]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/auditsc.c
fork,memcg: alloc_thread_stack_node needs to set tsk->stack
[thirdparty/kernel/stable.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
614 break;
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
628 if (f->lsm_rule) {
629 if (need_sid) {
630 security_task_getsecid(tsk, &sid);
631 need_sid = 0;
632 }
633 result = security_audit_rule_match(sid, f->type,
634 f->op,
635 f->lsm_rule);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid,
650 f->type,
651 f->op,
652 f->lsm_rule);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(
656 n->osid,
657 f->type,
658 f->op,
659 f->lsm_rule)) {
660 ++result;
661 break;
662 }
663 }
664 }
665 /* Find ipc objects that match */
666 if (!ctx || ctx->type != AUDIT_IPC)
667 break;
668 if (security_audit_rule_match(ctx->ipc.osid,
669 f->type, f->op,
670 f->lsm_rule))
671 ++result;
672 }
673 break;
674 case AUDIT_ARG0:
675 case AUDIT_ARG1:
676 case AUDIT_ARG2:
677 case AUDIT_ARG3:
678 if (ctx)
679 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
680 break;
681 case AUDIT_FILTERKEY:
682 /* ignore this field for filtering */
683 result = 1;
684 break;
685 case AUDIT_PERM:
686 result = audit_match_perm(ctx, f->val);
687 break;
688 case AUDIT_FILETYPE:
689 result = audit_match_filetype(ctx, f->val);
690 break;
691 case AUDIT_FIELD_COMPARE:
692 result = audit_field_compare(tsk, cred, f, ctx, name);
693 break;
694 }
695 if (!result)
696 return 0;
697 }
698
699 if (ctx) {
700 if (rule->prio <= ctx->prio)
701 return 0;
702 if (rule->filterkey) {
703 kfree(ctx->filterkey);
704 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
705 }
706 ctx->prio = rule->prio;
707 }
708 switch (rule->action) {
709 case AUDIT_NEVER:
710 *state = AUDIT_DISABLED;
711 break;
712 case AUDIT_ALWAYS:
713 *state = AUDIT_RECORD_CONTEXT;
714 break;
715 }
716 return 1;
717 }
718
719 /* At process creation time, we can determine if system-call auditing is
720 * completely disabled for this task. Since we only have the task
721 * structure at this point, we can only check uid and gid.
722 */
723 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
724 {
725 struct audit_entry *e;
726 enum audit_state state;
727
728 rcu_read_lock();
729 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
730 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
731 &state, true)) {
732 if (state == AUDIT_RECORD_CONTEXT)
733 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
734 rcu_read_unlock();
735 return state;
736 }
737 }
738 rcu_read_unlock();
739 return AUDIT_BUILD_CONTEXT;
740 }
741
742 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
743 {
744 int word, bit;
745
746 if (val > 0xffffffff)
747 return false;
748
749 word = AUDIT_WORD(val);
750 if (word >= AUDIT_BITMASK_SIZE)
751 return false;
752
753 bit = AUDIT_BIT(val);
754
755 return rule->mask[word] & bit;
756 }
757
758 /* At syscall entry and exit time, this filter is called if the
759 * audit_state is not low enough that auditing cannot take place, but is
760 * also not high enough that we already know we have to write an audit
761 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
762 */
763 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
764 struct audit_context *ctx,
765 struct list_head *list)
766 {
767 struct audit_entry *e;
768 enum audit_state state;
769
770 if (auditd_test_task(tsk))
771 return AUDIT_DISABLED;
772
773 rcu_read_lock();
774 if (!list_empty(list)) {
775 list_for_each_entry_rcu(e, list, list) {
776 if (audit_in_mask(&e->rule, ctx->major) &&
777 audit_filter_rules(tsk, &e->rule, ctx, NULL,
778 &state, false)) {
779 rcu_read_unlock();
780 ctx->current_state = state;
781 return state;
782 }
783 }
784 }
785 rcu_read_unlock();
786 return AUDIT_BUILD_CONTEXT;
787 }
788
789 /*
790 * Given an audit_name check the inode hash table to see if they match.
791 * Called holding the rcu read lock to protect the use of audit_inode_hash
792 */
793 static int audit_filter_inode_name(struct task_struct *tsk,
794 struct audit_names *n,
795 struct audit_context *ctx) {
796 int h = audit_hash_ino((u32)n->ino);
797 struct list_head *list = &audit_inode_hash[h];
798 struct audit_entry *e;
799 enum audit_state state;
800
801 if (list_empty(list))
802 return 0;
803
804 list_for_each_entry_rcu(e, list, list) {
805 if (audit_in_mask(&e->rule, ctx->major) &&
806 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
807 ctx->current_state = state;
808 return 1;
809 }
810 }
811
812 return 0;
813 }
814
815 /* At syscall exit time, this filter is called if any audit_names have been
816 * collected during syscall processing. We only check rules in sublists at hash
817 * buckets applicable to the inode numbers in audit_names.
818 * Regarding audit_state, same rules apply as for audit_filter_syscall().
819 */
820 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
821 {
822 struct audit_names *n;
823
824 if (auditd_test_task(tsk))
825 return;
826
827 rcu_read_lock();
828
829 list_for_each_entry(n, &ctx->names_list, list) {
830 if (audit_filter_inode_name(tsk, n, ctx))
831 break;
832 }
833 rcu_read_unlock();
834 }
835
836 static inline void audit_proctitle_free(struct audit_context *context)
837 {
838 kfree(context->proctitle.value);
839 context->proctitle.value = NULL;
840 context->proctitle.len = 0;
841 }
842
843 static inline void audit_free_module(struct audit_context *context)
844 {
845 if (context->type == AUDIT_KERN_MODULE) {
846 kfree(context->module.name);
847 context->module.name = NULL;
848 }
849 }
850 static inline void audit_free_names(struct audit_context *context)
851 {
852 struct audit_names *n, *next;
853
854 list_for_each_entry_safe(n, next, &context->names_list, list) {
855 list_del(&n->list);
856 if (n->name)
857 putname(n->name);
858 if (n->should_free)
859 kfree(n);
860 }
861 context->name_count = 0;
862 path_put(&context->pwd);
863 context->pwd.dentry = NULL;
864 context->pwd.mnt = NULL;
865 }
866
867 static inline void audit_free_aux(struct audit_context *context)
868 {
869 struct audit_aux_data *aux;
870
871 while ((aux = context->aux)) {
872 context->aux = aux->next;
873 kfree(aux);
874 }
875 while ((aux = context->aux_pids)) {
876 context->aux_pids = aux->next;
877 kfree(aux);
878 }
879 }
880
881 static inline struct audit_context *audit_alloc_context(enum audit_state state)
882 {
883 struct audit_context *context;
884
885 context = kzalloc(sizeof(*context), GFP_KERNEL);
886 if (!context)
887 return NULL;
888 context->state = state;
889 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
890 INIT_LIST_HEAD(&context->killed_trees);
891 INIT_LIST_HEAD(&context->names_list);
892 return context;
893 }
894
895 /**
896 * audit_alloc - allocate an audit context block for a task
897 * @tsk: task
898 *
899 * Filter on the task information and allocate a per-task audit context
900 * if necessary. Doing so turns on system call auditing for the
901 * specified task. This is called from copy_process, so no lock is
902 * needed.
903 */
904 int audit_alloc(struct task_struct *tsk)
905 {
906 struct audit_context *context;
907 enum audit_state state;
908 char *key = NULL;
909
910 if (likely(!audit_ever_enabled))
911 return 0; /* Return if not auditing. */
912
913 state = audit_filter_task(tsk, &key);
914 if (state == AUDIT_DISABLED) {
915 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
916 return 0;
917 }
918
919 if (!(context = audit_alloc_context(state))) {
920 kfree(key);
921 audit_log_lost("out of memory in audit_alloc");
922 return -ENOMEM;
923 }
924 context->filterkey = key;
925
926 audit_set_context(tsk, context);
927 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
928 return 0;
929 }
930
931 static inline void audit_free_context(struct audit_context *context)
932 {
933 audit_free_module(context);
934 audit_free_names(context);
935 unroll_tree_refs(context, NULL, 0);
936 free_tree_refs(context);
937 audit_free_aux(context);
938 kfree(context->filterkey);
939 kfree(context->sockaddr);
940 audit_proctitle_free(context);
941 kfree(context);
942 }
943
944 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
945 kuid_t auid, kuid_t uid, unsigned int sessionid,
946 u32 sid, char *comm)
947 {
948 struct audit_buffer *ab;
949 char *ctx = NULL;
950 u32 len;
951 int rc = 0;
952
953 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
954 if (!ab)
955 return rc;
956
957 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
958 from_kuid(&init_user_ns, auid),
959 from_kuid(&init_user_ns, uid), sessionid);
960 if (sid) {
961 if (security_secid_to_secctx(sid, &ctx, &len)) {
962 audit_log_format(ab, " obj=(none)");
963 rc = 1;
964 } else {
965 audit_log_format(ab, " obj=%s", ctx);
966 security_release_secctx(ctx, len);
967 }
968 }
969 audit_log_format(ab, " ocomm=");
970 audit_log_untrustedstring(ab, comm);
971 audit_log_end(ab);
972
973 return rc;
974 }
975
976 static void audit_log_execve_info(struct audit_context *context,
977 struct audit_buffer **ab)
978 {
979 long len_max;
980 long len_rem;
981 long len_full;
982 long len_buf;
983 long len_abuf = 0;
984 long len_tmp;
985 bool require_data;
986 bool encode;
987 unsigned int iter;
988 unsigned int arg;
989 char *buf_head;
990 char *buf;
991 const char __user *p = (const char __user *)current->mm->arg_start;
992
993 /* NOTE: this buffer needs to be large enough to hold all the non-arg
994 * data we put in the audit record for this argument (see the
995 * code below) ... at this point in time 96 is plenty */
996 char abuf[96];
997
998 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
999 * current value of 7500 is not as important as the fact that it
1000 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1001 * room if we go over a little bit in the logging below */
1002 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1003 len_max = MAX_EXECVE_AUDIT_LEN;
1004
1005 /* scratch buffer to hold the userspace args */
1006 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1007 if (!buf_head) {
1008 audit_panic("out of memory for argv string");
1009 return;
1010 }
1011 buf = buf_head;
1012
1013 audit_log_format(*ab, "argc=%d", context->execve.argc);
1014
1015 len_rem = len_max;
1016 len_buf = 0;
1017 len_full = 0;
1018 require_data = true;
1019 encode = false;
1020 iter = 0;
1021 arg = 0;
1022 do {
1023 /* NOTE: we don't ever want to trust this value for anything
1024 * serious, but the audit record format insists we
1025 * provide an argument length for really long arguments,
1026 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1027 * to use strncpy_from_user() to obtain this value for
1028 * recording in the log, although we don't use it
1029 * anywhere here to avoid a double-fetch problem */
1030 if (len_full == 0)
1031 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1032
1033 /* read more data from userspace */
1034 if (require_data) {
1035 /* can we make more room in the buffer? */
1036 if (buf != buf_head) {
1037 memmove(buf_head, buf, len_buf);
1038 buf = buf_head;
1039 }
1040
1041 /* fetch as much as we can of the argument */
1042 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1043 len_max - len_buf);
1044 if (len_tmp == -EFAULT) {
1045 /* unable to copy from userspace */
1046 send_sig(SIGKILL, current, 0);
1047 goto out;
1048 } else if (len_tmp == (len_max - len_buf)) {
1049 /* buffer is not large enough */
1050 require_data = true;
1051 /* NOTE: if we are going to span multiple
1052 * buffers force the encoding so we stand
1053 * a chance at a sane len_full value and
1054 * consistent record encoding */
1055 encode = true;
1056 len_full = len_full * 2;
1057 p += len_tmp;
1058 } else {
1059 require_data = false;
1060 if (!encode)
1061 encode = audit_string_contains_control(
1062 buf, len_tmp);
1063 /* try to use a trusted value for len_full */
1064 if (len_full < len_max)
1065 len_full = (encode ?
1066 len_tmp * 2 : len_tmp);
1067 p += len_tmp + 1;
1068 }
1069 len_buf += len_tmp;
1070 buf_head[len_buf] = '\0';
1071
1072 /* length of the buffer in the audit record? */
1073 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1074 }
1075
1076 /* write as much as we can to the audit log */
1077 if (len_buf >= 0) {
1078 /* NOTE: some magic numbers here - basically if we
1079 * can't fit a reasonable amount of data into the
1080 * existing audit buffer, flush it and start with
1081 * a new buffer */
1082 if ((sizeof(abuf) + 8) > len_rem) {
1083 len_rem = len_max;
1084 audit_log_end(*ab);
1085 *ab = audit_log_start(context,
1086 GFP_KERNEL, AUDIT_EXECVE);
1087 if (!*ab)
1088 goto out;
1089 }
1090
1091 /* create the non-arg portion of the arg record */
1092 len_tmp = 0;
1093 if (require_data || (iter > 0) ||
1094 ((len_abuf + sizeof(abuf)) > len_rem)) {
1095 if (iter == 0) {
1096 len_tmp += snprintf(&abuf[len_tmp],
1097 sizeof(abuf) - len_tmp,
1098 " a%d_len=%lu",
1099 arg, len_full);
1100 }
1101 len_tmp += snprintf(&abuf[len_tmp],
1102 sizeof(abuf) - len_tmp,
1103 " a%d[%d]=", arg, iter++);
1104 } else
1105 len_tmp += snprintf(&abuf[len_tmp],
1106 sizeof(abuf) - len_tmp,
1107 " a%d=", arg);
1108 WARN_ON(len_tmp >= sizeof(abuf));
1109 abuf[sizeof(abuf) - 1] = '\0';
1110
1111 /* log the arg in the audit record */
1112 audit_log_format(*ab, "%s", abuf);
1113 len_rem -= len_tmp;
1114 len_tmp = len_buf;
1115 if (encode) {
1116 if (len_abuf > len_rem)
1117 len_tmp = len_rem / 2; /* encoding */
1118 audit_log_n_hex(*ab, buf, len_tmp);
1119 len_rem -= len_tmp * 2;
1120 len_abuf -= len_tmp * 2;
1121 } else {
1122 if (len_abuf > len_rem)
1123 len_tmp = len_rem - 2; /* quotes */
1124 audit_log_n_string(*ab, buf, len_tmp);
1125 len_rem -= len_tmp + 2;
1126 /* don't subtract the "2" because we still need
1127 * to add quotes to the remaining string */
1128 len_abuf -= len_tmp;
1129 }
1130 len_buf -= len_tmp;
1131 buf += len_tmp;
1132 }
1133
1134 /* ready to move to the next argument? */
1135 if ((len_buf == 0) && !require_data) {
1136 arg++;
1137 iter = 0;
1138 len_full = 0;
1139 require_data = true;
1140 encode = false;
1141 }
1142 } while (arg < context->execve.argc);
1143
1144 /* NOTE: the caller handles the final audit_log_end() call */
1145
1146 out:
1147 kfree(buf_head);
1148 }
1149
1150 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1151 {
1152 int i;
1153
1154 if (cap_isclear(*cap)) {
1155 audit_log_format(ab, " %s=0", prefix);
1156 return;
1157 }
1158 audit_log_format(ab, " %s=", prefix);
1159 CAP_FOR_EACH_U32(i)
1160 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1161 }
1162
1163 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1164 {
1165 if (name->fcap_ver == -1) {
1166 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1167 return;
1168 }
1169 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1170 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1171 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1172 name->fcap.fE, name->fcap_ver,
1173 from_kuid(&init_user_ns, name->fcap.rootid));
1174 }
1175
1176 static void show_special(struct audit_context *context, int *call_panic)
1177 {
1178 struct audit_buffer *ab;
1179 int i;
1180
1181 ab = audit_log_start(context, GFP_KERNEL, context->type);
1182 if (!ab)
1183 return;
1184
1185 switch (context->type) {
1186 case AUDIT_SOCKETCALL: {
1187 int nargs = context->socketcall.nargs;
1188 audit_log_format(ab, "nargs=%d", nargs);
1189 for (i = 0; i < nargs; i++)
1190 audit_log_format(ab, " a%d=%lx", i,
1191 context->socketcall.args[i]);
1192 break; }
1193 case AUDIT_IPC: {
1194 u32 osid = context->ipc.osid;
1195
1196 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197 from_kuid(&init_user_ns, context->ipc.uid),
1198 from_kgid(&init_user_ns, context->ipc.gid),
1199 context->ipc.mode);
1200 if (osid) {
1201 char *ctx = NULL;
1202 u32 len;
1203 if (security_secid_to_secctx(osid, &ctx, &len)) {
1204 audit_log_format(ab, " osid=%u", osid);
1205 *call_panic = 1;
1206 } else {
1207 audit_log_format(ab, " obj=%s", ctx);
1208 security_release_secctx(ctx, len);
1209 }
1210 }
1211 if (context->ipc.has_perm) {
1212 audit_log_end(ab);
1213 ab = audit_log_start(context, GFP_KERNEL,
1214 AUDIT_IPC_SET_PERM);
1215 if (unlikely(!ab))
1216 return;
1217 audit_log_format(ab,
1218 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219 context->ipc.qbytes,
1220 context->ipc.perm_uid,
1221 context->ipc.perm_gid,
1222 context->ipc.perm_mode);
1223 }
1224 break; }
1225 case AUDIT_MQ_OPEN:
1226 audit_log_format(ab,
1227 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228 "mq_msgsize=%ld mq_curmsgs=%ld",
1229 context->mq_open.oflag, context->mq_open.mode,
1230 context->mq_open.attr.mq_flags,
1231 context->mq_open.attr.mq_maxmsg,
1232 context->mq_open.attr.mq_msgsize,
1233 context->mq_open.attr.mq_curmsgs);
1234 break;
1235 case AUDIT_MQ_SENDRECV:
1236 audit_log_format(ab,
1237 "mqdes=%d msg_len=%zd msg_prio=%u "
1238 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239 context->mq_sendrecv.mqdes,
1240 context->mq_sendrecv.msg_len,
1241 context->mq_sendrecv.msg_prio,
1242 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243 context->mq_sendrecv.abs_timeout.tv_nsec);
1244 break;
1245 case AUDIT_MQ_NOTIFY:
1246 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247 context->mq_notify.mqdes,
1248 context->mq_notify.sigev_signo);
1249 break;
1250 case AUDIT_MQ_GETSETATTR: {
1251 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252 audit_log_format(ab,
1253 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254 "mq_curmsgs=%ld ",
1255 context->mq_getsetattr.mqdes,
1256 attr->mq_flags, attr->mq_maxmsg,
1257 attr->mq_msgsize, attr->mq_curmsgs);
1258 break; }
1259 case AUDIT_CAPSET:
1260 audit_log_format(ab, "pid=%d", context->capset.pid);
1261 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265 break;
1266 case AUDIT_MMAP:
1267 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268 context->mmap.flags);
1269 break;
1270 case AUDIT_EXECVE:
1271 audit_log_execve_info(context, &ab);
1272 break;
1273 case AUDIT_KERN_MODULE:
1274 audit_log_format(ab, "name=");
1275 if (context->module.name) {
1276 audit_log_untrustedstring(ab, context->module.name);
1277 } else
1278 audit_log_format(ab, "(null)");
1279
1280 break;
1281 }
1282 audit_log_end(ab);
1283 }
1284
1285 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1286 {
1287 char *end = proctitle + len - 1;
1288 while (end > proctitle && !isprint(*end))
1289 end--;
1290
1291 /* catch the case where proctitle is only 1 non-print character */
1292 len = end - proctitle + 1;
1293 len -= isprint(proctitle[len-1]) == 0;
1294 return len;
1295 }
1296
1297 /*
1298 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1299 * @context: audit_context for the task
1300 * @n: audit_names structure with reportable details
1301 * @path: optional path to report instead of audit_names->name
1302 * @record_num: record number to report when handling a list of names
1303 * @call_panic: optional pointer to int that will be updated if secid fails
1304 */
1305 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1306 const struct path *path, int record_num, int *call_panic)
1307 {
1308 struct audit_buffer *ab;
1309
1310 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1311 if (!ab)
1312 return;
1313
1314 audit_log_format(ab, "item=%d", record_num);
1315
1316 if (path)
1317 audit_log_d_path(ab, " name=", path);
1318 else if (n->name) {
1319 switch (n->name_len) {
1320 case AUDIT_NAME_FULL:
1321 /* log the full path */
1322 audit_log_format(ab, " name=");
1323 audit_log_untrustedstring(ab, n->name->name);
1324 break;
1325 case 0:
1326 /* name was specified as a relative path and the
1327 * directory component is the cwd
1328 */
1329 audit_log_d_path(ab, " name=", &context->pwd);
1330 break;
1331 default:
1332 /* log the name's directory component */
1333 audit_log_format(ab, " name=");
1334 audit_log_n_untrustedstring(ab, n->name->name,
1335 n->name_len);
1336 }
1337 } else
1338 audit_log_format(ab, " name=(null)");
1339
1340 if (n->ino != AUDIT_INO_UNSET)
1341 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1342 n->ino,
1343 MAJOR(n->dev),
1344 MINOR(n->dev),
1345 n->mode,
1346 from_kuid(&init_user_ns, n->uid),
1347 from_kgid(&init_user_ns, n->gid),
1348 MAJOR(n->rdev),
1349 MINOR(n->rdev));
1350 if (n->osid != 0) {
1351 char *ctx = NULL;
1352 u32 len;
1353
1354 if (security_secid_to_secctx(
1355 n->osid, &ctx, &len)) {
1356 audit_log_format(ab, " osid=%u", n->osid);
1357 if (call_panic)
1358 *call_panic = 2;
1359 } else {
1360 audit_log_format(ab, " obj=%s", ctx);
1361 security_release_secctx(ctx, len);
1362 }
1363 }
1364
1365 /* log the audit_names record type */
1366 switch (n->type) {
1367 case AUDIT_TYPE_NORMAL:
1368 audit_log_format(ab, " nametype=NORMAL");
1369 break;
1370 case AUDIT_TYPE_PARENT:
1371 audit_log_format(ab, " nametype=PARENT");
1372 break;
1373 case AUDIT_TYPE_CHILD_DELETE:
1374 audit_log_format(ab, " nametype=DELETE");
1375 break;
1376 case AUDIT_TYPE_CHILD_CREATE:
1377 audit_log_format(ab, " nametype=CREATE");
1378 break;
1379 default:
1380 audit_log_format(ab, " nametype=UNKNOWN");
1381 break;
1382 }
1383
1384 audit_log_fcaps(ab, n);
1385 audit_log_end(ab);
1386 }
1387
1388 static void audit_log_proctitle(void)
1389 {
1390 int res;
1391 char *buf;
1392 char *msg = "(null)";
1393 int len = strlen(msg);
1394 struct audit_context *context = audit_context();
1395 struct audit_buffer *ab;
1396
1397 if (!context || context->dummy)
1398 return;
1399
1400 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1401 if (!ab)
1402 return; /* audit_panic or being filtered */
1403
1404 audit_log_format(ab, "proctitle=");
1405
1406 /* Not cached */
1407 if (!context->proctitle.value) {
1408 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1409 if (!buf)
1410 goto out;
1411 /* Historically called this from procfs naming */
1412 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1413 if (res == 0) {
1414 kfree(buf);
1415 goto out;
1416 }
1417 res = audit_proctitle_rtrim(buf, res);
1418 if (res == 0) {
1419 kfree(buf);
1420 goto out;
1421 }
1422 context->proctitle.value = buf;
1423 context->proctitle.len = res;
1424 }
1425 msg = context->proctitle.value;
1426 len = context->proctitle.len;
1427 out:
1428 audit_log_n_untrustedstring(ab, msg, len);
1429 audit_log_end(ab);
1430 }
1431
1432 static void audit_log_exit(void)
1433 {
1434 int i, call_panic = 0;
1435 struct audit_context *context = audit_context();
1436 struct audit_buffer *ab;
1437 struct audit_aux_data *aux;
1438 struct audit_names *n;
1439
1440 context->personality = current->personality;
1441
1442 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1443 if (!ab)
1444 return; /* audit_panic has been called */
1445 audit_log_format(ab, "arch=%x syscall=%d",
1446 context->arch, context->major);
1447 if (context->personality != PER_LINUX)
1448 audit_log_format(ab, " per=%lx", context->personality);
1449 if (context->return_valid)
1450 audit_log_format(ab, " success=%s exit=%ld",
1451 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1452 context->return_code);
1453
1454 audit_log_format(ab,
1455 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1456 context->argv[0],
1457 context->argv[1],
1458 context->argv[2],
1459 context->argv[3],
1460 context->name_count);
1461
1462 audit_log_task_info(ab);
1463 audit_log_key(ab, context->filterkey);
1464 audit_log_end(ab);
1465
1466 for (aux = context->aux; aux; aux = aux->next) {
1467
1468 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1469 if (!ab)
1470 continue; /* audit_panic has been called */
1471
1472 switch (aux->type) {
1473
1474 case AUDIT_BPRM_FCAPS: {
1475 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1476 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1477 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1478 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1479 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1480 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1481 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1482 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1483 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1484 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1485 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1486 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1487 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1488 audit_log_format(ab, " frootid=%d",
1489 from_kuid(&init_user_ns,
1490 axs->fcap.rootid));
1491 break; }
1492
1493 }
1494 audit_log_end(ab);
1495 }
1496
1497 if (context->type)
1498 show_special(context, &call_panic);
1499
1500 if (context->fds[0] >= 0) {
1501 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1502 if (ab) {
1503 audit_log_format(ab, "fd0=%d fd1=%d",
1504 context->fds[0], context->fds[1]);
1505 audit_log_end(ab);
1506 }
1507 }
1508
1509 if (context->sockaddr_len) {
1510 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1511 if (ab) {
1512 audit_log_format(ab, "saddr=");
1513 audit_log_n_hex(ab, (void *)context->sockaddr,
1514 context->sockaddr_len);
1515 audit_log_end(ab);
1516 }
1517 }
1518
1519 for (aux = context->aux_pids; aux; aux = aux->next) {
1520 struct audit_aux_data_pids *axs = (void *)aux;
1521
1522 for (i = 0; i < axs->pid_count; i++)
1523 if (audit_log_pid_context(context, axs->target_pid[i],
1524 axs->target_auid[i],
1525 axs->target_uid[i],
1526 axs->target_sessionid[i],
1527 axs->target_sid[i],
1528 axs->target_comm[i]))
1529 call_panic = 1;
1530 }
1531
1532 if (context->target_pid &&
1533 audit_log_pid_context(context, context->target_pid,
1534 context->target_auid, context->target_uid,
1535 context->target_sessionid,
1536 context->target_sid, context->target_comm))
1537 call_panic = 1;
1538
1539 if (context->pwd.dentry && context->pwd.mnt) {
1540 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1541 if (ab) {
1542 audit_log_d_path(ab, "cwd=", &context->pwd);
1543 audit_log_end(ab);
1544 }
1545 }
1546
1547 i = 0;
1548 list_for_each_entry(n, &context->names_list, list) {
1549 if (n->hidden)
1550 continue;
1551 audit_log_name(context, n, NULL, i++, &call_panic);
1552 }
1553
1554 audit_log_proctitle();
1555
1556 /* Send end of event record to help user space know we are finished */
1557 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1558 if (ab)
1559 audit_log_end(ab);
1560 if (call_panic)
1561 audit_panic("error converting sid to string");
1562 }
1563
1564 /**
1565 * __audit_free - free a per-task audit context
1566 * @tsk: task whose audit context block to free
1567 *
1568 * Called from copy_process and do_exit
1569 */
1570 void __audit_free(struct task_struct *tsk)
1571 {
1572 struct audit_context *context = tsk->audit_context;
1573
1574 if (!context)
1575 return;
1576
1577 if (!list_empty(&context->killed_trees))
1578 audit_kill_trees(context);
1579
1580 /* We are called either by do_exit() or the fork() error handling code;
1581 * in the former case tsk == current and in the latter tsk is a
1582 * random task_struct that doesn't doesn't have any meaningful data we
1583 * need to log via audit_log_exit().
1584 */
1585 if (tsk == current && !context->dummy && context->in_syscall) {
1586 context->return_valid = 0;
1587 context->return_code = 0;
1588
1589 audit_filter_syscall(tsk, context,
1590 &audit_filter_list[AUDIT_FILTER_EXIT]);
1591 audit_filter_inodes(tsk, context);
1592 if (context->current_state == AUDIT_RECORD_CONTEXT)
1593 audit_log_exit();
1594 }
1595
1596 audit_set_context(tsk, NULL);
1597 audit_free_context(context);
1598 }
1599
1600 /**
1601 * __audit_syscall_entry - fill in an audit record at syscall entry
1602 * @major: major syscall type (function)
1603 * @a1: additional syscall register 1
1604 * @a2: additional syscall register 2
1605 * @a3: additional syscall register 3
1606 * @a4: additional syscall register 4
1607 *
1608 * Fill in audit context at syscall entry. This only happens if the
1609 * audit context was created when the task was created and the state or
1610 * filters demand the audit context be built. If the state from the
1611 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1612 * then the record will be written at syscall exit time (otherwise, it
1613 * will only be written if another part of the kernel requests that it
1614 * be written).
1615 */
1616 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1617 unsigned long a3, unsigned long a4)
1618 {
1619 struct audit_context *context = audit_context();
1620 enum audit_state state;
1621
1622 if (!audit_enabled || !context)
1623 return;
1624
1625 BUG_ON(context->in_syscall || context->name_count);
1626
1627 state = context->state;
1628 if (state == AUDIT_DISABLED)
1629 return;
1630
1631 context->dummy = !audit_n_rules;
1632 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1633 context->prio = 0;
1634 if (auditd_test_task(current))
1635 return;
1636 }
1637
1638 context->arch = syscall_get_arch();
1639 context->major = major;
1640 context->argv[0] = a1;
1641 context->argv[1] = a2;
1642 context->argv[2] = a3;
1643 context->argv[3] = a4;
1644 context->serial = 0;
1645 context->in_syscall = 1;
1646 context->current_state = state;
1647 context->ppid = 0;
1648 ktime_get_coarse_real_ts64(&context->ctime);
1649 }
1650
1651 /**
1652 * __audit_syscall_exit - deallocate audit context after a system call
1653 * @success: success value of the syscall
1654 * @return_code: return value of the syscall
1655 *
1656 * Tear down after system call. If the audit context has been marked as
1657 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1658 * filtering, or because some other part of the kernel wrote an audit
1659 * message), then write out the syscall information. In call cases,
1660 * free the names stored from getname().
1661 */
1662 void __audit_syscall_exit(int success, long return_code)
1663 {
1664 struct audit_context *context;
1665
1666 context = audit_context();
1667 if (!context)
1668 return;
1669
1670 if (!list_empty(&context->killed_trees))
1671 audit_kill_trees(context);
1672
1673 if (!context->dummy && context->in_syscall) {
1674 if (success)
1675 context->return_valid = AUDITSC_SUCCESS;
1676 else
1677 context->return_valid = AUDITSC_FAILURE;
1678
1679 /*
1680 * we need to fix up the return code in the audit logs if the
1681 * actual return codes are later going to be fixed up by the
1682 * arch specific signal handlers
1683 *
1684 * This is actually a test for:
1685 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1686 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1687 *
1688 * but is faster than a bunch of ||
1689 */
1690 if (unlikely(return_code <= -ERESTARTSYS) &&
1691 (return_code >= -ERESTART_RESTARTBLOCK) &&
1692 (return_code != -ENOIOCTLCMD))
1693 context->return_code = -EINTR;
1694 else
1695 context->return_code = return_code;
1696
1697 audit_filter_syscall(current, context,
1698 &audit_filter_list[AUDIT_FILTER_EXIT]);
1699 audit_filter_inodes(current, context);
1700 if (context->current_state == AUDIT_RECORD_CONTEXT)
1701 audit_log_exit();
1702 }
1703
1704 context->in_syscall = 0;
1705 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1706
1707 audit_free_module(context);
1708 audit_free_names(context);
1709 unroll_tree_refs(context, NULL, 0);
1710 audit_free_aux(context);
1711 context->aux = NULL;
1712 context->aux_pids = NULL;
1713 context->target_pid = 0;
1714 context->target_sid = 0;
1715 context->sockaddr_len = 0;
1716 context->type = 0;
1717 context->fds[0] = -1;
1718 if (context->state != AUDIT_RECORD_CONTEXT) {
1719 kfree(context->filterkey);
1720 context->filterkey = NULL;
1721 }
1722 }
1723
1724 static inline void handle_one(const struct inode *inode)
1725 {
1726 struct audit_context *context;
1727 struct audit_tree_refs *p;
1728 struct audit_chunk *chunk;
1729 int count;
1730 if (likely(!inode->i_fsnotify_marks))
1731 return;
1732 context = audit_context();
1733 p = context->trees;
1734 count = context->tree_count;
1735 rcu_read_lock();
1736 chunk = audit_tree_lookup(inode);
1737 rcu_read_unlock();
1738 if (!chunk)
1739 return;
1740 if (likely(put_tree_ref(context, chunk)))
1741 return;
1742 if (unlikely(!grow_tree_refs(context))) {
1743 pr_warn("out of memory, audit has lost a tree reference\n");
1744 audit_set_auditable(context);
1745 audit_put_chunk(chunk);
1746 unroll_tree_refs(context, p, count);
1747 return;
1748 }
1749 put_tree_ref(context, chunk);
1750 }
1751
1752 static void handle_path(const struct dentry *dentry)
1753 {
1754 struct audit_context *context;
1755 struct audit_tree_refs *p;
1756 const struct dentry *d, *parent;
1757 struct audit_chunk *drop;
1758 unsigned long seq;
1759 int count;
1760
1761 context = audit_context();
1762 p = context->trees;
1763 count = context->tree_count;
1764 retry:
1765 drop = NULL;
1766 d = dentry;
1767 rcu_read_lock();
1768 seq = read_seqbegin(&rename_lock);
1769 for(;;) {
1770 struct inode *inode = d_backing_inode(d);
1771 if (inode && unlikely(inode->i_fsnotify_marks)) {
1772 struct audit_chunk *chunk;
1773 chunk = audit_tree_lookup(inode);
1774 if (chunk) {
1775 if (unlikely(!put_tree_ref(context, chunk))) {
1776 drop = chunk;
1777 break;
1778 }
1779 }
1780 }
1781 parent = d->d_parent;
1782 if (parent == d)
1783 break;
1784 d = parent;
1785 }
1786 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1787 rcu_read_unlock();
1788 if (!drop) {
1789 /* just a race with rename */
1790 unroll_tree_refs(context, p, count);
1791 goto retry;
1792 }
1793 audit_put_chunk(drop);
1794 if (grow_tree_refs(context)) {
1795 /* OK, got more space */
1796 unroll_tree_refs(context, p, count);
1797 goto retry;
1798 }
1799 /* too bad */
1800 pr_warn("out of memory, audit has lost a tree reference\n");
1801 unroll_tree_refs(context, p, count);
1802 audit_set_auditable(context);
1803 return;
1804 }
1805 rcu_read_unlock();
1806 }
1807
1808 static struct audit_names *audit_alloc_name(struct audit_context *context,
1809 unsigned char type)
1810 {
1811 struct audit_names *aname;
1812
1813 if (context->name_count < AUDIT_NAMES) {
1814 aname = &context->preallocated_names[context->name_count];
1815 memset(aname, 0, sizeof(*aname));
1816 } else {
1817 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1818 if (!aname)
1819 return NULL;
1820 aname->should_free = true;
1821 }
1822
1823 aname->ino = AUDIT_INO_UNSET;
1824 aname->type = type;
1825 list_add_tail(&aname->list, &context->names_list);
1826
1827 context->name_count++;
1828 return aname;
1829 }
1830
1831 /**
1832 * __audit_reusename - fill out filename with info from existing entry
1833 * @uptr: userland ptr to pathname
1834 *
1835 * Search the audit_names list for the current audit context. If there is an
1836 * existing entry with a matching "uptr" then return the filename
1837 * associated with that audit_name. If not, return NULL.
1838 */
1839 struct filename *
1840 __audit_reusename(const __user char *uptr)
1841 {
1842 struct audit_context *context = audit_context();
1843 struct audit_names *n;
1844
1845 list_for_each_entry(n, &context->names_list, list) {
1846 if (!n->name)
1847 continue;
1848 if (n->name->uptr == uptr) {
1849 n->name->refcnt++;
1850 return n->name;
1851 }
1852 }
1853 return NULL;
1854 }
1855
1856 /**
1857 * __audit_getname - add a name to the list
1858 * @name: name to add
1859 *
1860 * Add a name to the list of audit names for this context.
1861 * Called from fs/namei.c:getname().
1862 */
1863 void __audit_getname(struct filename *name)
1864 {
1865 struct audit_context *context = audit_context();
1866 struct audit_names *n;
1867
1868 if (!context->in_syscall)
1869 return;
1870
1871 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1872 if (!n)
1873 return;
1874
1875 n->name = name;
1876 n->name_len = AUDIT_NAME_FULL;
1877 name->aname = n;
1878 name->refcnt++;
1879
1880 if (!context->pwd.dentry)
1881 get_fs_pwd(current->fs, &context->pwd);
1882 }
1883
1884 static inline int audit_copy_fcaps(struct audit_names *name,
1885 const struct dentry *dentry)
1886 {
1887 struct cpu_vfs_cap_data caps;
1888 int rc;
1889
1890 if (!dentry)
1891 return 0;
1892
1893 rc = get_vfs_caps_from_disk(dentry, &caps);
1894 if (rc)
1895 return rc;
1896
1897 name->fcap.permitted = caps.permitted;
1898 name->fcap.inheritable = caps.inheritable;
1899 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1900 name->fcap.rootid = caps.rootid;
1901 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1902 VFS_CAP_REVISION_SHIFT;
1903
1904 return 0;
1905 }
1906
1907 /* Copy inode data into an audit_names. */
1908 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1909 struct inode *inode, unsigned int flags)
1910 {
1911 name->ino = inode->i_ino;
1912 name->dev = inode->i_sb->s_dev;
1913 name->mode = inode->i_mode;
1914 name->uid = inode->i_uid;
1915 name->gid = inode->i_gid;
1916 name->rdev = inode->i_rdev;
1917 security_inode_getsecid(inode, &name->osid);
1918 if (flags & AUDIT_INODE_NOEVAL) {
1919 name->fcap_ver = -1;
1920 return;
1921 }
1922 audit_copy_fcaps(name, dentry);
1923 }
1924
1925 /**
1926 * __audit_inode - store the inode and device from a lookup
1927 * @name: name being audited
1928 * @dentry: dentry being audited
1929 * @flags: attributes for this particular entry
1930 */
1931 void __audit_inode(struct filename *name, const struct dentry *dentry,
1932 unsigned int flags)
1933 {
1934 struct audit_context *context = audit_context();
1935 struct inode *inode = d_backing_inode(dentry);
1936 struct audit_names *n;
1937 bool parent = flags & AUDIT_INODE_PARENT;
1938 struct audit_entry *e;
1939 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1940 int i;
1941
1942 if (!context->in_syscall)
1943 return;
1944
1945 rcu_read_lock();
1946 if (!list_empty(list)) {
1947 list_for_each_entry_rcu(e, list, list) {
1948 for (i = 0; i < e->rule.field_count; i++) {
1949 struct audit_field *f = &e->rule.fields[i];
1950
1951 if (f->type == AUDIT_FSTYPE
1952 && audit_comparator(inode->i_sb->s_magic,
1953 f->op, f->val)
1954 && e->rule.action == AUDIT_NEVER) {
1955 rcu_read_unlock();
1956 return;
1957 }
1958 }
1959 }
1960 }
1961 rcu_read_unlock();
1962
1963 if (!name)
1964 goto out_alloc;
1965
1966 /*
1967 * If we have a pointer to an audit_names entry already, then we can
1968 * just use it directly if the type is correct.
1969 */
1970 n = name->aname;
1971 if (n) {
1972 if (parent) {
1973 if (n->type == AUDIT_TYPE_PARENT ||
1974 n->type == AUDIT_TYPE_UNKNOWN)
1975 goto out;
1976 } else {
1977 if (n->type != AUDIT_TYPE_PARENT)
1978 goto out;
1979 }
1980 }
1981
1982 list_for_each_entry_reverse(n, &context->names_list, list) {
1983 if (n->ino) {
1984 /* valid inode number, use that for the comparison */
1985 if (n->ino != inode->i_ino ||
1986 n->dev != inode->i_sb->s_dev)
1987 continue;
1988 } else if (n->name) {
1989 /* inode number has not been set, check the name */
1990 if (strcmp(n->name->name, name->name))
1991 continue;
1992 } else
1993 /* no inode and no name (?!) ... this is odd ... */
1994 continue;
1995
1996 /* match the correct record type */
1997 if (parent) {
1998 if (n->type == AUDIT_TYPE_PARENT ||
1999 n->type == AUDIT_TYPE_UNKNOWN)
2000 goto out;
2001 } else {
2002 if (n->type != AUDIT_TYPE_PARENT)
2003 goto out;
2004 }
2005 }
2006
2007 out_alloc:
2008 /* unable to find an entry with both a matching name and type */
2009 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2010 if (!n)
2011 return;
2012 if (name) {
2013 n->name = name;
2014 name->refcnt++;
2015 }
2016
2017 out:
2018 if (parent) {
2019 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2020 n->type = AUDIT_TYPE_PARENT;
2021 if (flags & AUDIT_INODE_HIDDEN)
2022 n->hidden = true;
2023 } else {
2024 n->name_len = AUDIT_NAME_FULL;
2025 n->type = AUDIT_TYPE_NORMAL;
2026 }
2027 handle_path(dentry);
2028 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2029 }
2030
2031 void __audit_file(const struct file *file)
2032 {
2033 __audit_inode(NULL, file->f_path.dentry, 0);
2034 }
2035
2036 /**
2037 * __audit_inode_child - collect inode info for created/removed objects
2038 * @parent: inode of dentry parent
2039 * @dentry: dentry being audited
2040 * @type: AUDIT_TYPE_* value that we're looking for
2041 *
2042 * For syscalls that create or remove filesystem objects, audit_inode
2043 * can only collect information for the filesystem object's parent.
2044 * This call updates the audit context with the child's information.
2045 * Syscalls that create a new filesystem object must be hooked after
2046 * the object is created. Syscalls that remove a filesystem object
2047 * must be hooked prior, in order to capture the target inode during
2048 * unsuccessful attempts.
2049 */
2050 void __audit_inode_child(struct inode *parent,
2051 const struct dentry *dentry,
2052 const unsigned char type)
2053 {
2054 struct audit_context *context = audit_context();
2055 struct inode *inode = d_backing_inode(dentry);
2056 const char *dname = dentry->d_name.name;
2057 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2058 struct audit_entry *e;
2059 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2060 int i;
2061
2062 if (!context->in_syscall)
2063 return;
2064
2065 rcu_read_lock();
2066 if (!list_empty(list)) {
2067 list_for_each_entry_rcu(e, list, list) {
2068 for (i = 0; i < e->rule.field_count; i++) {
2069 struct audit_field *f = &e->rule.fields[i];
2070
2071 if (f->type == AUDIT_FSTYPE
2072 && audit_comparator(parent->i_sb->s_magic,
2073 f->op, f->val)
2074 && e->rule.action == AUDIT_NEVER) {
2075 rcu_read_unlock();
2076 return;
2077 }
2078 }
2079 }
2080 }
2081 rcu_read_unlock();
2082
2083 if (inode)
2084 handle_one(inode);
2085
2086 /* look for a parent entry first */
2087 list_for_each_entry(n, &context->names_list, list) {
2088 if (!n->name ||
2089 (n->type != AUDIT_TYPE_PARENT &&
2090 n->type != AUDIT_TYPE_UNKNOWN))
2091 continue;
2092
2093 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2094 !audit_compare_dname_path(dname,
2095 n->name->name, n->name_len)) {
2096 if (n->type == AUDIT_TYPE_UNKNOWN)
2097 n->type = AUDIT_TYPE_PARENT;
2098 found_parent = n;
2099 break;
2100 }
2101 }
2102
2103 /* is there a matching child entry? */
2104 list_for_each_entry(n, &context->names_list, list) {
2105 /* can only match entries that have a name */
2106 if (!n->name ||
2107 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2108 continue;
2109
2110 if (!strcmp(dname, n->name->name) ||
2111 !audit_compare_dname_path(dname, n->name->name,
2112 found_parent ?
2113 found_parent->name_len :
2114 AUDIT_NAME_FULL)) {
2115 if (n->type == AUDIT_TYPE_UNKNOWN)
2116 n->type = type;
2117 found_child = n;
2118 break;
2119 }
2120 }
2121
2122 if (!found_parent) {
2123 /* create a new, "anonymous" parent record */
2124 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2125 if (!n)
2126 return;
2127 audit_copy_inode(n, NULL, parent, 0);
2128 }
2129
2130 if (!found_child) {
2131 found_child = audit_alloc_name(context, type);
2132 if (!found_child)
2133 return;
2134
2135 /* Re-use the name belonging to the slot for a matching parent
2136 * directory. All names for this context are relinquished in
2137 * audit_free_names() */
2138 if (found_parent) {
2139 found_child->name = found_parent->name;
2140 found_child->name_len = AUDIT_NAME_FULL;
2141 found_child->name->refcnt++;
2142 }
2143 }
2144
2145 if (inode)
2146 audit_copy_inode(found_child, dentry, inode, 0);
2147 else
2148 found_child->ino = AUDIT_INO_UNSET;
2149 }
2150 EXPORT_SYMBOL_GPL(__audit_inode_child);
2151
2152 /**
2153 * auditsc_get_stamp - get local copies of audit_context values
2154 * @ctx: audit_context for the task
2155 * @t: timespec64 to store time recorded in the audit_context
2156 * @serial: serial value that is recorded in the audit_context
2157 *
2158 * Also sets the context as auditable.
2159 */
2160 int auditsc_get_stamp(struct audit_context *ctx,
2161 struct timespec64 *t, unsigned int *serial)
2162 {
2163 if (!ctx->in_syscall)
2164 return 0;
2165 if (!ctx->serial)
2166 ctx->serial = audit_serial();
2167 t->tv_sec = ctx->ctime.tv_sec;
2168 t->tv_nsec = ctx->ctime.tv_nsec;
2169 *serial = ctx->serial;
2170 if (!ctx->prio) {
2171 ctx->prio = 1;
2172 ctx->current_state = AUDIT_RECORD_CONTEXT;
2173 }
2174 return 1;
2175 }
2176
2177 /**
2178 * __audit_mq_open - record audit data for a POSIX MQ open
2179 * @oflag: open flag
2180 * @mode: mode bits
2181 * @attr: queue attributes
2182 *
2183 */
2184 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2185 {
2186 struct audit_context *context = audit_context();
2187
2188 if (attr)
2189 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2190 else
2191 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2192
2193 context->mq_open.oflag = oflag;
2194 context->mq_open.mode = mode;
2195
2196 context->type = AUDIT_MQ_OPEN;
2197 }
2198
2199 /**
2200 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2201 * @mqdes: MQ descriptor
2202 * @msg_len: Message length
2203 * @msg_prio: Message priority
2204 * @abs_timeout: Message timeout in absolute time
2205 *
2206 */
2207 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2208 const struct timespec64 *abs_timeout)
2209 {
2210 struct audit_context *context = audit_context();
2211 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2212
2213 if (abs_timeout)
2214 memcpy(p, abs_timeout, sizeof(*p));
2215 else
2216 memset(p, 0, sizeof(*p));
2217
2218 context->mq_sendrecv.mqdes = mqdes;
2219 context->mq_sendrecv.msg_len = msg_len;
2220 context->mq_sendrecv.msg_prio = msg_prio;
2221
2222 context->type = AUDIT_MQ_SENDRECV;
2223 }
2224
2225 /**
2226 * __audit_mq_notify - record audit data for a POSIX MQ notify
2227 * @mqdes: MQ descriptor
2228 * @notification: Notification event
2229 *
2230 */
2231
2232 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2233 {
2234 struct audit_context *context = audit_context();
2235
2236 if (notification)
2237 context->mq_notify.sigev_signo = notification->sigev_signo;
2238 else
2239 context->mq_notify.sigev_signo = 0;
2240
2241 context->mq_notify.mqdes = mqdes;
2242 context->type = AUDIT_MQ_NOTIFY;
2243 }
2244
2245 /**
2246 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2247 * @mqdes: MQ descriptor
2248 * @mqstat: MQ flags
2249 *
2250 */
2251 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2252 {
2253 struct audit_context *context = audit_context();
2254 context->mq_getsetattr.mqdes = mqdes;
2255 context->mq_getsetattr.mqstat = *mqstat;
2256 context->type = AUDIT_MQ_GETSETATTR;
2257 }
2258
2259 /**
2260 * __audit_ipc_obj - record audit data for ipc object
2261 * @ipcp: ipc permissions
2262 *
2263 */
2264 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2265 {
2266 struct audit_context *context = audit_context();
2267 context->ipc.uid = ipcp->uid;
2268 context->ipc.gid = ipcp->gid;
2269 context->ipc.mode = ipcp->mode;
2270 context->ipc.has_perm = 0;
2271 security_ipc_getsecid(ipcp, &context->ipc.osid);
2272 context->type = AUDIT_IPC;
2273 }
2274
2275 /**
2276 * __audit_ipc_set_perm - record audit data for new ipc permissions
2277 * @qbytes: msgq bytes
2278 * @uid: msgq user id
2279 * @gid: msgq group id
2280 * @mode: msgq mode (permissions)
2281 *
2282 * Called only after audit_ipc_obj().
2283 */
2284 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2285 {
2286 struct audit_context *context = audit_context();
2287
2288 context->ipc.qbytes = qbytes;
2289 context->ipc.perm_uid = uid;
2290 context->ipc.perm_gid = gid;
2291 context->ipc.perm_mode = mode;
2292 context->ipc.has_perm = 1;
2293 }
2294
2295 void __audit_bprm(struct linux_binprm *bprm)
2296 {
2297 struct audit_context *context = audit_context();
2298
2299 context->type = AUDIT_EXECVE;
2300 context->execve.argc = bprm->argc;
2301 }
2302
2303
2304 /**
2305 * __audit_socketcall - record audit data for sys_socketcall
2306 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2307 * @args: args array
2308 *
2309 */
2310 int __audit_socketcall(int nargs, unsigned long *args)
2311 {
2312 struct audit_context *context = audit_context();
2313
2314 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2315 return -EINVAL;
2316 context->type = AUDIT_SOCKETCALL;
2317 context->socketcall.nargs = nargs;
2318 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2319 return 0;
2320 }
2321
2322 /**
2323 * __audit_fd_pair - record audit data for pipe and socketpair
2324 * @fd1: the first file descriptor
2325 * @fd2: the second file descriptor
2326 *
2327 */
2328 void __audit_fd_pair(int fd1, int fd2)
2329 {
2330 struct audit_context *context = audit_context();
2331 context->fds[0] = fd1;
2332 context->fds[1] = fd2;
2333 }
2334
2335 /**
2336 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2337 * @len: data length in user space
2338 * @a: data address in kernel space
2339 *
2340 * Returns 0 for success or NULL context or < 0 on error.
2341 */
2342 int __audit_sockaddr(int len, void *a)
2343 {
2344 struct audit_context *context = audit_context();
2345
2346 if (!context->sockaddr) {
2347 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2348 if (!p)
2349 return -ENOMEM;
2350 context->sockaddr = p;
2351 }
2352
2353 context->sockaddr_len = len;
2354 memcpy(context->sockaddr, a, len);
2355 return 0;
2356 }
2357
2358 void __audit_ptrace(struct task_struct *t)
2359 {
2360 struct audit_context *context = audit_context();
2361
2362 context->target_pid = task_tgid_nr(t);
2363 context->target_auid = audit_get_loginuid(t);
2364 context->target_uid = task_uid(t);
2365 context->target_sessionid = audit_get_sessionid(t);
2366 security_task_getsecid(t, &context->target_sid);
2367 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2368 }
2369
2370 /**
2371 * audit_signal_info - record signal info for shutting down audit subsystem
2372 * @sig: signal value
2373 * @t: task being signaled
2374 *
2375 * If the audit subsystem is being terminated, record the task (pid)
2376 * and uid that is doing that.
2377 */
2378 int audit_signal_info(int sig, struct task_struct *t)
2379 {
2380 struct audit_aux_data_pids *axp;
2381 struct audit_context *ctx = audit_context();
2382 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2383
2384 if (auditd_test_task(t) &&
2385 (sig == SIGTERM || sig == SIGHUP ||
2386 sig == SIGUSR1 || sig == SIGUSR2)) {
2387 audit_sig_pid = task_tgid_nr(current);
2388 auid = audit_get_loginuid(current);
2389 if (uid_valid(auid))
2390 audit_sig_uid = auid;
2391 else
2392 audit_sig_uid = uid;
2393 security_task_getsecid(current, &audit_sig_sid);
2394 }
2395
2396 if (!audit_signals || audit_dummy_context())
2397 return 0;
2398
2399 /* optimize the common case by putting first signal recipient directly
2400 * in audit_context */
2401 if (!ctx->target_pid) {
2402 ctx->target_pid = task_tgid_nr(t);
2403 ctx->target_auid = audit_get_loginuid(t);
2404 ctx->target_uid = t_uid;
2405 ctx->target_sessionid = audit_get_sessionid(t);
2406 security_task_getsecid(t, &ctx->target_sid);
2407 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2408 return 0;
2409 }
2410
2411 axp = (void *)ctx->aux_pids;
2412 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2413 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2414 if (!axp)
2415 return -ENOMEM;
2416
2417 axp->d.type = AUDIT_OBJ_PID;
2418 axp->d.next = ctx->aux_pids;
2419 ctx->aux_pids = (void *)axp;
2420 }
2421 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2422
2423 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2424 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2425 axp->target_uid[axp->pid_count] = t_uid;
2426 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2427 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2428 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2429 axp->pid_count++;
2430
2431 return 0;
2432 }
2433
2434 /**
2435 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2436 * @bprm: pointer to the bprm being processed
2437 * @new: the proposed new credentials
2438 * @old: the old credentials
2439 *
2440 * Simply check if the proc already has the caps given by the file and if not
2441 * store the priv escalation info for later auditing at the end of the syscall
2442 *
2443 * -Eric
2444 */
2445 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2446 const struct cred *new, const struct cred *old)
2447 {
2448 struct audit_aux_data_bprm_fcaps *ax;
2449 struct audit_context *context = audit_context();
2450 struct cpu_vfs_cap_data vcaps;
2451
2452 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2453 if (!ax)
2454 return -ENOMEM;
2455
2456 ax->d.type = AUDIT_BPRM_FCAPS;
2457 ax->d.next = context->aux;
2458 context->aux = (void *)ax;
2459
2460 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2461
2462 ax->fcap.permitted = vcaps.permitted;
2463 ax->fcap.inheritable = vcaps.inheritable;
2464 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2465 ax->fcap.rootid = vcaps.rootid;
2466 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2467
2468 ax->old_pcap.permitted = old->cap_permitted;
2469 ax->old_pcap.inheritable = old->cap_inheritable;
2470 ax->old_pcap.effective = old->cap_effective;
2471 ax->old_pcap.ambient = old->cap_ambient;
2472
2473 ax->new_pcap.permitted = new->cap_permitted;
2474 ax->new_pcap.inheritable = new->cap_inheritable;
2475 ax->new_pcap.effective = new->cap_effective;
2476 ax->new_pcap.ambient = new->cap_ambient;
2477 return 0;
2478 }
2479
2480 /**
2481 * __audit_log_capset - store information about the arguments to the capset syscall
2482 * @new: the new credentials
2483 * @old: the old (current) credentials
2484 *
2485 * Record the arguments userspace sent to sys_capset for later printing by the
2486 * audit system if applicable
2487 */
2488 void __audit_log_capset(const struct cred *new, const struct cred *old)
2489 {
2490 struct audit_context *context = audit_context();
2491 context->capset.pid = task_tgid_nr(current);
2492 context->capset.cap.effective = new->cap_effective;
2493 context->capset.cap.inheritable = new->cap_effective;
2494 context->capset.cap.permitted = new->cap_permitted;
2495 context->capset.cap.ambient = new->cap_ambient;
2496 context->type = AUDIT_CAPSET;
2497 }
2498
2499 void __audit_mmap_fd(int fd, int flags)
2500 {
2501 struct audit_context *context = audit_context();
2502 context->mmap.fd = fd;
2503 context->mmap.flags = flags;
2504 context->type = AUDIT_MMAP;
2505 }
2506
2507 void __audit_log_kern_module(char *name)
2508 {
2509 struct audit_context *context = audit_context();
2510
2511 context->module.name = kstrdup(name, GFP_KERNEL);
2512 if (!context->module.name)
2513 audit_log_lost("out of memory in __audit_log_kern_module");
2514 context->type = AUDIT_KERN_MODULE;
2515 }
2516
2517 void __audit_fanotify(unsigned int response)
2518 {
2519 audit_log(audit_context(), GFP_KERNEL,
2520 AUDIT_FANOTIFY, "resp=%u", response);
2521 }
2522
2523 static void audit_log_task(struct audit_buffer *ab)
2524 {
2525 kuid_t auid, uid;
2526 kgid_t gid;
2527 unsigned int sessionid;
2528 char comm[sizeof(current->comm)];
2529
2530 auid = audit_get_loginuid(current);
2531 sessionid = audit_get_sessionid(current);
2532 current_uid_gid(&uid, &gid);
2533
2534 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2535 from_kuid(&init_user_ns, auid),
2536 from_kuid(&init_user_ns, uid),
2537 from_kgid(&init_user_ns, gid),
2538 sessionid);
2539 audit_log_task_context(ab);
2540 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2541 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2542 audit_log_d_path_exe(ab, current->mm);
2543 }
2544
2545 /**
2546 * audit_core_dumps - record information about processes that end abnormally
2547 * @signr: signal value
2548 *
2549 * If a process ends with a core dump, something fishy is going on and we
2550 * should record the event for investigation.
2551 */
2552 void audit_core_dumps(long signr)
2553 {
2554 struct audit_buffer *ab;
2555
2556 if (!audit_enabled)
2557 return;
2558
2559 if (signr == SIGQUIT) /* don't care for those */
2560 return;
2561
2562 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2563 if (unlikely(!ab))
2564 return;
2565 audit_log_task(ab);
2566 audit_log_format(ab, " sig=%ld res=1", signr);
2567 audit_log_end(ab);
2568 }
2569
2570 /**
2571 * audit_seccomp - record information about a seccomp action
2572 * @syscall: syscall number
2573 * @signr: signal value
2574 * @code: the seccomp action
2575 *
2576 * Record the information associated with a seccomp action. Event filtering for
2577 * seccomp actions that are not to be logged is done in seccomp_log().
2578 * Therefore, this function forces auditing independent of the audit_enabled
2579 * and dummy context state because seccomp actions should be logged even when
2580 * audit is not in use.
2581 */
2582 void audit_seccomp(unsigned long syscall, long signr, int code)
2583 {
2584 struct audit_buffer *ab;
2585
2586 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2587 if (unlikely(!ab))
2588 return;
2589 audit_log_task(ab);
2590 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2591 signr, syscall_get_arch(), syscall,
2592 in_compat_syscall(), KSTK_EIP(current), code);
2593 audit_log_end(ab);
2594 }
2595
2596 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2597 int res)
2598 {
2599 struct audit_buffer *ab;
2600
2601 if (!audit_enabled)
2602 return;
2603
2604 ab = audit_log_start(audit_context(), GFP_KERNEL,
2605 AUDIT_CONFIG_CHANGE);
2606 if (unlikely(!ab))
2607 return;
2608
2609 audit_log_format(ab,
2610 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2611 names, old_names, res);
2612 audit_log_end(ab);
2613 }
2614
2615 struct list_head *audit_killed_trees(void)
2616 {
2617 struct audit_context *ctx = audit_context();
2618 if (likely(!ctx || !ctx->in_syscall))
2619 return NULL;
2620 return &ctx->killed_trees;
2621 }