record for this argument (see the
987 * code below) ... at this point in time 96 is plenty */
988 char abuf[96];
989
990 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
991 * current value of 7500 is not as important as the fact that it
992 * is less than 8k, a setting of 7500 gives us plenty of wiggle
993 * room if we go over a little bit in the logging below */
994 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
995 len_max = MAX_EXECVE_AUDIT_LEN;
996
997 /* scratch buffer to hold the userspace args */
998 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
999 if (!buf_head) {
1000 audit_panic("out of memory for argv string");
1001 return;
1002 }
1003 buf = buf_head;
1004
1005 audit_log_format(*ab, "argc=%d", context->execve.argc);
1006
1007 len_rem = len_max;
1008 len_buf = 0;
1009 len_full = 0;
1010 require_data = true;
1011 encode = false;
1012 iter = 0;
1013 arg = 0;
1014 do {
1015 /* NOTE: we don't ever want to trust this value for anything
1016 * serious, but the audit record format insists we
1017 * provide an argument length for really long arguments,
1018 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1019 * to use strncpy_from_user() to obtain this value for
1020 * recording in the log, although we don't use it
1021 * anywhere here to avoid a double-fetch problem */
1022 if (len_full == 0)
1023 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1024
1025 /* read more data from userspace */
1026 if (require_data) {
1027 /* can we make more room in the buffer? */
1028 if (buf != buf_head) {
1029 memmove(buf_head, buf, len_buf);
1030 buf = buf_head;
1031 }
1032
1033 /* fetch as much as we can of the argument */
1034 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1035 len_max - len_buf);
1036 if (len_tmp == -EFAULT) {
1037 /* unable to copy from userspace */
1038 send_sig(SIGKILL, current, 0);
1039 goto out;
1040 } else if (len_tmp == (len_max - len_buf)) {
1041 /* buffer is not large enough */
1042 require_data = true;
1043 /* NOTE: if we are going to span multiple
1044 * buffers force the encoding so we stand
1045 * a chance at a sane len_full value and
1046 * consistent record encoding */
1047 encode = true;
1048 len_full = len_full * 2;
1049 p += len_tmp;
1050 } else {
1051 require_data = false;
1052 if (!encode)
1053 encode = audit_string_contains_control(
1054 buf, len_tmp);
1055 /* try to use a trusted value for len_full */
1056 if (len_full < len_max)
1057 len_full = (encode ?
1058 len_tmp * 2 : len_tmp);
1059 p += len_tmp + 1;
1060 }
1061 len_buf += len_tmp;
1062 buf_head[len_buf] = '\0';
1063
1064 /* length of the buffer in the audit record? */
1065 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1066 }
1067
1068 /* write as much as we can to the audit log */
1069 if (len_buf >= 0) {
1070 /* NOTE: some magic numbers here - basically if we
1071 * can't fit a reasonable amount of data into the
1072 * existing audit buffer, flush it and start with
1073 * a new buffer */
1074 if ((sizeof(abuf) + 8) > len_rem) {
1075 len_rem = len_max;
1076 audit_log_end(*ab);
1077 *ab = audit_log_start(context,
1078 GFP_KERNEL, AUDIT_EXECVE);
1079 if (!*ab)
1080 goto out;
1081 }
1082
1083 /* create the non-arg portion of the arg record */
1084 len_tmp = 0;
1085 if (require_data || (iter > 0) ||
1086 ((len_abuf + sizeof(abuf)) > len_rem)) {
1087 if (iter == 0) {
1088 len_tmp += snprintf(&abuf[len_tmp],
1089 sizeof(abuf) - len_tmp,
1090 " a%d_len=%lu",
1091 arg, len_full);
1092 }
1093 len_tmp += snprintf(&abuf[len_tmp],
1094 sizeof(abuf) - len_tmp,
1095 " a%d[%d]=", arg, iter++);
1096 } else
1097 len_tmp += snprintf(&abuf[len_tmp],
1098 sizeof(abuf) - len_tmp,
1099 " a%d=", arg);
1100 WARN_ON(len_tmp >= sizeof(abuf));
1101 abuf[sizeof(abuf) - 1] = '\0';
1102
1103 /* log the arg in the audit record */
1104 audit_log_format(*ab, "%s", abuf);
1105 len_rem -= len_tmp;
1106 len_tmp = len_buf;
1107 if (encode) {
1108 if (len_abuf > len_rem)
1109 len_tmp = len_rem / 2; /* encoding */
1110 audit_log_n_hex(*ab, buf, len_tmp);
1111 len_rem -= len_tmp * 2;
1112 len_abuf -= len_tmp * 2;
1113 } else {
1114 if (len_abuf > len_rem)
1115 len_tmp = len_rem - 2; /* quotes */
1116 audit_log_n_string(*ab, buf, len_tmp);
1117 len_rem -= len_tmp + 2;
1118 /* don't subtract the "2" because we still need
1119 * to add quotes to the remaining string */
1120 len_abuf -= len_tmp;
1121 }
1122 len_buf -= len_tmp;
1123 buf += len_tmp;
1124 }
1125
1126 /* ready to move to the next argument? */
1127 if ((len_buf == 0) && !require_data) {
1128 arg++;
1129 iter = 0;
1130 len_full = 0;
1131 require_data = true;
1132 encode = false;
1133 }
1134 } while (arg < context->execve.argc);
1135
1136 /* NOTE: the caller handles the final audit_log_end() call */
1137
1138 out:
1139 kfree(buf_head);
1140 }
1141
1142 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1143 {
1144 int i;
1145
1146 if (cap_isclear(*cap)) {
1147 audit_log_format(ab, " %s=0", prefix);
1148 return;
1149 }
1150 audit_log_format(ab, " %s=", prefix);
1151 CAP_FOR_EACH_U32(i)
1152 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1153 }
1154
1155 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1156 {
1157 if (name->fcap_ver == -1) {
1158 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1159 return;
1160 }
1161 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1162 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1163 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1164 name->fcap.fE, name->fcap_ver,
1165 from_kuid(&init_user_ns, name->fcap.rootid));
1166 }
1167
1168 static void show_special(struct audit_context *context, int *call_panic)
1169 {
1170 struct audit_buffer *ab;
1171 int i;
1172
1173 ab = audit_log_start(context, GFP_KERNEL, context->type);
1174 if (!ab)
1175 return;
1176
1177 switch (context->type) {
1178 case AUDIT_SOCKETCALL: {
1179 int nargs = context->socketcall.nargs;
1180 audit_log_format(ab, "nargs=%d", nargs);
1181 for (i = 0; i < nargs; i++)
1182 audit_log_format(ab, " a%d=%lx", i,
1183 context->socketcall.args[i]);
1184 break; }
1185 case AUDIT_IPC: {
1186 u32 osid = context->ipc.osid;
1187
1188 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1189 from_kuid(&init_user_ns, context->ipc.uid),
1190 from_kgid(&init_user_ns, context->ipc.gid),
1191 context->ipc.mode);
1192 if (osid) {
1193 char *ctx = NULL;
1194 u32 len;
1195 if (security_secid_to_secctx(osid, &ctx, &len)) {
1196 audit_log_format(ab, " osid=%u", osid);
1197 *call_panic = 1;
1198 } else {
1199 audit_log_format(ab, " obj=%s", ctx);
1200 security_release_secctx(ctx, len);
1201 }
1202 }
1203 if (context->ipc.has_perm) {
1204 audit_log_end(ab);
1205 ab = audit_log_start(context, GFP_KERNEL,
1206 AUDIT_IPC_SET_PERM);
1207 if (unlikely(!ab))
1208 return;
1209 audit_log_format(ab,
1210 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1211 context->ipc.qbytes,
1212 context->ipc.perm_uid,
1213 context->ipc.perm_gid,
1214 context->ipc.perm_mode);
1215 }
1216 break; }
1217 case AUDIT_MQ_OPEN:
1218 audit_log_format(ab,
1219 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1220 "mq_msgsize=%ld mq_curmsgs=%ld",
1221 context->mq_open.oflag, context->mq_open.mode,
1222 context->mq_open.attr.mq_flags,
1223 context->mq_open.attr.mq_maxmsg,
1224 context->mq_open.attr.mq_msgsize,
1225 context->mq_open.attr.mq_curmsgs);
1226 break;
1227 case AUDIT_MQ_SENDRECV:
1228 audit_log_format(ab,
1229 "mqdes=%d msg_len=%zd msg_prio=%u "
1230 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1231 context->mq_sendrecv.mqdes,
1232 context->mq_sendrecv.msg_len,
1233 context->mq_sendrecv.msg_prio,
1234 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1235 context->mq_sendrecv.abs_timeout.tv_nsec);
1236 break;
1237 case AUDIT_MQ_NOTIFY:
1238 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1239 context->mq_notify.mqdes,
1240 context->mq_notify.sigev_signo);
1241 break;
1242 case AUDIT_MQ_GETSETATTR: {
1243 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1244 audit_log_format(ab,
1245 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1246 "mq_curmsgs=%ld ",
1247 context->mq_getsetattr.mqdes,
1248 attr->mq_flags, attr->mq_maxmsg,
1249 attr->mq_msgsize, attr->mq_curmsgs);
1250 break; }
1251 case AUDIT_CAPSET:
1252 audit_log_format(ab, "pid=%d", context->capset.pid);
1253 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1254 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1255 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1256 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1257 break;
1258 case AUDIT_MMAP:
1259 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1260 context->mmap.flags);
1261 break;
1262 case AUDIT_EXECVE:
1263 audit_log_execve_info(context, &ab);
1264 break;
1265 case AUDIT_KERN_MODULE:
1266 audit_log_format(ab, "name=");
1267 if (context->module.name) {
1268 audit_log_untrustedstring(ab, context->module.name);
1269 kfree(context->module.name);
1270 } else
1271 audit_log_format(ab, "(null)");
1272
1273 break;
1274 }
1275 audit_log_end(ab);
1276 }
1277
1278 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1279 {
1280 char *end = proctitle + len - 1;
1281 while (end > proctitle && !isprint(*end))
1282 end--;
1283
1284 /* catch the case where proctitle is only 1 non-print character */
1285 len = end - proctitle + 1;
1286 len -= isprint(proctitle[len-1]) == 0;
1287 return len;
1288 }
1289
1290 /*
1291 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1292 * @context: audit_context for the task
1293 * @n: audit_names structure with reportable details
1294 * @path: optional path to report instead of audit_names->name
1295 * @record_num: record number to report when handling a list of names
1296 * @call_panic: optional pointer to int that will be updated if secid fails
1297 */
1298 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1299 const struct path *path, int record_num, int *call_panic)
1300 {
1301 struct audit_buffer *ab;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1304 if (!ab)
1305 return;
1306
1307 audit_log_format(ab, "item=%d", record_num);
1308
1309 if (path)
1310 audit_log_d_path(ab, " name=", path);
1311 else if (n->name) {
1312 switch (n->name_len) {
1313 case AUDIT_NAME_FULL:
1314 /* log the full path */
1315 audit_log_format(ab, " name=");
1316 audit_log_untrustedstring(ab, n->name->name);
1317 break;
1318 case 0:
1319 /* name was specified as a relative path and the
1320 * directory component is the cwd
1321 */
1322 audit_log_d_path(ab, " name=", &context->pwd);
1323 break;
1324 default:
1325 /* log the name's directory component */
1326 audit_log_format(ab, " name=");
1327 audit_log_n_untrustedstring(ab, n->name->name,
1328 n->name_len);
1329 }
1330 } else
1331 audit_log_format(ab, " name=(null)");
1332
1333 if (n->ino != AUDIT_INO_UNSET)
1334 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1335 n->ino,
1336 MAJOR(n->dev),
1337 MINOR(n->dev),
1338 n->mode,
1339 from_kuid(&init_user_ns, n->uid),
1340 from_kgid(&init_user_ns, n->gid),
1341 MAJOR(n->rdev),
1342 MINOR(n->rdev));
1343 if (n->osid != 0) {
1344 char *ctx = NULL;
1345 u32 len;
1346
1347 if (security_secid_to_secctx(
1348 n->osid, &ctx, &len)) {
1349 audit_log_format(ab, " osid=%u", n->osid);
1350 if (call_panic)
1351 *call_panic = 2;
1352 } else {
1353 audit_log_format(ab, " obj=%s", ctx);
1354 security_release_secctx(ctx, len);
1355 }
1356 }
1357
1358 /* log the audit_names record type */
1359 switch (n->type) {
1360 case AUDIT_TYPE_NORMAL:
1361 audit_log_format(ab, " nametype=NORMAL");
1362 break;
1363 case AUDIT_TYPE_PARENT:
1364 audit_log_format(ab, " nametype=PARENT");
1365 break;
1366 case AUDIT_TYPE_CHILD_DELETE:
1367 audit_log_format(ab, " nametype=DELETE");
1368 break;
1369 case AUDIT_TYPE_CHILD_CREATE:
1370 audit_log_format(ab, " nametype=CREATE");
1371 break;
1372 default:
1373 audit_log_format(ab, " nametype=UNKNOWN");
1374 break;
1375 }
1376
1377 audit_log_fcaps(ab, n);
1378 audit_log_end(ab);
1379 }
1380
1381 static void audit_log_proctitle(void)
1382 {
1383 int res;
1384 char *buf;
1385 char *msg = "(null)";
1386 int len = strlen(msg);
1387 struct audit_context *context = audit_context();
1388 struct audit_buffer *ab;
1389
1390 if (!context || context->dummy)
1391 return;
1392
1393 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1394 if (!ab)
1395 return; /* audit_panic or being filtered */
1396
1397 audit_log_format(ab, "proctitle=");
1398
1399 /* Not cached */
1400 if (!context->proctitle.value) {
1401 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1402 if (!buf)
1403 goto out;
1404 /* Historically called this from procfs naming */
1405 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1406 if (res == 0) {
1407 kfree(buf);
1408 goto out;
1409 }
1410 res = audit_proctitle_rtrim(buf, res);
1411 if (res == 0) {
1412 kfree(buf);
1413 goto out;
1414 }
1415 context->proctitle.value = buf;
1416 context->proctitle.len = res;
1417 }
1418 msg = context->proctitle.value;
1419 len = context->proctitle.len;
1420 out:
1421 audit_log_n_untrustedstring(ab, msg, len);
1422 audit_log_end(ab);
1423 }
1424
1425 static void audit_log_exit(void)
1426 {
1427 int i, call_panic = 0;
1428 struct audit_context *context = audit_context();
1429 struct audit_buffer *ab;
1430 struct audit_aux_data *aux;
1431 struct audit_names *n;
1432
1433 context->personality = current->personality;
1434
1435 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1436 if (!ab)
1437 return; /* audit_panic has been called */
1438 audit_log_format(ab, "arch=%x syscall=%d",
1439 context->arch, context->major);
1440 if (context->personality != PER_LINUX)
1441 audit_log_format(ab, " per=%lx", context->personality);
1442 if (context->return_valid)
1443 audit_log_format(ab, " success=%s exit=%ld",
1444 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1445 context->return_code);
1446
1447 audit_log_format(ab,
1448 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1449 context->argv[0],
1450 context->argv[1],
1451 context->argv[2],
1452 context->argv[3],
1453 context->name_count);
1454
1455 audit_log_task_info(ab);
1456 audit_log_key(ab, context->filterkey);
1457 audit_log_end(ab);
1458
1459 for (aux = context->aux; aux; aux = aux->next) {
1460
1461 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1462 if (!ab)
1463 continue; /* audit_panic has been called */
1464
1465 switch (aux->type) {
1466
1467 case AUDIT_BPRM_FCAPS: {
1468 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1469 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1470 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1471 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1472 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1473 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1474 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1475 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1476 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1477 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1478 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1479 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1480 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1481 audit_log_format(ab, " frootid=%d",
1482 from_kuid(&init_user_ns,
1483 axs->fcap.rootid));
1484 break; }
1485
1486 }
1487 audit_log_end(ab);
1488 }
1489
1490 if (context->type)
1491 show_special(context, &call_panic);
1492
1493 if (context->fds[0] >= 0) {
1494 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1495 if (ab) {
1496 audit_log_format(ab, "fd0=%d fd1=%d",
1497 context->fds[0], context->fds[1]);
1498 audit_log_end(ab);
1499 }
1500 }
1501
1502 if (context->sockaddr_len) {
1503 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1504 if (ab) {
1505 audit_log_format(ab, "saddr=");
1506 audit_log_n_hex(ab, (void *)context->sockaddr,
1507 context->sockaddr_len);
1508 audit_log_end(ab);
1509 }
1510 }
1511
1512 for (aux = context->aux_pids; aux; aux = aux->next) {
1513 struct audit_aux_data_pids *axs = (void *)aux;
1514
1515 for (i = 0; i < axs->pid_count; i++)
1516 if (audit_log_pid_context(context, axs->target_pid[i],
1517 axs->target_auid[i],
1518 axs->target_uid[i],
1519 axs->target_sessionid[i],
1520 axs->target_sid[i],
1521 axs->target_comm[i]))
1522 call_panic = 1;
1523 }
1524
1525 if (context->target_pid &&
1526 audit_log_pid_context(context, context->target_pid,
1527 context->target_auid, context->target_uid,
1528 context->target_sessionid,
1529 context->target_sid, context->target_comm))
1530 call_panic = 1;
1531
1532 if (context->pwd.dentry && context->pwd.mnt) {
1533 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1534 if (ab) {
1535 audit_log_d_path(ab, "cwd=", &context->pwd);
1536 audit_log_end(ab);
1537 }
1538 }
1539
1540 i = 0;
1541 list_for_each_entry(n, &context->names_list, list) {
1542 if (n->hidden)
1543 continue;
1544 audit_log_name(context, n, NULL, i++, &call_panic);
1545 }
1546
1547 audit_log_proctitle();
1548
1549 /* Send end of event record to help user space know we are finished */
1550 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1551 if (ab)
1552 audit_log_end(ab);
1553 if (call_panic)
1554 audit_panic("error converting sid to string");
1555 }
1556
1557 /**
1558 * __audit_free - free a per-task audit context
1559 * @tsk: task whose audit context block to free
1560 *
1561 * Called from copy_process and do_exit
1562 */
1563 void __audit_free(struct task_struct *tsk)
1564 {
1565 struct audit_context *context = tsk->audit_context;
1566
1567 if (!context)
1568 return;
1569
1570 if (!list_empty(&context->killed_trees))
1571 audit_kill_trees(context);
1572
1573 /* We are called either by do_exit() or the fork() error handling code;
1574 * in the former case tsk == current and in the latter tsk is a
1575 * random task_struct that doesn't doesn't have any meaningful data we
1576 * need to log via audit_log_exit().
1577 */
1578 if (tsk == current && !context->dummy && context->in_syscall) {
1579 context->return_valid = 0;
1580 context->return_code = 0;
1581
1582 audit_filter_syscall(tsk, context,
1583 &audit_filter_list[AUDIT_FILTER_EXIT]);
1584 audit_filter_inodes(tsk, context);
1585 if (context->current_state == AUDIT_RECORD_CONTEXT)
1586 audit_log_exit();
1587 }
1588
1589 audit_set_context(tsk, NULL);
1590 audit_free_context(context);
1591 }
1592
1593 /**
1594 * __audit_syscall_entry - fill in an audit record at syscall entry
1595 * @major: major syscall type (function)
1596 * @a1: additional syscall register 1
1597 * @a2: additional syscall register 2
1598 * @a3: additional syscall register 3
1599 * @a4: additional syscall register 4
1600 *
1601 * Fill in audit context at syscall entry. This only happens if the
1602 * audit context was created when the task was created and the state or
1603 * filters demand the audit context be built. If the state from the
1604 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1605 * then the record will be written at syscall exit time (otherwise, it
1606 * will only be written if another part of the kernel requests that it
1607 * be written).
1608 */
1609 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1610 unsigned long a3, unsigned long a4)
1611 {
1612 struct audit_context *context = audit_context();
1613 enum audit_state state;
1614
1615 if (!audit_enabled || !context)
1616 return;
1617
1618 BUG_ON(context->in_syscall || context->name_count);
1619
1620 state = context->state;
1621 if (state == AUDIT_DISABLED)
1622 return;
1623
1624 context->dummy = !audit_n_rules;
1625 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1626 context->prio = 0;
1627 if (auditd_test_task(current))
1628 return;
1629 }
1630
1631 context->arch = syscall_get_arch();
1632 context->major = major;
1633 context->argv[0] = a1;
1634 context->argv[1] = a2;
1635 context->argv[2] = a3;
1636 context->argv[3] = a4;
1637 context->serial = 0;
1638 context->in_syscall = 1;
1639 context->current_state = state;
1640 context->ppid = 0;
1641 ktime_get_coarse_real_ts64(&context->ctime);
1642 }
1643
1644 /**
1645 * __audit_syscall_exit - deallocate audit context after a system call
1646 * @success: success value of the syscall
1647 * @return_code: return value of the syscall
1648 *
1649 * Tear down after system call. If the audit context has been marked as
1650 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1651 * filtering, or because some other part of the kernel wrote an audit
1652 * message), then write out the syscall information. In call cases,
1653 * free the names stored from getname().
1654 */
1655 void __audit_syscall_exit(int success, long return_code)
1656 {
1657 struct audit_context *context;
1658
1659 context = audit_context();
1660 if (!context)
1661 return;
1662
1663 if (!list_empty(&context->killed_trees))
1664 audit_kill_trees(context);
1665
1666 if (!context->dummy && context->in_syscall) {
1667 if (success)
1668 context->return_valid = AUDITSC_SUCCESS;
1669 else
1670 context->return_valid = AUDITSC_FAILURE;
1671
1672 /*
1673 * we need to fix up the return code in the audit logs if the
1674 * actual return codes are later going to be fixed up by the
1675 * arch specific signal handlers
1676 *
1677 * This is actually a test for:
1678 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1679 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1680 *
1681 * but is faster than a bunch of ||
1682 */
1683 if (unlikely(return_code <= -ERESTARTSYS) &&
1684 (return_code >= -ERESTART_RESTARTBLOCK) &&
1685 (return_code != -ENOIOCTLCMD))
1686 context->return_code = -EINTR;
1687 else
1688 context->return_code = return_code;
1689
1690 audit_filter_syscall(current, context,
1691 &audit_filter_list[AUDIT_FILTER_EXIT]);
1692 audit_filter_inodes(current, context);
1693 if (context->current_state == AUDIT_RECORD_CONTEXT)
1694 audit_log_exit();
1695 }
1696
1697 context->in_syscall = 0;
1698 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1699
1700 audit_free_names(context);
1701 unroll_tree_refs(context, NULL, 0);
1702 audit_free_aux(context);
1703 context->aux = NULL;
1704 context->aux_pids = NULL;
1705 context->target_pid = 0;
1706 context->target_sid = 0;
1707 context->sockaddr_len = 0;
1708 context->type = 0;
1709 context->fds[0] = -1;
1710 if (context->state != AUDIT_RECORD_CONTEXT) {
1711 kfree(context->filterkey);
1712 context->filterkey = NULL;
1713 }
1714 }
1715
1716 static inline void handle_one(const struct inode *inode)
1717 {
1718 struct audit_context *context;
1719 struct audit_tree_refs *p;
1720 struct audit_chunk *chunk;
1721 int count;
1722 if (likely(!inode->i_fsnotify_marks))
1723 return;
1724 context = audit_context();
1725 p = context->trees;
1726 count = context->tree_count;
1727 rcu_read_lock();
1728 chunk = audit_tree_lookup(inode);
1729 rcu_read_unlock();
1730 if (!chunk)
1731 return;
1732 if (likely(put_tree_ref(context, chunk)))
1733 return;
1734 if (unlikely(!grow_tree_refs(context))) {
1735 pr_warn("out of memory, audit has lost a tree reference\n");
1736 audit_set_auditable(context);
1737 audit_put_chunk(chunk);
1738 unroll_tree_refs(context, p, count);
1739 return;
1740 }
1741 put_tree_ref(context, chunk);
1742 }
1743
1744 static void handle_path(const struct dentry *dentry)
1745 {
1746 struct audit_context *context;
1747 struct audit_tree_refs *p;
1748 const struct dentry *d, *parent;
1749 struct audit_chunk *drop;
1750 unsigned long seq;
1751 int count;
1752
1753 context = audit_context();
1754 p = context->trees;
1755 count = context->tree_count;
1756 retry:
1757 drop = NULL;
1758 d = dentry;
1759 rcu_read_lock();
1760 seq = read_seqbegin(&rename_lock);
1761 for(;;) {
1762 struct inode *inode = d_backing_inode(d);
1763 if (inode && unlikely(inode->i_fsnotify_marks)) {
1764 struct audit_chunk *chunk;
1765 chunk = audit_tree_lookup(inode);
1766 if (chunk) {
1767 if (unlikely(!put_tree_ref(context, chunk))) {
1768 drop = chunk;
1769 break;
1770 }
1771 }
1772 }
1773 parent = d->d_parent;
1774 if (parent == d)
1775 break;
1776 d = parent;
1777 }
1778 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1779 rcu_read_unlock();
1780 if (!drop) {
1781 /* just a race with rename */
1782 unroll_tree_refs(context, p, count);
1783 goto retry;
1784 }
1785 audit_put_chunk(drop);
1786 if (grow_tree_refs(context)) {
1787 /* OK, got more space */
1788 unroll_tree_refs(context, p, count);
1789 goto retry;
1790 }
1791 /* too bad */
1792 pr_warn("out of memory, audit has lost a tree reference\n");
1793 unroll_tree_refs(context, p, count);
1794 audit_set_auditable(context);
1795 return;
1796 }
1797 rcu_read_unlock();
1798 }
1799
1800 static struct audit_names *audit_alloc_name(struct audit_context *context,
1801 unsigned char type)
1802 {
1803 struct audit_names *aname;
1804
1805 if (context->name_count < AUDIT_NAMES) {
1806 aname = &context->preallocated_names[context->name_count];
1807 memset(aname, 0, sizeof(*aname));
1808 } else {
1809 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1810 if (!aname)
1811 return NULL;
1812 aname->should_free = true;
1813 }
1814
1815 aname->ino = AUDIT_INO_UNSET;
1816 aname->type = type;
1817 list_add_tail(&aname->list, &context->names_list);
1818
1819 context->name_count++;
1820 return aname;
1821 }
1822
1823 /**
1824 * __audit_reusename - fill out filename with info from existing entry
1825 * @uptr: userland ptr to pathname
1826 *
1827 * Search the audit_names list for the current audit context. If there is an
1828 * existing entry with a matching "uptr" then return the filename
1829 * associated with that audit_name. If not, return NULL.
1830 */
1831 struct filename *
1832 __audit_reusename(const __user char *uptr)
1833 {
1834 struct audit_context *context = audit_context();
1835 struct audit_names *n;
1836
1837 list_for_each_entry(n, &context->names_list, list) {
1838 if (!n->name)
1839 continue;
1840 if (n->name->uptr == uptr) {
1841 n->name->refcnt++;
1842 return n->name;
1843 }
1844 }
1845 return NULL;
1846 }
1847
1848 /**
1849 * __audit_getname - add a name to the list
1850 * @name: name to add
1851 *
1852 * Add a name to the list of audit names for this context.
1853 * Called from fs/namei.c:getname().
1854 */
1855 void __audit_getname(struct filename *name)
1856 {
1857 struct audit_context *context = audit_context();
1858 struct audit_names *n;
1859
1860 if (!context->in_syscall)
1861 return;
1862
1863 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1864 if (!n)
1865 return;
1866
1867 n->name = name;
1868 n->name_len = AUDIT_NAME_FULL;
1869 name->aname = n;
1870 name->refcnt++;
1871
1872 if (!context->pwd.dentry)
1873 get_fs_pwd(current->fs, &context->pwd);
1874 }
1875
1876 static inline int audit_copy_fcaps(struct audit_names *name,
1877 const struct dentry *dentry)
1878 {
1879 struct cpu_vfs_cap_data caps;
1880 int rc;
1881
1882 if (!dentry)
1883 return 0;
1884
1885 rc = get_vfs_caps_from_disk(dentry, &caps);
1886 if (rc)
1887 return rc;
1888
1889 name->fcap.permitted = caps.permitted;
1890 name->fcap.inheritable = caps.inheritable;
1891 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1892 name->fcap.rootid = caps.rootid;
1893 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1894 VFS_CAP_REVISION_SHIFT;
1895
1896 return 0;
1897 }
1898
1899 /* Copy inode data into an audit_names. */
1900 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1901 struct inode *inode, unsigned int flags)
1902 {
1903 name->ino = inode->i_ino;
1904 name->dev = inode->i_sb->s_dev;
1905 name->mode = inode->i_mode;
1906 name->uid = inode->i_uid;
1907 name->gid = inode->i_gid;
1908 name->rdev = inode->i_rdev;
1909 security_inode_getsecid(inode, &name->osid);
1910 if (flags & AUDIT_INODE_NOEVAL) {
1911 name->fcap_ver = -1;
1912 return;
1913 }
1914 audit_copy_fcaps(name, dentry);
1915 }
1916
1917 /**
1918 * __audit_inode - store the inode and device from a lookup
1919 * @name: name being audited
1920 * @dentry: dentry being audited
1921 * @flags: attributes for this particular entry
1922 */
1923 void __audit_inode(struct filename *name, const struct dentry *dentry,
1924 unsigned int flags)
1925 {
1926 struct audit_context *context = audit_context();
1927 struct inode *inode = d_backing_inode(dentry);
1928 struct audit_names *n;
1929 bool parent = flags & AUDIT_INODE_PARENT;
1930 struct audit_entry *e;
1931 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1932 int i;
1933
1934 if (!context->in_syscall)
1935 return;
1936
1937 rcu_read_lock();
1938 if (!list_empty(list)) {
1939 list_for_each_entry_rcu(e, list, list) {
1940 for (i = 0; i < e->rule.field_count; i++) {
1941 struct audit_field *f = &e->rule.fields[i];
1942
1943 if (f->type == AUDIT_FSTYPE
1944 && audit_comparator(inode->i_sb->s_magic,
1945 f->op, f->val)
1946 && e->rule.action == AUDIT_NEVER) {
1947 rcu_read_unlock();
1948 return;
1949 }
1950 }
1951 }
1952 }
1953 rcu_read_unlock();
1954
1955 if (!name)
1956 goto out_alloc;
1957
1958 /*
1959 * If we have a pointer to an audit_names entry already, then we can
1960 * just use it directly if the type is correct.
1961 */
1962 n = name->aname;
1963 if (n) {
1964 if (parent) {
1965 if (n->type == AUDIT_TYPE_PARENT ||
1966 n->type == AUDIT_TYPE_UNKNOWN)
1967 goto out;
1968 } else {
1969 if (n->type != AUDIT_TYPE_PARENT)
1970 goto out;
1971 }
1972 }
1973
1974 list_for_each_entry_reverse(n, &context->names_list, list) {
1975 if (n->ino) {
1976 /* valid inode number, use that for the comparison */
1977 if (n->ino != inode->i_ino ||
1978 n->dev != inode->i_sb->s_dev)
1979 continue;
1980 } else if (n->name) {
1981 /* inode number has not been set, check the name */
1982 if (strcmp(n->name->name, name->name))
1983 continue;
1984 } else
1985 /* no inode and no name (?!) ... this is odd ... */
1986 continue;
1987
1988 /* match the correct record type */
1989 if (parent) {
1990 if (n->type == AUDIT_TYPE_PARENT ||
1991 n->type == AUDIT_TYPE_UNKNOWN)
1992 goto out;
1993 } else {
1994 if (n->type != AUDIT_TYPE_PARENT)
1995 goto out;
1996 }
1997 }
1998
1999 out_alloc:
2000 /* unable to find an entry with both a matching name and type */
2001 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2002 if (!n)
2003 return;
2004 if (name) {
2005 n->name = name;
2006 name->refcnt++;
2007 }
2008
2009 out:
2010 if (parent) {
2011 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2012 n->type = AUDIT_TYPE_PARENT;
2013 if (flags & AUDIT_INODE_HIDDEN)
2014 n->hidden = true;
2015 } else {
2016 n->name_len = AUDIT_NAME_FULL;
2017 n->type = AUDIT_TYPE_NORMAL;
2018 }
2019 handle_path(dentry);
2020 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2021 }
2022
2023 void __audit_file(const struct file *file)
2024 {
2025 __audit_inode(NULL, file->f_path.dentry, 0);
2026 }
2027
2028 /**
2029 * __audit_inode_child - collect inode info for created/removed objects
2030 * @parent: inode of dentry parent
2031 * @dentry: dentry being audited
2032 * @type: AUDIT_TYPE_* value that we're looking for
2033 *
2034 * For syscalls that create or remove filesystem objects, audit_inode
2035 * can only collect information for the filesystem object's parent.
2036 * This call updates the audit context with the child's information.
2037 * Syscalls that create a new filesystem object must be hooked after
2038 * the object is created. Syscalls that remove a filesystem object
2039 * must be hooked prior, in order to capture the target inode during
2040 * unsuccessful attempts.
2041 */
2042 void __audit_inode_child(struct inode *parent,
2043 const struct dentry *dentry,
2044 const unsigned char type)
2045 {
2046 struct audit_context *context = audit_context();
2047 struct inode *inode = d_backing_inode(dentry);
2048 const char *dname = dentry->d_name.name;
2049 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2050 struct audit_entry *e;
2051 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2052 int i;
2053
2054 if (!context->in_syscall)
2055 return;
2056
2057 rcu_read_lock();
2058 if (!list_empty(list)) {
2059 list_for_each_entry_rcu(e, list, list) {
2060 for (i = 0; i < e->rule.field_count; i++) {
2061 struct audit_field *f = &e->rule.fields[i];
2062
2063 if (f->type == AUDIT_FSTYPE
2064 && audit_comparator(parent->i_sb->s_magic,
2065 f->op, f->val)
2066 && e->rule.action == AUDIT_NEVER) {
2067 rcu_read_unlock();
2068 return;
2069 }
2070 }
2071 }
2072 }
2073 rcu_read_unlock();
2074
2075 if (inode)
2076 handle_one(inode);
2077
2078 /* look for a parent entry first */
2079 list_for_each_entry(n, &context->names_list, list) {
2080 if (!n->name ||
2081 (n->type != AUDIT_TYPE_PARENT &&
2082 n->type != AUDIT_TYPE_UNKNOWN))
2083 continue;
2084
2085 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2086 !audit_compare_dname_path(dname,
2087 n->name->name, n->name_len)) {
2088 if (n->type == AUDIT_TYPE_UNKNOWN)
2089 n->type = AUDIT_TYPE_PARENT;
2090 found_parent = n;
2091 break;
2092 }
2093 }
2094
2095 /* is there a matching child entry? */
2096 list_for_each_entry(n, &context->names_list, list) {
2097 /* can only match entries that have a name */
2098 if (!n->name ||
2099 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2100 continue;
2101
2102 if (!strcmp(dname, n->name->name) ||
2103 !audit_compare_dname_path(dname, n->name->name,
2104 found_parent ?
2105 found_parent->name_len :
2106 AUDIT_NAME_FULL)) {
2107 if (n->type == AUDIT_TYPE_UNKNOWN)
2108 n->type = type;
2109 found_child = n;
2110 break;
2111 }
2112 }
2113
2114 if (!found_parent) {
2115 /* create a new, "anonymous" parent record */
2116 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2117 if (!n)
2118 return;
2119 audit_copy_inode(n, NULL, parent, 0);
2120 }
2121
2122 if (!found_child) {
2123 found_child = audit_alloc_name(context, type);
2124 if (!found_child)
2125 return;
2126
2127 /* Re-use the name belonging to the slot for a matching parent
2128 * directory. All names for this context are relinquished in
2129 * audit_free_names() */
2130 if (found_parent) {
2131 found_child->name = found_parent->name;
2132 found_child->name_len = AUDIT_NAME_FULL;
2133 found_child->name->refcnt++;
2134 }
2135 }
2136
2137 if (inode)
2138 audit_copy_inode(found_child, dentry, inode, 0);
2139 else
2140 found_child->ino = AUDIT_INO_UNSET;
2141 }
2142 EXPORT_SYMBOL_GPL(__audit_inode_child);
2143
2144 /**
2145 * auditsc_get_stamp - get local copies of audit_context values
2146 * @ctx: audit_context for the task
2147 * @t: timespec64 to store time recorded in the audit_context
2148 * @serial: serial value that is recorded in the audit_context
2149 *
2150 * Also sets the context as auditable.
2151 */
2152 int auditsc_get_stamp(struct audit_context *ctx,
2153 struct timespec64 *t, unsigned int *serial)
2154 {
2155 if (!ctx->in_syscall)
2156 return 0;
2157 if (!ctx->serial)
2158 ctx->serial = audit_serial();
2159 t->tv_sec = ctx->ctime.tv_sec;
2160 t->tv_nsec = ctx->ctime.tv_nsec;
2161 *serial = ctx->serial;
2162 if (!ctx->prio) {
2163 ctx->prio = 1;
2164 ctx->current_state = AUDIT_RECORD_CONTEXT;
2165 }
2166 return 1;
2167 }
2168
2169 /**
2170 * __audit_mq_open - record audit data for a POSIX MQ open
2171 * @oflag: open flag
2172 * @mode: mode bits
2173 * @attr: queue attributes
2174 *
2175 */
2176 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2177 {
2178 struct audit_context *context = audit_context();
2179
2180 if (attr)
2181 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2182 else
2183 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2184
2185 context->mq_open.oflag = oflag;
2186 context->mq_open.mode = mode;
2187
2188 context->type = AUDIT_MQ_OPEN;
2189 }
2190
2191 /**
2192 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2193 * @mqdes: MQ descriptor
2194 * @msg_len: Message length
2195 * @msg_prio: Message priority
2196 * @abs_timeout: Message timeout in absolute time
2197 *
2198 */
2199 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2200 const struct timespec64 *abs_timeout)
2201 {
2202 struct audit_context *context = audit_context();
2203 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2204
2205 if (abs_timeout)
2206 memcpy(p, abs_timeout, sizeof(*p));
2207 else
2208 memset(p, 0, sizeof(*p));
2209
2210 context->mq_sendrecv.mqdes = mqdes;
2211 context->mq_sendrecv.msg_len = msg_len;
2212 context->mq_sendrecv.msg_prio = msg_prio;
2213
2214 context->type = AUDIT_MQ_SENDRECV;
2215 }
2216
2217 /**
2218 * __audit_mq_notify - record audit data for a POSIX MQ notify
2219 * @mqdes: MQ descriptor
2220 * @notification: Notification event
2221 *
2222 */
2223
2224 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2225 {
2226 struct audit_context *context = audit_context();
2227
2228 if (notification)
2229 context->mq_notify.sigev_signo = notification->sigev_signo;
2230 else
2231 context->mq_notify.sigev_signo = 0;
2232
2233 context->mq_notify.mqdes = mqdes;
2234 context->type = AUDIT_MQ_NOTIFY;
2235 }
2236
2237 /**
2238 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2239 * @mqdes: MQ descriptor
2240 * @mqstat: MQ flags
2241 *
2242 */
2243 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2244 {
2245 struct audit_context *context = audit_context();
2246 context->mq_getsetattr.mqdes = mqdes;
2247 context->mq_getsetattr.mqstat = *mqstat;
2248 context->type = AUDIT_MQ_GETSETATTR;
2249 }
2250
2251 /**
2252 * __audit_ipc_obj - record audit data for ipc object
2253 * @ipcp: ipc permissions
2254 *
2255 */
2256 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2257 {
2258 struct audit_context *context = audit_context();
2259 context->ipc.uid = ipcp->uid;
2260 context->ipc.gid = ipcp->gid;
2261 context->ipc.mode = ipcp->mode;
2262 context->ipc.has_perm = 0;
2263 security_ipc_getsecid(ipcp, &context->ipc.osid);
2264 context->type = AUDIT_IPC;
2265 }
2266
2267 /**
2268 * __audit_ipc_set_perm - record audit data for new ipc permissions
2269 * @qbytes: msgq bytes
2270 * @uid: msgq user id
2271 * @gid: msgq group id
2272 * @mode: msgq mode (permissions)
2273 *
2274 * Called only after audit_ipc_obj().
2275 */
2276 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2277 {
2278 struct audit_context *context = audit_context();
2279
2280 context->ipc.qbytes = qbytes;
2281 context->ipc.perm_uid = uid;
2282 context->ipc.perm_gid = gid;
2283 context->ipc.perm_mode = mode;
2284 context->ipc.has_perm = 1;
2285 }
2286
2287 void __audit_bprm(struct linux_binprm *bprm)
2288 {
2289 struct audit_context *context = audit_context();
2290
2291 context->type = AUDIT_EXECVE;
2292 context->execve.argc = bprm->argc;
2293 }
2294
2295
2296 /**
2297 * __audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2299 * @args: args array
2300 *
2301 */
2302 int __audit_socketcall(int nargs, unsigned long *args)
2303 {
2304 struct audit_context *context = audit_context();
2305
2306 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2307 return -EINVAL;
2308 context->type = AUDIT_SOCKETCALL;
2309 context->socketcall.nargs = nargs;
2310 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2311 return 0;
2312 }
2313
2314 /**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320 void __audit_fd_pair(int fd1, int fd2)
2321 {
2322 struct audit_context *context = audit_context();
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
2325 }
2326
2327 /**
2328 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334 int __audit_sockaddr(int len, void *a)
2335 {
2336 struct audit_context *context = audit_context();
2337
2338 if (!context->sockaddr) {
2339 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2340 if (!p)
2341 return -ENOMEM;
2342 context->sockaddr = p;
2343 }
2344
2345 context->sockaddr_len = len;
2346 memcpy(context->sockaddr, a, len);
2347 return 0;
2348 }
2349
2350 void __audit_ptrace(struct task_struct *t)
2351 {
2352 struct audit_context *context = audit_context();
2353
2354 context->target_pid = task_tgid_nr(t);
2355 context->target_auid = audit_get_loginuid(t);
2356 context->target_uid = task_uid(t);
2357 context->target_sessionid = audit_get_sessionid(t);
2358 security_task_getsecid(t, &context->target_sid);
2359 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2360 }
2361
2362 /**
2363 * audit_signal_info - record signal info for shutting down audit subsystem
2364 * @sig: signal value
2365 * @t: task being signaled
2366 *
2367 * If the audit subsystem is being terminated, record the task (pid)
2368 * and uid that is doing that.
2369 */
2370 int audit_signal_info(int sig, struct task_struct *t)
2371 {
2372 struct audit_aux_data_pids *axp;
2373 struct audit_context *ctx = audit_context();
2374 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2375
2376 if (auditd_test_task(t) &&
2377 (sig == SIGTERM || sig == SIGHUP ||
2378 sig == SIGUSR1 || sig == SIGUSR2)) {
2379 audit_sig_pid = task_tgid_nr(current);
2380 auid = audit_get_loginuid(current);
2381 if (uid_valid(auid))
2382 audit_sig_uid = auid;
2383 else
2384 audit_sig_uid = uid;
2385 security_task_getsecid(current, &audit_sig_sid);
2386 }
2387
2388 if (!audit_signals || audit_dummy_context())
2389 return 0;
2390
2391 /* optimize the common case by putting first signal recipient directly
2392 * in audit_context */
2393 if (!ctx->target_pid) {
2394 ctx->target_pid = task_tgid_nr(t);
2395 ctx->target_auid = audit_get_loginuid(t);
2396 ctx->target_uid = t_uid;
2397 ctx->target_sessionid = audit_get_sessionid(t);
2398 security_task_getsecid(t, &ctx->target_sid);
2399 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2400 return 0;
2401 }
2402
2403 axp = (void *)ctx->aux_pids;
2404 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2405 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2406 if (!axp)
2407 return -ENOMEM;
2408
2409 axp->d.type = AUDIT_OBJ_PID;
2410 axp->d.next = ctx->aux_pids;
2411 ctx->aux_pids = (void *)axp;
2412 }
2413 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2414
2415 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2416 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2417 axp->target_uid[axp->pid_count] = t_uid;
2418 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2419 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2420 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2421 axp->pid_count++;
2422
2423 return 0;
2424 }
2425
2426 /**
2427 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2428 * @bprm: pointer to the bprm being processed
2429 * @new: the proposed new credentials
2430 * @old: the old credentials
2431 *
2432 * Simply check if the proc already has the caps given by the file and if not
2433 * store the priv escalation info for later auditing at the end of the syscall
2434 *
2435 * -Eric
2436 */
2437 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2438 const struct cred *new, const struct cred *old)
2439 {
2440 struct audit_aux_data_bprm_fcaps *ax;
2441 struct audit_context *context = audit_context();
2442 struct cpu_vfs_cap_data vcaps;
2443
2444 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2445 if (!ax)
2446 return -ENOMEM;
2447
2448 ax->d.type = AUDIT_BPRM_FCAPS;
2449 ax->d.next = context->aux;
2450 context->aux = (void *)ax;
2451
2452 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2453
2454 ax->fcap.permitted = vcaps.permitted;
2455 ax->fcap.inheritable = vcaps.inheritable;
2456 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457 ax->fcap.rootid = vcaps.rootid;
2458 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2459
2460 ax->old_pcap.permitted = old->cap_permitted;
2461 ax->old_pcap.inheritable = old->cap_inheritable;
2462 ax->old_pcap.effective = old->cap_effective;
2463 ax->old_pcap.ambient = old->cap_ambient;
2464
2465 ax->new_pcap.permitted = new->cap_permitted;
2466 ax->new_pcap.inheritable = new->cap_inheritable;
2467 ax->new_pcap.effective = new->cap_effective;
2468 ax->new_pcap.ambient = new->cap_ambient;
2469 return 0;
2470 }
2471
2472 /**
2473 * __audit_log_capset - store information about the arguments to the capset syscall
2474 * @new: the new credentials
2475 * @old: the old (current) credentials
2476 *
2477 * Record the arguments userspace sent to sys_capset for later printing by the
2478 * audit system if applicable
2479 */
2480 void __audit_log_capset(const struct cred *new, const struct cred *old)
2481 {
2482 struct audit_context *context = audit_context();
2483 context->capset.pid = task_tgid_nr(current);
2484 context->capset.cap.effective = new->cap_effective;
2485 context->capset.cap.inheritable = new->cap_effective;
2486 context->capset.cap.permitted = new->cap_permitted;
2487 context->capset.cap.ambient = new->cap_ambient;
2488 context->type = AUDIT_CAPSET;
2489 }
2490
2491 void __audit_mmap_fd(int fd, int flags)
2492 {
2493 struct audit_context *context = audit_context();
2494 context->mmap.fd = fd;
2495 context->mmap.flags = flags;
2496 context->type = AUDIT_MMAP;
2497 }
2498
2499 void __audit_log_kern_module(char *name)
2500 {
2501 struct audit_context *context = audit_context();
2502
2503 context->module.name = kstrdup(name, GFP_KERNEL);
2504 if (!context->module.name)
2505 audit_log_lost("out of memory in __audit_log_kern_module");
2506 context->type = AUDIT_KERN_MODULE;
2507 }
2508
2509 void __audit_fanotify(unsigned int response)
2510 {
2511 audit_log(audit_context(), GFP_KERNEL,
2512 AUDIT_FANOTIFY, "resp=%u", response);
2513 }
2514
2515 static void audit_log_task(struct audit_buffer *ab)
2516 {
2517 kuid_t auid, uid;
2518 kgid_t gid;
2519 unsigned int sessionid;
2520 char comm[sizeof(current->comm)];
2521
2522 auid = audit_get_loginuid(current);
2523 sessionid = audit_get_sessionid(current);
2524 current_uid_gid(&uid, &gid);
2525
2526 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2527 from_kuid(&init_user_ns, auid),
2528 from_kuid(&init_user_ns, uid),
2529 from_kgid(&init_user_ns, gid),
2530 sessionid);
2531 audit_log_task_context(ab);
2532 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2533 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2534 audit_log_d_path_exe(ab, current->mm);
2535 }
2536
2537 /**
2538 * audit_core_dumps - record information about processes that end abnormally
2539 * @signr: signal value
2540 *
2541 * If a process ends with a core dump, something fishy is going on and we
2542 * should record the event for investigation.
2543 */
2544 void audit_core_dumps(long signr)
2545 {
2546 struct audit_buffer *ab;
2547
2548 if (!audit_enabled)
2549 return;
2550
2551 if (signr == SIGQUIT) /* don't care for those */
2552 return;
2553
2554 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2555 if (unlikely(!ab))
2556 return;
2557 audit_log_task(ab);
2558 audit_log_format(ab, " sig=%ld res=1", signr);
2559 audit_log_end(ab);
2560 }
2561
2562 /**
2563 * audit_seccomp - record information about a seccomp action
2564 * @syscall: syscall number
2565 * @signr: signal value
2566 * @code: the seccomp action
2567 *
2568 * Record the information associated with a seccomp action. Event filtering for
2569 * seccomp actions that are not to be logged is done in seccomp_log().
2570 * Therefore, this function forces auditing independent of the audit_enabled
2571 * and dummy context state because seccomp actions should be logged even when
2572 * audit is not in use.
2573 */
2574 void audit_seccomp(unsigned long syscall, long signr, int code)
2575 {
2576 struct audit_buffer *ab;
2577
2578 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2579 if (unlikely(!ab))
2580 return;
2581 audit_log_task(ab);
2582 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2583 signr, syscall_get_arch(), syscall,
2584 in_compat_syscall(), KSTK_EIP(current), code);
2585 audit_log_end(ab);
2586 }
2587
2588 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2589 int res)
2590 {
2591 struct audit_buffer *ab;
2592
2593 if (!audit_enabled)
2594 return;
2595
2596 ab = audit_log_start(audit_context(), GFP_KERNEL,
2597 AUDIT_CONFIG_CHANGE);
2598 if (unlikely(!ab))
2599 return;
2600
2601 audit_log_format(ab,
2602 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2603 names, old_names, res);
2604 audit_log_end(ab);
2605 }
2606
2607 struct list_head *audit_killed_trees(void)
2608 {
2609 struct audit_context *ctx = audit_context();
2610 if (likely(!ctx || !ctx->in_syscall))
2611 return NULL;
2612 return &ctx->killed_trees;
2613 }