]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/bpf/btf.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / kernel / bpf / btf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28
29 #include <net/netfilter/nf_bpf_link.h>
30
31 #include <net/sock.h>
32 #include <net/xdp.h>
33 #include "../tools/lib/bpf/relo_core.h"
34
35 /* BTF (BPF Type Format) is the meta data format which describes
36 * the data types of BPF program/map. Hence, it basically focus
37 * on the C programming language which the modern BPF is primary
38 * using.
39 *
40 * ELF Section:
41 * ~~~~~~~~~~~
42 * The BTF data is stored under the ".BTF" ELF section
43 *
44 * struct btf_type:
45 * ~~~~~~~~~~~~~~~
46 * Each 'struct btf_type' object describes a C data type.
47 * Depending on the type it is describing, a 'struct btf_type'
48 * object may be followed by more data. F.e.
49 * To describe an array, 'struct btf_type' is followed by
50 * 'struct btf_array'.
51 *
52 * 'struct btf_type' and any extra data following it are
53 * 4 bytes aligned.
54 *
55 * Type section:
56 * ~~~~~~~~~~~~~
57 * The BTF type section contains a list of 'struct btf_type' objects.
58 * Each one describes a C type. Recall from the above section
59 * that a 'struct btf_type' object could be immediately followed by extra
60 * data in order to describe some particular C types.
61 *
62 * type_id:
63 * ~~~~~~~
64 * Each btf_type object is identified by a type_id. The type_id
65 * is implicitly implied by the location of the btf_type object in
66 * the BTF type section. The first one has type_id 1. The second
67 * one has type_id 2...etc. Hence, an earlier btf_type has
68 * a smaller type_id.
69 *
70 * A btf_type object may refer to another btf_type object by using
71 * type_id (i.e. the "type" in the "struct btf_type").
72 *
73 * NOTE that we cannot assume any reference-order.
74 * A btf_type object can refer to an earlier btf_type object
75 * but it can also refer to a later btf_type object.
76 *
77 * For example, to describe "const void *". A btf_type
78 * object describing "const" may refer to another btf_type
79 * object describing "void *". This type-reference is done
80 * by specifying type_id:
81 *
82 * [1] CONST (anon) type_id=2
83 * [2] PTR (anon) type_id=0
84 *
85 * The above is the btf_verifier debug log:
86 * - Each line started with "[?]" is a btf_type object
87 * - [?] is the type_id of the btf_type object.
88 * - CONST/PTR is the BTF_KIND_XXX
89 * - "(anon)" is the name of the type. It just
90 * happens that CONST and PTR has no name.
91 * - type_id=XXX is the 'u32 type' in btf_type
92 *
93 * NOTE: "void" has type_id 0
94 *
95 * String section:
96 * ~~~~~~~~~~~~~~
97 * The BTF string section contains the names used by the type section.
98 * Each string is referred by an "offset" from the beginning of the
99 * string section.
100 *
101 * Each string is '\0' terminated.
102 *
103 * The first character in the string section must be '\0'
104 * which is used to mean 'anonymous'. Some btf_type may not
105 * have a name.
106 */
107
108 /* BTF verification:
109 *
110 * To verify BTF data, two passes are needed.
111 *
112 * Pass #1
113 * ~~~~~~~
114 * The first pass is to collect all btf_type objects to
115 * an array: "btf->types".
116 *
117 * Depending on the C type that a btf_type is describing,
118 * a btf_type may be followed by extra data. We don't know
119 * how many btf_type is there, and more importantly we don't
120 * know where each btf_type is located in the type section.
121 *
122 * Without knowing the location of each type_id, most verifications
123 * cannot be done. e.g. an earlier btf_type may refer to a later
124 * btf_type (recall the "const void *" above), so we cannot
125 * check this type-reference in the first pass.
126 *
127 * In the first pass, it still does some verifications (e.g.
128 * checking the name is a valid offset to the string section).
129 *
130 * Pass #2
131 * ~~~~~~~
132 * The main focus is to resolve a btf_type that is referring
133 * to another type.
134 *
135 * We have to ensure the referring type:
136 * 1) does exist in the BTF (i.e. in btf->types[])
137 * 2) does not cause a loop:
138 * struct A {
139 * struct B b;
140 * };
141 *
142 * struct B {
143 * struct A a;
144 * };
145 *
146 * btf_type_needs_resolve() decides if a btf_type needs
147 * to be resolved.
148 *
149 * The needs_resolve type implements the "resolve()" ops which
150 * essentially does a DFS and detects backedge.
151 *
152 * During resolve (or DFS), different C types have different
153 * "RESOLVED" conditions.
154 *
155 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
156 * members because a member is always referring to another
157 * type. A struct's member can be treated as "RESOLVED" if
158 * it is referring to a BTF_KIND_PTR. Otherwise, the
159 * following valid C struct would be rejected:
160 *
161 * struct A {
162 * int m;
163 * struct A *a;
164 * };
165 *
166 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
167 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
168 * detect a pointer loop, e.g.:
169 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
170 * ^ |
171 * +-----------------------------------------+
172 *
173 */
174
175 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
176 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
177 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
178 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
179 #define BITS_ROUNDUP_BYTES(bits) \
180 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
181
182 #define BTF_INFO_MASK 0x9f00ffff
183 #define BTF_INT_MASK 0x0fffffff
184 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
185 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
186
187 /* 16MB for 64k structs and each has 16 members and
188 * a few MB spaces for the string section.
189 * The hard limit is S32_MAX.
190 */
191 #define BTF_MAX_SIZE (16 * 1024 * 1024)
192
193 #define for_each_member_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_member(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
198 #define for_each_vsi_from(i, from, struct_type, member) \
199 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
200 i < btf_type_vlen(struct_type); \
201 i++, member++)
202
203 DEFINE_IDR(btf_idr);
204 DEFINE_SPINLOCK(btf_idr_lock);
205
206 enum btf_kfunc_hook {
207 BTF_KFUNC_HOOK_COMMON,
208 BTF_KFUNC_HOOK_XDP,
209 BTF_KFUNC_HOOK_TC,
210 BTF_KFUNC_HOOK_STRUCT_OPS,
211 BTF_KFUNC_HOOK_TRACING,
212 BTF_KFUNC_HOOK_SYSCALL,
213 BTF_KFUNC_HOOK_FMODRET,
214 BTF_KFUNC_HOOK_CGROUP_SKB,
215 BTF_KFUNC_HOOK_SCHED_ACT,
216 BTF_KFUNC_HOOK_SK_SKB,
217 BTF_KFUNC_HOOK_SOCKET_FILTER,
218 BTF_KFUNC_HOOK_LWT,
219 BTF_KFUNC_HOOK_NETFILTER,
220 BTF_KFUNC_HOOK_MAX,
221 };
222
223 enum {
224 BTF_KFUNC_SET_MAX_CNT = 256,
225 BTF_DTOR_KFUNC_MAX_CNT = 256,
226 BTF_KFUNC_FILTER_MAX_CNT = 16,
227 };
228
229 struct btf_kfunc_hook_filter {
230 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
231 u32 nr_filters;
232 };
233
234 struct btf_kfunc_set_tab {
235 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
236 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
237 };
238
239 struct btf_id_dtor_kfunc_tab {
240 u32 cnt;
241 struct btf_id_dtor_kfunc dtors[];
242 };
243
244 struct btf {
245 void *data;
246 struct btf_type **types;
247 u32 *resolved_ids;
248 u32 *resolved_sizes;
249 const char *strings;
250 void *nohdr_data;
251 struct btf_header hdr;
252 u32 nr_types; /* includes VOID for base BTF */
253 u32 types_size;
254 u32 data_size;
255 refcount_t refcnt;
256 u32 id;
257 struct rcu_head rcu;
258 struct btf_kfunc_set_tab *kfunc_set_tab;
259 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
260 struct btf_struct_metas *struct_meta_tab;
261
262 /* split BTF support */
263 struct btf *base_btf;
264 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
265 u32 start_str_off; /* first string offset (0 for base BTF) */
266 char name[MODULE_NAME_LEN];
267 bool kernel_btf;
268 };
269
270 enum verifier_phase {
271 CHECK_META,
272 CHECK_TYPE,
273 };
274
275 struct resolve_vertex {
276 const struct btf_type *t;
277 u32 type_id;
278 u16 next_member;
279 };
280
281 enum visit_state {
282 NOT_VISITED,
283 VISITED,
284 RESOLVED,
285 };
286
287 enum resolve_mode {
288 RESOLVE_TBD, /* To Be Determined */
289 RESOLVE_PTR, /* Resolving for Pointer */
290 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
291 * or array
292 */
293 };
294
295 #define MAX_RESOLVE_DEPTH 32
296
297 struct btf_sec_info {
298 u32 off;
299 u32 len;
300 };
301
302 struct btf_verifier_env {
303 struct btf *btf;
304 u8 *visit_states;
305 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
306 struct bpf_verifier_log log;
307 u32 log_type_id;
308 u32 top_stack;
309 enum verifier_phase phase;
310 enum resolve_mode resolve_mode;
311 };
312
313 static const char * const btf_kind_str[NR_BTF_KINDS] = {
314 [BTF_KIND_UNKN] = "UNKNOWN",
315 [BTF_KIND_INT] = "INT",
316 [BTF_KIND_PTR] = "PTR",
317 [BTF_KIND_ARRAY] = "ARRAY",
318 [BTF_KIND_STRUCT] = "STRUCT",
319 [BTF_KIND_UNION] = "UNION",
320 [BTF_KIND_ENUM] = "ENUM",
321 [BTF_KIND_FWD] = "FWD",
322 [BTF_KIND_TYPEDEF] = "TYPEDEF",
323 [BTF_KIND_VOLATILE] = "VOLATILE",
324 [BTF_KIND_CONST] = "CONST",
325 [BTF_KIND_RESTRICT] = "RESTRICT",
326 [BTF_KIND_FUNC] = "FUNC",
327 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
328 [BTF_KIND_VAR] = "VAR",
329 [BTF_KIND_DATASEC] = "DATASEC",
330 [BTF_KIND_FLOAT] = "FLOAT",
331 [BTF_KIND_DECL_TAG] = "DECL_TAG",
332 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
333 [BTF_KIND_ENUM64] = "ENUM64",
334 };
335
336 const char *btf_type_str(const struct btf_type *t)
337 {
338 return btf_kind_str[BTF_INFO_KIND(t->info)];
339 }
340
341 /* Chunk size we use in safe copy of data to be shown. */
342 #define BTF_SHOW_OBJ_SAFE_SIZE 32
343
344 /*
345 * This is the maximum size of a base type value (equivalent to a
346 * 128-bit int); if we are at the end of our safe buffer and have
347 * less than 16 bytes space we can't be assured of being able
348 * to copy the next type safely, so in such cases we will initiate
349 * a new copy.
350 */
351 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
352
353 /* Type name size */
354 #define BTF_SHOW_NAME_SIZE 80
355
356 /*
357 * The suffix of a type that indicates it cannot alias another type when
358 * comparing BTF IDs for kfunc invocations.
359 */
360 #define NOCAST_ALIAS_SUFFIX "___init"
361
362 /*
363 * Common data to all BTF show operations. Private show functions can add
364 * their own data to a structure containing a struct btf_show and consult it
365 * in the show callback. See btf_type_show() below.
366 *
367 * One challenge with showing nested data is we want to skip 0-valued
368 * data, but in order to figure out whether a nested object is all zeros
369 * we need to walk through it. As a result, we need to make two passes
370 * when handling structs, unions and arrays; the first path simply looks
371 * for nonzero data, while the second actually does the display. The first
372 * pass is signalled by show->state.depth_check being set, and if we
373 * encounter a non-zero value we set show->state.depth_to_show to
374 * the depth at which we encountered it. When we have completed the
375 * first pass, we will know if anything needs to be displayed if
376 * depth_to_show > depth. See btf_[struct,array]_show() for the
377 * implementation of this.
378 *
379 * Another problem is we want to ensure the data for display is safe to
380 * access. To support this, the anonymous "struct {} obj" tracks the data
381 * object and our safe copy of it. We copy portions of the data needed
382 * to the object "copy" buffer, but because its size is limited to
383 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
384 * traverse larger objects for display.
385 *
386 * The various data type show functions all start with a call to
387 * btf_show_start_type() which returns a pointer to the safe copy
388 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
389 * raw data itself). btf_show_obj_safe() is responsible for
390 * using copy_from_kernel_nofault() to update the safe data if necessary
391 * as we traverse the object's data. skbuff-like semantics are
392 * used:
393 *
394 * - obj.head points to the start of the toplevel object for display
395 * - obj.size is the size of the toplevel object
396 * - obj.data points to the current point in the original data at
397 * which our safe data starts. obj.data will advance as we copy
398 * portions of the data.
399 *
400 * In most cases a single copy will suffice, but larger data structures
401 * such as "struct task_struct" will require many copies. The logic in
402 * btf_show_obj_safe() handles the logic that determines if a new
403 * copy_from_kernel_nofault() is needed.
404 */
405 struct btf_show {
406 u64 flags;
407 void *target; /* target of show operation (seq file, buffer) */
408 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
409 const struct btf *btf;
410 /* below are used during iteration */
411 struct {
412 u8 depth;
413 u8 depth_to_show;
414 u8 depth_check;
415 u8 array_member:1,
416 array_terminated:1;
417 u16 array_encoding;
418 u32 type_id;
419 int status; /* non-zero for error */
420 const struct btf_type *type;
421 const struct btf_member *member;
422 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
423 } state;
424 struct {
425 u32 size;
426 void *head;
427 void *data;
428 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
429 } obj;
430 };
431
432 struct btf_kind_operations {
433 s32 (*check_meta)(struct btf_verifier_env *env,
434 const struct btf_type *t,
435 u32 meta_left);
436 int (*resolve)(struct btf_verifier_env *env,
437 const struct resolve_vertex *v);
438 int (*check_member)(struct btf_verifier_env *env,
439 const struct btf_type *struct_type,
440 const struct btf_member *member,
441 const struct btf_type *member_type);
442 int (*check_kflag_member)(struct btf_verifier_env *env,
443 const struct btf_type *struct_type,
444 const struct btf_member *member,
445 const struct btf_type *member_type);
446 void (*log_details)(struct btf_verifier_env *env,
447 const struct btf_type *t);
448 void (*show)(const struct btf *btf, const struct btf_type *t,
449 u32 type_id, void *data, u8 bits_offsets,
450 struct btf_show *show);
451 };
452
453 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
454 static struct btf_type btf_void;
455
456 static int btf_resolve(struct btf_verifier_env *env,
457 const struct btf_type *t, u32 type_id);
458
459 static int btf_func_check(struct btf_verifier_env *env,
460 const struct btf_type *t);
461
462 static bool btf_type_is_modifier(const struct btf_type *t)
463 {
464 /* Some of them is not strictly a C modifier
465 * but they are grouped into the same bucket
466 * for BTF concern:
467 * A type (t) that refers to another
468 * type through t->type AND its size cannot
469 * be determined without following the t->type.
470 *
471 * ptr does not fall into this bucket
472 * because its size is always sizeof(void *).
473 */
474 switch (BTF_INFO_KIND(t->info)) {
475 case BTF_KIND_TYPEDEF:
476 case BTF_KIND_VOLATILE:
477 case BTF_KIND_CONST:
478 case BTF_KIND_RESTRICT:
479 case BTF_KIND_TYPE_TAG:
480 return true;
481 }
482
483 return false;
484 }
485
486 bool btf_type_is_void(const struct btf_type *t)
487 {
488 return t == &btf_void;
489 }
490
491 static bool btf_type_is_fwd(const struct btf_type *t)
492 {
493 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
494 }
495
496 static bool btf_type_is_datasec(const struct btf_type *t)
497 {
498 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
499 }
500
501 static bool btf_type_is_decl_tag(const struct btf_type *t)
502 {
503 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
504 }
505
506 static bool btf_type_nosize(const struct btf_type *t)
507 {
508 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
509 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
510 btf_type_is_decl_tag(t);
511 }
512
513 static bool btf_type_nosize_or_null(const struct btf_type *t)
514 {
515 return !t || btf_type_nosize(t);
516 }
517
518 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
519 {
520 return btf_type_is_func(t) || btf_type_is_struct(t) ||
521 btf_type_is_var(t) || btf_type_is_typedef(t);
522 }
523
524 u32 btf_nr_types(const struct btf *btf)
525 {
526 u32 total = 0;
527
528 while (btf) {
529 total += btf->nr_types;
530 btf = btf->base_btf;
531 }
532
533 return total;
534 }
535
536 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
537 {
538 const struct btf_type *t;
539 const char *tname;
540 u32 i, total;
541
542 total = btf_nr_types(btf);
543 for (i = 1; i < total; i++) {
544 t = btf_type_by_id(btf, i);
545 if (BTF_INFO_KIND(t->info) != kind)
546 continue;
547
548 tname = btf_name_by_offset(btf, t->name_off);
549 if (!strcmp(tname, name))
550 return i;
551 }
552
553 return -ENOENT;
554 }
555
556 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
557 {
558 struct btf *btf;
559 s32 ret;
560 int id;
561
562 btf = bpf_get_btf_vmlinux();
563 if (IS_ERR(btf))
564 return PTR_ERR(btf);
565 if (!btf)
566 return -EINVAL;
567
568 ret = btf_find_by_name_kind(btf, name, kind);
569 /* ret is never zero, since btf_find_by_name_kind returns
570 * positive btf_id or negative error.
571 */
572 if (ret > 0) {
573 btf_get(btf);
574 *btf_p = btf;
575 return ret;
576 }
577
578 /* If name is not found in vmlinux's BTF then search in module's BTFs */
579 spin_lock_bh(&btf_idr_lock);
580 idr_for_each_entry(&btf_idr, btf, id) {
581 if (!btf_is_module(btf))
582 continue;
583 /* linear search could be slow hence unlock/lock
584 * the IDR to avoiding holding it for too long
585 */
586 btf_get(btf);
587 spin_unlock_bh(&btf_idr_lock);
588 ret = btf_find_by_name_kind(btf, name, kind);
589 if (ret > 0) {
590 *btf_p = btf;
591 return ret;
592 }
593 btf_put(btf);
594 spin_lock_bh(&btf_idr_lock);
595 }
596 spin_unlock_bh(&btf_idr_lock);
597 return ret;
598 }
599
600 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
601 u32 id, u32 *res_id)
602 {
603 const struct btf_type *t = btf_type_by_id(btf, id);
604
605 while (btf_type_is_modifier(t)) {
606 id = t->type;
607 t = btf_type_by_id(btf, t->type);
608 }
609
610 if (res_id)
611 *res_id = id;
612
613 return t;
614 }
615
616 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
617 u32 id, u32 *res_id)
618 {
619 const struct btf_type *t;
620
621 t = btf_type_skip_modifiers(btf, id, NULL);
622 if (!btf_type_is_ptr(t))
623 return NULL;
624
625 return btf_type_skip_modifiers(btf, t->type, res_id);
626 }
627
628 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
629 u32 id, u32 *res_id)
630 {
631 const struct btf_type *ptype;
632
633 ptype = btf_type_resolve_ptr(btf, id, res_id);
634 if (ptype && btf_type_is_func_proto(ptype))
635 return ptype;
636
637 return NULL;
638 }
639
640 /* Types that act only as a source, not sink or intermediate
641 * type when resolving.
642 */
643 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
644 {
645 return btf_type_is_var(t) ||
646 btf_type_is_decl_tag(t) ||
647 btf_type_is_datasec(t);
648 }
649
650 /* What types need to be resolved?
651 *
652 * btf_type_is_modifier() is an obvious one.
653 *
654 * btf_type_is_struct() because its member refers to
655 * another type (through member->type).
656 *
657 * btf_type_is_var() because the variable refers to
658 * another type. btf_type_is_datasec() holds multiple
659 * btf_type_is_var() types that need resolving.
660 *
661 * btf_type_is_array() because its element (array->type)
662 * refers to another type. Array can be thought of a
663 * special case of struct while array just has the same
664 * member-type repeated by array->nelems of times.
665 */
666 static bool btf_type_needs_resolve(const struct btf_type *t)
667 {
668 return btf_type_is_modifier(t) ||
669 btf_type_is_ptr(t) ||
670 btf_type_is_struct(t) ||
671 btf_type_is_array(t) ||
672 btf_type_is_var(t) ||
673 btf_type_is_func(t) ||
674 btf_type_is_decl_tag(t) ||
675 btf_type_is_datasec(t);
676 }
677
678 /* t->size can be used */
679 static bool btf_type_has_size(const struct btf_type *t)
680 {
681 switch (BTF_INFO_KIND(t->info)) {
682 case BTF_KIND_INT:
683 case BTF_KIND_STRUCT:
684 case BTF_KIND_UNION:
685 case BTF_KIND_ENUM:
686 case BTF_KIND_DATASEC:
687 case BTF_KIND_FLOAT:
688 case BTF_KIND_ENUM64:
689 return true;
690 }
691
692 return false;
693 }
694
695 static const char *btf_int_encoding_str(u8 encoding)
696 {
697 if (encoding == 0)
698 return "(none)";
699 else if (encoding == BTF_INT_SIGNED)
700 return "SIGNED";
701 else if (encoding == BTF_INT_CHAR)
702 return "CHAR";
703 else if (encoding == BTF_INT_BOOL)
704 return "BOOL";
705 else
706 return "UNKN";
707 }
708
709 static u32 btf_type_int(const struct btf_type *t)
710 {
711 return *(u32 *)(t + 1);
712 }
713
714 static const struct btf_array *btf_type_array(const struct btf_type *t)
715 {
716 return (const struct btf_array *)(t + 1);
717 }
718
719 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
720 {
721 return (const struct btf_enum *)(t + 1);
722 }
723
724 static const struct btf_var *btf_type_var(const struct btf_type *t)
725 {
726 return (const struct btf_var *)(t + 1);
727 }
728
729 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
730 {
731 return (const struct btf_decl_tag *)(t + 1);
732 }
733
734 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
735 {
736 return (const struct btf_enum64 *)(t + 1);
737 }
738
739 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
740 {
741 return kind_ops[BTF_INFO_KIND(t->info)];
742 }
743
744 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
745 {
746 if (!BTF_STR_OFFSET_VALID(offset))
747 return false;
748
749 while (offset < btf->start_str_off)
750 btf = btf->base_btf;
751
752 offset -= btf->start_str_off;
753 return offset < btf->hdr.str_len;
754 }
755
756 static bool __btf_name_char_ok(char c, bool first)
757 {
758 if ((first ? !isalpha(c) :
759 !isalnum(c)) &&
760 c != '_' &&
761 c != '.')
762 return false;
763 return true;
764 }
765
766 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
767 {
768 while (offset < btf->start_str_off)
769 btf = btf->base_btf;
770
771 offset -= btf->start_str_off;
772 if (offset < btf->hdr.str_len)
773 return &btf->strings[offset];
774
775 return NULL;
776 }
777
778 static bool __btf_name_valid(const struct btf *btf, u32 offset)
779 {
780 /* offset must be valid */
781 const char *src = btf_str_by_offset(btf, offset);
782 const char *src_limit;
783
784 if (!__btf_name_char_ok(*src, true))
785 return false;
786
787 /* set a limit on identifier length */
788 src_limit = src + KSYM_NAME_LEN;
789 src++;
790 while (*src && src < src_limit) {
791 if (!__btf_name_char_ok(*src, false))
792 return false;
793 src++;
794 }
795
796 return !*src;
797 }
798
799 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
800 {
801 return __btf_name_valid(btf, offset);
802 }
803
804 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
805 {
806 return __btf_name_valid(btf, offset);
807 }
808
809 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
810 {
811 const char *name;
812
813 if (!offset)
814 return "(anon)";
815
816 name = btf_str_by_offset(btf, offset);
817 return name ?: "(invalid-name-offset)";
818 }
819
820 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
821 {
822 return btf_str_by_offset(btf, offset);
823 }
824
825 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
826 {
827 while (type_id < btf->start_id)
828 btf = btf->base_btf;
829
830 type_id -= btf->start_id;
831 if (type_id >= btf->nr_types)
832 return NULL;
833 return btf->types[type_id];
834 }
835 EXPORT_SYMBOL_GPL(btf_type_by_id);
836
837 /*
838 * Regular int is not a bit field and it must be either
839 * u8/u16/u32/u64 or __int128.
840 */
841 static bool btf_type_int_is_regular(const struct btf_type *t)
842 {
843 u8 nr_bits, nr_bytes;
844 u32 int_data;
845
846 int_data = btf_type_int(t);
847 nr_bits = BTF_INT_BITS(int_data);
848 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
849 if (BITS_PER_BYTE_MASKED(nr_bits) ||
850 BTF_INT_OFFSET(int_data) ||
851 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
852 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
853 nr_bytes != (2 * sizeof(u64)))) {
854 return false;
855 }
856
857 return true;
858 }
859
860 /*
861 * Check that given struct member is a regular int with expected
862 * offset and size.
863 */
864 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
865 const struct btf_member *m,
866 u32 expected_offset, u32 expected_size)
867 {
868 const struct btf_type *t;
869 u32 id, int_data;
870 u8 nr_bits;
871
872 id = m->type;
873 t = btf_type_id_size(btf, &id, NULL);
874 if (!t || !btf_type_is_int(t))
875 return false;
876
877 int_data = btf_type_int(t);
878 nr_bits = BTF_INT_BITS(int_data);
879 if (btf_type_kflag(s)) {
880 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
881 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
882
883 /* if kflag set, int should be a regular int and
884 * bit offset should be at byte boundary.
885 */
886 return !bitfield_size &&
887 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
888 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
889 }
890
891 if (BTF_INT_OFFSET(int_data) ||
892 BITS_PER_BYTE_MASKED(m->offset) ||
893 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
894 BITS_PER_BYTE_MASKED(nr_bits) ||
895 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
896 return false;
897
898 return true;
899 }
900
901 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
902 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
903 u32 id)
904 {
905 const struct btf_type *t = btf_type_by_id(btf, id);
906
907 while (btf_type_is_modifier(t) &&
908 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
909 t = btf_type_by_id(btf, t->type);
910 }
911
912 return t;
913 }
914
915 #define BTF_SHOW_MAX_ITER 10
916
917 #define BTF_KIND_BIT(kind) (1ULL << kind)
918
919 /*
920 * Populate show->state.name with type name information.
921 * Format of type name is
922 *
923 * [.member_name = ] (type_name)
924 */
925 static const char *btf_show_name(struct btf_show *show)
926 {
927 /* BTF_MAX_ITER array suffixes "[]" */
928 const char *array_suffixes = "[][][][][][][][][][]";
929 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
930 /* BTF_MAX_ITER pointer suffixes "*" */
931 const char *ptr_suffixes = "**********";
932 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
933 const char *name = NULL, *prefix = "", *parens = "";
934 const struct btf_member *m = show->state.member;
935 const struct btf_type *t;
936 const struct btf_array *array;
937 u32 id = show->state.type_id;
938 const char *member = NULL;
939 bool show_member = false;
940 u64 kinds = 0;
941 int i;
942
943 show->state.name[0] = '\0';
944
945 /*
946 * Don't show type name if we're showing an array member;
947 * in that case we show the array type so don't need to repeat
948 * ourselves for each member.
949 */
950 if (show->state.array_member)
951 return "";
952
953 /* Retrieve member name, if any. */
954 if (m) {
955 member = btf_name_by_offset(show->btf, m->name_off);
956 show_member = strlen(member) > 0;
957 id = m->type;
958 }
959
960 /*
961 * Start with type_id, as we have resolved the struct btf_type *
962 * via btf_modifier_show() past the parent typedef to the child
963 * struct, int etc it is defined as. In such cases, the type_id
964 * still represents the starting type while the struct btf_type *
965 * in our show->state points at the resolved type of the typedef.
966 */
967 t = btf_type_by_id(show->btf, id);
968 if (!t)
969 return "";
970
971 /*
972 * The goal here is to build up the right number of pointer and
973 * array suffixes while ensuring the type name for a typedef
974 * is represented. Along the way we accumulate a list of
975 * BTF kinds we have encountered, since these will inform later
976 * display; for example, pointer types will not require an
977 * opening "{" for struct, we will just display the pointer value.
978 *
979 * We also want to accumulate the right number of pointer or array
980 * indices in the format string while iterating until we get to
981 * the typedef/pointee/array member target type.
982 *
983 * We start by pointing at the end of pointer and array suffix
984 * strings; as we accumulate pointers and arrays we move the pointer
985 * or array string backwards so it will show the expected number of
986 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
987 * and/or arrays and typedefs are supported as a precaution.
988 *
989 * We also want to get typedef name while proceeding to resolve
990 * type it points to so that we can add parentheses if it is a
991 * "typedef struct" etc.
992 */
993 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
994
995 switch (BTF_INFO_KIND(t->info)) {
996 case BTF_KIND_TYPEDEF:
997 if (!name)
998 name = btf_name_by_offset(show->btf,
999 t->name_off);
1000 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1001 id = t->type;
1002 break;
1003 case BTF_KIND_ARRAY:
1004 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1005 parens = "[";
1006 if (!t)
1007 return "";
1008 array = btf_type_array(t);
1009 if (array_suffix > array_suffixes)
1010 array_suffix -= 2;
1011 id = array->type;
1012 break;
1013 case BTF_KIND_PTR:
1014 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1015 if (ptr_suffix > ptr_suffixes)
1016 ptr_suffix -= 1;
1017 id = t->type;
1018 break;
1019 default:
1020 id = 0;
1021 break;
1022 }
1023 if (!id)
1024 break;
1025 t = btf_type_skip_qualifiers(show->btf, id);
1026 }
1027 /* We may not be able to represent this type; bail to be safe */
1028 if (i == BTF_SHOW_MAX_ITER)
1029 return "";
1030
1031 if (!name)
1032 name = btf_name_by_offset(show->btf, t->name_off);
1033
1034 switch (BTF_INFO_KIND(t->info)) {
1035 case BTF_KIND_STRUCT:
1036 case BTF_KIND_UNION:
1037 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1038 "struct" : "union";
1039 /* if it's an array of struct/union, parens is already set */
1040 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1041 parens = "{";
1042 break;
1043 case BTF_KIND_ENUM:
1044 case BTF_KIND_ENUM64:
1045 prefix = "enum";
1046 break;
1047 default:
1048 break;
1049 }
1050
1051 /* pointer does not require parens */
1052 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1053 parens = "";
1054 /* typedef does not require struct/union/enum prefix */
1055 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1056 prefix = "";
1057
1058 if (!name)
1059 name = "";
1060
1061 /* Even if we don't want type name info, we want parentheses etc */
1062 if (show->flags & BTF_SHOW_NONAME)
1063 snprintf(show->state.name, sizeof(show->state.name), "%s",
1064 parens);
1065 else
1066 snprintf(show->state.name, sizeof(show->state.name),
1067 "%s%s%s(%s%s%s%s%s%s)%s",
1068 /* first 3 strings comprise ".member = " */
1069 show_member ? "." : "",
1070 show_member ? member : "",
1071 show_member ? " = " : "",
1072 /* ...next is our prefix (struct, enum, etc) */
1073 prefix,
1074 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1075 /* ...this is the type name itself */
1076 name,
1077 /* ...suffixed by the appropriate '*', '[]' suffixes */
1078 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1079 array_suffix, parens);
1080
1081 return show->state.name;
1082 }
1083
1084 static const char *__btf_show_indent(struct btf_show *show)
1085 {
1086 const char *indents = " ";
1087 const char *indent = &indents[strlen(indents)];
1088
1089 if ((indent - show->state.depth) >= indents)
1090 return indent - show->state.depth;
1091 return indents;
1092 }
1093
1094 static const char *btf_show_indent(struct btf_show *show)
1095 {
1096 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1097 }
1098
1099 static const char *btf_show_newline(struct btf_show *show)
1100 {
1101 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1102 }
1103
1104 static const char *btf_show_delim(struct btf_show *show)
1105 {
1106 if (show->state.depth == 0)
1107 return "";
1108
1109 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1110 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1111 return "|";
1112
1113 return ",";
1114 }
1115
1116 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1117 {
1118 va_list args;
1119
1120 if (!show->state.depth_check) {
1121 va_start(args, fmt);
1122 show->showfn(show, fmt, args);
1123 va_end(args);
1124 }
1125 }
1126
1127 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1128 * format specifiers to the format specifier passed in; these do the work of
1129 * adding indentation, delimiters etc while the caller simply has to specify
1130 * the type value(s) in the format specifier + value(s).
1131 */
1132 #define btf_show_type_value(show, fmt, value) \
1133 do { \
1134 if ((value) != (__typeof__(value))0 || \
1135 (show->flags & BTF_SHOW_ZERO) || \
1136 show->state.depth == 0) { \
1137 btf_show(show, "%s%s" fmt "%s%s", \
1138 btf_show_indent(show), \
1139 btf_show_name(show), \
1140 value, btf_show_delim(show), \
1141 btf_show_newline(show)); \
1142 if (show->state.depth > show->state.depth_to_show) \
1143 show->state.depth_to_show = show->state.depth; \
1144 } \
1145 } while (0)
1146
1147 #define btf_show_type_values(show, fmt, ...) \
1148 do { \
1149 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1150 btf_show_name(show), \
1151 __VA_ARGS__, btf_show_delim(show), \
1152 btf_show_newline(show)); \
1153 if (show->state.depth > show->state.depth_to_show) \
1154 show->state.depth_to_show = show->state.depth; \
1155 } while (0)
1156
1157 /* How much is left to copy to safe buffer after @data? */
1158 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1159 {
1160 return show->obj.head + show->obj.size - data;
1161 }
1162
1163 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1164 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1165 {
1166 return data >= show->obj.data &&
1167 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1168 }
1169
1170 /*
1171 * If object pointed to by @data of @size falls within our safe buffer, return
1172 * the equivalent pointer to the same safe data. Assumes
1173 * copy_from_kernel_nofault() has already happened and our safe buffer is
1174 * populated.
1175 */
1176 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1177 {
1178 if (btf_show_obj_is_safe(show, data, size))
1179 return show->obj.safe + (data - show->obj.data);
1180 return NULL;
1181 }
1182
1183 /*
1184 * Return a safe-to-access version of data pointed to by @data.
1185 * We do this by copying the relevant amount of information
1186 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1187 *
1188 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1189 * safe copy is needed.
1190 *
1191 * Otherwise we need to determine if we have the required amount
1192 * of data (determined by the @data pointer and the size of the
1193 * largest base type we can encounter (represented by
1194 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1195 * that we will be able to print some of the current object,
1196 * and if more is needed a copy will be triggered.
1197 * Some objects such as structs will not fit into the buffer;
1198 * in such cases additional copies when we iterate over their
1199 * members may be needed.
1200 *
1201 * btf_show_obj_safe() is used to return a safe buffer for
1202 * btf_show_start_type(); this ensures that as we recurse into
1203 * nested types we always have safe data for the given type.
1204 * This approach is somewhat wasteful; it's possible for example
1205 * that when iterating over a large union we'll end up copying the
1206 * same data repeatedly, but the goal is safety not performance.
1207 * We use stack data as opposed to per-CPU buffers because the
1208 * iteration over a type can take some time, and preemption handling
1209 * would greatly complicate use of the safe buffer.
1210 */
1211 static void *btf_show_obj_safe(struct btf_show *show,
1212 const struct btf_type *t,
1213 void *data)
1214 {
1215 const struct btf_type *rt;
1216 int size_left, size;
1217 void *safe = NULL;
1218
1219 if (show->flags & BTF_SHOW_UNSAFE)
1220 return data;
1221
1222 rt = btf_resolve_size(show->btf, t, &size);
1223 if (IS_ERR(rt)) {
1224 show->state.status = PTR_ERR(rt);
1225 return NULL;
1226 }
1227
1228 /*
1229 * Is this toplevel object? If so, set total object size and
1230 * initialize pointers. Otherwise check if we still fall within
1231 * our safe object data.
1232 */
1233 if (show->state.depth == 0) {
1234 show->obj.size = size;
1235 show->obj.head = data;
1236 } else {
1237 /*
1238 * If the size of the current object is > our remaining
1239 * safe buffer we _may_ need to do a new copy. However
1240 * consider the case of a nested struct; it's size pushes
1241 * us over the safe buffer limit, but showing any individual
1242 * struct members does not. In such cases, we don't need
1243 * to initiate a fresh copy yet; however we definitely need
1244 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1245 * in our buffer, regardless of the current object size.
1246 * The logic here is that as we resolve types we will
1247 * hit a base type at some point, and we need to be sure
1248 * the next chunk of data is safely available to display
1249 * that type info safely. We cannot rely on the size of
1250 * the current object here because it may be much larger
1251 * than our current buffer (e.g. task_struct is 8k).
1252 * All we want to do here is ensure that we can print the
1253 * next basic type, which we can if either
1254 * - the current type size is within the safe buffer; or
1255 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1256 * the safe buffer.
1257 */
1258 safe = __btf_show_obj_safe(show, data,
1259 min(size,
1260 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1261 }
1262
1263 /*
1264 * We need a new copy to our safe object, either because we haven't
1265 * yet copied and are initializing safe data, or because the data
1266 * we want falls outside the boundaries of the safe object.
1267 */
1268 if (!safe) {
1269 size_left = btf_show_obj_size_left(show, data);
1270 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1271 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1272 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1273 data, size_left);
1274 if (!show->state.status) {
1275 show->obj.data = data;
1276 safe = show->obj.safe;
1277 }
1278 }
1279
1280 return safe;
1281 }
1282
1283 /*
1284 * Set the type we are starting to show and return a safe data pointer
1285 * to be used for showing the associated data.
1286 */
1287 static void *btf_show_start_type(struct btf_show *show,
1288 const struct btf_type *t,
1289 u32 type_id, void *data)
1290 {
1291 show->state.type = t;
1292 show->state.type_id = type_id;
1293 show->state.name[0] = '\0';
1294
1295 return btf_show_obj_safe(show, t, data);
1296 }
1297
1298 static void btf_show_end_type(struct btf_show *show)
1299 {
1300 show->state.type = NULL;
1301 show->state.type_id = 0;
1302 show->state.name[0] = '\0';
1303 }
1304
1305 static void *btf_show_start_aggr_type(struct btf_show *show,
1306 const struct btf_type *t,
1307 u32 type_id, void *data)
1308 {
1309 void *safe_data = btf_show_start_type(show, t, type_id, data);
1310
1311 if (!safe_data)
1312 return safe_data;
1313
1314 btf_show(show, "%s%s%s", btf_show_indent(show),
1315 btf_show_name(show),
1316 btf_show_newline(show));
1317 show->state.depth++;
1318 return safe_data;
1319 }
1320
1321 static void btf_show_end_aggr_type(struct btf_show *show,
1322 const char *suffix)
1323 {
1324 show->state.depth--;
1325 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1326 btf_show_delim(show), btf_show_newline(show));
1327 btf_show_end_type(show);
1328 }
1329
1330 static void btf_show_start_member(struct btf_show *show,
1331 const struct btf_member *m)
1332 {
1333 show->state.member = m;
1334 }
1335
1336 static void btf_show_start_array_member(struct btf_show *show)
1337 {
1338 show->state.array_member = 1;
1339 btf_show_start_member(show, NULL);
1340 }
1341
1342 static void btf_show_end_member(struct btf_show *show)
1343 {
1344 show->state.member = NULL;
1345 }
1346
1347 static void btf_show_end_array_member(struct btf_show *show)
1348 {
1349 show->state.array_member = 0;
1350 btf_show_end_member(show);
1351 }
1352
1353 static void *btf_show_start_array_type(struct btf_show *show,
1354 const struct btf_type *t,
1355 u32 type_id,
1356 u16 array_encoding,
1357 void *data)
1358 {
1359 show->state.array_encoding = array_encoding;
1360 show->state.array_terminated = 0;
1361 return btf_show_start_aggr_type(show, t, type_id, data);
1362 }
1363
1364 static void btf_show_end_array_type(struct btf_show *show)
1365 {
1366 show->state.array_encoding = 0;
1367 show->state.array_terminated = 0;
1368 btf_show_end_aggr_type(show, "]");
1369 }
1370
1371 static void *btf_show_start_struct_type(struct btf_show *show,
1372 const struct btf_type *t,
1373 u32 type_id,
1374 void *data)
1375 {
1376 return btf_show_start_aggr_type(show, t, type_id, data);
1377 }
1378
1379 static void btf_show_end_struct_type(struct btf_show *show)
1380 {
1381 btf_show_end_aggr_type(show, "}");
1382 }
1383
1384 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1385 const char *fmt, ...)
1386 {
1387 va_list args;
1388
1389 va_start(args, fmt);
1390 bpf_verifier_vlog(log, fmt, args);
1391 va_end(args);
1392 }
1393
1394 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1395 const char *fmt, ...)
1396 {
1397 struct bpf_verifier_log *log = &env->log;
1398 va_list args;
1399
1400 if (!bpf_verifier_log_needed(log))
1401 return;
1402
1403 va_start(args, fmt);
1404 bpf_verifier_vlog(log, fmt, args);
1405 va_end(args);
1406 }
1407
1408 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1409 const struct btf_type *t,
1410 bool log_details,
1411 const char *fmt, ...)
1412 {
1413 struct bpf_verifier_log *log = &env->log;
1414 struct btf *btf = env->btf;
1415 va_list args;
1416
1417 if (!bpf_verifier_log_needed(log))
1418 return;
1419
1420 if (log->level == BPF_LOG_KERNEL) {
1421 /* btf verifier prints all types it is processing via
1422 * btf_verifier_log_type(..., fmt = NULL).
1423 * Skip those prints for in-kernel BTF verification.
1424 */
1425 if (!fmt)
1426 return;
1427
1428 /* Skip logging when loading module BTF with mismatches permitted */
1429 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1430 return;
1431 }
1432
1433 __btf_verifier_log(log, "[%u] %s %s%s",
1434 env->log_type_id,
1435 btf_type_str(t),
1436 __btf_name_by_offset(btf, t->name_off),
1437 log_details ? " " : "");
1438
1439 if (log_details)
1440 btf_type_ops(t)->log_details(env, t);
1441
1442 if (fmt && *fmt) {
1443 __btf_verifier_log(log, " ");
1444 va_start(args, fmt);
1445 bpf_verifier_vlog(log, fmt, args);
1446 va_end(args);
1447 }
1448
1449 __btf_verifier_log(log, "\n");
1450 }
1451
1452 #define btf_verifier_log_type(env, t, ...) \
1453 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1454 #define btf_verifier_log_basic(env, t, ...) \
1455 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1456
1457 __printf(4, 5)
1458 static void btf_verifier_log_member(struct btf_verifier_env *env,
1459 const struct btf_type *struct_type,
1460 const struct btf_member *member,
1461 const char *fmt, ...)
1462 {
1463 struct bpf_verifier_log *log = &env->log;
1464 struct btf *btf = env->btf;
1465 va_list args;
1466
1467 if (!bpf_verifier_log_needed(log))
1468 return;
1469
1470 if (log->level == BPF_LOG_KERNEL) {
1471 if (!fmt)
1472 return;
1473
1474 /* Skip logging when loading module BTF with mismatches permitted */
1475 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1476 return;
1477 }
1478
1479 /* The CHECK_META phase already did a btf dump.
1480 *
1481 * If member is logged again, it must hit an error in
1482 * parsing this member. It is useful to print out which
1483 * struct this member belongs to.
1484 */
1485 if (env->phase != CHECK_META)
1486 btf_verifier_log_type(env, struct_type, NULL);
1487
1488 if (btf_type_kflag(struct_type))
1489 __btf_verifier_log(log,
1490 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1491 __btf_name_by_offset(btf, member->name_off),
1492 member->type,
1493 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1494 BTF_MEMBER_BIT_OFFSET(member->offset));
1495 else
1496 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1497 __btf_name_by_offset(btf, member->name_off),
1498 member->type, member->offset);
1499
1500 if (fmt && *fmt) {
1501 __btf_verifier_log(log, " ");
1502 va_start(args, fmt);
1503 bpf_verifier_vlog(log, fmt, args);
1504 va_end(args);
1505 }
1506
1507 __btf_verifier_log(log, "\n");
1508 }
1509
1510 __printf(4, 5)
1511 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1512 const struct btf_type *datasec_type,
1513 const struct btf_var_secinfo *vsi,
1514 const char *fmt, ...)
1515 {
1516 struct bpf_verifier_log *log = &env->log;
1517 va_list args;
1518
1519 if (!bpf_verifier_log_needed(log))
1520 return;
1521 if (log->level == BPF_LOG_KERNEL && !fmt)
1522 return;
1523 if (env->phase != CHECK_META)
1524 btf_verifier_log_type(env, datasec_type, NULL);
1525
1526 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1527 vsi->type, vsi->offset, vsi->size);
1528 if (fmt && *fmt) {
1529 __btf_verifier_log(log, " ");
1530 va_start(args, fmt);
1531 bpf_verifier_vlog(log, fmt, args);
1532 va_end(args);
1533 }
1534
1535 __btf_verifier_log(log, "\n");
1536 }
1537
1538 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1539 u32 btf_data_size)
1540 {
1541 struct bpf_verifier_log *log = &env->log;
1542 const struct btf *btf = env->btf;
1543 const struct btf_header *hdr;
1544
1545 if (!bpf_verifier_log_needed(log))
1546 return;
1547
1548 if (log->level == BPF_LOG_KERNEL)
1549 return;
1550 hdr = &btf->hdr;
1551 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1552 __btf_verifier_log(log, "version: %u\n", hdr->version);
1553 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1554 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1555 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1556 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1557 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1558 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1559 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1560 }
1561
1562 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1563 {
1564 struct btf *btf = env->btf;
1565
1566 if (btf->types_size == btf->nr_types) {
1567 /* Expand 'types' array */
1568
1569 struct btf_type **new_types;
1570 u32 expand_by, new_size;
1571
1572 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1573 btf_verifier_log(env, "Exceeded max num of types");
1574 return -E2BIG;
1575 }
1576
1577 expand_by = max_t(u32, btf->types_size >> 2, 16);
1578 new_size = min_t(u32, BTF_MAX_TYPE,
1579 btf->types_size + expand_by);
1580
1581 new_types = kvcalloc(new_size, sizeof(*new_types),
1582 GFP_KERNEL | __GFP_NOWARN);
1583 if (!new_types)
1584 return -ENOMEM;
1585
1586 if (btf->nr_types == 0) {
1587 if (!btf->base_btf) {
1588 /* lazily init VOID type */
1589 new_types[0] = &btf_void;
1590 btf->nr_types++;
1591 }
1592 } else {
1593 memcpy(new_types, btf->types,
1594 sizeof(*btf->types) * btf->nr_types);
1595 }
1596
1597 kvfree(btf->types);
1598 btf->types = new_types;
1599 btf->types_size = new_size;
1600 }
1601
1602 btf->types[btf->nr_types++] = t;
1603
1604 return 0;
1605 }
1606
1607 static int btf_alloc_id(struct btf *btf)
1608 {
1609 int id;
1610
1611 idr_preload(GFP_KERNEL);
1612 spin_lock_bh(&btf_idr_lock);
1613 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1614 if (id > 0)
1615 btf->id = id;
1616 spin_unlock_bh(&btf_idr_lock);
1617 idr_preload_end();
1618
1619 if (WARN_ON_ONCE(!id))
1620 return -ENOSPC;
1621
1622 return id > 0 ? 0 : id;
1623 }
1624
1625 static void btf_free_id(struct btf *btf)
1626 {
1627 unsigned long flags;
1628
1629 /*
1630 * In map-in-map, calling map_delete_elem() on outer
1631 * map will call bpf_map_put on the inner map.
1632 * It will then eventually call btf_free_id()
1633 * on the inner map. Some of the map_delete_elem()
1634 * implementation may have irq disabled, so
1635 * we need to use the _irqsave() version instead
1636 * of the _bh() version.
1637 */
1638 spin_lock_irqsave(&btf_idr_lock, flags);
1639 idr_remove(&btf_idr, btf->id);
1640 spin_unlock_irqrestore(&btf_idr_lock, flags);
1641 }
1642
1643 static void btf_free_kfunc_set_tab(struct btf *btf)
1644 {
1645 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1646 int hook;
1647
1648 if (!tab)
1649 return;
1650 /* For module BTF, we directly assign the sets being registered, so
1651 * there is nothing to free except kfunc_set_tab.
1652 */
1653 if (btf_is_module(btf))
1654 goto free_tab;
1655 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1656 kfree(tab->sets[hook]);
1657 free_tab:
1658 kfree(tab);
1659 btf->kfunc_set_tab = NULL;
1660 }
1661
1662 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1663 {
1664 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1665
1666 if (!tab)
1667 return;
1668 kfree(tab);
1669 btf->dtor_kfunc_tab = NULL;
1670 }
1671
1672 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1673 {
1674 int i;
1675
1676 if (!tab)
1677 return;
1678 for (i = 0; i < tab->cnt; i++)
1679 btf_record_free(tab->types[i].record);
1680 kfree(tab);
1681 }
1682
1683 static void btf_free_struct_meta_tab(struct btf *btf)
1684 {
1685 struct btf_struct_metas *tab = btf->struct_meta_tab;
1686
1687 btf_struct_metas_free(tab);
1688 btf->struct_meta_tab = NULL;
1689 }
1690
1691 static void btf_free(struct btf *btf)
1692 {
1693 btf_free_struct_meta_tab(btf);
1694 btf_free_dtor_kfunc_tab(btf);
1695 btf_free_kfunc_set_tab(btf);
1696 kvfree(btf->types);
1697 kvfree(btf->resolved_sizes);
1698 kvfree(btf->resolved_ids);
1699 kvfree(btf->data);
1700 kfree(btf);
1701 }
1702
1703 static void btf_free_rcu(struct rcu_head *rcu)
1704 {
1705 struct btf *btf = container_of(rcu, struct btf, rcu);
1706
1707 btf_free(btf);
1708 }
1709
1710 void btf_get(struct btf *btf)
1711 {
1712 refcount_inc(&btf->refcnt);
1713 }
1714
1715 void btf_put(struct btf *btf)
1716 {
1717 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1718 btf_free_id(btf);
1719 call_rcu(&btf->rcu, btf_free_rcu);
1720 }
1721 }
1722
1723 static int env_resolve_init(struct btf_verifier_env *env)
1724 {
1725 struct btf *btf = env->btf;
1726 u32 nr_types = btf->nr_types;
1727 u32 *resolved_sizes = NULL;
1728 u32 *resolved_ids = NULL;
1729 u8 *visit_states = NULL;
1730
1731 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1732 GFP_KERNEL | __GFP_NOWARN);
1733 if (!resolved_sizes)
1734 goto nomem;
1735
1736 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1737 GFP_KERNEL | __GFP_NOWARN);
1738 if (!resolved_ids)
1739 goto nomem;
1740
1741 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1742 GFP_KERNEL | __GFP_NOWARN);
1743 if (!visit_states)
1744 goto nomem;
1745
1746 btf->resolved_sizes = resolved_sizes;
1747 btf->resolved_ids = resolved_ids;
1748 env->visit_states = visit_states;
1749
1750 return 0;
1751
1752 nomem:
1753 kvfree(resolved_sizes);
1754 kvfree(resolved_ids);
1755 kvfree(visit_states);
1756 return -ENOMEM;
1757 }
1758
1759 static void btf_verifier_env_free(struct btf_verifier_env *env)
1760 {
1761 kvfree(env->visit_states);
1762 kfree(env);
1763 }
1764
1765 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1766 const struct btf_type *next_type)
1767 {
1768 switch (env->resolve_mode) {
1769 case RESOLVE_TBD:
1770 /* int, enum or void is a sink */
1771 return !btf_type_needs_resolve(next_type);
1772 case RESOLVE_PTR:
1773 /* int, enum, void, struct, array, func or func_proto is a sink
1774 * for ptr
1775 */
1776 return !btf_type_is_modifier(next_type) &&
1777 !btf_type_is_ptr(next_type);
1778 case RESOLVE_STRUCT_OR_ARRAY:
1779 /* int, enum, void, ptr, func or func_proto is a sink
1780 * for struct and array
1781 */
1782 return !btf_type_is_modifier(next_type) &&
1783 !btf_type_is_array(next_type) &&
1784 !btf_type_is_struct(next_type);
1785 default:
1786 BUG();
1787 }
1788 }
1789
1790 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1791 u32 type_id)
1792 {
1793 /* base BTF types should be resolved by now */
1794 if (type_id < env->btf->start_id)
1795 return true;
1796
1797 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1798 }
1799
1800 static int env_stack_push(struct btf_verifier_env *env,
1801 const struct btf_type *t, u32 type_id)
1802 {
1803 const struct btf *btf = env->btf;
1804 struct resolve_vertex *v;
1805
1806 if (env->top_stack == MAX_RESOLVE_DEPTH)
1807 return -E2BIG;
1808
1809 if (type_id < btf->start_id
1810 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1811 return -EEXIST;
1812
1813 env->visit_states[type_id - btf->start_id] = VISITED;
1814
1815 v = &env->stack[env->top_stack++];
1816 v->t = t;
1817 v->type_id = type_id;
1818 v->next_member = 0;
1819
1820 if (env->resolve_mode == RESOLVE_TBD) {
1821 if (btf_type_is_ptr(t))
1822 env->resolve_mode = RESOLVE_PTR;
1823 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1824 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1825 }
1826
1827 return 0;
1828 }
1829
1830 static void env_stack_set_next_member(struct btf_verifier_env *env,
1831 u16 next_member)
1832 {
1833 env->stack[env->top_stack - 1].next_member = next_member;
1834 }
1835
1836 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1837 u32 resolved_type_id,
1838 u32 resolved_size)
1839 {
1840 u32 type_id = env->stack[--(env->top_stack)].type_id;
1841 struct btf *btf = env->btf;
1842
1843 type_id -= btf->start_id; /* adjust to local type id */
1844 btf->resolved_sizes[type_id] = resolved_size;
1845 btf->resolved_ids[type_id] = resolved_type_id;
1846 env->visit_states[type_id] = RESOLVED;
1847 }
1848
1849 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1850 {
1851 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1852 }
1853
1854 /* Resolve the size of a passed-in "type"
1855 *
1856 * type: is an array (e.g. u32 array[x][y])
1857 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1858 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1859 * corresponds to the return type.
1860 * *elem_type: u32
1861 * *elem_id: id of u32
1862 * *total_nelems: (x * y). Hence, individual elem size is
1863 * (*type_size / *total_nelems)
1864 * *type_id: id of type if it's changed within the function, 0 if not
1865 *
1866 * type: is not an array (e.g. const struct X)
1867 * return type: type "struct X"
1868 * *type_size: sizeof(struct X)
1869 * *elem_type: same as return type ("struct X")
1870 * *elem_id: 0
1871 * *total_nelems: 1
1872 * *type_id: id of type if it's changed within the function, 0 if not
1873 */
1874 static const struct btf_type *
1875 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1876 u32 *type_size, const struct btf_type **elem_type,
1877 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1878 {
1879 const struct btf_type *array_type = NULL;
1880 const struct btf_array *array = NULL;
1881 u32 i, size, nelems = 1, id = 0;
1882
1883 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1884 switch (BTF_INFO_KIND(type->info)) {
1885 /* type->size can be used */
1886 case BTF_KIND_INT:
1887 case BTF_KIND_STRUCT:
1888 case BTF_KIND_UNION:
1889 case BTF_KIND_ENUM:
1890 case BTF_KIND_FLOAT:
1891 case BTF_KIND_ENUM64:
1892 size = type->size;
1893 goto resolved;
1894
1895 case BTF_KIND_PTR:
1896 size = sizeof(void *);
1897 goto resolved;
1898
1899 /* Modifiers */
1900 case BTF_KIND_TYPEDEF:
1901 case BTF_KIND_VOLATILE:
1902 case BTF_KIND_CONST:
1903 case BTF_KIND_RESTRICT:
1904 case BTF_KIND_TYPE_TAG:
1905 id = type->type;
1906 type = btf_type_by_id(btf, type->type);
1907 break;
1908
1909 case BTF_KIND_ARRAY:
1910 if (!array_type)
1911 array_type = type;
1912 array = btf_type_array(type);
1913 if (nelems && array->nelems > U32_MAX / nelems)
1914 return ERR_PTR(-EINVAL);
1915 nelems *= array->nelems;
1916 type = btf_type_by_id(btf, array->type);
1917 break;
1918
1919 /* type without size */
1920 default:
1921 return ERR_PTR(-EINVAL);
1922 }
1923 }
1924
1925 return ERR_PTR(-EINVAL);
1926
1927 resolved:
1928 if (nelems && size > U32_MAX / nelems)
1929 return ERR_PTR(-EINVAL);
1930
1931 *type_size = nelems * size;
1932 if (total_nelems)
1933 *total_nelems = nelems;
1934 if (elem_type)
1935 *elem_type = type;
1936 if (elem_id)
1937 *elem_id = array ? array->type : 0;
1938 if (type_id && id)
1939 *type_id = id;
1940
1941 return array_type ? : type;
1942 }
1943
1944 const struct btf_type *
1945 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1946 u32 *type_size)
1947 {
1948 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1949 }
1950
1951 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1952 {
1953 while (type_id < btf->start_id)
1954 btf = btf->base_btf;
1955
1956 return btf->resolved_ids[type_id - btf->start_id];
1957 }
1958
1959 /* The input param "type_id" must point to a needs_resolve type */
1960 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1961 u32 *type_id)
1962 {
1963 *type_id = btf_resolved_type_id(btf, *type_id);
1964 return btf_type_by_id(btf, *type_id);
1965 }
1966
1967 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1968 {
1969 while (type_id < btf->start_id)
1970 btf = btf->base_btf;
1971
1972 return btf->resolved_sizes[type_id - btf->start_id];
1973 }
1974
1975 const struct btf_type *btf_type_id_size(const struct btf *btf,
1976 u32 *type_id, u32 *ret_size)
1977 {
1978 const struct btf_type *size_type;
1979 u32 size_type_id = *type_id;
1980 u32 size = 0;
1981
1982 size_type = btf_type_by_id(btf, size_type_id);
1983 if (btf_type_nosize_or_null(size_type))
1984 return NULL;
1985
1986 if (btf_type_has_size(size_type)) {
1987 size = size_type->size;
1988 } else if (btf_type_is_array(size_type)) {
1989 size = btf_resolved_type_size(btf, size_type_id);
1990 } else if (btf_type_is_ptr(size_type)) {
1991 size = sizeof(void *);
1992 } else {
1993 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1994 !btf_type_is_var(size_type)))
1995 return NULL;
1996
1997 size_type_id = btf_resolved_type_id(btf, size_type_id);
1998 size_type = btf_type_by_id(btf, size_type_id);
1999 if (btf_type_nosize_or_null(size_type))
2000 return NULL;
2001 else if (btf_type_has_size(size_type))
2002 size = size_type->size;
2003 else if (btf_type_is_array(size_type))
2004 size = btf_resolved_type_size(btf, size_type_id);
2005 else if (btf_type_is_ptr(size_type))
2006 size = sizeof(void *);
2007 else
2008 return NULL;
2009 }
2010
2011 *type_id = size_type_id;
2012 if (ret_size)
2013 *ret_size = size;
2014
2015 return size_type;
2016 }
2017
2018 static int btf_df_check_member(struct btf_verifier_env *env,
2019 const struct btf_type *struct_type,
2020 const struct btf_member *member,
2021 const struct btf_type *member_type)
2022 {
2023 btf_verifier_log_basic(env, struct_type,
2024 "Unsupported check_member");
2025 return -EINVAL;
2026 }
2027
2028 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2029 const struct btf_type *struct_type,
2030 const struct btf_member *member,
2031 const struct btf_type *member_type)
2032 {
2033 btf_verifier_log_basic(env, struct_type,
2034 "Unsupported check_kflag_member");
2035 return -EINVAL;
2036 }
2037
2038 /* Used for ptr, array struct/union and float type members.
2039 * int, enum and modifier types have their specific callback functions.
2040 */
2041 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2042 const struct btf_type *struct_type,
2043 const struct btf_member *member,
2044 const struct btf_type *member_type)
2045 {
2046 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2047 btf_verifier_log_member(env, struct_type, member,
2048 "Invalid member bitfield_size");
2049 return -EINVAL;
2050 }
2051
2052 /* bitfield size is 0, so member->offset represents bit offset only.
2053 * It is safe to call non kflag check_member variants.
2054 */
2055 return btf_type_ops(member_type)->check_member(env, struct_type,
2056 member,
2057 member_type);
2058 }
2059
2060 static int btf_df_resolve(struct btf_verifier_env *env,
2061 const struct resolve_vertex *v)
2062 {
2063 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2064 return -EINVAL;
2065 }
2066
2067 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2068 u32 type_id, void *data, u8 bits_offsets,
2069 struct btf_show *show)
2070 {
2071 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2072 }
2073
2074 static int btf_int_check_member(struct btf_verifier_env *env,
2075 const struct btf_type *struct_type,
2076 const struct btf_member *member,
2077 const struct btf_type *member_type)
2078 {
2079 u32 int_data = btf_type_int(member_type);
2080 u32 struct_bits_off = member->offset;
2081 u32 struct_size = struct_type->size;
2082 u32 nr_copy_bits;
2083 u32 bytes_offset;
2084
2085 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2086 btf_verifier_log_member(env, struct_type, member,
2087 "bits_offset exceeds U32_MAX");
2088 return -EINVAL;
2089 }
2090
2091 struct_bits_off += BTF_INT_OFFSET(int_data);
2092 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2093 nr_copy_bits = BTF_INT_BITS(int_data) +
2094 BITS_PER_BYTE_MASKED(struct_bits_off);
2095
2096 if (nr_copy_bits > BITS_PER_U128) {
2097 btf_verifier_log_member(env, struct_type, member,
2098 "nr_copy_bits exceeds 128");
2099 return -EINVAL;
2100 }
2101
2102 if (struct_size < bytes_offset ||
2103 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2104 btf_verifier_log_member(env, struct_type, member,
2105 "Member exceeds struct_size");
2106 return -EINVAL;
2107 }
2108
2109 return 0;
2110 }
2111
2112 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2113 const struct btf_type *struct_type,
2114 const struct btf_member *member,
2115 const struct btf_type *member_type)
2116 {
2117 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2118 u32 int_data = btf_type_int(member_type);
2119 u32 struct_size = struct_type->size;
2120 u32 nr_copy_bits;
2121
2122 /* a regular int type is required for the kflag int member */
2123 if (!btf_type_int_is_regular(member_type)) {
2124 btf_verifier_log_member(env, struct_type, member,
2125 "Invalid member base type");
2126 return -EINVAL;
2127 }
2128
2129 /* check sanity of bitfield size */
2130 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2131 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2132 nr_int_data_bits = BTF_INT_BITS(int_data);
2133 if (!nr_bits) {
2134 /* Not a bitfield member, member offset must be at byte
2135 * boundary.
2136 */
2137 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2138 btf_verifier_log_member(env, struct_type, member,
2139 "Invalid member offset");
2140 return -EINVAL;
2141 }
2142
2143 nr_bits = nr_int_data_bits;
2144 } else if (nr_bits > nr_int_data_bits) {
2145 btf_verifier_log_member(env, struct_type, member,
2146 "Invalid member bitfield_size");
2147 return -EINVAL;
2148 }
2149
2150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2152 if (nr_copy_bits > BITS_PER_U128) {
2153 btf_verifier_log_member(env, struct_type, member,
2154 "nr_copy_bits exceeds 128");
2155 return -EINVAL;
2156 }
2157
2158 if (struct_size < bytes_offset ||
2159 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2160 btf_verifier_log_member(env, struct_type, member,
2161 "Member exceeds struct_size");
2162 return -EINVAL;
2163 }
2164
2165 return 0;
2166 }
2167
2168 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2169 const struct btf_type *t,
2170 u32 meta_left)
2171 {
2172 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2173 u16 encoding;
2174
2175 if (meta_left < meta_needed) {
2176 btf_verifier_log_basic(env, t,
2177 "meta_left:%u meta_needed:%u",
2178 meta_left, meta_needed);
2179 return -EINVAL;
2180 }
2181
2182 if (btf_type_vlen(t)) {
2183 btf_verifier_log_type(env, t, "vlen != 0");
2184 return -EINVAL;
2185 }
2186
2187 if (btf_type_kflag(t)) {
2188 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2189 return -EINVAL;
2190 }
2191
2192 int_data = btf_type_int(t);
2193 if (int_data & ~BTF_INT_MASK) {
2194 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2195 int_data);
2196 return -EINVAL;
2197 }
2198
2199 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2200
2201 if (nr_bits > BITS_PER_U128) {
2202 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2203 BITS_PER_U128);
2204 return -EINVAL;
2205 }
2206
2207 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2208 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2209 return -EINVAL;
2210 }
2211
2212 /*
2213 * Only one of the encoding bits is allowed and it
2214 * should be sufficient for the pretty print purpose (i.e. decoding).
2215 * Multiple bits can be allowed later if it is found
2216 * to be insufficient.
2217 */
2218 encoding = BTF_INT_ENCODING(int_data);
2219 if (encoding &&
2220 encoding != BTF_INT_SIGNED &&
2221 encoding != BTF_INT_CHAR &&
2222 encoding != BTF_INT_BOOL) {
2223 btf_verifier_log_type(env, t, "Unsupported encoding");
2224 return -ENOTSUPP;
2225 }
2226
2227 btf_verifier_log_type(env, t, NULL);
2228
2229 return meta_needed;
2230 }
2231
2232 static void btf_int_log(struct btf_verifier_env *env,
2233 const struct btf_type *t)
2234 {
2235 int int_data = btf_type_int(t);
2236
2237 btf_verifier_log(env,
2238 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2239 t->size, BTF_INT_OFFSET(int_data),
2240 BTF_INT_BITS(int_data),
2241 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2242 }
2243
2244 static void btf_int128_print(struct btf_show *show, void *data)
2245 {
2246 /* data points to a __int128 number.
2247 * Suppose
2248 * int128_num = *(__int128 *)data;
2249 * The below formulas shows what upper_num and lower_num represents:
2250 * upper_num = int128_num >> 64;
2251 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2252 */
2253 u64 upper_num, lower_num;
2254
2255 #ifdef __BIG_ENDIAN_BITFIELD
2256 upper_num = *(u64 *)data;
2257 lower_num = *(u64 *)(data + 8);
2258 #else
2259 upper_num = *(u64 *)(data + 8);
2260 lower_num = *(u64 *)data;
2261 #endif
2262 if (upper_num == 0)
2263 btf_show_type_value(show, "0x%llx", lower_num);
2264 else
2265 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2266 lower_num);
2267 }
2268
2269 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2270 u16 right_shift_bits)
2271 {
2272 u64 upper_num, lower_num;
2273
2274 #ifdef __BIG_ENDIAN_BITFIELD
2275 upper_num = print_num[0];
2276 lower_num = print_num[1];
2277 #else
2278 upper_num = print_num[1];
2279 lower_num = print_num[0];
2280 #endif
2281
2282 /* shake out un-needed bits by shift/or operations */
2283 if (left_shift_bits >= 64) {
2284 upper_num = lower_num << (left_shift_bits - 64);
2285 lower_num = 0;
2286 } else {
2287 upper_num = (upper_num << left_shift_bits) |
2288 (lower_num >> (64 - left_shift_bits));
2289 lower_num = lower_num << left_shift_bits;
2290 }
2291
2292 if (right_shift_bits >= 64) {
2293 lower_num = upper_num >> (right_shift_bits - 64);
2294 upper_num = 0;
2295 } else {
2296 lower_num = (lower_num >> right_shift_bits) |
2297 (upper_num << (64 - right_shift_bits));
2298 upper_num = upper_num >> right_shift_bits;
2299 }
2300
2301 #ifdef __BIG_ENDIAN_BITFIELD
2302 print_num[0] = upper_num;
2303 print_num[1] = lower_num;
2304 #else
2305 print_num[0] = lower_num;
2306 print_num[1] = upper_num;
2307 #endif
2308 }
2309
2310 static void btf_bitfield_show(void *data, u8 bits_offset,
2311 u8 nr_bits, struct btf_show *show)
2312 {
2313 u16 left_shift_bits, right_shift_bits;
2314 u8 nr_copy_bytes;
2315 u8 nr_copy_bits;
2316 u64 print_num[2] = {};
2317
2318 nr_copy_bits = nr_bits + bits_offset;
2319 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2320
2321 memcpy(print_num, data, nr_copy_bytes);
2322
2323 #ifdef __BIG_ENDIAN_BITFIELD
2324 left_shift_bits = bits_offset;
2325 #else
2326 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2327 #endif
2328 right_shift_bits = BITS_PER_U128 - nr_bits;
2329
2330 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2331 btf_int128_print(show, print_num);
2332 }
2333
2334
2335 static void btf_int_bits_show(const struct btf *btf,
2336 const struct btf_type *t,
2337 void *data, u8 bits_offset,
2338 struct btf_show *show)
2339 {
2340 u32 int_data = btf_type_int(t);
2341 u8 nr_bits = BTF_INT_BITS(int_data);
2342 u8 total_bits_offset;
2343
2344 /*
2345 * bits_offset is at most 7.
2346 * BTF_INT_OFFSET() cannot exceed 128 bits.
2347 */
2348 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2349 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2350 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2351 btf_bitfield_show(data, bits_offset, nr_bits, show);
2352 }
2353
2354 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2355 u32 type_id, void *data, u8 bits_offset,
2356 struct btf_show *show)
2357 {
2358 u32 int_data = btf_type_int(t);
2359 u8 encoding = BTF_INT_ENCODING(int_data);
2360 bool sign = encoding & BTF_INT_SIGNED;
2361 u8 nr_bits = BTF_INT_BITS(int_data);
2362 void *safe_data;
2363
2364 safe_data = btf_show_start_type(show, t, type_id, data);
2365 if (!safe_data)
2366 return;
2367
2368 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2369 BITS_PER_BYTE_MASKED(nr_bits)) {
2370 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2371 goto out;
2372 }
2373
2374 switch (nr_bits) {
2375 case 128:
2376 btf_int128_print(show, safe_data);
2377 break;
2378 case 64:
2379 if (sign)
2380 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2381 else
2382 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2383 break;
2384 case 32:
2385 if (sign)
2386 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2387 else
2388 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2389 break;
2390 case 16:
2391 if (sign)
2392 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2393 else
2394 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2395 break;
2396 case 8:
2397 if (show->state.array_encoding == BTF_INT_CHAR) {
2398 /* check for null terminator */
2399 if (show->state.array_terminated)
2400 break;
2401 if (*(char *)data == '\0') {
2402 show->state.array_terminated = 1;
2403 break;
2404 }
2405 if (isprint(*(char *)data)) {
2406 btf_show_type_value(show, "'%c'",
2407 *(char *)safe_data);
2408 break;
2409 }
2410 }
2411 if (sign)
2412 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2413 else
2414 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2415 break;
2416 default:
2417 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2418 break;
2419 }
2420 out:
2421 btf_show_end_type(show);
2422 }
2423
2424 static const struct btf_kind_operations int_ops = {
2425 .check_meta = btf_int_check_meta,
2426 .resolve = btf_df_resolve,
2427 .check_member = btf_int_check_member,
2428 .check_kflag_member = btf_int_check_kflag_member,
2429 .log_details = btf_int_log,
2430 .show = btf_int_show,
2431 };
2432
2433 static int btf_modifier_check_member(struct btf_verifier_env *env,
2434 const struct btf_type *struct_type,
2435 const struct btf_member *member,
2436 const struct btf_type *member_type)
2437 {
2438 const struct btf_type *resolved_type;
2439 u32 resolved_type_id = member->type;
2440 struct btf_member resolved_member;
2441 struct btf *btf = env->btf;
2442
2443 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2444 if (!resolved_type) {
2445 btf_verifier_log_member(env, struct_type, member,
2446 "Invalid member");
2447 return -EINVAL;
2448 }
2449
2450 resolved_member = *member;
2451 resolved_member.type = resolved_type_id;
2452
2453 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2454 &resolved_member,
2455 resolved_type);
2456 }
2457
2458 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2459 const struct btf_type *struct_type,
2460 const struct btf_member *member,
2461 const struct btf_type *member_type)
2462 {
2463 const struct btf_type *resolved_type;
2464 u32 resolved_type_id = member->type;
2465 struct btf_member resolved_member;
2466 struct btf *btf = env->btf;
2467
2468 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2469 if (!resolved_type) {
2470 btf_verifier_log_member(env, struct_type, member,
2471 "Invalid member");
2472 return -EINVAL;
2473 }
2474
2475 resolved_member = *member;
2476 resolved_member.type = resolved_type_id;
2477
2478 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2479 &resolved_member,
2480 resolved_type);
2481 }
2482
2483 static int btf_ptr_check_member(struct btf_verifier_env *env,
2484 const struct btf_type *struct_type,
2485 const struct btf_member *member,
2486 const struct btf_type *member_type)
2487 {
2488 u32 struct_size, struct_bits_off, bytes_offset;
2489
2490 struct_size = struct_type->size;
2491 struct_bits_off = member->offset;
2492 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2493
2494 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2495 btf_verifier_log_member(env, struct_type, member,
2496 "Member is not byte aligned");
2497 return -EINVAL;
2498 }
2499
2500 if (struct_size - bytes_offset < sizeof(void *)) {
2501 btf_verifier_log_member(env, struct_type, member,
2502 "Member exceeds struct_size");
2503 return -EINVAL;
2504 }
2505
2506 return 0;
2507 }
2508
2509 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2510 const struct btf_type *t,
2511 u32 meta_left)
2512 {
2513 const char *value;
2514
2515 if (btf_type_vlen(t)) {
2516 btf_verifier_log_type(env, t, "vlen != 0");
2517 return -EINVAL;
2518 }
2519
2520 if (btf_type_kflag(t)) {
2521 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2522 return -EINVAL;
2523 }
2524
2525 if (!BTF_TYPE_ID_VALID(t->type)) {
2526 btf_verifier_log_type(env, t, "Invalid type_id");
2527 return -EINVAL;
2528 }
2529
2530 /* typedef/type_tag type must have a valid name, and other ref types,
2531 * volatile, const, restrict, should have a null name.
2532 */
2533 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2534 if (!t->name_off ||
2535 !btf_name_valid_identifier(env->btf, t->name_off)) {
2536 btf_verifier_log_type(env, t, "Invalid name");
2537 return -EINVAL;
2538 }
2539 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2540 value = btf_name_by_offset(env->btf, t->name_off);
2541 if (!value || !value[0]) {
2542 btf_verifier_log_type(env, t, "Invalid name");
2543 return -EINVAL;
2544 }
2545 } else {
2546 if (t->name_off) {
2547 btf_verifier_log_type(env, t, "Invalid name");
2548 return -EINVAL;
2549 }
2550 }
2551
2552 btf_verifier_log_type(env, t, NULL);
2553
2554 return 0;
2555 }
2556
2557 static int btf_modifier_resolve(struct btf_verifier_env *env,
2558 const struct resolve_vertex *v)
2559 {
2560 const struct btf_type *t = v->t;
2561 const struct btf_type *next_type;
2562 u32 next_type_id = t->type;
2563 struct btf *btf = env->btf;
2564
2565 next_type = btf_type_by_id(btf, next_type_id);
2566 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2567 btf_verifier_log_type(env, v->t, "Invalid type_id");
2568 return -EINVAL;
2569 }
2570
2571 if (!env_type_is_resolve_sink(env, next_type) &&
2572 !env_type_is_resolved(env, next_type_id))
2573 return env_stack_push(env, next_type, next_type_id);
2574
2575 /* Figure out the resolved next_type_id with size.
2576 * They will be stored in the current modifier's
2577 * resolved_ids and resolved_sizes such that it can
2578 * save us a few type-following when we use it later (e.g. in
2579 * pretty print).
2580 */
2581 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2582 if (env_type_is_resolved(env, next_type_id))
2583 next_type = btf_type_id_resolve(btf, &next_type_id);
2584
2585 /* "typedef void new_void", "const void"...etc */
2586 if (!btf_type_is_void(next_type) &&
2587 !btf_type_is_fwd(next_type) &&
2588 !btf_type_is_func_proto(next_type)) {
2589 btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 return -EINVAL;
2591 }
2592 }
2593
2594 env_stack_pop_resolved(env, next_type_id, 0);
2595
2596 return 0;
2597 }
2598
2599 static int btf_var_resolve(struct btf_verifier_env *env,
2600 const struct resolve_vertex *v)
2601 {
2602 const struct btf_type *next_type;
2603 const struct btf_type *t = v->t;
2604 u32 next_type_id = t->type;
2605 struct btf *btf = env->btf;
2606
2607 next_type = btf_type_by_id(btf, next_type_id);
2608 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2609 btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 return -EINVAL;
2611 }
2612
2613 if (!env_type_is_resolve_sink(env, next_type) &&
2614 !env_type_is_resolved(env, next_type_id))
2615 return env_stack_push(env, next_type, next_type_id);
2616
2617 if (btf_type_is_modifier(next_type)) {
2618 const struct btf_type *resolved_type;
2619 u32 resolved_type_id;
2620
2621 resolved_type_id = next_type_id;
2622 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2623
2624 if (btf_type_is_ptr(resolved_type) &&
2625 !env_type_is_resolve_sink(env, resolved_type) &&
2626 !env_type_is_resolved(env, resolved_type_id))
2627 return env_stack_push(env, resolved_type,
2628 resolved_type_id);
2629 }
2630
2631 /* We must resolve to something concrete at this point, no
2632 * forward types or similar that would resolve to size of
2633 * zero is allowed.
2634 */
2635 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2636 btf_verifier_log_type(env, v->t, "Invalid type_id");
2637 return -EINVAL;
2638 }
2639
2640 env_stack_pop_resolved(env, next_type_id, 0);
2641
2642 return 0;
2643 }
2644
2645 static int btf_ptr_resolve(struct btf_verifier_env *env,
2646 const struct resolve_vertex *v)
2647 {
2648 const struct btf_type *next_type;
2649 const struct btf_type *t = v->t;
2650 u32 next_type_id = t->type;
2651 struct btf *btf = env->btf;
2652
2653 next_type = btf_type_by_id(btf, next_type_id);
2654 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2655 btf_verifier_log_type(env, v->t, "Invalid type_id");
2656 return -EINVAL;
2657 }
2658
2659 if (!env_type_is_resolve_sink(env, next_type) &&
2660 !env_type_is_resolved(env, next_type_id))
2661 return env_stack_push(env, next_type, next_type_id);
2662
2663 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2664 * the modifier may have stopped resolving when it was resolved
2665 * to a ptr (last-resolved-ptr).
2666 *
2667 * We now need to continue from the last-resolved-ptr to
2668 * ensure the last-resolved-ptr will not referring back to
2669 * the current ptr (t).
2670 */
2671 if (btf_type_is_modifier(next_type)) {
2672 const struct btf_type *resolved_type;
2673 u32 resolved_type_id;
2674
2675 resolved_type_id = next_type_id;
2676 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2677
2678 if (btf_type_is_ptr(resolved_type) &&
2679 !env_type_is_resolve_sink(env, resolved_type) &&
2680 !env_type_is_resolved(env, resolved_type_id))
2681 return env_stack_push(env, resolved_type,
2682 resolved_type_id);
2683 }
2684
2685 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2686 if (env_type_is_resolved(env, next_type_id))
2687 next_type = btf_type_id_resolve(btf, &next_type_id);
2688
2689 if (!btf_type_is_void(next_type) &&
2690 !btf_type_is_fwd(next_type) &&
2691 !btf_type_is_func_proto(next_type)) {
2692 btf_verifier_log_type(env, v->t, "Invalid type_id");
2693 return -EINVAL;
2694 }
2695 }
2696
2697 env_stack_pop_resolved(env, next_type_id, 0);
2698
2699 return 0;
2700 }
2701
2702 static void btf_modifier_show(const struct btf *btf,
2703 const struct btf_type *t,
2704 u32 type_id, void *data,
2705 u8 bits_offset, struct btf_show *show)
2706 {
2707 if (btf->resolved_ids)
2708 t = btf_type_id_resolve(btf, &type_id);
2709 else
2710 t = btf_type_skip_modifiers(btf, type_id, NULL);
2711
2712 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2713 }
2714
2715 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2716 u32 type_id, void *data, u8 bits_offset,
2717 struct btf_show *show)
2718 {
2719 t = btf_type_id_resolve(btf, &type_id);
2720
2721 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2722 }
2723
2724 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2725 u32 type_id, void *data, u8 bits_offset,
2726 struct btf_show *show)
2727 {
2728 void *safe_data;
2729
2730 safe_data = btf_show_start_type(show, t, type_id, data);
2731 if (!safe_data)
2732 return;
2733
2734 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2735 if (show->flags & BTF_SHOW_PTR_RAW)
2736 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2737 else
2738 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2739 btf_show_end_type(show);
2740 }
2741
2742 static void btf_ref_type_log(struct btf_verifier_env *env,
2743 const struct btf_type *t)
2744 {
2745 btf_verifier_log(env, "type_id=%u", t->type);
2746 }
2747
2748 static struct btf_kind_operations modifier_ops = {
2749 .check_meta = btf_ref_type_check_meta,
2750 .resolve = btf_modifier_resolve,
2751 .check_member = btf_modifier_check_member,
2752 .check_kflag_member = btf_modifier_check_kflag_member,
2753 .log_details = btf_ref_type_log,
2754 .show = btf_modifier_show,
2755 };
2756
2757 static struct btf_kind_operations ptr_ops = {
2758 .check_meta = btf_ref_type_check_meta,
2759 .resolve = btf_ptr_resolve,
2760 .check_member = btf_ptr_check_member,
2761 .check_kflag_member = btf_generic_check_kflag_member,
2762 .log_details = btf_ref_type_log,
2763 .show = btf_ptr_show,
2764 };
2765
2766 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2767 const struct btf_type *t,
2768 u32 meta_left)
2769 {
2770 if (btf_type_vlen(t)) {
2771 btf_verifier_log_type(env, t, "vlen != 0");
2772 return -EINVAL;
2773 }
2774
2775 if (t->type) {
2776 btf_verifier_log_type(env, t, "type != 0");
2777 return -EINVAL;
2778 }
2779
2780 /* fwd type must have a valid name */
2781 if (!t->name_off ||
2782 !btf_name_valid_identifier(env->btf, t->name_off)) {
2783 btf_verifier_log_type(env, t, "Invalid name");
2784 return -EINVAL;
2785 }
2786
2787 btf_verifier_log_type(env, t, NULL);
2788
2789 return 0;
2790 }
2791
2792 static void btf_fwd_type_log(struct btf_verifier_env *env,
2793 const struct btf_type *t)
2794 {
2795 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2796 }
2797
2798 static struct btf_kind_operations fwd_ops = {
2799 .check_meta = btf_fwd_check_meta,
2800 .resolve = btf_df_resolve,
2801 .check_member = btf_df_check_member,
2802 .check_kflag_member = btf_df_check_kflag_member,
2803 .log_details = btf_fwd_type_log,
2804 .show = btf_df_show,
2805 };
2806
2807 static int btf_array_check_member(struct btf_verifier_env *env,
2808 const struct btf_type *struct_type,
2809 const struct btf_member *member,
2810 const struct btf_type *member_type)
2811 {
2812 u32 struct_bits_off = member->offset;
2813 u32 struct_size, bytes_offset;
2814 u32 array_type_id, array_size;
2815 struct btf *btf = env->btf;
2816
2817 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2818 btf_verifier_log_member(env, struct_type, member,
2819 "Member is not byte aligned");
2820 return -EINVAL;
2821 }
2822
2823 array_type_id = member->type;
2824 btf_type_id_size(btf, &array_type_id, &array_size);
2825 struct_size = struct_type->size;
2826 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2827 if (struct_size - bytes_offset < array_size) {
2828 btf_verifier_log_member(env, struct_type, member,
2829 "Member exceeds struct_size");
2830 return -EINVAL;
2831 }
2832
2833 return 0;
2834 }
2835
2836 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2837 const struct btf_type *t,
2838 u32 meta_left)
2839 {
2840 const struct btf_array *array = btf_type_array(t);
2841 u32 meta_needed = sizeof(*array);
2842
2843 if (meta_left < meta_needed) {
2844 btf_verifier_log_basic(env, t,
2845 "meta_left:%u meta_needed:%u",
2846 meta_left, meta_needed);
2847 return -EINVAL;
2848 }
2849
2850 /* array type should not have a name */
2851 if (t->name_off) {
2852 btf_verifier_log_type(env, t, "Invalid name");
2853 return -EINVAL;
2854 }
2855
2856 if (btf_type_vlen(t)) {
2857 btf_verifier_log_type(env, t, "vlen != 0");
2858 return -EINVAL;
2859 }
2860
2861 if (btf_type_kflag(t)) {
2862 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2863 return -EINVAL;
2864 }
2865
2866 if (t->size) {
2867 btf_verifier_log_type(env, t, "size != 0");
2868 return -EINVAL;
2869 }
2870
2871 /* Array elem type and index type cannot be in type void,
2872 * so !array->type and !array->index_type are not allowed.
2873 */
2874 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2875 btf_verifier_log_type(env, t, "Invalid elem");
2876 return -EINVAL;
2877 }
2878
2879 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2880 btf_verifier_log_type(env, t, "Invalid index");
2881 return -EINVAL;
2882 }
2883
2884 btf_verifier_log_type(env, t, NULL);
2885
2886 return meta_needed;
2887 }
2888
2889 static int btf_array_resolve(struct btf_verifier_env *env,
2890 const struct resolve_vertex *v)
2891 {
2892 const struct btf_array *array = btf_type_array(v->t);
2893 const struct btf_type *elem_type, *index_type;
2894 u32 elem_type_id, index_type_id;
2895 struct btf *btf = env->btf;
2896 u32 elem_size;
2897
2898 /* Check array->index_type */
2899 index_type_id = array->index_type;
2900 index_type = btf_type_by_id(btf, index_type_id);
2901 if (btf_type_nosize_or_null(index_type) ||
2902 btf_type_is_resolve_source_only(index_type)) {
2903 btf_verifier_log_type(env, v->t, "Invalid index");
2904 return -EINVAL;
2905 }
2906
2907 if (!env_type_is_resolve_sink(env, index_type) &&
2908 !env_type_is_resolved(env, index_type_id))
2909 return env_stack_push(env, index_type, index_type_id);
2910
2911 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2912 if (!index_type || !btf_type_is_int(index_type) ||
2913 !btf_type_int_is_regular(index_type)) {
2914 btf_verifier_log_type(env, v->t, "Invalid index");
2915 return -EINVAL;
2916 }
2917
2918 /* Check array->type */
2919 elem_type_id = array->type;
2920 elem_type = btf_type_by_id(btf, elem_type_id);
2921 if (btf_type_nosize_or_null(elem_type) ||
2922 btf_type_is_resolve_source_only(elem_type)) {
2923 btf_verifier_log_type(env, v->t,
2924 "Invalid elem");
2925 return -EINVAL;
2926 }
2927
2928 if (!env_type_is_resolve_sink(env, elem_type) &&
2929 !env_type_is_resolved(env, elem_type_id))
2930 return env_stack_push(env, elem_type, elem_type_id);
2931
2932 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2933 if (!elem_type) {
2934 btf_verifier_log_type(env, v->t, "Invalid elem");
2935 return -EINVAL;
2936 }
2937
2938 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2939 btf_verifier_log_type(env, v->t, "Invalid array of int");
2940 return -EINVAL;
2941 }
2942
2943 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2944 btf_verifier_log_type(env, v->t,
2945 "Array size overflows U32_MAX");
2946 return -EINVAL;
2947 }
2948
2949 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2950
2951 return 0;
2952 }
2953
2954 static void btf_array_log(struct btf_verifier_env *env,
2955 const struct btf_type *t)
2956 {
2957 const struct btf_array *array = btf_type_array(t);
2958
2959 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2960 array->type, array->index_type, array->nelems);
2961 }
2962
2963 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2964 u32 type_id, void *data, u8 bits_offset,
2965 struct btf_show *show)
2966 {
2967 const struct btf_array *array = btf_type_array(t);
2968 const struct btf_kind_operations *elem_ops;
2969 const struct btf_type *elem_type;
2970 u32 i, elem_size = 0, elem_type_id;
2971 u16 encoding = 0;
2972
2973 elem_type_id = array->type;
2974 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2975 if (elem_type && btf_type_has_size(elem_type))
2976 elem_size = elem_type->size;
2977
2978 if (elem_type && btf_type_is_int(elem_type)) {
2979 u32 int_type = btf_type_int(elem_type);
2980
2981 encoding = BTF_INT_ENCODING(int_type);
2982
2983 /*
2984 * BTF_INT_CHAR encoding never seems to be set for
2985 * char arrays, so if size is 1 and element is
2986 * printable as a char, we'll do that.
2987 */
2988 if (elem_size == 1)
2989 encoding = BTF_INT_CHAR;
2990 }
2991
2992 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2993 return;
2994
2995 if (!elem_type)
2996 goto out;
2997 elem_ops = btf_type_ops(elem_type);
2998
2999 for (i = 0; i < array->nelems; i++) {
3000
3001 btf_show_start_array_member(show);
3002
3003 elem_ops->show(btf, elem_type, elem_type_id, data,
3004 bits_offset, show);
3005 data += elem_size;
3006
3007 btf_show_end_array_member(show);
3008
3009 if (show->state.array_terminated)
3010 break;
3011 }
3012 out:
3013 btf_show_end_array_type(show);
3014 }
3015
3016 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3017 u32 type_id, void *data, u8 bits_offset,
3018 struct btf_show *show)
3019 {
3020 const struct btf_member *m = show->state.member;
3021
3022 /*
3023 * First check if any members would be shown (are non-zero).
3024 * See comments above "struct btf_show" definition for more
3025 * details on how this works at a high-level.
3026 */
3027 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3028 if (!show->state.depth_check) {
3029 show->state.depth_check = show->state.depth + 1;
3030 show->state.depth_to_show = 0;
3031 }
3032 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3033 show->state.member = m;
3034
3035 if (show->state.depth_check != show->state.depth + 1)
3036 return;
3037 show->state.depth_check = 0;
3038
3039 if (show->state.depth_to_show <= show->state.depth)
3040 return;
3041 /*
3042 * Reaching here indicates we have recursed and found
3043 * non-zero array member(s).
3044 */
3045 }
3046 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3047 }
3048
3049 static struct btf_kind_operations array_ops = {
3050 .check_meta = btf_array_check_meta,
3051 .resolve = btf_array_resolve,
3052 .check_member = btf_array_check_member,
3053 .check_kflag_member = btf_generic_check_kflag_member,
3054 .log_details = btf_array_log,
3055 .show = btf_array_show,
3056 };
3057
3058 static int btf_struct_check_member(struct btf_verifier_env *env,
3059 const struct btf_type *struct_type,
3060 const struct btf_member *member,
3061 const struct btf_type *member_type)
3062 {
3063 u32 struct_bits_off = member->offset;
3064 u32 struct_size, bytes_offset;
3065
3066 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3067 btf_verifier_log_member(env, struct_type, member,
3068 "Member is not byte aligned");
3069 return -EINVAL;
3070 }
3071
3072 struct_size = struct_type->size;
3073 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3074 if (struct_size - bytes_offset < member_type->size) {
3075 btf_verifier_log_member(env, struct_type, member,
3076 "Member exceeds struct_size");
3077 return -EINVAL;
3078 }
3079
3080 return 0;
3081 }
3082
3083 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3084 const struct btf_type *t,
3085 u32 meta_left)
3086 {
3087 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3088 const struct btf_member *member;
3089 u32 meta_needed, last_offset;
3090 struct btf *btf = env->btf;
3091 u32 struct_size = t->size;
3092 u32 offset;
3093 u16 i;
3094
3095 meta_needed = btf_type_vlen(t) * sizeof(*member);
3096 if (meta_left < meta_needed) {
3097 btf_verifier_log_basic(env, t,
3098 "meta_left:%u meta_needed:%u",
3099 meta_left, meta_needed);
3100 return -EINVAL;
3101 }
3102
3103 /* struct type either no name or a valid one */
3104 if (t->name_off &&
3105 !btf_name_valid_identifier(env->btf, t->name_off)) {
3106 btf_verifier_log_type(env, t, "Invalid name");
3107 return -EINVAL;
3108 }
3109
3110 btf_verifier_log_type(env, t, NULL);
3111
3112 last_offset = 0;
3113 for_each_member(i, t, member) {
3114 if (!btf_name_offset_valid(btf, member->name_off)) {
3115 btf_verifier_log_member(env, t, member,
3116 "Invalid member name_offset:%u",
3117 member->name_off);
3118 return -EINVAL;
3119 }
3120
3121 /* struct member either no name or a valid one */
3122 if (member->name_off &&
3123 !btf_name_valid_identifier(btf, member->name_off)) {
3124 btf_verifier_log_member(env, t, member, "Invalid name");
3125 return -EINVAL;
3126 }
3127 /* A member cannot be in type void */
3128 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3129 btf_verifier_log_member(env, t, member,
3130 "Invalid type_id");
3131 return -EINVAL;
3132 }
3133
3134 offset = __btf_member_bit_offset(t, member);
3135 if (is_union && offset) {
3136 btf_verifier_log_member(env, t, member,
3137 "Invalid member bits_offset");
3138 return -EINVAL;
3139 }
3140
3141 /*
3142 * ">" instead of ">=" because the last member could be
3143 * "char a[0];"
3144 */
3145 if (last_offset > offset) {
3146 btf_verifier_log_member(env, t, member,
3147 "Invalid member bits_offset");
3148 return -EINVAL;
3149 }
3150
3151 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3152 btf_verifier_log_member(env, t, member,
3153 "Member bits_offset exceeds its struct size");
3154 return -EINVAL;
3155 }
3156
3157 btf_verifier_log_member(env, t, member, NULL);
3158 last_offset = offset;
3159 }
3160
3161 return meta_needed;
3162 }
3163
3164 static int btf_struct_resolve(struct btf_verifier_env *env,
3165 const struct resolve_vertex *v)
3166 {
3167 const struct btf_member *member;
3168 int err;
3169 u16 i;
3170
3171 /* Before continue resolving the next_member,
3172 * ensure the last member is indeed resolved to a
3173 * type with size info.
3174 */
3175 if (v->next_member) {
3176 const struct btf_type *last_member_type;
3177 const struct btf_member *last_member;
3178 u32 last_member_type_id;
3179
3180 last_member = btf_type_member(v->t) + v->next_member - 1;
3181 last_member_type_id = last_member->type;
3182 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3183 last_member_type_id)))
3184 return -EINVAL;
3185
3186 last_member_type = btf_type_by_id(env->btf,
3187 last_member_type_id);
3188 if (btf_type_kflag(v->t))
3189 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3190 last_member,
3191 last_member_type);
3192 else
3193 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3194 last_member,
3195 last_member_type);
3196 if (err)
3197 return err;
3198 }
3199
3200 for_each_member_from(i, v->next_member, v->t, member) {
3201 u32 member_type_id = member->type;
3202 const struct btf_type *member_type = btf_type_by_id(env->btf,
3203 member_type_id);
3204
3205 if (btf_type_nosize_or_null(member_type) ||
3206 btf_type_is_resolve_source_only(member_type)) {
3207 btf_verifier_log_member(env, v->t, member,
3208 "Invalid member");
3209 return -EINVAL;
3210 }
3211
3212 if (!env_type_is_resolve_sink(env, member_type) &&
3213 !env_type_is_resolved(env, member_type_id)) {
3214 env_stack_set_next_member(env, i + 1);
3215 return env_stack_push(env, member_type, member_type_id);
3216 }
3217
3218 if (btf_type_kflag(v->t))
3219 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3220 member,
3221 member_type);
3222 else
3223 err = btf_type_ops(member_type)->check_member(env, v->t,
3224 member,
3225 member_type);
3226 if (err)
3227 return err;
3228 }
3229
3230 env_stack_pop_resolved(env, 0, 0);
3231
3232 return 0;
3233 }
3234
3235 static void btf_struct_log(struct btf_verifier_env *env,
3236 const struct btf_type *t)
3237 {
3238 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3239 }
3240
3241 enum {
3242 BTF_FIELD_IGNORE = 0,
3243 BTF_FIELD_FOUND = 1,
3244 };
3245
3246 struct btf_field_info {
3247 enum btf_field_type type;
3248 u32 off;
3249 union {
3250 struct {
3251 u32 type_id;
3252 } kptr;
3253 struct {
3254 const char *node_name;
3255 u32 value_btf_id;
3256 } graph_root;
3257 };
3258 };
3259
3260 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3261 u32 off, int sz, enum btf_field_type field_type,
3262 struct btf_field_info *info)
3263 {
3264 if (!__btf_type_is_struct(t))
3265 return BTF_FIELD_IGNORE;
3266 if (t->size != sz)
3267 return BTF_FIELD_IGNORE;
3268 info->type = field_type;
3269 info->off = off;
3270 return BTF_FIELD_FOUND;
3271 }
3272
3273 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3274 u32 off, int sz, struct btf_field_info *info)
3275 {
3276 enum btf_field_type type;
3277 u32 res_id;
3278
3279 /* Permit modifiers on the pointer itself */
3280 if (btf_type_is_volatile(t))
3281 t = btf_type_by_id(btf, t->type);
3282 /* For PTR, sz is always == 8 */
3283 if (!btf_type_is_ptr(t))
3284 return BTF_FIELD_IGNORE;
3285 t = btf_type_by_id(btf, t->type);
3286
3287 if (!btf_type_is_type_tag(t))
3288 return BTF_FIELD_IGNORE;
3289 /* Reject extra tags */
3290 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3291 return -EINVAL;
3292 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3293 type = BPF_KPTR_UNREF;
3294 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3295 type = BPF_KPTR_REF;
3296 else
3297 return -EINVAL;
3298
3299 /* Get the base type */
3300 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3301 /* Only pointer to struct is allowed */
3302 if (!__btf_type_is_struct(t))
3303 return -EINVAL;
3304
3305 info->type = type;
3306 info->off = off;
3307 info->kptr.type_id = res_id;
3308 return BTF_FIELD_FOUND;
3309 }
3310
3311 static const char *btf_find_decl_tag_value(const struct btf *btf,
3312 const struct btf_type *pt,
3313 int comp_idx, const char *tag_key)
3314 {
3315 int i;
3316
3317 for (i = 1; i < btf_nr_types(btf); i++) {
3318 const struct btf_type *t = btf_type_by_id(btf, i);
3319 int len = strlen(tag_key);
3320
3321 if (!btf_type_is_decl_tag(t))
3322 continue;
3323 if (pt != btf_type_by_id(btf, t->type) ||
3324 btf_type_decl_tag(t)->component_idx != comp_idx)
3325 continue;
3326 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3327 continue;
3328 return __btf_name_by_offset(btf, t->name_off) + len;
3329 }
3330 return NULL;
3331 }
3332
3333 static int
3334 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3335 const struct btf_type *t, int comp_idx, u32 off,
3336 int sz, struct btf_field_info *info,
3337 enum btf_field_type head_type)
3338 {
3339 const char *node_field_name;
3340 const char *value_type;
3341 s32 id;
3342
3343 if (!__btf_type_is_struct(t))
3344 return BTF_FIELD_IGNORE;
3345 if (t->size != sz)
3346 return BTF_FIELD_IGNORE;
3347 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3348 if (!value_type)
3349 return -EINVAL;
3350 node_field_name = strstr(value_type, ":");
3351 if (!node_field_name)
3352 return -EINVAL;
3353 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3354 if (!value_type)
3355 return -ENOMEM;
3356 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3357 kfree(value_type);
3358 if (id < 0)
3359 return id;
3360 node_field_name++;
3361 if (str_is_empty(node_field_name))
3362 return -EINVAL;
3363 info->type = head_type;
3364 info->off = off;
3365 info->graph_root.value_btf_id = id;
3366 info->graph_root.node_name = node_field_name;
3367 return BTF_FIELD_FOUND;
3368 }
3369
3370 #define field_mask_test_name(field_type, field_type_str) \
3371 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3372 type = field_type; \
3373 goto end; \
3374 }
3375
3376 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3377 int *align, int *sz)
3378 {
3379 int type = 0;
3380
3381 if (field_mask & BPF_SPIN_LOCK) {
3382 if (!strcmp(name, "bpf_spin_lock")) {
3383 if (*seen_mask & BPF_SPIN_LOCK)
3384 return -E2BIG;
3385 *seen_mask |= BPF_SPIN_LOCK;
3386 type = BPF_SPIN_LOCK;
3387 goto end;
3388 }
3389 }
3390 if (field_mask & BPF_TIMER) {
3391 if (!strcmp(name, "bpf_timer")) {
3392 if (*seen_mask & BPF_TIMER)
3393 return -E2BIG;
3394 *seen_mask |= BPF_TIMER;
3395 type = BPF_TIMER;
3396 goto end;
3397 }
3398 }
3399 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3400 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3401 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3402 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3403 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3404
3405 /* Only return BPF_KPTR when all other types with matchable names fail */
3406 if (field_mask & BPF_KPTR) {
3407 type = BPF_KPTR_REF;
3408 goto end;
3409 }
3410 return 0;
3411 end:
3412 *sz = btf_field_type_size(type);
3413 *align = btf_field_type_align(type);
3414 return type;
3415 }
3416
3417 #undef field_mask_test_name
3418
3419 static int btf_find_struct_field(const struct btf *btf,
3420 const struct btf_type *t, u32 field_mask,
3421 struct btf_field_info *info, int info_cnt)
3422 {
3423 int ret, idx = 0, align, sz, field_type;
3424 const struct btf_member *member;
3425 struct btf_field_info tmp;
3426 u32 i, off, seen_mask = 0;
3427
3428 for_each_member(i, t, member) {
3429 const struct btf_type *member_type = btf_type_by_id(btf,
3430 member->type);
3431
3432 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3433 field_mask, &seen_mask, &align, &sz);
3434 if (field_type == 0)
3435 continue;
3436 if (field_type < 0)
3437 return field_type;
3438
3439 off = __btf_member_bit_offset(t, member);
3440 if (off % 8)
3441 /* valid C code cannot generate such BTF */
3442 return -EINVAL;
3443 off /= 8;
3444 if (off % align)
3445 continue;
3446
3447 switch (field_type) {
3448 case BPF_SPIN_LOCK:
3449 case BPF_TIMER:
3450 case BPF_LIST_NODE:
3451 case BPF_RB_NODE:
3452 case BPF_REFCOUNT:
3453 ret = btf_find_struct(btf, member_type, off, sz, field_type,
3454 idx < info_cnt ? &info[idx] : &tmp);
3455 if (ret < 0)
3456 return ret;
3457 break;
3458 case BPF_KPTR_UNREF:
3459 case BPF_KPTR_REF:
3460 ret = btf_find_kptr(btf, member_type, off, sz,
3461 idx < info_cnt ? &info[idx] : &tmp);
3462 if (ret < 0)
3463 return ret;
3464 break;
3465 case BPF_LIST_HEAD:
3466 case BPF_RB_ROOT:
3467 ret = btf_find_graph_root(btf, t, member_type,
3468 i, off, sz,
3469 idx < info_cnt ? &info[idx] : &tmp,
3470 field_type);
3471 if (ret < 0)
3472 return ret;
3473 break;
3474 default:
3475 return -EFAULT;
3476 }
3477
3478 if (ret == BTF_FIELD_IGNORE)
3479 continue;
3480 if (idx >= info_cnt)
3481 return -E2BIG;
3482 ++idx;
3483 }
3484 return idx;
3485 }
3486
3487 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3488 u32 field_mask, struct btf_field_info *info,
3489 int info_cnt)
3490 {
3491 int ret, idx = 0, align, sz, field_type;
3492 const struct btf_var_secinfo *vsi;
3493 struct btf_field_info tmp;
3494 u32 i, off, seen_mask = 0;
3495
3496 for_each_vsi(i, t, vsi) {
3497 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3498 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3499
3500 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3501 field_mask, &seen_mask, &align, &sz);
3502 if (field_type == 0)
3503 continue;
3504 if (field_type < 0)
3505 return field_type;
3506
3507 off = vsi->offset;
3508 if (vsi->size != sz)
3509 continue;
3510 if (off % align)
3511 continue;
3512
3513 switch (field_type) {
3514 case BPF_SPIN_LOCK:
3515 case BPF_TIMER:
3516 case BPF_LIST_NODE:
3517 case BPF_RB_NODE:
3518 case BPF_REFCOUNT:
3519 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3520 idx < info_cnt ? &info[idx] : &tmp);
3521 if (ret < 0)
3522 return ret;
3523 break;
3524 case BPF_KPTR_UNREF:
3525 case BPF_KPTR_REF:
3526 ret = btf_find_kptr(btf, var_type, off, sz,
3527 idx < info_cnt ? &info[idx] : &tmp);
3528 if (ret < 0)
3529 return ret;
3530 break;
3531 case BPF_LIST_HEAD:
3532 case BPF_RB_ROOT:
3533 ret = btf_find_graph_root(btf, var, var_type,
3534 -1, off, sz,
3535 idx < info_cnt ? &info[idx] : &tmp,
3536 field_type);
3537 if (ret < 0)
3538 return ret;
3539 break;
3540 default:
3541 return -EFAULT;
3542 }
3543
3544 if (ret == BTF_FIELD_IGNORE)
3545 continue;
3546 if (idx >= info_cnt)
3547 return -E2BIG;
3548 ++idx;
3549 }
3550 return idx;
3551 }
3552
3553 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3554 u32 field_mask, struct btf_field_info *info,
3555 int info_cnt)
3556 {
3557 if (__btf_type_is_struct(t))
3558 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3559 else if (btf_type_is_datasec(t))
3560 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3561 return -EINVAL;
3562 }
3563
3564 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3565 struct btf_field_info *info)
3566 {
3567 struct module *mod = NULL;
3568 const struct btf_type *t;
3569 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3570 * is that BTF, otherwise it's program BTF
3571 */
3572 struct btf *kptr_btf;
3573 int ret;
3574 s32 id;
3575
3576 /* Find type in map BTF, and use it to look up the matching type
3577 * in vmlinux or module BTFs, by name and kind.
3578 */
3579 t = btf_type_by_id(btf, info->kptr.type_id);
3580 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3581 &kptr_btf);
3582 if (id == -ENOENT) {
3583 /* btf_parse_kptr should only be called w/ btf = program BTF */
3584 WARN_ON_ONCE(btf_is_kernel(btf));
3585
3586 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3587 * kptr allocated via bpf_obj_new
3588 */
3589 field->kptr.dtor = NULL;
3590 id = info->kptr.type_id;
3591 kptr_btf = (struct btf *)btf;
3592 btf_get(kptr_btf);
3593 goto found_dtor;
3594 }
3595 if (id < 0)
3596 return id;
3597
3598 /* Find and stash the function pointer for the destruction function that
3599 * needs to be eventually invoked from the map free path.
3600 */
3601 if (info->type == BPF_KPTR_REF) {
3602 const struct btf_type *dtor_func;
3603 const char *dtor_func_name;
3604 unsigned long addr;
3605 s32 dtor_btf_id;
3606
3607 /* This call also serves as a whitelist of allowed objects that
3608 * can be used as a referenced pointer and be stored in a map at
3609 * the same time.
3610 */
3611 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3612 if (dtor_btf_id < 0) {
3613 ret = dtor_btf_id;
3614 goto end_btf;
3615 }
3616
3617 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3618 if (!dtor_func) {
3619 ret = -ENOENT;
3620 goto end_btf;
3621 }
3622
3623 if (btf_is_module(kptr_btf)) {
3624 mod = btf_try_get_module(kptr_btf);
3625 if (!mod) {
3626 ret = -ENXIO;
3627 goto end_btf;
3628 }
3629 }
3630
3631 /* We already verified dtor_func to be btf_type_is_func
3632 * in register_btf_id_dtor_kfuncs.
3633 */
3634 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3635 addr = kallsyms_lookup_name(dtor_func_name);
3636 if (!addr) {
3637 ret = -EINVAL;
3638 goto end_mod;
3639 }
3640 field->kptr.dtor = (void *)addr;
3641 }
3642
3643 found_dtor:
3644 field->kptr.btf_id = id;
3645 field->kptr.btf = kptr_btf;
3646 field->kptr.module = mod;
3647 return 0;
3648 end_mod:
3649 module_put(mod);
3650 end_btf:
3651 btf_put(kptr_btf);
3652 return ret;
3653 }
3654
3655 static int btf_parse_graph_root(const struct btf *btf,
3656 struct btf_field *field,
3657 struct btf_field_info *info,
3658 const char *node_type_name,
3659 size_t node_type_align)
3660 {
3661 const struct btf_type *t, *n = NULL;
3662 const struct btf_member *member;
3663 u32 offset;
3664 int i;
3665
3666 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3667 /* We've already checked that value_btf_id is a struct type. We
3668 * just need to figure out the offset of the list_node, and
3669 * verify its type.
3670 */
3671 for_each_member(i, t, member) {
3672 if (strcmp(info->graph_root.node_name,
3673 __btf_name_by_offset(btf, member->name_off)))
3674 continue;
3675 /* Invalid BTF, two members with same name */
3676 if (n)
3677 return -EINVAL;
3678 n = btf_type_by_id(btf, member->type);
3679 if (!__btf_type_is_struct(n))
3680 return -EINVAL;
3681 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3682 return -EINVAL;
3683 offset = __btf_member_bit_offset(n, member);
3684 if (offset % 8)
3685 return -EINVAL;
3686 offset /= 8;
3687 if (offset % node_type_align)
3688 return -EINVAL;
3689
3690 field->graph_root.btf = (struct btf *)btf;
3691 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3692 field->graph_root.node_offset = offset;
3693 }
3694 if (!n)
3695 return -ENOENT;
3696 return 0;
3697 }
3698
3699 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3700 struct btf_field_info *info)
3701 {
3702 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3703 __alignof__(struct bpf_list_node));
3704 }
3705
3706 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3707 struct btf_field_info *info)
3708 {
3709 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3710 __alignof__(struct bpf_rb_node));
3711 }
3712
3713 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3714 {
3715 const struct btf_field *a = (const struct btf_field *)_a;
3716 const struct btf_field *b = (const struct btf_field *)_b;
3717
3718 if (a->offset < b->offset)
3719 return -1;
3720 else if (a->offset > b->offset)
3721 return 1;
3722 return 0;
3723 }
3724
3725 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3726 u32 field_mask, u32 value_size)
3727 {
3728 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3729 u32 next_off = 0, field_type_size;
3730 struct btf_record *rec;
3731 int ret, i, cnt;
3732
3733 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3734 if (ret < 0)
3735 return ERR_PTR(ret);
3736 if (!ret)
3737 return NULL;
3738
3739 cnt = ret;
3740 /* This needs to be kzalloc to zero out padding and unused fields, see
3741 * comment in btf_record_equal.
3742 */
3743 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3744 if (!rec)
3745 return ERR_PTR(-ENOMEM);
3746
3747 rec->spin_lock_off = -EINVAL;
3748 rec->timer_off = -EINVAL;
3749 rec->refcount_off = -EINVAL;
3750 for (i = 0; i < cnt; i++) {
3751 field_type_size = btf_field_type_size(info_arr[i].type);
3752 if (info_arr[i].off + field_type_size > value_size) {
3753 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3754 ret = -EFAULT;
3755 goto end;
3756 }
3757 if (info_arr[i].off < next_off) {
3758 ret = -EEXIST;
3759 goto end;
3760 }
3761 next_off = info_arr[i].off + field_type_size;
3762
3763 rec->field_mask |= info_arr[i].type;
3764 rec->fields[i].offset = info_arr[i].off;
3765 rec->fields[i].type = info_arr[i].type;
3766 rec->fields[i].size = field_type_size;
3767
3768 switch (info_arr[i].type) {
3769 case BPF_SPIN_LOCK:
3770 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3771 /* Cache offset for faster lookup at runtime */
3772 rec->spin_lock_off = rec->fields[i].offset;
3773 break;
3774 case BPF_TIMER:
3775 WARN_ON_ONCE(rec->timer_off >= 0);
3776 /* Cache offset for faster lookup at runtime */
3777 rec->timer_off = rec->fields[i].offset;
3778 break;
3779 case BPF_REFCOUNT:
3780 WARN_ON_ONCE(rec->refcount_off >= 0);
3781 /* Cache offset for faster lookup at runtime */
3782 rec->refcount_off = rec->fields[i].offset;
3783 break;
3784 case BPF_KPTR_UNREF:
3785 case BPF_KPTR_REF:
3786 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3787 if (ret < 0)
3788 goto end;
3789 break;
3790 case BPF_LIST_HEAD:
3791 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3792 if (ret < 0)
3793 goto end;
3794 break;
3795 case BPF_RB_ROOT:
3796 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3797 if (ret < 0)
3798 goto end;
3799 break;
3800 case BPF_LIST_NODE:
3801 case BPF_RB_NODE:
3802 break;
3803 default:
3804 ret = -EFAULT;
3805 goto end;
3806 }
3807 rec->cnt++;
3808 }
3809
3810 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3811 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3812 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3813 ret = -EINVAL;
3814 goto end;
3815 }
3816
3817 if (rec->refcount_off < 0 &&
3818 btf_record_has_field(rec, BPF_LIST_NODE) &&
3819 btf_record_has_field(rec, BPF_RB_NODE)) {
3820 ret = -EINVAL;
3821 goto end;
3822 }
3823
3824 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3825 NULL, rec);
3826
3827 return rec;
3828 end:
3829 btf_record_free(rec);
3830 return ERR_PTR(ret);
3831 }
3832
3833 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3834 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3835
3836 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3837 {
3838 int i;
3839
3840 /* There are three types that signify ownership of some other type:
3841 * kptr_ref, bpf_list_head, bpf_rb_root.
3842 * kptr_ref only supports storing kernel types, which can't store
3843 * references to program allocated local types.
3844 *
3845 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3846 * does not form cycles.
3847 */
3848 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3849 return 0;
3850 for (i = 0; i < rec->cnt; i++) {
3851 struct btf_struct_meta *meta;
3852 u32 btf_id;
3853
3854 if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3855 continue;
3856 btf_id = rec->fields[i].graph_root.value_btf_id;
3857 meta = btf_find_struct_meta(btf, btf_id);
3858 if (!meta)
3859 return -EFAULT;
3860 rec->fields[i].graph_root.value_rec = meta->record;
3861
3862 /* We need to set value_rec for all root types, but no need
3863 * to check ownership cycle for a type unless it's also a
3864 * node type.
3865 */
3866 if (!(rec->field_mask & GRAPH_NODE_MASK))
3867 continue;
3868
3869 /* We need to ensure ownership acyclicity among all types. The
3870 * proper way to do it would be to topologically sort all BTF
3871 * IDs based on the ownership edges, since there can be multiple
3872 * bpf_{list_head,rb_node} in a type. Instead, we use the
3873 * following resaoning:
3874 *
3875 * - A type can only be owned by another type in user BTF if it
3876 * has a bpf_{list,rb}_node. Let's call these node types.
3877 * - A type can only _own_ another type in user BTF if it has a
3878 * bpf_{list_head,rb_root}. Let's call these root types.
3879 *
3880 * We ensure that if a type is both a root and node, its
3881 * element types cannot be root types.
3882 *
3883 * To ensure acyclicity:
3884 *
3885 * When A is an root type but not a node, its ownership
3886 * chain can be:
3887 * A -> B -> C
3888 * Where:
3889 * - A is an root, e.g. has bpf_rb_root.
3890 * - B is both a root and node, e.g. has bpf_rb_node and
3891 * bpf_list_head.
3892 * - C is only an root, e.g. has bpf_list_node
3893 *
3894 * When A is both a root and node, some other type already
3895 * owns it in the BTF domain, hence it can not own
3896 * another root type through any of the ownership edges.
3897 * A -> B
3898 * Where:
3899 * - A is both an root and node.
3900 * - B is only an node.
3901 */
3902 if (meta->record->field_mask & GRAPH_ROOT_MASK)
3903 return -ELOOP;
3904 }
3905 return 0;
3906 }
3907
3908 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3909 u32 type_id, void *data, u8 bits_offset,
3910 struct btf_show *show)
3911 {
3912 const struct btf_member *member;
3913 void *safe_data;
3914 u32 i;
3915
3916 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3917 if (!safe_data)
3918 return;
3919
3920 for_each_member(i, t, member) {
3921 const struct btf_type *member_type = btf_type_by_id(btf,
3922 member->type);
3923 const struct btf_kind_operations *ops;
3924 u32 member_offset, bitfield_size;
3925 u32 bytes_offset;
3926 u8 bits8_offset;
3927
3928 btf_show_start_member(show, member);
3929
3930 member_offset = __btf_member_bit_offset(t, member);
3931 bitfield_size = __btf_member_bitfield_size(t, member);
3932 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3933 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3934 if (bitfield_size) {
3935 safe_data = btf_show_start_type(show, member_type,
3936 member->type,
3937 data + bytes_offset);
3938 if (safe_data)
3939 btf_bitfield_show(safe_data,
3940 bits8_offset,
3941 bitfield_size, show);
3942 btf_show_end_type(show);
3943 } else {
3944 ops = btf_type_ops(member_type);
3945 ops->show(btf, member_type, member->type,
3946 data + bytes_offset, bits8_offset, show);
3947 }
3948
3949 btf_show_end_member(show);
3950 }
3951
3952 btf_show_end_struct_type(show);
3953 }
3954
3955 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3956 u32 type_id, void *data, u8 bits_offset,
3957 struct btf_show *show)
3958 {
3959 const struct btf_member *m = show->state.member;
3960
3961 /*
3962 * First check if any members would be shown (are non-zero).
3963 * See comments above "struct btf_show" definition for more
3964 * details on how this works at a high-level.
3965 */
3966 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3967 if (!show->state.depth_check) {
3968 show->state.depth_check = show->state.depth + 1;
3969 show->state.depth_to_show = 0;
3970 }
3971 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3972 /* Restore saved member data here */
3973 show->state.member = m;
3974 if (show->state.depth_check != show->state.depth + 1)
3975 return;
3976 show->state.depth_check = 0;
3977
3978 if (show->state.depth_to_show <= show->state.depth)
3979 return;
3980 /*
3981 * Reaching here indicates we have recursed and found
3982 * non-zero child values.
3983 */
3984 }
3985
3986 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3987 }
3988
3989 static struct btf_kind_operations struct_ops = {
3990 .check_meta = btf_struct_check_meta,
3991 .resolve = btf_struct_resolve,
3992 .check_member = btf_struct_check_member,
3993 .check_kflag_member = btf_generic_check_kflag_member,
3994 .log_details = btf_struct_log,
3995 .show = btf_struct_show,
3996 };
3997
3998 static int btf_enum_check_member(struct btf_verifier_env *env,
3999 const struct btf_type *struct_type,
4000 const struct btf_member *member,
4001 const struct btf_type *member_type)
4002 {
4003 u32 struct_bits_off = member->offset;
4004 u32 struct_size, bytes_offset;
4005
4006 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4007 btf_verifier_log_member(env, struct_type, member,
4008 "Member is not byte aligned");
4009 return -EINVAL;
4010 }
4011
4012 struct_size = struct_type->size;
4013 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4014 if (struct_size - bytes_offset < member_type->size) {
4015 btf_verifier_log_member(env, struct_type, member,
4016 "Member exceeds struct_size");
4017 return -EINVAL;
4018 }
4019
4020 return 0;
4021 }
4022
4023 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4024 const struct btf_type *struct_type,
4025 const struct btf_member *member,
4026 const struct btf_type *member_type)
4027 {
4028 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4029 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4030
4031 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4032 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4033 if (!nr_bits) {
4034 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4035 btf_verifier_log_member(env, struct_type, member,
4036 "Member is not byte aligned");
4037 return -EINVAL;
4038 }
4039
4040 nr_bits = int_bitsize;
4041 } else if (nr_bits > int_bitsize) {
4042 btf_verifier_log_member(env, struct_type, member,
4043 "Invalid member bitfield_size");
4044 return -EINVAL;
4045 }
4046
4047 struct_size = struct_type->size;
4048 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4049 if (struct_size < bytes_end) {
4050 btf_verifier_log_member(env, struct_type, member,
4051 "Member exceeds struct_size");
4052 return -EINVAL;
4053 }
4054
4055 return 0;
4056 }
4057
4058 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4059 const struct btf_type *t,
4060 u32 meta_left)
4061 {
4062 const struct btf_enum *enums = btf_type_enum(t);
4063 struct btf *btf = env->btf;
4064 const char *fmt_str;
4065 u16 i, nr_enums;
4066 u32 meta_needed;
4067
4068 nr_enums = btf_type_vlen(t);
4069 meta_needed = nr_enums * sizeof(*enums);
4070
4071 if (meta_left < meta_needed) {
4072 btf_verifier_log_basic(env, t,
4073 "meta_left:%u meta_needed:%u",
4074 meta_left, meta_needed);
4075 return -EINVAL;
4076 }
4077
4078 if (t->size > 8 || !is_power_of_2(t->size)) {
4079 btf_verifier_log_type(env, t, "Unexpected size");
4080 return -EINVAL;
4081 }
4082
4083 /* enum type either no name or a valid one */
4084 if (t->name_off &&
4085 !btf_name_valid_identifier(env->btf, t->name_off)) {
4086 btf_verifier_log_type(env, t, "Invalid name");
4087 return -EINVAL;
4088 }
4089
4090 btf_verifier_log_type(env, t, NULL);
4091
4092 for (i = 0; i < nr_enums; i++) {
4093 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4094 btf_verifier_log(env, "\tInvalid name_offset:%u",
4095 enums[i].name_off);
4096 return -EINVAL;
4097 }
4098
4099 /* enum member must have a valid name */
4100 if (!enums[i].name_off ||
4101 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4102 btf_verifier_log_type(env, t, "Invalid name");
4103 return -EINVAL;
4104 }
4105
4106 if (env->log.level == BPF_LOG_KERNEL)
4107 continue;
4108 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4109 btf_verifier_log(env, fmt_str,
4110 __btf_name_by_offset(btf, enums[i].name_off),
4111 enums[i].val);
4112 }
4113
4114 return meta_needed;
4115 }
4116
4117 static void btf_enum_log(struct btf_verifier_env *env,
4118 const struct btf_type *t)
4119 {
4120 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4121 }
4122
4123 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4124 u32 type_id, void *data, u8 bits_offset,
4125 struct btf_show *show)
4126 {
4127 const struct btf_enum *enums = btf_type_enum(t);
4128 u32 i, nr_enums = btf_type_vlen(t);
4129 void *safe_data;
4130 int v;
4131
4132 safe_data = btf_show_start_type(show, t, type_id, data);
4133 if (!safe_data)
4134 return;
4135
4136 v = *(int *)safe_data;
4137
4138 for (i = 0; i < nr_enums; i++) {
4139 if (v != enums[i].val)
4140 continue;
4141
4142 btf_show_type_value(show, "%s",
4143 __btf_name_by_offset(btf,
4144 enums[i].name_off));
4145
4146 btf_show_end_type(show);
4147 return;
4148 }
4149
4150 if (btf_type_kflag(t))
4151 btf_show_type_value(show, "%d", v);
4152 else
4153 btf_show_type_value(show, "%u", v);
4154 btf_show_end_type(show);
4155 }
4156
4157 static struct btf_kind_operations enum_ops = {
4158 .check_meta = btf_enum_check_meta,
4159 .resolve = btf_df_resolve,
4160 .check_member = btf_enum_check_member,
4161 .check_kflag_member = btf_enum_check_kflag_member,
4162 .log_details = btf_enum_log,
4163 .show = btf_enum_show,
4164 };
4165
4166 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4167 const struct btf_type *t,
4168 u32 meta_left)
4169 {
4170 const struct btf_enum64 *enums = btf_type_enum64(t);
4171 struct btf *btf = env->btf;
4172 const char *fmt_str;
4173 u16 i, nr_enums;
4174 u32 meta_needed;
4175
4176 nr_enums = btf_type_vlen(t);
4177 meta_needed = nr_enums * sizeof(*enums);
4178
4179 if (meta_left < meta_needed) {
4180 btf_verifier_log_basic(env, t,
4181 "meta_left:%u meta_needed:%u",
4182 meta_left, meta_needed);
4183 return -EINVAL;
4184 }
4185
4186 if (t->size > 8 || !is_power_of_2(t->size)) {
4187 btf_verifier_log_type(env, t, "Unexpected size");
4188 return -EINVAL;
4189 }
4190
4191 /* enum type either no name or a valid one */
4192 if (t->name_off &&
4193 !btf_name_valid_identifier(env->btf, t->name_off)) {
4194 btf_verifier_log_type(env, t, "Invalid name");
4195 return -EINVAL;
4196 }
4197
4198 btf_verifier_log_type(env, t, NULL);
4199
4200 for (i = 0; i < nr_enums; i++) {
4201 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4202 btf_verifier_log(env, "\tInvalid name_offset:%u",
4203 enums[i].name_off);
4204 return -EINVAL;
4205 }
4206
4207 /* enum member must have a valid name */
4208 if (!enums[i].name_off ||
4209 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4210 btf_verifier_log_type(env, t, "Invalid name");
4211 return -EINVAL;
4212 }
4213
4214 if (env->log.level == BPF_LOG_KERNEL)
4215 continue;
4216
4217 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4218 btf_verifier_log(env, fmt_str,
4219 __btf_name_by_offset(btf, enums[i].name_off),
4220 btf_enum64_value(enums + i));
4221 }
4222
4223 return meta_needed;
4224 }
4225
4226 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4227 u32 type_id, void *data, u8 bits_offset,
4228 struct btf_show *show)
4229 {
4230 const struct btf_enum64 *enums = btf_type_enum64(t);
4231 u32 i, nr_enums = btf_type_vlen(t);
4232 void *safe_data;
4233 s64 v;
4234
4235 safe_data = btf_show_start_type(show, t, type_id, data);
4236 if (!safe_data)
4237 return;
4238
4239 v = *(u64 *)safe_data;
4240
4241 for (i = 0; i < nr_enums; i++) {
4242 if (v != btf_enum64_value(enums + i))
4243 continue;
4244
4245 btf_show_type_value(show, "%s",
4246 __btf_name_by_offset(btf,
4247 enums[i].name_off));
4248
4249 btf_show_end_type(show);
4250 return;
4251 }
4252
4253 if (btf_type_kflag(t))
4254 btf_show_type_value(show, "%lld", v);
4255 else
4256 btf_show_type_value(show, "%llu", v);
4257 btf_show_end_type(show);
4258 }
4259
4260 static struct btf_kind_operations enum64_ops = {
4261 .check_meta = btf_enum64_check_meta,
4262 .resolve = btf_df_resolve,
4263 .check_member = btf_enum_check_member,
4264 .check_kflag_member = btf_enum_check_kflag_member,
4265 .log_details = btf_enum_log,
4266 .show = btf_enum64_show,
4267 };
4268
4269 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4270 const struct btf_type *t,
4271 u32 meta_left)
4272 {
4273 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4274
4275 if (meta_left < meta_needed) {
4276 btf_verifier_log_basic(env, t,
4277 "meta_left:%u meta_needed:%u",
4278 meta_left, meta_needed);
4279 return -EINVAL;
4280 }
4281
4282 if (t->name_off) {
4283 btf_verifier_log_type(env, t, "Invalid name");
4284 return -EINVAL;
4285 }
4286
4287 if (btf_type_kflag(t)) {
4288 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4289 return -EINVAL;
4290 }
4291
4292 btf_verifier_log_type(env, t, NULL);
4293
4294 return meta_needed;
4295 }
4296
4297 static void btf_func_proto_log(struct btf_verifier_env *env,
4298 const struct btf_type *t)
4299 {
4300 const struct btf_param *args = (const struct btf_param *)(t + 1);
4301 u16 nr_args = btf_type_vlen(t), i;
4302
4303 btf_verifier_log(env, "return=%u args=(", t->type);
4304 if (!nr_args) {
4305 btf_verifier_log(env, "void");
4306 goto done;
4307 }
4308
4309 if (nr_args == 1 && !args[0].type) {
4310 /* Only one vararg */
4311 btf_verifier_log(env, "vararg");
4312 goto done;
4313 }
4314
4315 btf_verifier_log(env, "%u %s", args[0].type,
4316 __btf_name_by_offset(env->btf,
4317 args[0].name_off));
4318 for (i = 1; i < nr_args - 1; i++)
4319 btf_verifier_log(env, ", %u %s", args[i].type,
4320 __btf_name_by_offset(env->btf,
4321 args[i].name_off));
4322
4323 if (nr_args > 1) {
4324 const struct btf_param *last_arg = &args[nr_args - 1];
4325
4326 if (last_arg->type)
4327 btf_verifier_log(env, ", %u %s", last_arg->type,
4328 __btf_name_by_offset(env->btf,
4329 last_arg->name_off));
4330 else
4331 btf_verifier_log(env, ", vararg");
4332 }
4333
4334 done:
4335 btf_verifier_log(env, ")");
4336 }
4337
4338 static struct btf_kind_operations func_proto_ops = {
4339 .check_meta = btf_func_proto_check_meta,
4340 .resolve = btf_df_resolve,
4341 /*
4342 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4343 * a struct's member.
4344 *
4345 * It should be a function pointer instead.
4346 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4347 *
4348 * Hence, there is no btf_func_check_member().
4349 */
4350 .check_member = btf_df_check_member,
4351 .check_kflag_member = btf_df_check_kflag_member,
4352 .log_details = btf_func_proto_log,
4353 .show = btf_df_show,
4354 };
4355
4356 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4357 const struct btf_type *t,
4358 u32 meta_left)
4359 {
4360 if (!t->name_off ||
4361 !btf_name_valid_identifier(env->btf, t->name_off)) {
4362 btf_verifier_log_type(env, t, "Invalid name");
4363 return -EINVAL;
4364 }
4365
4366 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4367 btf_verifier_log_type(env, t, "Invalid func linkage");
4368 return -EINVAL;
4369 }
4370
4371 if (btf_type_kflag(t)) {
4372 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4373 return -EINVAL;
4374 }
4375
4376 btf_verifier_log_type(env, t, NULL);
4377
4378 return 0;
4379 }
4380
4381 static int btf_func_resolve(struct btf_verifier_env *env,
4382 const struct resolve_vertex *v)
4383 {
4384 const struct btf_type *t = v->t;
4385 u32 next_type_id = t->type;
4386 int err;
4387
4388 err = btf_func_check(env, t);
4389 if (err)
4390 return err;
4391
4392 env_stack_pop_resolved(env, next_type_id, 0);
4393 return 0;
4394 }
4395
4396 static struct btf_kind_operations func_ops = {
4397 .check_meta = btf_func_check_meta,
4398 .resolve = btf_func_resolve,
4399 .check_member = btf_df_check_member,
4400 .check_kflag_member = btf_df_check_kflag_member,
4401 .log_details = btf_ref_type_log,
4402 .show = btf_df_show,
4403 };
4404
4405 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4406 const struct btf_type *t,
4407 u32 meta_left)
4408 {
4409 const struct btf_var *var;
4410 u32 meta_needed = sizeof(*var);
4411
4412 if (meta_left < meta_needed) {
4413 btf_verifier_log_basic(env, t,
4414 "meta_left:%u meta_needed:%u",
4415 meta_left, meta_needed);
4416 return -EINVAL;
4417 }
4418
4419 if (btf_type_vlen(t)) {
4420 btf_verifier_log_type(env, t, "vlen != 0");
4421 return -EINVAL;
4422 }
4423
4424 if (btf_type_kflag(t)) {
4425 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4426 return -EINVAL;
4427 }
4428
4429 if (!t->name_off ||
4430 !__btf_name_valid(env->btf, t->name_off)) {
4431 btf_verifier_log_type(env, t, "Invalid name");
4432 return -EINVAL;
4433 }
4434
4435 /* A var cannot be in type void */
4436 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4437 btf_verifier_log_type(env, t, "Invalid type_id");
4438 return -EINVAL;
4439 }
4440
4441 var = btf_type_var(t);
4442 if (var->linkage != BTF_VAR_STATIC &&
4443 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4444 btf_verifier_log_type(env, t, "Linkage not supported");
4445 return -EINVAL;
4446 }
4447
4448 btf_verifier_log_type(env, t, NULL);
4449
4450 return meta_needed;
4451 }
4452
4453 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4454 {
4455 const struct btf_var *var = btf_type_var(t);
4456
4457 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4458 }
4459
4460 static const struct btf_kind_operations var_ops = {
4461 .check_meta = btf_var_check_meta,
4462 .resolve = btf_var_resolve,
4463 .check_member = btf_df_check_member,
4464 .check_kflag_member = btf_df_check_kflag_member,
4465 .log_details = btf_var_log,
4466 .show = btf_var_show,
4467 };
4468
4469 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4470 const struct btf_type *t,
4471 u32 meta_left)
4472 {
4473 const struct btf_var_secinfo *vsi;
4474 u64 last_vsi_end_off = 0, sum = 0;
4475 u32 i, meta_needed;
4476
4477 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4478 if (meta_left < meta_needed) {
4479 btf_verifier_log_basic(env, t,
4480 "meta_left:%u meta_needed:%u",
4481 meta_left, meta_needed);
4482 return -EINVAL;
4483 }
4484
4485 if (!t->size) {
4486 btf_verifier_log_type(env, t, "size == 0");
4487 return -EINVAL;
4488 }
4489
4490 if (btf_type_kflag(t)) {
4491 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4492 return -EINVAL;
4493 }
4494
4495 if (!t->name_off ||
4496 !btf_name_valid_section(env->btf, t->name_off)) {
4497 btf_verifier_log_type(env, t, "Invalid name");
4498 return -EINVAL;
4499 }
4500
4501 btf_verifier_log_type(env, t, NULL);
4502
4503 for_each_vsi(i, t, vsi) {
4504 /* A var cannot be in type void */
4505 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4506 btf_verifier_log_vsi(env, t, vsi,
4507 "Invalid type_id");
4508 return -EINVAL;
4509 }
4510
4511 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4512 btf_verifier_log_vsi(env, t, vsi,
4513 "Invalid offset");
4514 return -EINVAL;
4515 }
4516
4517 if (!vsi->size || vsi->size > t->size) {
4518 btf_verifier_log_vsi(env, t, vsi,
4519 "Invalid size");
4520 return -EINVAL;
4521 }
4522
4523 last_vsi_end_off = vsi->offset + vsi->size;
4524 if (last_vsi_end_off > t->size) {
4525 btf_verifier_log_vsi(env, t, vsi,
4526 "Invalid offset+size");
4527 return -EINVAL;
4528 }
4529
4530 btf_verifier_log_vsi(env, t, vsi, NULL);
4531 sum += vsi->size;
4532 }
4533
4534 if (t->size < sum) {
4535 btf_verifier_log_type(env, t, "Invalid btf_info size");
4536 return -EINVAL;
4537 }
4538
4539 return meta_needed;
4540 }
4541
4542 static int btf_datasec_resolve(struct btf_verifier_env *env,
4543 const struct resolve_vertex *v)
4544 {
4545 const struct btf_var_secinfo *vsi;
4546 struct btf *btf = env->btf;
4547 u16 i;
4548
4549 env->resolve_mode = RESOLVE_TBD;
4550 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4551 u32 var_type_id = vsi->type, type_id, type_size = 0;
4552 const struct btf_type *var_type = btf_type_by_id(env->btf,
4553 var_type_id);
4554 if (!var_type || !btf_type_is_var(var_type)) {
4555 btf_verifier_log_vsi(env, v->t, vsi,
4556 "Not a VAR kind member");
4557 return -EINVAL;
4558 }
4559
4560 if (!env_type_is_resolve_sink(env, var_type) &&
4561 !env_type_is_resolved(env, var_type_id)) {
4562 env_stack_set_next_member(env, i + 1);
4563 return env_stack_push(env, var_type, var_type_id);
4564 }
4565
4566 type_id = var_type->type;
4567 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4568 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4569 return -EINVAL;
4570 }
4571
4572 if (vsi->size < type_size) {
4573 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4574 return -EINVAL;
4575 }
4576 }
4577
4578 env_stack_pop_resolved(env, 0, 0);
4579 return 0;
4580 }
4581
4582 static void btf_datasec_log(struct btf_verifier_env *env,
4583 const struct btf_type *t)
4584 {
4585 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4586 }
4587
4588 static void btf_datasec_show(const struct btf *btf,
4589 const struct btf_type *t, u32 type_id,
4590 void *data, u8 bits_offset,
4591 struct btf_show *show)
4592 {
4593 const struct btf_var_secinfo *vsi;
4594 const struct btf_type *var;
4595 u32 i;
4596
4597 if (!btf_show_start_type(show, t, type_id, data))
4598 return;
4599
4600 btf_show_type_value(show, "section (\"%s\") = {",
4601 __btf_name_by_offset(btf, t->name_off));
4602 for_each_vsi(i, t, vsi) {
4603 var = btf_type_by_id(btf, vsi->type);
4604 if (i)
4605 btf_show(show, ",");
4606 btf_type_ops(var)->show(btf, var, vsi->type,
4607 data + vsi->offset, bits_offset, show);
4608 }
4609 btf_show_end_type(show);
4610 }
4611
4612 static const struct btf_kind_operations datasec_ops = {
4613 .check_meta = btf_datasec_check_meta,
4614 .resolve = btf_datasec_resolve,
4615 .check_member = btf_df_check_member,
4616 .check_kflag_member = btf_df_check_kflag_member,
4617 .log_details = btf_datasec_log,
4618 .show = btf_datasec_show,
4619 };
4620
4621 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4622 const struct btf_type *t,
4623 u32 meta_left)
4624 {
4625 if (btf_type_vlen(t)) {
4626 btf_verifier_log_type(env, t, "vlen != 0");
4627 return -EINVAL;
4628 }
4629
4630 if (btf_type_kflag(t)) {
4631 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4632 return -EINVAL;
4633 }
4634
4635 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4636 t->size != 16) {
4637 btf_verifier_log_type(env, t, "Invalid type_size");
4638 return -EINVAL;
4639 }
4640
4641 btf_verifier_log_type(env, t, NULL);
4642
4643 return 0;
4644 }
4645
4646 static int btf_float_check_member(struct btf_verifier_env *env,
4647 const struct btf_type *struct_type,
4648 const struct btf_member *member,
4649 const struct btf_type *member_type)
4650 {
4651 u64 start_offset_bytes;
4652 u64 end_offset_bytes;
4653 u64 misalign_bits;
4654 u64 align_bytes;
4655 u64 align_bits;
4656
4657 /* Different architectures have different alignment requirements, so
4658 * here we check only for the reasonable minimum. This way we ensure
4659 * that types after CO-RE can pass the kernel BTF verifier.
4660 */
4661 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4662 align_bits = align_bytes * BITS_PER_BYTE;
4663 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4664 if (misalign_bits) {
4665 btf_verifier_log_member(env, struct_type, member,
4666 "Member is not properly aligned");
4667 return -EINVAL;
4668 }
4669
4670 start_offset_bytes = member->offset / BITS_PER_BYTE;
4671 end_offset_bytes = start_offset_bytes + member_type->size;
4672 if (end_offset_bytes > struct_type->size) {
4673 btf_verifier_log_member(env, struct_type, member,
4674 "Member exceeds struct_size");
4675 return -EINVAL;
4676 }
4677
4678 return 0;
4679 }
4680
4681 static void btf_float_log(struct btf_verifier_env *env,
4682 const struct btf_type *t)
4683 {
4684 btf_verifier_log(env, "size=%u", t->size);
4685 }
4686
4687 static const struct btf_kind_operations float_ops = {
4688 .check_meta = btf_float_check_meta,
4689 .resolve = btf_df_resolve,
4690 .check_member = btf_float_check_member,
4691 .check_kflag_member = btf_generic_check_kflag_member,
4692 .log_details = btf_float_log,
4693 .show = btf_df_show,
4694 };
4695
4696 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4697 const struct btf_type *t,
4698 u32 meta_left)
4699 {
4700 const struct btf_decl_tag *tag;
4701 u32 meta_needed = sizeof(*tag);
4702 s32 component_idx;
4703 const char *value;
4704
4705 if (meta_left < meta_needed) {
4706 btf_verifier_log_basic(env, t,
4707 "meta_left:%u meta_needed:%u",
4708 meta_left, meta_needed);
4709 return -EINVAL;
4710 }
4711
4712 value = btf_name_by_offset(env->btf, t->name_off);
4713 if (!value || !value[0]) {
4714 btf_verifier_log_type(env, t, "Invalid value");
4715 return -EINVAL;
4716 }
4717
4718 if (btf_type_vlen(t)) {
4719 btf_verifier_log_type(env, t, "vlen != 0");
4720 return -EINVAL;
4721 }
4722
4723 if (btf_type_kflag(t)) {
4724 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4725 return -EINVAL;
4726 }
4727
4728 component_idx = btf_type_decl_tag(t)->component_idx;
4729 if (component_idx < -1) {
4730 btf_verifier_log_type(env, t, "Invalid component_idx");
4731 return -EINVAL;
4732 }
4733
4734 btf_verifier_log_type(env, t, NULL);
4735
4736 return meta_needed;
4737 }
4738
4739 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4740 const struct resolve_vertex *v)
4741 {
4742 const struct btf_type *next_type;
4743 const struct btf_type *t = v->t;
4744 u32 next_type_id = t->type;
4745 struct btf *btf = env->btf;
4746 s32 component_idx;
4747 u32 vlen;
4748
4749 next_type = btf_type_by_id(btf, next_type_id);
4750 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4751 btf_verifier_log_type(env, v->t, "Invalid type_id");
4752 return -EINVAL;
4753 }
4754
4755 if (!env_type_is_resolve_sink(env, next_type) &&
4756 !env_type_is_resolved(env, next_type_id))
4757 return env_stack_push(env, next_type, next_type_id);
4758
4759 component_idx = btf_type_decl_tag(t)->component_idx;
4760 if (component_idx != -1) {
4761 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4762 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4763 return -EINVAL;
4764 }
4765
4766 if (btf_type_is_struct(next_type)) {
4767 vlen = btf_type_vlen(next_type);
4768 } else {
4769 /* next_type should be a function */
4770 next_type = btf_type_by_id(btf, next_type->type);
4771 vlen = btf_type_vlen(next_type);
4772 }
4773
4774 if ((u32)component_idx >= vlen) {
4775 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4776 return -EINVAL;
4777 }
4778 }
4779
4780 env_stack_pop_resolved(env, next_type_id, 0);
4781
4782 return 0;
4783 }
4784
4785 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4786 {
4787 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4788 btf_type_decl_tag(t)->component_idx);
4789 }
4790
4791 static const struct btf_kind_operations decl_tag_ops = {
4792 .check_meta = btf_decl_tag_check_meta,
4793 .resolve = btf_decl_tag_resolve,
4794 .check_member = btf_df_check_member,
4795 .check_kflag_member = btf_df_check_kflag_member,
4796 .log_details = btf_decl_tag_log,
4797 .show = btf_df_show,
4798 };
4799
4800 static int btf_func_proto_check(struct btf_verifier_env *env,
4801 const struct btf_type *t)
4802 {
4803 const struct btf_type *ret_type;
4804 const struct btf_param *args;
4805 const struct btf *btf;
4806 u16 nr_args, i;
4807 int err;
4808
4809 btf = env->btf;
4810 args = (const struct btf_param *)(t + 1);
4811 nr_args = btf_type_vlen(t);
4812
4813 /* Check func return type which could be "void" (t->type == 0) */
4814 if (t->type) {
4815 u32 ret_type_id = t->type;
4816
4817 ret_type = btf_type_by_id(btf, ret_type_id);
4818 if (!ret_type) {
4819 btf_verifier_log_type(env, t, "Invalid return type");
4820 return -EINVAL;
4821 }
4822
4823 if (btf_type_is_resolve_source_only(ret_type)) {
4824 btf_verifier_log_type(env, t, "Invalid return type");
4825 return -EINVAL;
4826 }
4827
4828 if (btf_type_needs_resolve(ret_type) &&
4829 !env_type_is_resolved(env, ret_type_id)) {
4830 err = btf_resolve(env, ret_type, ret_type_id);
4831 if (err)
4832 return err;
4833 }
4834
4835 /* Ensure the return type is a type that has a size */
4836 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4837 btf_verifier_log_type(env, t, "Invalid return type");
4838 return -EINVAL;
4839 }
4840 }
4841
4842 if (!nr_args)
4843 return 0;
4844
4845 /* Last func arg type_id could be 0 if it is a vararg */
4846 if (!args[nr_args - 1].type) {
4847 if (args[nr_args - 1].name_off) {
4848 btf_verifier_log_type(env, t, "Invalid arg#%u",
4849 nr_args);
4850 return -EINVAL;
4851 }
4852 nr_args--;
4853 }
4854
4855 for (i = 0; i < nr_args; i++) {
4856 const struct btf_type *arg_type;
4857 u32 arg_type_id;
4858
4859 arg_type_id = args[i].type;
4860 arg_type = btf_type_by_id(btf, arg_type_id);
4861 if (!arg_type) {
4862 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4863 return -EINVAL;
4864 }
4865
4866 if (btf_type_is_resolve_source_only(arg_type)) {
4867 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4868 return -EINVAL;
4869 }
4870
4871 if (args[i].name_off &&
4872 (!btf_name_offset_valid(btf, args[i].name_off) ||
4873 !btf_name_valid_identifier(btf, args[i].name_off))) {
4874 btf_verifier_log_type(env, t,
4875 "Invalid arg#%u", i + 1);
4876 return -EINVAL;
4877 }
4878
4879 if (btf_type_needs_resolve(arg_type) &&
4880 !env_type_is_resolved(env, arg_type_id)) {
4881 err = btf_resolve(env, arg_type, arg_type_id);
4882 if (err)
4883 return err;
4884 }
4885
4886 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4887 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4888 return -EINVAL;
4889 }
4890 }
4891
4892 return 0;
4893 }
4894
4895 static int btf_func_check(struct btf_verifier_env *env,
4896 const struct btf_type *t)
4897 {
4898 const struct btf_type *proto_type;
4899 const struct btf_param *args;
4900 const struct btf *btf;
4901 u16 nr_args, i;
4902
4903 btf = env->btf;
4904 proto_type = btf_type_by_id(btf, t->type);
4905
4906 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4907 btf_verifier_log_type(env, t, "Invalid type_id");
4908 return -EINVAL;
4909 }
4910
4911 args = (const struct btf_param *)(proto_type + 1);
4912 nr_args = btf_type_vlen(proto_type);
4913 for (i = 0; i < nr_args; i++) {
4914 if (!args[i].name_off && args[i].type) {
4915 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4916 return -EINVAL;
4917 }
4918 }
4919
4920 return 0;
4921 }
4922
4923 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4924 [BTF_KIND_INT] = &int_ops,
4925 [BTF_KIND_PTR] = &ptr_ops,
4926 [BTF_KIND_ARRAY] = &array_ops,
4927 [BTF_KIND_STRUCT] = &struct_ops,
4928 [BTF_KIND_UNION] = &struct_ops,
4929 [BTF_KIND_ENUM] = &enum_ops,
4930 [BTF_KIND_FWD] = &fwd_ops,
4931 [BTF_KIND_TYPEDEF] = &modifier_ops,
4932 [BTF_KIND_VOLATILE] = &modifier_ops,
4933 [BTF_KIND_CONST] = &modifier_ops,
4934 [BTF_KIND_RESTRICT] = &modifier_ops,
4935 [BTF_KIND_FUNC] = &func_ops,
4936 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4937 [BTF_KIND_VAR] = &var_ops,
4938 [BTF_KIND_DATASEC] = &datasec_ops,
4939 [BTF_KIND_FLOAT] = &float_ops,
4940 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4941 [BTF_KIND_TYPE_TAG] = &modifier_ops,
4942 [BTF_KIND_ENUM64] = &enum64_ops,
4943 };
4944
4945 static s32 btf_check_meta(struct btf_verifier_env *env,
4946 const struct btf_type *t,
4947 u32 meta_left)
4948 {
4949 u32 saved_meta_left = meta_left;
4950 s32 var_meta_size;
4951
4952 if (meta_left < sizeof(*t)) {
4953 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4954 env->log_type_id, meta_left, sizeof(*t));
4955 return -EINVAL;
4956 }
4957 meta_left -= sizeof(*t);
4958
4959 if (t->info & ~BTF_INFO_MASK) {
4960 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4961 env->log_type_id, t->info);
4962 return -EINVAL;
4963 }
4964
4965 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4966 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4967 btf_verifier_log(env, "[%u] Invalid kind:%u",
4968 env->log_type_id, BTF_INFO_KIND(t->info));
4969 return -EINVAL;
4970 }
4971
4972 if (!btf_name_offset_valid(env->btf, t->name_off)) {
4973 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4974 env->log_type_id, t->name_off);
4975 return -EINVAL;
4976 }
4977
4978 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4979 if (var_meta_size < 0)
4980 return var_meta_size;
4981
4982 meta_left -= var_meta_size;
4983
4984 return saved_meta_left - meta_left;
4985 }
4986
4987 static int btf_check_all_metas(struct btf_verifier_env *env)
4988 {
4989 struct btf *btf = env->btf;
4990 struct btf_header *hdr;
4991 void *cur, *end;
4992
4993 hdr = &btf->hdr;
4994 cur = btf->nohdr_data + hdr->type_off;
4995 end = cur + hdr->type_len;
4996
4997 env->log_type_id = btf->base_btf ? btf->start_id : 1;
4998 while (cur < end) {
4999 struct btf_type *t = cur;
5000 s32 meta_size;
5001
5002 meta_size = btf_check_meta(env, t, end - cur);
5003 if (meta_size < 0)
5004 return meta_size;
5005
5006 btf_add_type(env, t);
5007 cur += meta_size;
5008 env->log_type_id++;
5009 }
5010
5011 return 0;
5012 }
5013
5014 static bool btf_resolve_valid(struct btf_verifier_env *env,
5015 const struct btf_type *t,
5016 u32 type_id)
5017 {
5018 struct btf *btf = env->btf;
5019
5020 if (!env_type_is_resolved(env, type_id))
5021 return false;
5022
5023 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5024 return !btf_resolved_type_id(btf, type_id) &&
5025 !btf_resolved_type_size(btf, type_id);
5026
5027 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5028 return btf_resolved_type_id(btf, type_id) &&
5029 !btf_resolved_type_size(btf, type_id);
5030
5031 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5032 btf_type_is_var(t)) {
5033 t = btf_type_id_resolve(btf, &type_id);
5034 return t &&
5035 !btf_type_is_modifier(t) &&
5036 !btf_type_is_var(t) &&
5037 !btf_type_is_datasec(t);
5038 }
5039
5040 if (btf_type_is_array(t)) {
5041 const struct btf_array *array = btf_type_array(t);
5042 const struct btf_type *elem_type;
5043 u32 elem_type_id = array->type;
5044 u32 elem_size;
5045
5046 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5047 return elem_type && !btf_type_is_modifier(elem_type) &&
5048 (array->nelems * elem_size ==
5049 btf_resolved_type_size(btf, type_id));
5050 }
5051
5052 return false;
5053 }
5054
5055 static int btf_resolve(struct btf_verifier_env *env,
5056 const struct btf_type *t, u32 type_id)
5057 {
5058 u32 save_log_type_id = env->log_type_id;
5059 const struct resolve_vertex *v;
5060 int err = 0;
5061
5062 env->resolve_mode = RESOLVE_TBD;
5063 env_stack_push(env, t, type_id);
5064 while (!err && (v = env_stack_peak(env))) {
5065 env->log_type_id = v->type_id;
5066 err = btf_type_ops(v->t)->resolve(env, v);
5067 }
5068
5069 env->log_type_id = type_id;
5070 if (err == -E2BIG) {
5071 btf_verifier_log_type(env, t,
5072 "Exceeded max resolving depth:%u",
5073 MAX_RESOLVE_DEPTH);
5074 } else if (err == -EEXIST) {
5075 btf_verifier_log_type(env, t, "Loop detected");
5076 }
5077
5078 /* Final sanity check */
5079 if (!err && !btf_resolve_valid(env, t, type_id)) {
5080 btf_verifier_log_type(env, t, "Invalid resolve state");
5081 err = -EINVAL;
5082 }
5083
5084 env->log_type_id = save_log_type_id;
5085 return err;
5086 }
5087
5088 static int btf_check_all_types(struct btf_verifier_env *env)
5089 {
5090 struct btf *btf = env->btf;
5091 const struct btf_type *t;
5092 u32 type_id, i;
5093 int err;
5094
5095 err = env_resolve_init(env);
5096 if (err)
5097 return err;
5098
5099 env->phase++;
5100 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5101 type_id = btf->start_id + i;
5102 t = btf_type_by_id(btf, type_id);
5103
5104 env->log_type_id = type_id;
5105 if (btf_type_needs_resolve(t) &&
5106 !env_type_is_resolved(env, type_id)) {
5107 err = btf_resolve(env, t, type_id);
5108 if (err)
5109 return err;
5110 }
5111
5112 if (btf_type_is_func_proto(t)) {
5113 err = btf_func_proto_check(env, t);
5114 if (err)
5115 return err;
5116 }
5117 }
5118
5119 return 0;
5120 }
5121
5122 static int btf_parse_type_sec(struct btf_verifier_env *env)
5123 {
5124 const struct btf_header *hdr = &env->btf->hdr;
5125 int err;
5126
5127 /* Type section must align to 4 bytes */
5128 if (hdr->type_off & (sizeof(u32) - 1)) {
5129 btf_verifier_log(env, "Unaligned type_off");
5130 return -EINVAL;
5131 }
5132
5133 if (!env->btf->base_btf && !hdr->type_len) {
5134 btf_verifier_log(env, "No type found");
5135 return -EINVAL;
5136 }
5137
5138 err = btf_check_all_metas(env);
5139 if (err)
5140 return err;
5141
5142 return btf_check_all_types(env);
5143 }
5144
5145 static int btf_parse_str_sec(struct btf_verifier_env *env)
5146 {
5147 const struct btf_header *hdr;
5148 struct btf *btf = env->btf;
5149 const char *start, *end;
5150
5151 hdr = &btf->hdr;
5152 start = btf->nohdr_data + hdr->str_off;
5153 end = start + hdr->str_len;
5154
5155 if (end != btf->data + btf->data_size) {
5156 btf_verifier_log(env, "String section is not at the end");
5157 return -EINVAL;
5158 }
5159
5160 btf->strings = start;
5161
5162 if (btf->base_btf && !hdr->str_len)
5163 return 0;
5164 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5165 btf_verifier_log(env, "Invalid string section");
5166 return -EINVAL;
5167 }
5168 if (!btf->base_btf && start[0]) {
5169 btf_verifier_log(env, "Invalid string section");
5170 return -EINVAL;
5171 }
5172
5173 return 0;
5174 }
5175
5176 static const size_t btf_sec_info_offset[] = {
5177 offsetof(struct btf_header, type_off),
5178 offsetof(struct btf_header, str_off),
5179 };
5180
5181 static int btf_sec_info_cmp(const void *a, const void *b)
5182 {
5183 const struct btf_sec_info *x = a;
5184 const struct btf_sec_info *y = b;
5185
5186 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5187 }
5188
5189 static int btf_check_sec_info(struct btf_verifier_env *env,
5190 u32 btf_data_size)
5191 {
5192 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5193 u32 total, expected_total, i;
5194 const struct btf_header *hdr;
5195 const struct btf *btf;
5196
5197 btf = env->btf;
5198 hdr = &btf->hdr;
5199
5200 /* Populate the secs from hdr */
5201 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5202 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5203 btf_sec_info_offset[i]);
5204
5205 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5206 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5207
5208 /* Check for gaps and overlap among sections */
5209 total = 0;
5210 expected_total = btf_data_size - hdr->hdr_len;
5211 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5212 if (expected_total < secs[i].off) {
5213 btf_verifier_log(env, "Invalid section offset");
5214 return -EINVAL;
5215 }
5216 if (total < secs[i].off) {
5217 /* gap */
5218 btf_verifier_log(env, "Unsupported section found");
5219 return -EINVAL;
5220 }
5221 if (total > secs[i].off) {
5222 btf_verifier_log(env, "Section overlap found");
5223 return -EINVAL;
5224 }
5225 if (expected_total - total < secs[i].len) {
5226 btf_verifier_log(env,
5227 "Total section length too long");
5228 return -EINVAL;
5229 }
5230 total += secs[i].len;
5231 }
5232
5233 /* There is data other than hdr and known sections */
5234 if (expected_total != total) {
5235 btf_verifier_log(env, "Unsupported section found");
5236 return -EINVAL;
5237 }
5238
5239 return 0;
5240 }
5241
5242 static int btf_parse_hdr(struct btf_verifier_env *env)
5243 {
5244 u32 hdr_len, hdr_copy, btf_data_size;
5245 const struct btf_header *hdr;
5246 struct btf *btf;
5247
5248 btf = env->btf;
5249 btf_data_size = btf->data_size;
5250
5251 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5252 btf_verifier_log(env, "hdr_len not found");
5253 return -EINVAL;
5254 }
5255
5256 hdr = btf->data;
5257 hdr_len = hdr->hdr_len;
5258 if (btf_data_size < hdr_len) {
5259 btf_verifier_log(env, "btf_header not found");
5260 return -EINVAL;
5261 }
5262
5263 /* Ensure the unsupported header fields are zero */
5264 if (hdr_len > sizeof(btf->hdr)) {
5265 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5266 u8 *end = btf->data + hdr_len;
5267
5268 for (; expected_zero < end; expected_zero++) {
5269 if (*expected_zero) {
5270 btf_verifier_log(env, "Unsupported btf_header");
5271 return -E2BIG;
5272 }
5273 }
5274 }
5275
5276 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5277 memcpy(&btf->hdr, btf->data, hdr_copy);
5278
5279 hdr = &btf->hdr;
5280
5281 btf_verifier_log_hdr(env, btf_data_size);
5282
5283 if (hdr->magic != BTF_MAGIC) {
5284 btf_verifier_log(env, "Invalid magic");
5285 return -EINVAL;
5286 }
5287
5288 if (hdr->version != BTF_VERSION) {
5289 btf_verifier_log(env, "Unsupported version");
5290 return -ENOTSUPP;
5291 }
5292
5293 if (hdr->flags) {
5294 btf_verifier_log(env, "Unsupported flags");
5295 return -ENOTSUPP;
5296 }
5297
5298 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5299 btf_verifier_log(env, "No data");
5300 return -EINVAL;
5301 }
5302
5303 return btf_check_sec_info(env, btf_data_size);
5304 }
5305
5306 static const char *alloc_obj_fields[] = {
5307 "bpf_spin_lock",
5308 "bpf_list_head",
5309 "bpf_list_node",
5310 "bpf_rb_root",
5311 "bpf_rb_node",
5312 "bpf_refcount",
5313 };
5314
5315 static struct btf_struct_metas *
5316 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5317 {
5318 union {
5319 struct btf_id_set set;
5320 struct {
5321 u32 _cnt;
5322 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5323 } _arr;
5324 } aof;
5325 struct btf_struct_metas *tab = NULL;
5326 int i, n, id, ret;
5327
5328 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5329 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5330
5331 memset(&aof, 0, sizeof(aof));
5332 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5333 /* Try to find whether this special type exists in user BTF, and
5334 * if so remember its ID so we can easily find it among members
5335 * of structs that we iterate in the next loop.
5336 */
5337 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5338 if (id < 0)
5339 continue;
5340 aof.set.ids[aof.set.cnt++] = id;
5341 }
5342
5343 if (!aof.set.cnt)
5344 return NULL;
5345 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5346
5347 n = btf_nr_types(btf);
5348 for (i = 1; i < n; i++) {
5349 struct btf_struct_metas *new_tab;
5350 const struct btf_member *member;
5351 struct btf_struct_meta *type;
5352 struct btf_record *record;
5353 const struct btf_type *t;
5354 int j, tab_cnt;
5355
5356 t = btf_type_by_id(btf, i);
5357 if (!t) {
5358 ret = -EINVAL;
5359 goto free;
5360 }
5361 if (!__btf_type_is_struct(t))
5362 continue;
5363
5364 cond_resched();
5365
5366 for_each_member(j, t, member) {
5367 if (btf_id_set_contains(&aof.set, member->type))
5368 goto parse;
5369 }
5370 continue;
5371 parse:
5372 tab_cnt = tab ? tab->cnt : 0;
5373 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5374 GFP_KERNEL | __GFP_NOWARN);
5375 if (!new_tab) {
5376 ret = -ENOMEM;
5377 goto free;
5378 }
5379 if (!tab)
5380 new_tab->cnt = 0;
5381 tab = new_tab;
5382
5383 type = &tab->types[tab->cnt];
5384 type->btf_id = i;
5385 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5386 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5387 /* The record cannot be unset, treat it as an error if so */
5388 if (IS_ERR_OR_NULL(record)) {
5389 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5390 goto free;
5391 }
5392 type->record = record;
5393 tab->cnt++;
5394 }
5395 return tab;
5396 free:
5397 btf_struct_metas_free(tab);
5398 return ERR_PTR(ret);
5399 }
5400
5401 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5402 {
5403 struct btf_struct_metas *tab;
5404
5405 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5406 tab = btf->struct_meta_tab;
5407 if (!tab)
5408 return NULL;
5409 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5410 }
5411
5412 static int btf_check_type_tags(struct btf_verifier_env *env,
5413 struct btf *btf, int start_id)
5414 {
5415 int i, n, good_id = start_id - 1;
5416 bool in_tags;
5417
5418 n = btf_nr_types(btf);
5419 for (i = start_id; i < n; i++) {
5420 const struct btf_type *t;
5421 int chain_limit = 32;
5422 u32 cur_id = i;
5423
5424 t = btf_type_by_id(btf, i);
5425 if (!t)
5426 return -EINVAL;
5427 if (!btf_type_is_modifier(t))
5428 continue;
5429
5430 cond_resched();
5431
5432 in_tags = btf_type_is_type_tag(t);
5433 while (btf_type_is_modifier(t)) {
5434 if (!chain_limit--) {
5435 btf_verifier_log(env, "Max chain length or cycle detected");
5436 return -ELOOP;
5437 }
5438 if (btf_type_is_type_tag(t)) {
5439 if (!in_tags) {
5440 btf_verifier_log(env, "Type tags don't precede modifiers");
5441 return -EINVAL;
5442 }
5443 } else if (in_tags) {
5444 in_tags = false;
5445 }
5446 if (cur_id <= good_id)
5447 break;
5448 /* Move to next type */
5449 cur_id = t->type;
5450 t = btf_type_by_id(btf, cur_id);
5451 if (!t)
5452 return -EINVAL;
5453 }
5454 good_id = i;
5455 }
5456 return 0;
5457 }
5458
5459 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5460 {
5461 u32 log_true_size;
5462 int err;
5463
5464 err = bpf_vlog_finalize(log, &log_true_size);
5465
5466 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5467 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5468 &log_true_size, sizeof(log_true_size)))
5469 err = -EFAULT;
5470
5471 return err;
5472 }
5473
5474 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5475 {
5476 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5477 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5478 struct btf_struct_metas *struct_meta_tab;
5479 struct btf_verifier_env *env = NULL;
5480 struct btf *btf = NULL;
5481 u8 *data;
5482 int err, ret;
5483
5484 if (attr->btf_size > BTF_MAX_SIZE)
5485 return ERR_PTR(-E2BIG);
5486
5487 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5488 if (!env)
5489 return ERR_PTR(-ENOMEM);
5490
5491 /* user could have requested verbose verifier output
5492 * and supplied buffer to store the verification trace
5493 */
5494 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5495 log_ubuf, attr->btf_log_size);
5496 if (err)
5497 goto errout_free;
5498
5499 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5500 if (!btf) {
5501 err = -ENOMEM;
5502 goto errout;
5503 }
5504 env->btf = btf;
5505
5506 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5507 if (!data) {
5508 err = -ENOMEM;
5509 goto errout;
5510 }
5511
5512 btf->data = data;
5513 btf->data_size = attr->btf_size;
5514
5515 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5516 err = -EFAULT;
5517 goto errout;
5518 }
5519
5520 err = btf_parse_hdr(env);
5521 if (err)
5522 goto errout;
5523
5524 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5525
5526 err = btf_parse_str_sec(env);
5527 if (err)
5528 goto errout;
5529
5530 err = btf_parse_type_sec(env);
5531 if (err)
5532 goto errout;
5533
5534 err = btf_check_type_tags(env, btf, 1);
5535 if (err)
5536 goto errout;
5537
5538 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5539 if (IS_ERR(struct_meta_tab)) {
5540 err = PTR_ERR(struct_meta_tab);
5541 goto errout;
5542 }
5543 btf->struct_meta_tab = struct_meta_tab;
5544
5545 if (struct_meta_tab) {
5546 int i;
5547
5548 for (i = 0; i < struct_meta_tab->cnt; i++) {
5549 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5550 if (err < 0)
5551 goto errout_meta;
5552 }
5553 }
5554
5555 err = finalize_log(&env->log, uattr, uattr_size);
5556 if (err)
5557 goto errout_free;
5558
5559 btf_verifier_env_free(env);
5560 refcount_set(&btf->refcnt, 1);
5561 return btf;
5562
5563 errout_meta:
5564 btf_free_struct_meta_tab(btf);
5565 errout:
5566 /* overwrite err with -ENOSPC or -EFAULT */
5567 ret = finalize_log(&env->log, uattr, uattr_size);
5568 if (ret)
5569 err = ret;
5570 errout_free:
5571 btf_verifier_env_free(env);
5572 if (btf)
5573 btf_free(btf);
5574 return ERR_PTR(err);
5575 }
5576
5577 extern char __weak __start_BTF[];
5578 extern char __weak __stop_BTF[];
5579 extern struct btf *btf_vmlinux;
5580
5581 #define BPF_MAP_TYPE(_id, _ops)
5582 #define BPF_LINK_TYPE(_id, _name)
5583 static union {
5584 struct bpf_ctx_convert {
5585 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5586 prog_ctx_type _id##_prog; \
5587 kern_ctx_type _id##_kern;
5588 #include <linux/bpf_types.h>
5589 #undef BPF_PROG_TYPE
5590 } *__t;
5591 /* 't' is written once under lock. Read many times. */
5592 const struct btf_type *t;
5593 } bpf_ctx_convert;
5594 enum {
5595 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5596 __ctx_convert##_id,
5597 #include <linux/bpf_types.h>
5598 #undef BPF_PROG_TYPE
5599 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5600 };
5601 static u8 bpf_ctx_convert_map[] = {
5602 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5603 [_id] = __ctx_convert##_id,
5604 #include <linux/bpf_types.h>
5605 #undef BPF_PROG_TYPE
5606 0, /* avoid empty array */
5607 };
5608 #undef BPF_MAP_TYPE
5609 #undef BPF_LINK_TYPE
5610
5611 const struct btf_member *
5612 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5613 const struct btf_type *t, enum bpf_prog_type prog_type,
5614 int arg)
5615 {
5616 const struct btf_type *conv_struct;
5617 const struct btf_type *ctx_struct;
5618 const struct btf_member *ctx_type;
5619 const char *tname, *ctx_tname;
5620
5621 conv_struct = bpf_ctx_convert.t;
5622 if (!conv_struct) {
5623 bpf_log(log, "btf_vmlinux is malformed\n");
5624 return NULL;
5625 }
5626 t = btf_type_by_id(btf, t->type);
5627 while (btf_type_is_modifier(t))
5628 t = btf_type_by_id(btf, t->type);
5629 if (!btf_type_is_struct(t)) {
5630 /* Only pointer to struct is supported for now.
5631 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5632 * is not supported yet.
5633 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5634 */
5635 return NULL;
5636 }
5637 tname = btf_name_by_offset(btf, t->name_off);
5638 if (!tname) {
5639 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5640 return NULL;
5641 }
5642 /* prog_type is valid bpf program type. No need for bounds check. */
5643 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5644 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5645 * Like 'struct __sk_buff'
5646 */
5647 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5648 if (!ctx_struct)
5649 /* should not happen */
5650 return NULL;
5651 again:
5652 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5653 if (!ctx_tname) {
5654 /* should not happen */
5655 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5656 return NULL;
5657 }
5658 /* only compare that prog's ctx type name is the same as
5659 * kernel expects. No need to compare field by field.
5660 * It's ok for bpf prog to do:
5661 * struct __sk_buff {};
5662 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5663 * { // no fields of skb are ever used }
5664 */
5665 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5666 return ctx_type;
5667 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5668 return ctx_type;
5669 if (strcmp(ctx_tname, tname)) {
5670 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5671 * underlying struct and check name again
5672 */
5673 if (!btf_type_is_modifier(ctx_struct))
5674 return NULL;
5675 while (btf_type_is_modifier(ctx_struct))
5676 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5677 goto again;
5678 }
5679 return ctx_type;
5680 }
5681
5682 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5683 struct btf *btf,
5684 const struct btf_type *t,
5685 enum bpf_prog_type prog_type,
5686 int arg)
5687 {
5688 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5689
5690 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5691 if (!prog_ctx_type)
5692 return -ENOENT;
5693 kern_ctx_type = prog_ctx_type + 1;
5694 return kern_ctx_type->type;
5695 }
5696
5697 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5698 {
5699 const struct btf_member *kctx_member;
5700 const struct btf_type *conv_struct;
5701 const struct btf_type *kctx_type;
5702 u32 kctx_type_id;
5703
5704 conv_struct = bpf_ctx_convert.t;
5705 /* get member for kernel ctx type */
5706 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5707 kctx_type_id = kctx_member->type;
5708 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5709 if (!btf_type_is_struct(kctx_type)) {
5710 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5711 return -EINVAL;
5712 }
5713
5714 return kctx_type_id;
5715 }
5716
5717 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5718 BTF_ID(struct, bpf_ctx_convert)
5719
5720 struct btf *btf_parse_vmlinux(void)
5721 {
5722 struct btf_verifier_env *env = NULL;
5723 struct bpf_verifier_log *log;
5724 struct btf *btf = NULL;
5725 int err;
5726
5727 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5728 if (!env)
5729 return ERR_PTR(-ENOMEM);
5730
5731 log = &env->log;
5732 log->level = BPF_LOG_KERNEL;
5733
5734 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5735 if (!btf) {
5736 err = -ENOMEM;
5737 goto errout;
5738 }
5739 env->btf = btf;
5740
5741 btf->data = __start_BTF;
5742 btf->data_size = __stop_BTF - __start_BTF;
5743 btf->kernel_btf = true;
5744 snprintf(btf->name, sizeof(btf->name), "vmlinux");
5745
5746 err = btf_parse_hdr(env);
5747 if (err)
5748 goto errout;
5749
5750 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5751
5752 err = btf_parse_str_sec(env);
5753 if (err)
5754 goto errout;
5755
5756 err = btf_check_all_metas(env);
5757 if (err)
5758 goto errout;
5759
5760 err = btf_check_type_tags(env, btf, 1);
5761 if (err)
5762 goto errout;
5763
5764 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
5765 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5766
5767 bpf_struct_ops_init(btf, log);
5768
5769 refcount_set(&btf->refcnt, 1);
5770
5771 err = btf_alloc_id(btf);
5772 if (err)
5773 goto errout;
5774
5775 btf_verifier_env_free(env);
5776 return btf;
5777
5778 errout:
5779 btf_verifier_env_free(env);
5780 if (btf) {
5781 kvfree(btf->types);
5782 kfree(btf);
5783 }
5784 return ERR_PTR(err);
5785 }
5786
5787 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5788
5789 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5790 {
5791 struct btf_verifier_env *env = NULL;
5792 struct bpf_verifier_log *log;
5793 struct btf *btf = NULL, *base_btf;
5794 int err;
5795
5796 base_btf = bpf_get_btf_vmlinux();
5797 if (IS_ERR(base_btf))
5798 return base_btf;
5799 if (!base_btf)
5800 return ERR_PTR(-EINVAL);
5801
5802 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5803 if (!env)
5804 return ERR_PTR(-ENOMEM);
5805
5806 log = &env->log;
5807 log->level = BPF_LOG_KERNEL;
5808
5809 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5810 if (!btf) {
5811 err = -ENOMEM;
5812 goto errout;
5813 }
5814 env->btf = btf;
5815
5816 btf->base_btf = base_btf;
5817 btf->start_id = base_btf->nr_types;
5818 btf->start_str_off = base_btf->hdr.str_len;
5819 btf->kernel_btf = true;
5820 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5821
5822 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5823 if (!btf->data) {
5824 err = -ENOMEM;
5825 goto errout;
5826 }
5827 memcpy(btf->data, data, data_size);
5828 btf->data_size = data_size;
5829
5830 err = btf_parse_hdr(env);
5831 if (err)
5832 goto errout;
5833
5834 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5835
5836 err = btf_parse_str_sec(env);
5837 if (err)
5838 goto errout;
5839
5840 err = btf_check_all_metas(env);
5841 if (err)
5842 goto errout;
5843
5844 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5845 if (err)
5846 goto errout;
5847
5848 btf_verifier_env_free(env);
5849 refcount_set(&btf->refcnt, 1);
5850 return btf;
5851
5852 errout:
5853 btf_verifier_env_free(env);
5854 if (btf) {
5855 kvfree(btf->data);
5856 kvfree(btf->types);
5857 kfree(btf);
5858 }
5859 return ERR_PTR(err);
5860 }
5861
5862 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5863
5864 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5865 {
5866 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5867
5868 if (tgt_prog)
5869 return tgt_prog->aux->btf;
5870 else
5871 return prog->aux->attach_btf;
5872 }
5873
5874 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5875 {
5876 /* skip modifiers */
5877 t = btf_type_skip_modifiers(btf, t->type, NULL);
5878
5879 return btf_type_is_int(t);
5880 }
5881
5882 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5883 int off)
5884 {
5885 const struct btf_param *args;
5886 const struct btf_type *t;
5887 u32 offset = 0, nr_args;
5888 int i;
5889
5890 if (!func_proto)
5891 return off / 8;
5892
5893 nr_args = btf_type_vlen(func_proto);
5894 args = (const struct btf_param *)(func_proto + 1);
5895 for (i = 0; i < nr_args; i++) {
5896 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5897 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5898 if (off < offset)
5899 return i;
5900 }
5901
5902 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5903 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5904 if (off < offset)
5905 return nr_args;
5906
5907 return nr_args + 1;
5908 }
5909
5910 static bool prog_args_trusted(const struct bpf_prog *prog)
5911 {
5912 enum bpf_attach_type atype = prog->expected_attach_type;
5913
5914 switch (prog->type) {
5915 case BPF_PROG_TYPE_TRACING:
5916 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5917 case BPF_PROG_TYPE_LSM:
5918 return bpf_lsm_is_trusted(prog);
5919 case BPF_PROG_TYPE_STRUCT_OPS:
5920 return true;
5921 default:
5922 return false;
5923 }
5924 }
5925
5926 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5927 const struct bpf_prog *prog,
5928 struct bpf_insn_access_aux *info)
5929 {
5930 const struct btf_type *t = prog->aux->attach_func_proto;
5931 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5932 struct btf *btf = bpf_prog_get_target_btf(prog);
5933 const char *tname = prog->aux->attach_func_name;
5934 struct bpf_verifier_log *log = info->log;
5935 const struct btf_param *args;
5936 const char *tag_value;
5937 u32 nr_args, arg;
5938 int i, ret;
5939
5940 if (off % 8) {
5941 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5942 tname, off);
5943 return false;
5944 }
5945 arg = get_ctx_arg_idx(btf, t, off);
5946 args = (const struct btf_param *)(t + 1);
5947 /* if (t == NULL) Fall back to default BPF prog with
5948 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5949 */
5950 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5951 if (prog->aux->attach_btf_trace) {
5952 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5953 args++;
5954 nr_args--;
5955 }
5956
5957 if (arg > nr_args) {
5958 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5959 tname, arg + 1);
5960 return false;
5961 }
5962
5963 if (arg == nr_args) {
5964 switch (prog->expected_attach_type) {
5965 case BPF_LSM_CGROUP:
5966 case BPF_LSM_MAC:
5967 case BPF_TRACE_FEXIT:
5968 /* When LSM programs are attached to void LSM hooks
5969 * they use FEXIT trampolines and when attached to
5970 * int LSM hooks, they use MODIFY_RETURN trampolines.
5971 *
5972 * While the LSM programs are BPF_MODIFY_RETURN-like
5973 * the check:
5974 *
5975 * if (ret_type != 'int')
5976 * return -EINVAL;
5977 *
5978 * is _not_ done here. This is still safe as LSM hooks
5979 * have only void and int return types.
5980 */
5981 if (!t)
5982 return true;
5983 t = btf_type_by_id(btf, t->type);
5984 break;
5985 case BPF_MODIFY_RETURN:
5986 /* For now the BPF_MODIFY_RETURN can only be attached to
5987 * functions that return an int.
5988 */
5989 if (!t)
5990 return false;
5991
5992 t = btf_type_skip_modifiers(btf, t->type, NULL);
5993 if (!btf_type_is_small_int(t)) {
5994 bpf_log(log,
5995 "ret type %s not allowed for fmod_ret\n",
5996 btf_type_str(t));
5997 return false;
5998 }
5999 break;
6000 default:
6001 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6002 tname, arg + 1);
6003 return false;
6004 }
6005 } else {
6006 if (!t)
6007 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6008 return true;
6009 t = btf_type_by_id(btf, args[arg].type);
6010 }
6011
6012 /* skip modifiers */
6013 while (btf_type_is_modifier(t))
6014 t = btf_type_by_id(btf, t->type);
6015 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6016 /* accessing a scalar */
6017 return true;
6018 if (!btf_type_is_ptr(t)) {
6019 bpf_log(log,
6020 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6021 tname, arg,
6022 __btf_name_by_offset(btf, t->name_off),
6023 btf_type_str(t));
6024 return false;
6025 }
6026
6027 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6028 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6029 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6030 u32 type, flag;
6031
6032 type = base_type(ctx_arg_info->reg_type);
6033 flag = type_flag(ctx_arg_info->reg_type);
6034 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6035 (flag & PTR_MAYBE_NULL)) {
6036 info->reg_type = ctx_arg_info->reg_type;
6037 return true;
6038 }
6039 }
6040
6041 if (t->type == 0)
6042 /* This is a pointer to void.
6043 * It is the same as scalar from the verifier safety pov.
6044 * No further pointer walking is allowed.
6045 */
6046 return true;
6047
6048 if (is_int_ptr(btf, t))
6049 return true;
6050
6051 /* this is a pointer to another type */
6052 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6053 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6054
6055 if (ctx_arg_info->offset == off) {
6056 if (!ctx_arg_info->btf_id) {
6057 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6058 return false;
6059 }
6060
6061 info->reg_type = ctx_arg_info->reg_type;
6062 info->btf = btf_vmlinux;
6063 info->btf_id = ctx_arg_info->btf_id;
6064 return true;
6065 }
6066 }
6067
6068 info->reg_type = PTR_TO_BTF_ID;
6069 if (prog_args_trusted(prog))
6070 info->reg_type |= PTR_TRUSTED;
6071
6072 if (tgt_prog) {
6073 enum bpf_prog_type tgt_type;
6074
6075 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6076 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6077 else
6078 tgt_type = tgt_prog->type;
6079
6080 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6081 if (ret > 0) {
6082 info->btf = btf_vmlinux;
6083 info->btf_id = ret;
6084 return true;
6085 } else {
6086 return false;
6087 }
6088 }
6089
6090 info->btf = btf;
6091 info->btf_id = t->type;
6092 t = btf_type_by_id(btf, t->type);
6093
6094 if (btf_type_is_type_tag(t)) {
6095 tag_value = __btf_name_by_offset(btf, t->name_off);
6096 if (strcmp(tag_value, "user") == 0)
6097 info->reg_type |= MEM_USER;
6098 if (strcmp(tag_value, "percpu") == 0)
6099 info->reg_type |= MEM_PERCPU;
6100 }
6101
6102 /* skip modifiers */
6103 while (btf_type_is_modifier(t)) {
6104 info->btf_id = t->type;
6105 t = btf_type_by_id(btf, t->type);
6106 }
6107 if (!btf_type_is_struct(t)) {
6108 bpf_log(log,
6109 "func '%s' arg%d type %s is not a struct\n",
6110 tname, arg, btf_type_str(t));
6111 return false;
6112 }
6113 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6114 tname, arg, info->btf_id, btf_type_str(t),
6115 __btf_name_by_offset(btf, t->name_off));
6116 return true;
6117 }
6118
6119 enum bpf_struct_walk_result {
6120 /* < 0 error */
6121 WALK_SCALAR = 0,
6122 WALK_PTR,
6123 WALK_STRUCT,
6124 };
6125
6126 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6127 const struct btf_type *t, int off, int size,
6128 u32 *next_btf_id, enum bpf_type_flag *flag,
6129 const char **field_name)
6130 {
6131 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6132 const struct btf_type *mtype, *elem_type = NULL;
6133 const struct btf_member *member;
6134 const char *tname, *mname, *tag_value;
6135 u32 vlen, elem_id, mid;
6136
6137 again:
6138 if (btf_type_is_modifier(t))
6139 t = btf_type_skip_modifiers(btf, t->type, NULL);
6140 tname = __btf_name_by_offset(btf, t->name_off);
6141 if (!btf_type_is_struct(t)) {
6142 bpf_log(log, "Type '%s' is not a struct\n", tname);
6143 return -EINVAL;
6144 }
6145
6146 vlen = btf_type_vlen(t);
6147 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6148 /*
6149 * walking unions yields untrusted pointers
6150 * with exception of __bpf_md_ptr and other
6151 * unions with a single member
6152 */
6153 *flag |= PTR_UNTRUSTED;
6154
6155 if (off + size > t->size) {
6156 /* If the last element is a variable size array, we may
6157 * need to relax the rule.
6158 */
6159 struct btf_array *array_elem;
6160
6161 if (vlen == 0)
6162 goto error;
6163
6164 member = btf_type_member(t) + vlen - 1;
6165 mtype = btf_type_skip_modifiers(btf, member->type,
6166 NULL);
6167 if (!btf_type_is_array(mtype))
6168 goto error;
6169
6170 array_elem = (struct btf_array *)(mtype + 1);
6171 if (array_elem->nelems != 0)
6172 goto error;
6173
6174 moff = __btf_member_bit_offset(t, member) / 8;
6175 if (off < moff)
6176 goto error;
6177
6178 /* allow structure and integer */
6179 t = btf_type_skip_modifiers(btf, array_elem->type,
6180 NULL);
6181
6182 if (btf_type_is_int(t))
6183 return WALK_SCALAR;
6184
6185 if (!btf_type_is_struct(t))
6186 goto error;
6187
6188 off = (off - moff) % t->size;
6189 goto again;
6190
6191 error:
6192 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6193 tname, off, size);
6194 return -EACCES;
6195 }
6196
6197 for_each_member(i, t, member) {
6198 /* offset of the field in bytes */
6199 moff = __btf_member_bit_offset(t, member) / 8;
6200 if (off + size <= moff)
6201 /* won't find anything, field is already too far */
6202 break;
6203
6204 if (__btf_member_bitfield_size(t, member)) {
6205 u32 end_bit = __btf_member_bit_offset(t, member) +
6206 __btf_member_bitfield_size(t, member);
6207
6208 /* off <= moff instead of off == moff because clang
6209 * does not generate a BTF member for anonymous
6210 * bitfield like the ":16" here:
6211 * struct {
6212 * int :16;
6213 * int x:8;
6214 * };
6215 */
6216 if (off <= moff &&
6217 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6218 return WALK_SCALAR;
6219
6220 /* off may be accessing a following member
6221 *
6222 * or
6223 *
6224 * Doing partial access at either end of this
6225 * bitfield. Continue on this case also to
6226 * treat it as not accessing this bitfield
6227 * and eventually error out as field not
6228 * found to keep it simple.
6229 * It could be relaxed if there was a legit
6230 * partial access case later.
6231 */
6232 continue;
6233 }
6234
6235 /* In case of "off" is pointing to holes of a struct */
6236 if (off < moff)
6237 break;
6238
6239 /* type of the field */
6240 mid = member->type;
6241 mtype = btf_type_by_id(btf, member->type);
6242 mname = __btf_name_by_offset(btf, member->name_off);
6243
6244 mtype = __btf_resolve_size(btf, mtype, &msize,
6245 &elem_type, &elem_id, &total_nelems,
6246 &mid);
6247 if (IS_ERR(mtype)) {
6248 bpf_log(log, "field %s doesn't have size\n", mname);
6249 return -EFAULT;
6250 }
6251
6252 mtrue_end = moff + msize;
6253 if (off >= mtrue_end)
6254 /* no overlap with member, keep iterating */
6255 continue;
6256
6257 if (btf_type_is_array(mtype)) {
6258 u32 elem_idx;
6259
6260 /* __btf_resolve_size() above helps to
6261 * linearize a multi-dimensional array.
6262 *
6263 * The logic here is treating an array
6264 * in a struct as the following way:
6265 *
6266 * struct outer {
6267 * struct inner array[2][2];
6268 * };
6269 *
6270 * looks like:
6271 *
6272 * struct outer {
6273 * struct inner array_elem0;
6274 * struct inner array_elem1;
6275 * struct inner array_elem2;
6276 * struct inner array_elem3;
6277 * };
6278 *
6279 * When accessing outer->array[1][0], it moves
6280 * moff to "array_elem2", set mtype to
6281 * "struct inner", and msize also becomes
6282 * sizeof(struct inner). Then most of the
6283 * remaining logic will fall through without
6284 * caring the current member is an array or
6285 * not.
6286 *
6287 * Unlike mtype/msize/moff, mtrue_end does not
6288 * change. The naming difference ("_true") tells
6289 * that it is not always corresponding to
6290 * the current mtype/msize/moff.
6291 * It is the true end of the current
6292 * member (i.e. array in this case). That
6293 * will allow an int array to be accessed like
6294 * a scratch space,
6295 * i.e. allow access beyond the size of
6296 * the array's element as long as it is
6297 * within the mtrue_end boundary.
6298 */
6299
6300 /* skip empty array */
6301 if (moff == mtrue_end)
6302 continue;
6303
6304 msize /= total_nelems;
6305 elem_idx = (off - moff) / msize;
6306 moff += elem_idx * msize;
6307 mtype = elem_type;
6308 mid = elem_id;
6309 }
6310
6311 /* the 'off' we're looking for is either equal to start
6312 * of this field or inside of this struct
6313 */
6314 if (btf_type_is_struct(mtype)) {
6315 /* our field must be inside that union or struct */
6316 t = mtype;
6317
6318 /* return if the offset matches the member offset */
6319 if (off == moff) {
6320 *next_btf_id = mid;
6321 return WALK_STRUCT;
6322 }
6323
6324 /* adjust offset we're looking for */
6325 off -= moff;
6326 goto again;
6327 }
6328
6329 if (btf_type_is_ptr(mtype)) {
6330 const struct btf_type *stype, *t;
6331 enum bpf_type_flag tmp_flag = 0;
6332 u32 id;
6333
6334 if (msize != size || off != moff) {
6335 bpf_log(log,
6336 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6337 mname, moff, tname, off, size);
6338 return -EACCES;
6339 }
6340
6341 /* check type tag */
6342 t = btf_type_by_id(btf, mtype->type);
6343 if (btf_type_is_type_tag(t)) {
6344 tag_value = __btf_name_by_offset(btf, t->name_off);
6345 /* check __user tag */
6346 if (strcmp(tag_value, "user") == 0)
6347 tmp_flag = MEM_USER;
6348 /* check __percpu tag */
6349 if (strcmp(tag_value, "percpu") == 0)
6350 tmp_flag = MEM_PERCPU;
6351 /* check __rcu tag */
6352 if (strcmp(tag_value, "rcu") == 0)
6353 tmp_flag = MEM_RCU;
6354 }
6355
6356 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6357 if (btf_type_is_struct(stype)) {
6358 *next_btf_id = id;
6359 *flag |= tmp_flag;
6360 if (field_name)
6361 *field_name = mname;
6362 return WALK_PTR;
6363 }
6364 }
6365
6366 /* Allow more flexible access within an int as long as
6367 * it is within mtrue_end.
6368 * Since mtrue_end could be the end of an array,
6369 * that also allows using an array of int as a scratch
6370 * space. e.g. skb->cb[].
6371 */
6372 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6373 bpf_log(log,
6374 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6375 mname, mtrue_end, tname, off, size);
6376 return -EACCES;
6377 }
6378
6379 return WALK_SCALAR;
6380 }
6381 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6382 return -EINVAL;
6383 }
6384
6385 int btf_struct_access(struct bpf_verifier_log *log,
6386 const struct bpf_reg_state *reg,
6387 int off, int size, enum bpf_access_type atype __maybe_unused,
6388 u32 *next_btf_id, enum bpf_type_flag *flag,
6389 const char **field_name)
6390 {
6391 const struct btf *btf = reg->btf;
6392 enum bpf_type_flag tmp_flag = 0;
6393 const struct btf_type *t;
6394 u32 id = reg->btf_id;
6395 int err;
6396
6397 while (type_is_alloc(reg->type)) {
6398 struct btf_struct_meta *meta;
6399 struct btf_record *rec;
6400 int i;
6401
6402 meta = btf_find_struct_meta(btf, id);
6403 if (!meta)
6404 break;
6405 rec = meta->record;
6406 for (i = 0; i < rec->cnt; i++) {
6407 struct btf_field *field = &rec->fields[i];
6408 u32 offset = field->offset;
6409 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6410 bpf_log(log,
6411 "direct access to %s is disallowed\n",
6412 btf_field_type_name(field->type));
6413 return -EACCES;
6414 }
6415 }
6416 break;
6417 }
6418
6419 t = btf_type_by_id(btf, id);
6420 do {
6421 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6422
6423 switch (err) {
6424 case WALK_PTR:
6425 /* For local types, the destination register cannot
6426 * become a pointer again.
6427 */
6428 if (type_is_alloc(reg->type))
6429 return SCALAR_VALUE;
6430 /* If we found the pointer or scalar on t+off,
6431 * we're done.
6432 */
6433 *next_btf_id = id;
6434 *flag = tmp_flag;
6435 return PTR_TO_BTF_ID;
6436 case WALK_SCALAR:
6437 return SCALAR_VALUE;
6438 case WALK_STRUCT:
6439 /* We found nested struct, so continue the search
6440 * by diving in it. At this point the offset is
6441 * aligned with the new type, so set it to 0.
6442 */
6443 t = btf_type_by_id(btf, id);
6444 off = 0;
6445 break;
6446 default:
6447 /* It's either error or unknown return value..
6448 * scream and leave.
6449 */
6450 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6451 return -EINVAL;
6452 return err;
6453 }
6454 } while (t);
6455
6456 return -EINVAL;
6457 }
6458
6459 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6460 * the same. Trivial ID check is not enough due to module BTFs, because we can
6461 * end up with two different module BTFs, but IDs point to the common type in
6462 * vmlinux BTF.
6463 */
6464 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6465 const struct btf *btf2, u32 id2)
6466 {
6467 if (id1 != id2)
6468 return false;
6469 if (btf1 == btf2)
6470 return true;
6471 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6472 }
6473
6474 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6475 const struct btf *btf, u32 id, int off,
6476 const struct btf *need_btf, u32 need_type_id,
6477 bool strict)
6478 {
6479 const struct btf_type *type;
6480 enum bpf_type_flag flag = 0;
6481 int err;
6482
6483 /* Are we already done? */
6484 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6485 return true;
6486 /* In case of strict type match, we do not walk struct, the top level
6487 * type match must succeed. When strict is true, off should have already
6488 * been 0.
6489 */
6490 if (strict)
6491 return false;
6492 again:
6493 type = btf_type_by_id(btf, id);
6494 if (!type)
6495 return false;
6496 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6497 if (err != WALK_STRUCT)
6498 return false;
6499
6500 /* We found nested struct object. If it matches
6501 * the requested ID, we're done. Otherwise let's
6502 * continue the search with offset 0 in the new
6503 * type.
6504 */
6505 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6506 off = 0;
6507 goto again;
6508 }
6509
6510 return true;
6511 }
6512
6513 static int __get_type_size(struct btf *btf, u32 btf_id,
6514 const struct btf_type **ret_type)
6515 {
6516 const struct btf_type *t;
6517
6518 *ret_type = btf_type_by_id(btf, 0);
6519 if (!btf_id)
6520 /* void */
6521 return 0;
6522 t = btf_type_by_id(btf, btf_id);
6523 while (t && btf_type_is_modifier(t))
6524 t = btf_type_by_id(btf, t->type);
6525 if (!t)
6526 return -EINVAL;
6527 *ret_type = t;
6528 if (btf_type_is_ptr(t))
6529 /* kernel size of pointer. Not BPF's size of pointer*/
6530 return sizeof(void *);
6531 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6532 return t->size;
6533 return -EINVAL;
6534 }
6535
6536 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6537 {
6538 u8 flags = 0;
6539
6540 if (__btf_type_is_struct(t))
6541 flags |= BTF_FMODEL_STRUCT_ARG;
6542 if (btf_type_is_signed_int(t))
6543 flags |= BTF_FMODEL_SIGNED_ARG;
6544
6545 return flags;
6546 }
6547
6548 int btf_distill_func_proto(struct bpf_verifier_log *log,
6549 struct btf *btf,
6550 const struct btf_type *func,
6551 const char *tname,
6552 struct btf_func_model *m)
6553 {
6554 const struct btf_param *args;
6555 const struct btf_type *t;
6556 u32 i, nargs;
6557 int ret;
6558
6559 if (!func) {
6560 /* BTF function prototype doesn't match the verifier types.
6561 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6562 */
6563 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6564 m->arg_size[i] = 8;
6565 m->arg_flags[i] = 0;
6566 }
6567 m->ret_size = 8;
6568 m->ret_flags = 0;
6569 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6570 return 0;
6571 }
6572 args = (const struct btf_param *)(func + 1);
6573 nargs = btf_type_vlen(func);
6574 if (nargs > MAX_BPF_FUNC_ARGS) {
6575 bpf_log(log,
6576 "The function %s has %d arguments. Too many.\n",
6577 tname, nargs);
6578 return -EINVAL;
6579 }
6580 ret = __get_type_size(btf, func->type, &t);
6581 if (ret < 0 || __btf_type_is_struct(t)) {
6582 bpf_log(log,
6583 "The function %s return type %s is unsupported.\n",
6584 tname, btf_type_str(t));
6585 return -EINVAL;
6586 }
6587 m->ret_size = ret;
6588 m->ret_flags = __get_type_fmodel_flags(t);
6589
6590 for (i = 0; i < nargs; i++) {
6591 if (i == nargs - 1 && args[i].type == 0) {
6592 bpf_log(log,
6593 "The function %s with variable args is unsupported.\n",
6594 tname);
6595 return -EINVAL;
6596 }
6597 ret = __get_type_size(btf, args[i].type, &t);
6598
6599 /* No support of struct argument size greater than 16 bytes */
6600 if (ret < 0 || ret > 16) {
6601 bpf_log(log,
6602 "The function %s arg%d type %s is unsupported.\n",
6603 tname, i, btf_type_str(t));
6604 return -EINVAL;
6605 }
6606 if (ret == 0) {
6607 bpf_log(log,
6608 "The function %s has malformed void argument.\n",
6609 tname);
6610 return -EINVAL;
6611 }
6612 m->arg_size[i] = ret;
6613 m->arg_flags[i] = __get_type_fmodel_flags(t);
6614 }
6615 m->nr_args = nargs;
6616 return 0;
6617 }
6618
6619 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6620 * t1 points to BTF_KIND_FUNC in btf1
6621 * t2 points to BTF_KIND_FUNC in btf2
6622 * Returns:
6623 * EINVAL - function prototype mismatch
6624 * EFAULT - verifier bug
6625 * 0 - 99% match. The last 1% is validated by the verifier.
6626 */
6627 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6628 struct btf *btf1, const struct btf_type *t1,
6629 struct btf *btf2, const struct btf_type *t2)
6630 {
6631 const struct btf_param *args1, *args2;
6632 const char *fn1, *fn2, *s1, *s2;
6633 u32 nargs1, nargs2, i;
6634
6635 fn1 = btf_name_by_offset(btf1, t1->name_off);
6636 fn2 = btf_name_by_offset(btf2, t2->name_off);
6637
6638 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6639 bpf_log(log, "%s() is not a global function\n", fn1);
6640 return -EINVAL;
6641 }
6642 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6643 bpf_log(log, "%s() is not a global function\n", fn2);
6644 return -EINVAL;
6645 }
6646
6647 t1 = btf_type_by_id(btf1, t1->type);
6648 if (!t1 || !btf_type_is_func_proto(t1))
6649 return -EFAULT;
6650 t2 = btf_type_by_id(btf2, t2->type);
6651 if (!t2 || !btf_type_is_func_proto(t2))
6652 return -EFAULT;
6653
6654 args1 = (const struct btf_param *)(t1 + 1);
6655 nargs1 = btf_type_vlen(t1);
6656 args2 = (const struct btf_param *)(t2 + 1);
6657 nargs2 = btf_type_vlen(t2);
6658
6659 if (nargs1 != nargs2) {
6660 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6661 fn1, nargs1, fn2, nargs2);
6662 return -EINVAL;
6663 }
6664
6665 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6666 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6667 if (t1->info != t2->info) {
6668 bpf_log(log,
6669 "Return type %s of %s() doesn't match type %s of %s()\n",
6670 btf_type_str(t1), fn1,
6671 btf_type_str(t2), fn2);
6672 return -EINVAL;
6673 }
6674
6675 for (i = 0; i < nargs1; i++) {
6676 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6677 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6678
6679 if (t1->info != t2->info) {
6680 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6681 i, fn1, btf_type_str(t1),
6682 fn2, btf_type_str(t2));
6683 return -EINVAL;
6684 }
6685 if (btf_type_has_size(t1) && t1->size != t2->size) {
6686 bpf_log(log,
6687 "arg%d in %s() has size %d while %s() has %d\n",
6688 i, fn1, t1->size,
6689 fn2, t2->size);
6690 return -EINVAL;
6691 }
6692
6693 /* global functions are validated with scalars and pointers
6694 * to context only. And only global functions can be replaced.
6695 * Hence type check only those types.
6696 */
6697 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6698 continue;
6699 if (!btf_type_is_ptr(t1)) {
6700 bpf_log(log,
6701 "arg%d in %s() has unrecognized type\n",
6702 i, fn1);
6703 return -EINVAL;
6704 }
6705 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6706 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6707 if (!btf_type_is_struct(t1)) {
6708 bpf_log(log,
6709 "arg%d in %s() is not a pointer to context\n",
6710 i, fn1);
6711 return -EINVAL;
6712 }
6713 if (!btf_type_is_struct(t2)) {
6714 bpf_log(log,
6715 "arg%d in %s() is not a pointer to context\n",
6716 i, fn2);
6717 return -EINVAL;
6718 }
6719 /* This is an optional check to make program writing easier.
6720 * Compare names of structs and report an error to the user.
6721 * btf_prepare_func_args() already checked that t2 struct
6722 * is a context type. btf_prepare_func_args() will check
6723 * later that t1 struct is a context type as well.
6724 */
6725 s1 = btf_name_by_offset(btf1, t1->name_off);
6726 s2 = btf_name_by_offset(btf2, t2->name_off);
6727 if (strcmp(s1, s2)) {
6728 bpf_log(log,
6729 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6730 i, fn1, s1, fn2, s2);
6731 return -EINVAL;
6732 }
6733 }
6734 return 0;
6735 }
6736
6737 /* Compare BTFs of given program with BTF of target program */
6738 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6739 struct btf *btf2, const struct btf_type *t2)
6740 {
6741 struct btf *btf1 = prog->aux->btf;
6742 const struct btf_type *t1;
6743 u32 btf_id = 0;
6744
6745 if (!prog->aux->func_info) {
6746 bpf_log(log, "Program extension requires BTF\n");
6747 return -EINVAL;
6748 }
6749
6750 btf_id = prog->aux->func_info[0].type_id;
6751 if (!btf_id)
6752 return -EFAULT;
6753
6754 t1 = btf_type_by_id(btf1, btf_id);
6755 if (!t1 || !btf_type_is_func(t1))
6756 return -EFAULT;
6757
6758 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6759 }
6760
6761 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6762 const struct btf *btf, u32 func_id,
6763 struct bpf_reg_state *regs,
6764 bool ptr_to_mem_ok,
6765 bool processing_call)
6766 {
6767 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6768 struct bpf_verifier_log *log = &env->log;
6769 const char *func_name, *ref_tname;
6770 const struct btf_type *t, *ref_t;
6771 const struct btf_param *args;
6772 u32 i, nargs, ref_id;
6773 int ret;
6774
6775 t = btf_type_by_id(btf, func_id);
6776 if (!t || !btf_type_is_func(t)) {
6777 /* These checks were already done by the verifier while loading
6778 * struct bpf_func_info or in add_kfunc_call().
6779 */
6780 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6781 func_id);
6782 return -EFAULT;
6783 }
6784 func_name = btf_name_by_offset(btf, t->name_off);
6785
6786 t = btf_type_by_id(btf, t->type);
6787 if (!t || !btf_type_is_func_proto(t)) {
6788 bpf_log(log, "Invalid BTF of func %s\n", func_name);
6789 return -EFAULT;
6790 }
6791 args = (const struct btf_param *)(t + 1);
6792 nargs = btf_type_vlen(t);
6793 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6794 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6795 MAX_BPF_FUNC_REG_ARGS);
6796 return -EINVAL;
6797 }
6798
6799 /* check that BTF function arguments match actual types that the
6800 * verifier sees.
6801 */
6802 for (i = 0; i < nargs; i++) {
6803 enum bpf_arg_type arg_type = ARG_DONTCARE;
6804 u32 regno = i + 1;
6805 struct bpf_reg_state *reg = &regs[regno];
6806
6807 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6808 if (btf_type_is_scalar(t)) {
6809 if (reg->type == SCALAR_VALUE)
6810 continue;
6811 bpf_log(log, "R%d is not a scalar\n", regno);
6812 return -EINVAL;
6813 }
6814
6815 if (!btf_type_is_ptr(t)) {
6816 bpf_log(log, "Unrecognized arg#%d type %s\n",
6817 i, btf_type_str(t));
6818 return -EINVAL;
6819 }
6820
6821 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6822 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6823
6824 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6825 if (ret < 0)
6826 return ret;
6827
6828 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6829 /* If function expects ctx type in BTF check that caller
6830 * is passing PTR_TO_CTX.
6831 */
6832 if (reg->type != PTR_TO_CTX) {
6833 bpf_log(log,
6834 "arg#%d expected pointer to ctx, but got %s\n",
6835 i, btf_type_str(t));
6836 return -EINVAL;
6837 }
6838 } else if (ptr_to_mem_ok && processing_call) {
6839 const struct btf_type *resolve_ret;
6840 u32 type_size;
6841
6842 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6843 if (IS_ERR(resolve_ret)) {
6844 bpf_log(log,
6845 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6846 i, btf_type_str(ref_t), ref_tname,
6847 PTR_ERR(resolve_ret));
6848 return -EINVAL;
6849 }
6850
6851 if (check_mem_reg(env, reg, regno, type_size))
6852 return -EINVAL;
6853 } else {
6854 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6855 func_name, func_id);
6856 return -EINVAL;
6857 }
6858 }
6859
6860 return 0;
6861 }
6862
6863 /* Compare BTF of a function declaration with given bpf_reg_state.
6864 * Returns:
6865 * EFAULT - there is a verifier bug. Abort verification.
6866 * EINVAL - there is a type mismatch or BTF is not available.
6867 * 0 - BTF matches with what bpf_reg_state expects.
6868 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6869 */
6870 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6871 struct bpf_reg_state *regs)
6872 {
6873 struct bpf_prog *prog = env->prog;
6874 struct btf *btf = prog->aux->btf;
6875 bool is_global;
6876 u32 btf_id;
6877 int err;
6878
6879 if (!prog->aux->func_info)
6880 return -EINVAL;
6881
6882 btf_id = prog->aux->func_info[subprog].type_id;
6883 if (!btf_id)
6884 return -EFAULT;
6885
6886 if (prog->aux->func_info_aux[subprog].unreliable)
6887 return -EINVAL;
6888
6889 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6890 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6891
6892 /* Compiler optimizations can remove arguments from static functions
6893 * or mismatched type can be passed into a global function.
6894 * In such cases mark the function as unreliable from BTF point of view.
6895 */
6896 if (err)
6897 prog->aux->func_info_aux[subprog].unreliable = true;
6898 return err;
6899 }
6900
6901 /* Compare BTF of a function call with given bpf_reg_state.
6902 * Returns:
6903 * EFAULT - there is a verifier bug. Abort verification.
6904 * EINVAL - there is a type mismatch or BTF is not available.
6905 * 0 - BTF matches with what bpf_reg_state expects.
6906 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6907 *
6908 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6909 * because btf_check_func_arg_match() is still doing both. Once that
6910 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6911 * first, and then treat the calling part in a new code path.
6912 */
6913 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6914 struct bpf_reg_state *regs)
6915 {
6916 struct bpf_prog *prog = env->prog;
6917 struct btf *btf = prog->aux->btf;
6918 bool is_global;
6919 u32 btf_id;
6920 int err;
6921
6922 if (!prog->aux->func_info)
6923 return -EINVAL;
6924
6925 btf_id = prog->aux->func_info[subprog].type_id;
6926 if (!btf_id)
6927 return -EFAULT;
6928
6929 if (prog->aux->func_info_aux[subprog].unreliable)
6930 return -EINVAL;
6931
6932 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6933 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6934
6935 /* Compiler optimizations can remove arguments from static functions
6936 * or mismatched type can be passed into a global function.
6937 * In such cases mark the function as unreliable from BTF point of view.
6938 */
6939 if (err)
6940 prog->aux->func_info_aux[subprog].unreliable = true;
6941 return err;
6942 }
6943
6944 /* Convert BTF of a function into bpf_reg_state if possible
6945 * Returns:
6946 * EFAULT - there is a verifier bug. Abort verification.
6947 * EINVAL - cannot convert BTF.
6948 * 0 - Successfully converted BTF into bpf_reg_state
6949 * (either PTR_TO_CTX or SCALAR_VALUE).
6950 */
6951 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6952 struct bpf_reg_state *regs)
6953 {
6954 struct bpf_verifier_log *log = &env->log;
6955 struct bpf_prog *prog = env->prog;
6956 enum bpf_prog_type prog_type = prog->type;
6957 struct btf *btf = prog->aux->btf;
6958 const struct btf_param *args;
6959 const struct btf_type *t, *ref_t;
6960 u32 i, nargs, btf_id;
6961 const char *tname;
6962
6963 if (!prog->aux->func_info ||
6964 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6965 bpf_log(log, "Verifier bug\n");
6966 return -EFAULT;
6967 }
6968
6969 btf_id = prog->aux->func_info[subprog].type_id;
6970 if (!btf_id) {
6971 bpf_log(log, "Global functions need valid BTF\n");
6972 return -EFAULT;
6973 }
6974
6975 t = btf_type_by_id(btf, btf_id);
6976 if (!t || !btf_type_is_func(t)) {
6977 /* These checks were already done by the verifier while loading
6978 * struct bpf_func_info
6979 */
6980 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6981 subprog);
6982 return -EFAULT;
6983 }
6984 tname = btf_name_by_offset(btf, t->name_off);
6985
6986 if (log->level & BPF_LOG_LEVEL)
6987 bpf_log(log, "Validating %s() func#%d...\n",
6988 tname, subprog);
6989
6990 if (prog->aux->func_info_aux[subprog].unreliable) {
6991 bpf_log(log, "Verifier bug in function %s()\n", tname);
6992 return -EFAULT;
6993 }
6994 if (prog_type == BPF_PROG_TYPE_EXT)
6995 prog_type = prog->aux->dst_prog->type;
6996
6997 t = btf_type_by_id(btf, t->type);
6998 if (!t || !btf_type_is_func_proto(t)) {
6999 bpf_log(log, "Invalid type of function %s()\n", tname);
7000 return -EFAULT;
7001 }
7002 args = (const struct btf_param *)(t + 1);
7003 nargs = btf_type_vlen(t);
7004 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7005 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7006 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7007 return -EINVAL;
7008 }
7009 /* check that function returns int */
7010 t = btf_type_by_id(btf, t->type);
7011 while (btf_type_is_modifier(t))
7012 t = btf_type_by_id(btf, t->type);
7013 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7014 bpf_log(log,
7015 "Global function %s() doesn't return scalar. Only those are supported.\n",
7016 tname);
7017 return -EINVAL;
7018 }
7019 /* Convert BTF function arguments into verifier types.
7020 * Only PTR_TO_CTX and SCALAR are supported atm.
7021 */
7022 for (i = 0; i < nargs; i++) {
7023 struct bpf_reg_state *reg = &regs[i + 1];
7024
7025 t = btf_type_by_id(btf, args[i].type);
7026 while (btf_type_is_modifier(t))
7027 t = btf_type_by_id(btf, t->type);
7028 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7029 reg->type = SCALAR_VALUE;
7030 continue;
7031 }
7032 if (btf_type_is_ptr(t)) {
7033 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7034 reg->type = PTR_TO_CTX;
7035 continue;
7036 }
7037
7038 t = btf_type_skip_modifiers(btf, t->type, NULL);
7039
7040 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7041 if (IS_ERR(ref_t)) {
7042 bpf_log(log,
7043 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7044 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7045 PTR_ERR(ref_t));
7046 return -EINVAL;
7047 }
7048
7049 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7050 reg->id = ++env->id_gen;
7051
7052 continue;
7053 }
7054 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7055 i, btf_type_str(t), tname);
7056 return -EINVAL;
7057 }
7058 return 0;
7059 }
7060
7061 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7062 struct btf_show *show)
7063 {
7064 const struct btf_type *t = btf_type_by_id(btf, type_id);
7065
7066 show->btf = btf;
7067 memset(&show->state, 0, sizeof(show->state));
7068 memset(&show->obj, 0, sizeof(show->obj));
7069
7070 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7071 }
7072
7073 static void btf_seq_show(struct btf_show *show, const char *fmt,
7074 va_list args)
7075 {
7076 seq_vprintf((struct seq_file *)show->target, fmt, args);
7077 }
7078
7079 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7080 void *obj, struct seq_file *m, u64 flags)
7081 {
7082 struct btf_show sseq;
7083
7084 sseq.target = m;
7085 sseq.showfn = btf_seq_show;
7086 sseq.flags = flags;
7087
7088 btf_type_show(btf, type_id, obj, &sseq);
7089
7090 return sseq.state.status;
7091 }
7092
7093 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7094 struct seq_file *m)
7095 {
7096 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7097 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7098 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7099 }
7100
7101 struct btf_show_snprintf {
7102 struct btf_show show;
7103 int len_left; /* space left in string */
7104 int len; /* length we would have written */
7105 };
7106
7107 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7108 va_list args)
7109 {
7110 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7111 int len;
7112
7113 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7114
7115 if (len < 0) {
7116 ssnprintf->len_left = 0;
7117 ssnprintf->len = len;
7118 } else if (len >= ssnprintf->len_left) {
7119 /* no space, drive on to get length we would have written */
7120 ssnprintf->len_left = 0;
7121 ssnprintf->len += len;
7122 } else {
7123 ssnprintf->len_left -= len;
7124 ssnprintf->len += len;
7125 show->target += len;
7126 }
7127 }
7128
7129 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7130 char *buf, int len, u64 flags)
7131 {
7132 struct btf_show_snprintf ssnprintf;
7133
7134 ssnprintf.show.target = buf;
7135 ssnprintf.show.flags = flags;
7136 ssnprintf.show.showfn = btf_snprintf_show;
7137 ssnprintf.len_left = len;
7138 ssnprintf.len = 0;
7139
7140 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7141
7142 /* If we encountered an error, return it. */
7143 if (ssnprintf.show.state.status)
7144 return ssnprintf.show.state.status;
7145
7146 /* Otherwise return length we would have written */
7147 return ssnprintf.len;
7148 }
7149
7150 #ifdef CONFIG_PROC_FS
7151 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7152 {
7153 const struct btf *btf = filp->private_data;
7154
7155 seq_printf(m, "btf_id:\t%u\n", btf->id);
7156 }
7157 #endif
7158
7159 static int btf_release(struct inode *inode, struct file *filp)
7160 {
7161 btf_put(filp->private_data);
7162 return 0;
7163 }
7164
7165 const struct file_operations btf_fops = {
7166 #ifdef CONFIG_PROC_FS
7167 .show_fdinfo = bpf_btf_show_fdinfo,
7168 #endif
7169 .release = btf_release,
7170 };
7171
7172 static int __btf_new_fd(struct btf *btf)
7173 {
7174 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7175 }
7176
7177 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7178 {
7179 struct btf *btf;
7180 int ret;
7181
7182 btf = btf_parse(attr, uattr, uattr_size);
7183 if (IS_ERR(btf))
7184 return PTR_ERR(btf);
7185
7186 ret = btf_alloc_id(btf);
7187 if (ret) {
7188 btf_free(btf);
7189 return ret;
7190 }
7191
7192 /*
7193 * The BTF ID is published to the userspace.
7194 * All BTF free must go through call_rcu() from
7195 * now on (i.e. free by calling btf_put()).
7196 */
7197
7198 ret = __btf_new_fd(btf);
7199 if (ret < 0)
7200 btf_put(btf);
7201
7202 return ret;
7203 }
7204
7205 struct btf *btf_get_by_fd(int fd)
7206 {
7207 struct btf *btf;
7208 struct fd f;
7209
7210 f = fdget(fd);
7211
7212 if (!f.file)
7213 return ERR_PTR(-EBADF);
7214
7215 if (f.file->f_op != &btf_fops) {
7216 fdput(f);
7217 return ERR_PTR(-EINVAL);
7218 }
7219
7220 btf = f.file->private_data;
7221 refcount_inc(&btf->refcnt);
7222 fdput(f);
7223
7224 return btf;
7225 }
7226
7227 int btf_get_info_by_fd(const struct btf *btf,
7228 const union bpf_attr *attr,
7229 union bpf_attr __user *uattr)
7230 {
7231 struct bpf_btf_info __user *uinfo;
7232 struct bpf_btf_info info;
7233 u32 info_copy, btf_copy;
7234 void __user *ubtf;
7235 char __user *uname;
7236 u32 uinfo_len, uname_len, name_len;
7237 int ret = 0;
7238
7239 uinfo = u64_to_user_ptr(attr->info.info);
7240 uinfo_len = attr->info.info_len;
7241
7242 info_copy = min_t(u32, uinfo_len, sizeof(info));
7243 memset(&info, 0, sizeof(info));
7244 if (copy_from_user(&info, uinfo, info_copy))
7245 return -EFAULT;
7246
7247 info.id = btf->id;
7248 ubtf = u64_to_user_ptr(info.btf);
7249 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7250 if (copy_to_user(ubtf, btf->data, btf_copy))
7251 return -EFAULT;
7252 info.btf_size = btf->data_size;
7253
7254 info.kernel_btf = btf->kernel_btf;
7255
7256 uname = u64_to_user_ptr(info.name);
7257 uname_len = info.name_len;
7258 if (!uname ^ !uname_len)
7259 return -EINVAL;
7260
7261 name_len = strlen(btf->name);
7262 info.name_len = name_len;
7263
7264 if (uname) {
7265 if (uname_len >= name_len + 1) {
7266 if (copy_to_user(uname, btf->name, name_len + 1))
7267 return -EFAULT;
7268 } else {
7269 char zero = '\0';
7270
7271 if (copy_to_user(uname, btf->name, uname_len - 1))
7272 return -EFAULT;
7273 if (put_user(zero, uname + uname_len - 1))
7274 return -EFAULT;
7275 /* let user-space know about too short buffer */
7276 ret = -ENOSPC;
7277 }
7278 }
7279
7280 if (copy_to_user(uinfo, &info, info_copy) ||
7281 put_user(info_copy, &uattr->info.info_len))
7282 return -EFAULT;
7283
7284 return ret;
7285 }
7286
7287 int btf_get_fd_by_id(u32 id)
7288 {
7289 struct btf *btf;
7290 int fd;
7291
7292 rcu_read_lock();
7293 btf = idr_find(&btf_idr, id);
7294 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7295 btf = ERR_PTR(-ENOENT);
7296 rcu_read_unlock();
7297
7298 if (IS_ERR(btf))
7299 return PTR_ERR(btf);
7300
7301 fd = __btf_new_fd(btf);
7302 if (fd < 0)
7303 btf_put(btf);
7304
7305 return fd;
7306 }
7307
7308 u32 btf_obj_id(const struct btf *btf)
7309 {
7310 return btf->id;
7311 }
7312
7313 bool btf_is_kernel(const struct btf *btf)
7314 {
7315 return btf->kernel_btf;
7316 }
7317
7318 bool btf_is_module(const struct btf *btf)
7319 {
7320 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7321 }
7322
7323 enum {
7324 BTF_MODULE_F_LIVE = (1 << 0),
7325 };
7326
7327 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7328 struct btf_module {
7329 struct list_head list;
7330 struct module *module;
7331 struct btf *btf;
7332 struct bin_attribute *sysfs_attr;
7333 int flags;
7334 };
7335
7336 static LIST_HEAD(btf_modules);
7337 static DEFINE_MUTEX(btf_module_mutex);
7338
7339 static ssize_t
7340 btf_module_read(struct file *file, struct kobject *kobj,
7341 struct bin_attribute *bin_attr,
7342 char *buf, loff_t off, size_t len)
7343 {
7344 const struct btf *btf = bin_attr->private;
7345
7346 memcpy(buf, btf->data + off, len);
7347 return len;
7348 }
7349
7350 static void purge_cand_cache(struct btf *btf);
7351
7352 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7353 void *module)
7354 {
7355 struct btf_module *btf_mod, *tmp;
7356 struct module *mod = module;
7357 struct btf *btf;
7358 int err = 0;
7359
7360 if (mod->btf_data_size == 0 ||
7361 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7362 op != MODULE_STATE_GOING))
7363 goto out;
7364
7365 switch (op) {
7366 case MODULE_STATE_COMING:
7367 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7368 if (!btf_mod) {
7369 err = -ENOMEM;
7370 goto out;
7371 }
7372 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7373 if (IS_ERR(btf)) {
7374 kfree(btf_mod);
7375 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7376 pr_warn("failed to validate module [%s] BTF: %ld\n",
7377 mod->name, PTR_ERR(btf));
7378 err = PTR_ERR(btf);
7379 } else {
7380 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7381 }
7382 goto out;
7383 }
7384 err = btf_alloc_id(btf);
7385 if (err) {
7386 btf_free(btf);
7387 kfree(btf_mod);
7388 goto out;
7389 }
7390
7391 purge_cand_cache(NULL);
7392 mutex_lock(&btf_module_mutex);
7393 btf_mod->module = module;
7394 btf_mod->btf = btf;
7395 list_add(&btf_mod->list, &btf_modules);
7396 mutex_unlock(&btf_module_mutex);
7397
7398 if (IS_ENABLED(CONFIG_SYSFS)) {
7399 struct bin_attribute *attr;
7400
7401 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7402 if (!attr)
7403 goto out;
7404
7405 sysfs_bin_attr_init(attr);
7406 attr->attr.name = btf->name;
7407 attr->attr.mode = 0444;
7408 attr->size = btf->data_size;
7409 attr->private = btf;
7410 attr->read = btf_module_read;
7411
7412 err = sysfs_create_bin_file(btf_kobj, attr);
7413 if (err) {
7414 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7415 mod->name, err);
7416 kfree(attr);
7417 err = 0;
7418 goto out;
7419 }
7420
7421 btf_mod->sysfs_attr = attr;
7422 }
7423
7424 break;
7425 case MODULE_STATE_LIVE:
7426 mutex_lock(&btf_module_mutex);
7427 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7428 if (btf_mod->module != module)
7429 continue;
7430
7431 btf_mod->flags |= BTF_MODULE_F_LIVE;
7432 break;
7433 }
7434 mutex_unlock(&btf_module_mutex);
7435 break;
7436 case MODULE_STATE_GOING:
7437 mutex_lock(&btf_module_mutex);
7438 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7439 if (btf_mod->module != module)
7440 continue;
7441
7442 list_del(&btf_mod->list);
7443 if (btf_mod->sysfs_attr)
7444 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7445 purge_cand_cache(btf_mod->btf);
7446 btf_put(btf_mod->btf);
7447 kfree(btf_mod->sysfs_attr);
7448 kfree(btf_mod);
7449 break;
7450 }
7451 mutex_unlock(&btf_module_mutex);
7452 break;
7453 }
7454 out:
7455 return notifier_from_errno(err);
7456 }
7457
7458 static struct notifier_block btf_module_nb = {
7459 .notifier_call = btf_module_notify,
7460 };
7461
7462 static int __init btf_module_init(void)
7463 {
7464 register_module_notifier(&btf_module_nb);
7465 return 0;
7466 }
7467
7468 fs_initcall(btf_module_init);
7469 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7470
7471 struct module *btf_try_get_module(const struct btf *btf)
7472 {
7473 struct module *res = NULL;
7474 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7475 struct btf_module *btf_mod, *tmp;
7476
7477 mutex_lock(&btf_module_mutex);
7478 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7479 if (btf_mod->btf != btf)
7480 continue;
7481
7482 /* We must only consider module whose __init routine has
7483 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7484 * which is set from the notifier callback for
7485 * MODULE_STATE_LIVE.
7486 */
7487 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7488 res = btf_mod->module;
7489
7490 break;
7491 }
7492 mutex_unlock(&btf_module_mutex);
7493 #endif
7494
7495 return res;
7496 }
7497
7498 /* Returns struct btf corresponding to the struct module.
7499 * This function can return NULL or ERR_PTR.
7500 */
7501 static struct btf *btf_get_module_btf(const struct module *module)
7502 {
7503 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7504 struct btf_module *btf_mod, *tmp;
7505 #endif
7506 struct btf *btf = NULL;
7507
7508 if (!module) {
7509 btf = bpf_get_btf_vmlinux();
7510 if (!IS_ERR_OR_NULL(btf))
7511 btf_get(btf);
7512 return btf;
7513 }
7514
7515 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7516 mutex_lock(&btf_module_mutex);
7517 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7518 if (btf_mod->module != module)
7519 continue;
7520
7521 btf_get(btf_mod->btf);
7522 btf = btf_mod->btf;
7523 break;
7524 }
7525 mutex_unlock(&btf_module_mutex);
7526 #endif
7527
7528 return btf;
7529 }
7530
7531 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7532 {
7533 struct btf *btf = NULL;
7534 int btf_obj_fd = 0;
7535 long ret;
7536
7537 if (flags)
7538 return -EINVAL;
7539
7540 if (name_sz <= 1 || name[name_sz - 1])
7541 return -EINVAL;
7542
7543 ret = bpf_find_btf_id(name, kind, &btf);
7544 if (ret > 0 && btf_is_module(btf)) {
7545 btf_obj_fd = __btf_new_fd(btf);
7546 if (btf_obj_fd < 0) {
7547 btf_put(btf);
7548 return btf_obj_fd;
7549 }
7550 return ret | (((u64)btf_obj_fd) << 32);
7551 }
7552 if (ret > 0)
7553 btf_put(btf);
7554 return ret;
7555 }
7556
7557 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7558 .func = bpf_btf_find_by_name_kind,
7559 .gpl_only = false,
7560 .ret_type = RET_INTEGER,
7561 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7562 .arg2_type = ARG_CONST_SIZE,
7563 .arg3_type = ARG_ANYTHING,
7564 .arg4_type = ARG_ANYTHING,
7565 };
7566
7567 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7568 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7569 BTF_TRACING_TYPE_xxx
7570 #undef BTF_TRACING_TYPE
7571
7572 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7573 const struct btf_type *func, u32 func_flags)
7574 {
7575 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7576 const char *name, *sfx, *iter_name;
7577 const struct btf_param *arg;
7578 const struct btf_type *t;
7579 char exp_name[128];
7580 u32 nr_args;
7581
7582 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7583 if (!flags || (flags & (flags - 1)))
7584 return -EINVAL;
7585
7586 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7587 nr_args = btf_type_vlen(func);
7588 if (nr_args < 1)
7589 return -EINVAL;
7590
7591 arg = &btf_params(func)[0];
7592 t = btf_type_skip_modifiers(btf, arg->type, NULL);
7593 if (!t || !btf_type_is_ptr(t))
7594 return -EINVAL;
7595 t = btf_type_skip_modifiers(btf, t->type, NULL);
7596 if (!t || !__btf_type_is_struct(t))
7597 return -EINVAL;
7598
7599 name = btf_name_by_offset(btf, t->name_off);
7600 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7601 return -EINVAL;
7602
7603 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7604 * fit nicely in stack slots
7605 */
7606 if (t->size == 0 || (t->size % 8))
7607 return -EINVAL;
7608
7609 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7610 * naming pattern
7611 */
7612 iter_name = name + sizeof(ITER_PREFIX) - 1;
7613 if (flags & KF_ITER_NEW)
7614 sfx = "new";
7615 else if (flags & KF_ITER_NEXT)
7616 sfx = "next";
7617 else /* (flags & KF_ITER_DESTROY) */
7618 sfx = "destroy";
7619
7620 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7621 if (strcmp(func_name, exp_name))
7622 return -EINVAL;
7623
7624 /* only iter constructor should have extra arguments */
7625 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7626 return -EINVAL;
7627
7628 if (flags & KF_ITER_NEXT) {
7629 /* bpf_iter_<type>_next() should return pointer */
7630 t = btf_type_skip_modifiers(btf, func->type, NULL);
7631 if (!t || !btf_type_is_ptr(t))
7632 return -EINVAL;
7633 }
7634
7635 if (flags & KF_ITER_DESTROY) {
7636 /* bpf_iter_<type>_destroy() should return void */
7637 t = btf_type_by_id(btf, func->type);
7638 if (!t || !btf_type_is_void(t))
7639 return -EINVAL;
7640 }
7641
7642 return 0;
7643 }
7644
7645 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7646 {
7647 const struct btf_type *func;
7648 const char *func_name;
7649 int err;
7650
7651 /* any kfunc should be FUNC -> FUNC_PROTO */
7652 func = btf_type_by_id(btf, func_id);
7653 if (!func || !btf_type_is_func(func))
7654 return -EINVAL;
7655
7656 /* sanity check kfunc name */
7657 func_name = btf_name_by_offset(btf, func->name_off);
7658 if (!func_name || !func_name[0])
7659 return -EINVAL;
7660
7661 func = btf_type_by_id(btf, func->type);
7662 if (!func || !btf_type_is_func_proto(func))
7663 return -EINVAL;
7664
7665 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7666 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7667 if (err)
7668 return err;
7669 }
7670
7671 return 0;
7672 }
7673
7674 /* Kernel Function (kfunc) BTF ID set registration API */
7675
7676 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7677 const struct btf_kfunc_id_set *kset)
7678 {
7679 struct btf_kfunc_hook_filter *hook_filter;
7680 struct btf_id_set8 *add_set = kset->set;
7681 bool vmlinux_set = !btf_is_module(btf);
7682 bool add_filter = !!kset->filter;
7683 struct btf_kfunc_set_tab *tab;
7684 struct btf_id_set8 *set;
7685 u32 set_cnt;
7686 int ret;
7687
7688 if (hook >= BTF_KFUNC_HOOK_MAX) {
7689 ret = -EINVAL;
7690 goto end;
7691 }
7692
7693 if (!add_set->cnt)
7694 return 0;
7695
7696 tab = btf->kfunc_set_tab;
7697
7698 if (tab && add_filter) {
7699 u32 i;
7700
7701 hook_filter = &tab->hook_filters[hook];
7702 for (i = 0; i < hook_filter->nr_filters; i++) {
7703 if (hook_filter->filters[i] == kset->filter) {
7704 add_filter = false;
7705 break;
7706 }
7707 }
7708
7709 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7710 ret = -E2BIG;
7711 goto end;
7712 }
7713 }
7714
7715 if (!tab) {
7716 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7717 if (!tab)
7718 return -ENOMEM;
7719 btf->kfunc_set_tab = tab;
7720 }
7721
7722 set = tab->sets[hook];
7723 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7724 * for module sets.
7725 */
7726 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7727 ret = -EINVAL;
7728 goto end;
7729 }
7730
7731 /* We don't need to allocate, concatenate, and sort module sets, because
7732 * only one is allowed per hook. Hence, we can directly assign the
7733 * pointer and return.
7734 */
7735 if (!vmlinux_set) {
7736 tab->sets[hook] = add_set;
7737 goto do_add_filter;
7738 }
7739
7740 /* In case of vmlinux sets, there may be more than one set being
7741 * registered per hook. To create a unified set, we allocate a new set
7742 * and concatenate all individual sets being registered. While each set
7743 * is individually sorted, they may become unsorted when concatenated,
7744 * hence re-sorting the final set again is required to make binary
7745 * searching the set using btf_id_set8_contains function work.
7746 */
7747 set_cnt = set ? set->cnt : 0;
7748
7749 if (set_cnt > U32_MAX - add_set->cnt) {
7750 ret = -EOVERFLOW;
7751 goto end;
7752 }
7753
7754 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7755 ret = -E2BIG;
7756 goto end;
7757 }
7758
7759 /* Grow set */
7760 set = krealloc(tab->sets[hook],
7761 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7762 GFP_KERNEL | __GFP_NOWARN);
7763 if (!set) {
7764 ret = -ENOMEM;
7765 goto end;
7766 }
7767
7768 /* For newly allocated set, initialize set->cnt to 0 */
7769 if (!tab->sets[hook])
7770 set->cnt = 0;
7771 tab->sets[hook] = set;
7772
7773 /* Concatenate the two sets */
7774 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7775 set->cnt += add_set->cnt;
7776
7777 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7778
7779 do_add_filter:
7780 if (add_filter) {
7781 hook_filter = &tab->hook_filters[hook];
7782 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7783 }
7784 return 0;
7785 end:
7786 btf_free_kfunc_set_tab(btf);
7787 return ret;
7788 }
7789
7790 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7791 enum btf_kfunc_hook hook,
7792 u32 kfunc_btf_id,
7793 const struct bpf_prog *prog)
7794 {
7795 struct btf_kfunc_hook_filter *hook_filter;
7796 struct btf_id_set8 *set;
7797 u32 *id, i;
7798
7799 if (hook >= BTF_KFUNC_HOOK_MAX)
7800 return NULL;
7801 if (!btf->kfunc_set_tab)
7802 return NULL;
7803 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7804 for (i = 0; i < hook_filter->nr_filters; i++) {
7805 if (hook_filter->filters[i](prog, kfunc_btf_id))
7806 return NULL;
7807 }
7808 set = btf->kfunc_set_tab->sets[hook];
7809 if (!set)
7810 return NULL;
7811 id = btf_id_set8_contains(set, kfunc_btf_id);
7812 if (!id)
7813 return NULL;
7814 /* The flags for BTF ID are located next to it */
7815 return id + 1;
7816 }
7817
7818 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7819 {
7820 switch (prog_type) {
7821 case BPF_PROG_TYPE_UNSPEC:
7822 return BTF_KFUNC_HOOK_COMMON;
7823 case BPF_PROG_TYPE_XDP:
7824 return BTF_KFUNC_HOOK_XDP;
7825 case BPF_PROG_TYPE_SCHED_CLS:
7826 return BTF_KFUNC_HOOK_TC;
7827 case BPF_PROG_TYPE_STRUCT_OPS:
7828 return BTF_KFUNC_HOOK_STRUCT_OPS;
7829 case BPF_PROG_TYPE_TRACING:
7830 case BPF_PROG_TYPE_LSM:
7831 return BTF_KFUNC_HOOK_TRACING;
7832 case BPF_PROG_TYPE_SYSCALL:
7833 return BTF_KFUNC_HOOK_SYSCALL;
7834 case BPF_PROG_TYPE_CGROUP_SKB:
7835 return BTF_KFUNC_HOOK_CGROUP_SKB;
7836 case BPF_PROG_TYPE_SCHED_ACT:
7837 return BTF_KFUNC_HOOK_SCHED_ACT;
7838 case BPF_PROG_TYPE_SK_SKB:
7839 return BTF_KFUNC_HOOK_SK_SKB;
7840 case BPF_PROG_TYPE_SOCKET_FILTER:
7841 return BTF_KFUNC_HOOK_SOCKET_FILTER;
7842 case BPF_PROG_TYPE_LWT_OUT:
7843 case BPF_PROG_TYPE_LWT_IN:
7844 case BPF_PROG_TYPE_LWT_XMIT:
7845 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7846 return BTF_KFUNC_HOOK_LWT;
7847 case BPF_PROG_TYPE_NETFILTER:
7848 return BTF_KFUNC_HOOK_NETFILTER;
7849 default:
7850 return BTF_KFUNC_HOOK_MAX;
7851 }
7852 }
7853
7854 /* Caution:
7855 * Reference to the module (obtained using btf_try_get_module) corresponding to
7856 * the struct btf *MUST* be held when calling this function from verifier
7857 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7858 * keeping the reference for the duration of the call provides the necessary
7859 * protection for looking up a well-formed btf->kfunc_set_tab.
7860 */
7861 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7862 u32 kfunc_btf_id,
7863 const struct bpf_prog *prog)
7864 {
7865 enum bpf_prog_type prog_type = resolve_prog_type(prog);
7866 enum btf_kfunc_hook hook;
7867 u32 *kfunc_flags;
7868
7869 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7870 if (kfunc_flags)
7871 return kfunc_flags;
7872
7873 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7874 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7875 }
7876
7877 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7878 const struct bpf_prog *prog)
7879 {
7880 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7881 }
7882
7883 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7884 const struct btf_kfunc_id_set *kset)
7885 {
7886 struct btf *btf;
7887 int ret, i;
7888
7889 btf = btf_get_module_btf(kset->owner);
7890 if (!btf) {
7891 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7892 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7893 return -ENOENT;
7894 }
7895 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7896 pr_warn("missing module BTF, cannot register kfuncs\n");
7897 return 0;
7898 }
7899 if (IS_ERR(btf))
7900 return PTR_ERR(btf);
7901
7902 for (i = 0; i < kset->set->cnt; i++) {
7903 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7904 kset->set->pairs[i].flags);
7905 if (ret)
7906 goto err_out;
7907 }
7908
7909 ret = btf_populate_kfunc_set(btf, hook, kset);
7910
7911 err_out:
7912 btf_put(btf);
7913 return ret;
7914 }
7915
7916 /* This function must be invoked only from initcalls/module init functions */
7917 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7918 const struct btf_kfunc_id_set *kset)
7919 {
7920 enum btf_kfunc_hook hook;
7921
7922 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7923 return __register_btf_kfunc_id_set(hook, kset);
7924 }
7925 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7926
7927 /* This function must be invoked only from initcalls/module init functions */
7928 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7929 {
7930 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7931 }
7932 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7933
7934 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7935 {
7936 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7937 struct btf_id_dtor_kfunc *dtor;
7938
7939 if (!tab)
7940 return -ENOENT;
7941 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7942 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7943 */
7944 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7945 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7946 if (!dtor)
7947 return -ENOENT;
7948 return dtor->kfunc_btf_id;
7949 }
7950
7951 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7952 {
7953 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7954 const struct btf_param *args;
7955 s32 dtor_btf_id;
7956 u32 nr_args, i;
7957
7958 for (i = 0; i < cnt; i++) {
7959 dtor_btf_id = dtors[i].kfunc_btf_id;
7960
7961 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7962 if (!dtor_func || !btf_type_is_func(dtor_func))
7963 return -EINVAL;
7964
7965 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7966 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7967 return -EINVAL;
7968
7969 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7970 t = btf_type_by_id(btf, dtor_func_proto->type);
7971 if (!t || !btf_type_is_void(t))
7972 return -EINVAL;
7973
7974 nr_args = btf_type_vlen(dtor_func_proto);
7975 if (nr_args != 1)
7976 return -EINVAL;
7977 args = btf_params(dtor_func_proto);
7978 t = btf_type_by_id(btf, args[0].type);
7979 /* Allow any pointer type, as width on targets Linux supports
7980 * will be same for all pointer types (i.e. sizeof(void *))
7981 */
7982 if (!t || !btf_type_is_ptr(t))
7983 return -EINVAL;
7984 }
7985 return 0;
7986 }
7987
7988 /* This function must be invoked only from initcalls/module init functions */
7989 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7990 struct module *owner)
7991 {
7992 struct btf_id_dtor_kfunc_tab *tab;
7993 struct btf *btf;
7994 u32 tab_cnt;
7995 int ret;
7996
7997 btf = btf_get_module_btf(owner);
7998 if (!btf) {
7999 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8000 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8001 return -ENOENT;
8002 }
8003 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8004 pr_err("missing module BTF, cannot register dtor kfuncs\n");
8005 return -ENOENT;
8006 }
8007 return 0;
8008 }
8009 if (IS_ERR(btf))
8010 return PTR_ERR(btf);
8011
8012 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8013 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8014 ret = -E2BIG;
8015 goto end;
8016 }
8017
8018 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8019 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8020 if (ret < 0)
8021 goto end;
8022
8023 tab = btf->dtor_kfunc_tab;
8024 /* Only one call allowed for modules */
8025 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8026 ret = -EINVAL;
8027 goto end;
8028 }
8029
8030 tab_cnt = tab ? tab->cnt : 0;
8031 if (tab_cnt > U32_MAX - add_cnt) {
8032 ret = -EOVERFLOW;
8033 goto end;
8034 }
8035 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8036 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8037 ret = -E2BIG;
8038 goto end;
8039 }
8040
8041 tab = krealloc(btf->dtor_kfunc_tab,
8042 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8043 GFP_KERNEL | __GFP_NOWARN);
8044 if (!tab) {
8045 ret = -ENOMEM;
8046 goto end;
8047 }
8048
8049 if (!btf->dtor_kfunc_tab)
8050 tab->cnt = 0;
8051 btf->dtor_kfunc_tab = tab;
8052
8053 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8054 tab->cnt += add_cnt;
8055
8056 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8057
8058 end:
8059 if (ret)
8060 btf_free_dtor_kfunc_tab(btf);
8061 btf_put(btf);
8062 return ret;
8063 }
8064 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8065
8066 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8067
8068 /* Check local and target types for compatibility. This check is used for
8069 * type-based CO-RE relocations and follow slightly different rules than
8070 * field-based relocations. This function assumes that root types were already
8071 * checked for name match. Beyond that initial root-level name check, names
8072 * are completely ignored. Compatibility rules are as follows:
8073 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8074 * kind should match for local and target types (i.e., STRUCT is not
8075 * compatible with UNION);
8076 * - for ENUMs/ENUM64s, the size is ignored;
8077 * - for INT, size and signedness are ignored;
8078 * - for ARRAY, dimensionality is ignored, element types are checked for
8079 * compatibility recursively;
8080 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8081 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8082 * - FUNC_PROTOs are compatible if they have compatible signature: same
8083 * number of input args and compatible return and argument types.
8084 * These rules are not set in stone and probably will be adjusted as we get
8085 * more experience with using BPF CO-RE relocations.
8086 */
8087 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8088 const struct btf *targ_btf, __u32 targ_id)
8089 {
8090 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8091 MAX_TYPES_ARE_COMPAT_DEPTH);
8092 }
8093
8094 #define MAX_TYPES_MATCH_DEPTH 2
8095
8096 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8097 const struct btf *targ_btf, u32 targ_id)
8098 {
8099 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8100 MAX_TYPES_MATCH_DEPTH);
8101 }
8102
8103 static bool bpf_core_is_flavor_sep(const char *s)
8104 {
8105 /* check X___Y name pattern, where X and Y are not underscores */
8106 return s[0] != '_' && /* X */
8107 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8108 s[4] != '_'; /* Y */
8109 }
8110
8111 size_t bpf_core_essential_name_len(const char *name)
8112 {
8113 size_t n = strlen(name);
8114 int i;
8115
8116 for (i = n - 5; i >= 0; i--) {
8117 if (bpf_core_is_flavor_sep(name + i))
8118 return i + 1;
8119 }
8120 return n;
8121 }
8122
8123 struct bpf_cand_cache {
8124 const char *name;
8125 u32 name_len;
8126 u16 kind;
8127 u16 cnt;
8128 struct {
8129 const struct btf *btf;
8130 u32 id;
8131 } cands[];
8132 };
8133
8134 static void bpf_free_cands(struct bpf_cand_cache *cands)
8135 {
8136 if (!cands->cnt)
8137 /* empty candidate array was allocated on stack */
8138 return;
8139 kfree(cands);
8140 }
8141
8142 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8143 {
8144 kfree(cands->name);
8145 kfree(cands);
8146 }
8147
8148 #define VMLINUX_CAND_CACHE_SIZE 31
8149 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8150
8151 #define MODULE_CAND_CACHE_SIZE 31
8152 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8153
8154 static DEFINE_MUTEX(cand_cache_mutex);
8155
8156 static void __print_cand_cache(struct bpf_verifier_log *log,
8157 struct bpf_cand_cache **cache,
8158 int cache_size)
8159 {
8160 struct bpf_cand_cache *cc;
8161 int i, j;
8162
8163 for (i = 0; i < cache_size; i++) {
8164 cc = cache[i];
8165 if (!cc)
8166 continue;
8167 bpf_log(log, "[%d]%s(", i, cc->name);
8168 for (j = 0; j < cc->cnt; j++) {
8169 bpf_log(log, "%d", cc->cands[j].id);
8170 if (j < cc->cnt - 1)
8171 bpf_log(log, " ");
8172 }
8173 bpf_log(log, "), ");
8174 }
8175 }
8176
8177 static void print_cand_cache(struct bpf_verifier_log *log)
8178 {
8179 mutex_lock(&cand_cache_mutex);
8180 bpf_log(log, "vmlinux_cand_cache:");
8181 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8182 bpf_log(log, "\nmodule_cand_cache:");
8183 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8184 bpf_log(log, "\n");
8185 mutex_unlock(&cand_cache_mutex);
8186 }
8187
8188 static u32 hash_cands(struct bpf_cand_cache *cands)
8189 {
8190 return jhash(cands->name, cands->name_len, 0);
8191 }
8192
8193 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8194 struct bpf_cand_cache **cache,
8195 int cache_size)
8196 {
8197 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8198
8199 if (cc && cc->name_len == cands->name_len &&
8200 !strncmp(cc->name, cands->name, cands->name_len))
8201 return cc;
8202 return NULL;
8203 }
8204
8205 static size_t sizeof_cands(int cnt)
8206 {
8207 return offsetof(struct bpf_cand_cache, cands[cnt]);
8208 }
8209
8210 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8211 struct bpf_cand_cache **cache,
8212 int cache_size)
8213 {
8214 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8215
8216 if (*cc) {
8217 bpf_free_cands_from_cache(*cc);
8218 *cc = NULL;
8219 }
8220 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8221 if (!new_cands) {
8222 bpf_free_cands(cands);
8223 return ERR_PTR(-ENOMEM);
8224 }
8225 /* strdup the name, since it will stay in cache.
8226 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8227 */
8228 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8229 bpf_free_cands(cands);
8230 if (!new_cands->name) {
8231 kfree(new_cands);
8232 return ERR_PTR(-ENOMEM);
8233 }
8234 *cc = new_cands;
8235 return new_cands;
8236 }
8237
8238 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8239 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8240 int cache_size)
8241 {
8242 struct bpf_cand_cache *cc;
8243 int i, j;
8244
8245 for (i = 0; i < cache_size; i++) {
8246 cc = cache[i];
8247 if (!cc)
8248 continue;
8249 if (!btf) {
8250 /* when new module is loaded purge all of module_cand_cache,
8251 * since new module might have candidates with the name
8252 * that matches cached cands.
8253 */
8254 bpf_free_cands_from_cache(cc);
8255 cache[i] = NULL;
8256 continue;
8257 }
8258 /* when module is unloaded purge cache entries
8259 * that match module's btf
8260 */
8261 for (j = 0; j < cc->cnt; j++)
8262 if (cc->cands[j].btf == btf) {
8263 bpf_free_cands_from_cache(cc);
8264 cache[i] = NULL;
8265 break;
8266 }
8267 }
8268
8269 }
8270
8271 static void purge_cand_cache(struct btf *btf)
8272 {
8273 mutex_lock(&cand_cache_mutex);
8274 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8275 mutex_unlock(&cand_cache_mutex);
8276 }
8277 #endif
8278
8279 static struct bpf_cand_cache *
8280 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8281 int targ_start_id)
8282 {
8283 struct bpf_cand_cache *new_cands;
8284 const struct btf_type *t;
8285 const char *targ_name;
8286 size_t targ_essent_len;
8287 int n, i;
8288
8289 n = btf_nr_types(targ_btf);
8290 for (i = targ_start_id; i < n; i++) {
8291 t = btf_type_by_id(targ_btf, i);
8292 if (btf_kind(t) != cands->kind)
8293 continue;
8294
8295 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8296 if (!targ_name)
8297 continue;
8298
8299 /* the resched point is before strncmp to make sure that search
8300 * for non-existing name will have a chance to schedule().
8301 */
8302 cond_resched();
8303
8304 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8305 continue;
8306
8307 targ_essent_len = bpf_core_essential_name_len(targ_name);
8308 if (targ_essent_len != cands->name_len)
8309 continue;
8310
8311 /* most of the time there is only one candidate for a given kind+name pair */
8312 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8313 if (!new_cands) {
8314 bpf_free_cands(cands);
8315 return ERR_PTR(-ENOMEM);
8316 }
8317
8318 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8319 bpf_free_cands(cands);
8320 cands = new_cands;
8321 cands->cands[cands->cnt].btf = targ_btf;
8322 cands->cands[cands->cnt].id = i;
8323 cands->cnt++;
8324 }
8325 return cands;
8326 }
8327
8328 static struct bpf_cand_cache *
8329 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8330 {
8331 struct bpf_cand_cache *cands, *cc, local_cand = {};
8332 const struct btf *local_btf = ctx->btf;
8333 const struct btf_type *local_type;
8334 const struct btf *main_btf;
8335 size_t local_essent_len;
8336 struct btf *mod_btf;
8337 const char *name;
8338 int id;
8339
8340 main_btf = bpf_get_btf_vmlinux();
8341 if (IS_ERR(main_btf))
8342 return ERR_CAST(main_btf);
8343 if (!main_btf)
8344 return ERR_PTR(-EINVAL);
8345
8346 local_type = btf_type_by_id(local_btf, local_type_id);
8347 if (!local_type)
8348 return ERR_PTR(-EINVAL);
8349
8350 name = btf_name_by_offset(local_btf, local_type->name_off);
8351 if (str_is_empty(name))
8352 return ERR_PTR(-EINVAL);
8353 local_essent_len = bpf_core_essential_name_len(name);
8354
8355 cands = &local_cand;
8356 cands->name = name;
8357 cands->kind = btf_kind(local_type);
8358 cands->name_len = local_essent_len;
8359
8360 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8361 /* cands is a pointer to stack here */
8362 if (cc) {
8363 if (cc->cnt)
8364 return cc;
8365 goto check_modules;
8366 }
8367
8368 /* Attempt to find target candidates in vmlinux BTF first */
8369 cands = bpf_core_add_cands(cands, main_btf, 1);
8370 if (IS_ERR(cands))
8371 return ERR_CAST(cands);
8372
8373 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8374
8375 /* populate cache even when cands->cnt == 0 */
8376 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8377 if (IS_ERR(cc))
8378 return ERR_CAST(cc);
8379
8380 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8381 if (cc->cnt)
8382 return cc;
8383
8384 check_modules:
8385 /* cands is a pointer to stack here and cands->cnt == 0 */
8386 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8387 if (cc)
8388 /* if cache has it return it even if cc->cnt == 0 */
8389 return cc;
8390
8391 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8392 spin_lock_bh(&btf_idr_lock);
8393 idr_for_each_entry(&btf_idr, mod_btf, id) {
8394 if (!btf_is_module(mod_btf))
8395 continue;
8396 /* linear search could be slow hence unlock/lock
8397 * the IDR to avoiding holding it for too long
8398 */
8399 btf_get(mod_btf);
8400 spin_unlock_bh(&btf_idr_lock);
8401 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8402 btf_put(mod_btf);
8403 if (IS_ERR(cands))
8404 return ERR_CAST(cands);
8405 spin_lock_bh(&btf_idr_lock);
8406 }
8407 spin_unlock_bh(&btf_idr_lock);
8408 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8409 * or pointer to stack if cands->cnd == 0.
8410 * Copy it into the cache even when cands->cnt == 0 and
8411 * return the result.
8412 */
8413 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8414 }
8415
8416 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8417 int relo_idx, void *insn)
8418 {
8419 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8420 struct bpf_core_cand_list cands = {};
8421 struct bpf_core_relo_res targ_res;
8422 struct bpf_core_spec *specs;
8423 int err;
8424
8425 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8426 * into arrays of btf_ids of struct fields and array indices.
8427 */
8428 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8429 if (!specs)
8430 return -ENOMEM;
8431
8432 if (need_cands) {
8433 struct bpf_cand_cache *cc;
8434 int i;
8435
8436 mutex_lock(&cand_cache_mutex);
8437 cc = bpf_core_find_cands(ctx, relo->type_id);
8438 if (IS_ERR(cc)) {
8439 bpf_log(ctx->log, "target candidate search failed for %d\n",
8440 relo->type_id);
8441 err = PTR_ERR(cc);
8442 goto out;
8443 }
8444 if (cc->cnt) {
8445 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8446 if (!cands.cands) {
8447 err = -ENOMEM;
8448 goto out;
8449 }
8450 }
8451 for (i = 0; i < cc->cnt; i++) {
8452 bpf_log(ctx->log,
8453 "CO-RE relocating %s %s: found target candidate [%d]\n",
8454 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8455 cands.cands[i].btf = cc->cands[i].btf;
8456 cands.cands[i].id = cc->cands[i].id;
8457 }
8458 cands.len = cc->cnt;
8459 /* cand_cache_mutex needs to span the cache lookup and
8460 * copy of btf pointer into bpf_core_cand_list,
8461 * since module can be unloaded while bpf_core_calc_relo_insn
8462 * is working with module's btf.
8463 */
8464 }
8465
8466 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8467 &targ_res);
8468 if (err)
8469 goto out;
8470
8471 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8472 &targ_res);
8473
8474 out:
8475 kfree(specs);
8476 if (need_cands) {
8477 kfree(cands.cands);
8478 mutex_unlock(&cand_cache_mutex);
8479 if (ctx->log->level & BPF_LOG_LEVEL2)
8480 print_cand_cache(ctx->log);
8481 }
8482 return err;
8483 }
8484
8485 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8486 const struct bpf_reg_state *reg,
8487 const char *field_name, u32 btf_id, const char *suffix)
8488 {
8489 struct btf *btf = reg->btf;
8490 const struct btf_type *walk_type, *safe_type;
8491 const char *tname;
8492 char safe_tname[64];
8493 long ret, safe_id;
8494 const struct btf_member *member;
8495 u32 i;
8496
8497 walk_type = btf_type_by_id(btf, reg->btf_id);
8498 if (!walk_type)
8499 return false;
8500
8501 tname = btf_name_by_offset(btf, walk_type->name_off);
8502
8503 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8504 if (ret < 0)
8505 return false;
8506
8507 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8508 if (safe_id < 0)
8509 return false;
8510
8511 safe_type = btf_type_by_id(btf, safe_id);
8512 if (!safe_type)
8513 return false;
8514
8515 for_each_member(i, safe_type, member) {
8516 const char *m_name = __btf_name_by_offset(btf, member->name_off);
8517 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8518 u32 id;
8519
8520 if (!btf_type_is_ptr(mtype))
8521 continue;
8522
8523 btf_type_skip_modifiers(btf, mtype->type, &id);
8524 /* If we match on both type and name, the field is considered trusted. */
8525 if (btf_id == id && !strcmp(field_name, m_name))
8526 return true;
8527 }
8528
8529 return false;
8530 }
8531
8532 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8533 const struct btf *reg_btf, u32 reg_id,
8534 const struct btf *arg_btf, u32 arg_id)
8535 {
8536 const char *reg_name, *arg_name, *search_needle;
8537 const struct btf_type *reg_type, *arg_type;
8538 int reg_len, arg_len, cmp_len;
8539 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8540
8541 reg_type = btf_type_by_id(reg_btf, reg_id);
8542 if (!reg_type)
8543 return false;
8544
8545 arg_type = btf_type_by_id(arg_btf, arg_id);
8546 if (!arg_type)
8547 return false;
8548
8549 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8550 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8551
8552 reg_len = strlen(reg_name);
8553 arg_len = strlen(arg_name);
8554
8555 /* Exactly one of the two type names may be suffixed with ___init, so
8556 * if the strings are the same size, they can't possibly be no-cast
8557 * aliases of one another. If you have two of the same type names, e.g.
8558 * they're both nf_conn___init, it would be improper to return true
8559 * because they are _not_ no-cast aliases, they are the same type.
8560 */
8561 if (reg_len == arg_len)
8562 return false;
8563
8564 /* Either of the two names must be the other name, suffixed with ___init. */
8565 if ((reg_len != arg_len + pattern_len) &&
8566 (arg_len != reg_len + pattern_len))
8567 return false;
8568
8569 if (reg_len < arg_len) {
8570 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8571 cmp_len = reg_len;
8572 } else {
8573 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8574 cmp_len = arg_len;
8575 }
8576
8577 if (!search_needle)
8578 return false;
8579
8580 /* ___init suffix must come at the end of the name */
8581 if (*(search_needle + pattern_len) != '\0')
8582 return false;
8583
8584 return !strncmp(reg_name, arg_name, cmp_len);
8585 }