]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/bpf/cpumap.c
riscv: select ARCH_HAS_STRICT_KERNEL_RWX only if MMU
[thirdparty/linux.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that queueing the frame and the flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
38 */
39
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43
44 struct xdp_bulk_queue {
45 void *q[CPU_MAP_BULK_SIZE];
46 struct list_head flush_node;
47 struct bpf_cpu_map_entry *obj;
48 unsigned int count;
49 };
50
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 u32 cpu; /* kthread CPU and map index */
54 int map_id; /* Back reference to map */
55 u32 qsize; /* Queue size placeholder for map lookup */
56
57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 struct xdp_bulk_queue __percpu *bulkq;
59
60 struct bpf_cpu_map *cmap;
61
62 /* Queue with potential multi-producers, and single-consumer kthread */
63 struct ptr_ring *queue;
64 struct task_struct *kthread;
65 struct work_struct kthread_stop_wq;
66
67 atomic_t refcnt; /* Control when this struct can be free'ed */
68 struct rcu_head rcu;
69 };
70
71 struct bpf_cpu_map {
72 struct bpf_map map;
73 /* Below members specific for map type */
74 struct bpf_cpu_map_entry **cpu_map;
75 };
76
77 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
78
79 static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
80
81 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
82 {
83 struct bpf_cpu_map *cmap;
84 int err = -ENOMEM;
85 u64 cost;
86 int ret;
87
88 if (!capable(CAP_SYS_ADMIN))
89 return ERR_PTR(-EPERM);
90
91 /* check sanity of attributes */
92 if (attr->max_entries == 0 || attr->key_size != 4 ||
93 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
94 return ERR_PTR(-EINVAL);
95
96 cmap = kzalloc(sizeof(*cmap), GFP_USER);
97 if (!cmap)
98 return ERR_PTR(-ENOMEM);
99
100 bpf_map_init_from_attr(&cmap->map, attr);
101
102 /* Pre-limit array size based on NR_CPUS, not final CPU check */
103 if (cmap->map.max_entries > NR_CPUS) {
104 err = -E2BIG;
105 goto free_cmap;
106 }
107
108 /* make sure page count doesn't overflow */
109 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
110
111 /* Notice returns -EPERM on if map size is larger than memlock limit */
112 ret = bpf_map_charge_init(&cmap->map.memory, cost);
113 if (ret) {
114 err = ret;
115 goto free_cmap;
116 }
117
118 /* Alloc array for possible remote "destination" CPUs */
119 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
120 sizeof(struct bpf_cpu_map_entry *),
121 cmap->map.numa_node);
122 if (!cmap->cpu_map)
123 goto free_charge;
124
125 return &cmap->map;
126 free_charge:
127 bpf_map_charge_finish(&cmap->map.memory);
128 free_cmap:
129 kfree(cmap);
130 return ERR_PTR(err);
131 }
132
133 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
134 {
135 atomic_inc(&rcpu->refcnt);
136 }
137
138 /* called from workqueue, to workaround syscall using preempt_disable */
139 static void cpu_map_kthread_stop(struct work_struct *work)
140 {
141 struct bpf_cpu_map_entry *rcpu;
142
143 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
144
145 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
146 * as it waits until all in-flight call_rcu() callbacks complete.
147 */
148 rcu_barrier();
149
150 /* kthread_stop will wake_up_process and wait for it to complete */
151 kthread_stop(rcpu->kthread);
152 }
153
154 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
155 struct xdp_frame *xdpf,
156 struct sk_buff *skb)
157 {
158 unsigned int hard_start_headroom;
159 unsigned int frame_size;
160 void *pkt_data_start;
161
162 /* Part of headroom was reserved to xdpf */
163 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
164
165 /* build_skb need to place skb_shared_info after SKB end, and
166 * also want to know the memory "truesize". Thus, need to
167 * know the memory frame size backing xdp_buff.
168 *
169 * XDP was designed to have PAGE_SIZE frames, but this
170 * assumption is not longer true with ixgbe and i40e. It
171 * would be preferred to set frame_size to 2048 or 4096
172 * depending on the driver.
173 * frame_size = 2048;
174 * frame_len = frame_size - sizeof(*xdp_frame);
175 *
176 * Instead, with info avail, skb_shared_info in placed after
177 * packet len. This, unfortunately fakes the truesize.
178 * Another disadvantage of this approach, the skb_shared_info
179 * is not at a fixed memory location, with mixed length
180 * packets, which is bad for cache-line hotness.
181 */
182 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
183 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
184
185 pkt_data_start = xdpf->data - hard_start_headroom;
186 skb = build_skb_around(skb, pkt_data_start, frame_size);
187 if (unlikely(!skb))
188 return NULL;
189
190 skb_reserve(skb, hard_start_headroom);
191 __skb_put(skb, xdpf->len);
192 if (xdpf->metasize)
193 skb_metadata_set(skb, xdpf->metasize);
194
195 /* Essential SKB info: protocol and skb->dev */
196 skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
197
198 /* Optional SKB info, currently missing:
199 * - HW checksum info (skb->ip_summed)
200 * - HW RX hash (skb_set_hash)
201 * - RX ring dev queue index (skb_record_rx_queue)
202 */
203
204 /* Until page_pool get SKB return path, release DMA here */
205 xdp_release_frame(xdpf);
206
207 /* Allow SKB to reuse area used by xdp_frame */
208 xdp_scrub_frame(xdpf);
209
210 return skb;
211 }
212
213 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
214 {
215 /* The tear-down procedure should have made sure that queue is
216 * empty. See __cpu_map_entry_replace() and work-queue
217 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
218 * gracefully and warn once.
219 */
220 struct xdp_frame *xdpf;
221
222 while ((xdpf = ptr_ring_consume(ring)))
223 if (WARN_ON_ONCE(xdpf))
224 xdp_return_frame(xdpf);
225 }
226
227 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
228 {
229 if (atomic_dec_and_test(&rcpu->refcnt)) {
230 /* The queue should be empty at this point */
231 __cpu_map_ring_cleanup(rcpu->queue);
232 ptr_ring_cleanup(rcpu->queue, NULL);
233 kfree(rcpu->queue);
234 kfree(rcpu);
235 }
236 }
237
238 #define CPUMAP_BATCH 8
239
240 static int cpu_map_kthread_run(void *data)
241 {
242 struct bpf_cpu_map_entry *rcpu = data;
243
244 set_current_state(TASK_INTERRUPTIBLE);
245
246 /* When kthread gives stop order, then rcpu have been disconnected
247 * from map, thus no new packets can enter. Remaining in-flight
248 * per CPU stored packets are flushed to this queue. Wait honoring
249 * kthread_stop signal until queue is empty.
250 */
251 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
252 unsigned int drops = 0, sched = 0;
253 void *frames[CPUMAP_BATCH];
254 void *skbs[CPUMAP_BATCH];
255 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
256 int i, n, m;
257
258 /* Release CPU reschedule checks */
259 if (__ptr_ring_empty(rcpu->queue)) {
260 set_current_state(TASK_INTERRUPTIBLE);
261 /* Recheck to avoid lost wake-up */
262 if (__ptr_ring_empty(rcpu->queue)) {
263 schedule();
264 sched = 1;
265 } else {
266 __set_current_state(TASK_RUNNING);
267 }
268 } else {
269 sched = cond_resched();
270 }
271
272 /*
273 * The bpf_cpu_map_entry is single consumer, with this
274 * kthread CPU pinned. Lockless access to ptr_ring
275 * consume side valid as no-resize allowed of queue.
276 */
277 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
278
279 for (i = 0; i < n; i++) {
280 void *f = frames[i];
281 struct page *page = virt_to_page(f);
282
283 /* Bring struct page memory area to curr CPU. Read by
284 * build_skb_around via page_is_pfmemalloc(), and when
285 * freed written by page_frag_free call.
286 */
287 prefetchw(page);
288 }
289
290 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
291 if (unlikely(m == 0)) {
292 for (i = 0; i < n; i++)
293 skbs[i] = NULL; /* effect: xdp_return_frame */
294 drops = n;
295 }
296
297 local_bh_disable();
298 for (i = 0; i < n; i++) {
299 struct xdp_frame *xdpf = frames[i];
300 struct sk_buff *skb = skbs[i];
301 int ret;
302
303 skb = cpu_map_build_skb(rcpu, xdpf, skb);
304 if (!skb) {
305 xdp_return_frame(xdpf);
306 continue;
307 }
308
309 /* Inject into network stack */
310 ret = netif_receive_skb_core(skb);
311 if (ret == NET_RX_DROP)
312 drops++;
313 }
314 /* Feedback loop via tracepoint */
315 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
316
317 local_bh_enable(); /* resched point, may call do_softirq() */
318 }
319 __set_current_state(TASK_RUNNING);
320
321 put_cpu_map_entry(rcpu);
322 return 0;
323 }
324
325 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
326 int map_id)
327 {
328 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
329 struct bpf_cpu_map_entry *rcpu;
330 struct xdp_bulk_queue *bq;
331 int numa, err, i;
332
333 /* Have map->numa_node, but choose node of redirect target CPU */
334 numa = cpu_to_node(cpu);
335
336 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
337 if (!rcpu)
338 return NULL;
339
340 /* Alloc percpu bulkq */
341 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
342 sizeof(void *), gfp);
343 if (!rcpu->bulkq)
344 goto free_rcu;
345
346 for_each_possible_cpu(i) {
347 bq = per_cpu_ptr(rcpu->bulkq, i);
348 bq->obj = rcpu;
349 }
350
351 /* Alloc queue */
352 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
353 if (!rcpu->queue)
354 goto free_bulkq;
355
356 err = ptr_ring_init(rcpu->queue, qsize, gfp);
357 if (err)
358 goto free_queue;
359
360 rcpu->cpu = cpu;
361 rcpu->map_id = map_id;
362 rcpu->qsize = qsize;
363
364 /* Setup kthread */
365 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
366 "cpumap/%d/map:%d", cpu, map_id);
367 if (IS_ERR(rcpu->kthread))
368 goto free_ptr_ring;
369
370 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
371 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
372
373 /* Make sure kthread runs on a single CPU */
374 kthread_bind(rcpu->kthread, cpu);
375 wake_up_process(rcpu->kthread);
376
377 return rcpu;
378
379 free_ptr_ring:
380 ptr_ring_cleanup(rcpu->queue, NULL);
381 free_queue:
382 kfree(rcpu->queue);
383 free_bulkq:
384 free_percpu(rcpu->bulkq);
385 free_rcu:
386 kfree(rcpu);
387 return NULL;
388 }
389
390 static void __cpu_map_entry_free(struct rcu_head *rcu)
391 {
392 struct bpf_cpu_map_entry *rcpu;
393
394 /* This cpu_map_entry have been disconnected from map and one
395 * RCU grace-period have elapsed. Thus, XDP cannot queue any
396 * new packets and cannot change/set flush_needed that can
397 * find this entry.
398 */
399 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
400
401 free_percpu(rcpu->bulkq);
402 /* Cannot kthread_stop() here, last put free rcpu resources */
403 put_cpu_map_entry(rcpu);
404 }
405
406 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
407 * ensure any driver rcu critical sections have completed, but this
408 * does not guarantee a flush has happened yet. Because driver side
409 * rcu_read_lock/unlock only protects the running XDP program. The
410 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
411 * pending flush op doesn't fail.
412 *
413 * The bpf_cpu_map_entry is still used by the kthread, and there can
414 * still be pending packets (in queue and percpu bulkq). A refcnt
415 * makes sure to last user (kthread_stop vs. call_rcu) free memory
416 * resources.
417 *
418 * The rcu callback __cpu_map_entry_free flush remaining packets in
419 * percpu bulkq to queue. Due to caller map_delete_elem() disable
420 * preemption, cannot call kthread_stop() to make sure queue is empty.
421 * Instead a work_queue is started for stopping kthread,
422 * cpu_map_kthread_stop, which waits for an RCU grace period before
423 * stopping kthread, emptying the queue.
424 */
425 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
426 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
427 {
428 struct bpf_cpu_map_entry *old_rcpu;
429
430 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
431 if (old_rcpu) {
432 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
433 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
434 schedule_work(&old_rcpu->kthread_stop_wq);
435 }
436 }
437
438 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
439 {
440 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
441 u32 key_cpu = *(u32 *)key;
442
443 if (key_cpu >= map->max_entries)
444 return -EINVAL;
445
446 /* notice caller map_delete_elem() use preempt_disable() */
447 __cpu_map_entry_replace(cmap, key_cpu, NULL);
448 return 0;
449 }
450
451 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
452 u64 map_flags)
453 {
454 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
455 struct bpf_cpu_map_entry *rcpu;
456
457 /* Array index key correspond to CPU number */
458 u32 key_cpu = *(u32 *)key;
459 /* Value is the queue size */
460 u32 qsize = *(u32 *)value;
461
462 if (unlikely(map_flags > BPF_EXIST))
463 return -EINVAL;
464 if (unlikely(key_cpu >= cmap->map.max_entries))
465 return -E2BIG;
466 if (unlikely(map_flags == BPF_NOEXIST))
467 return -EEXIST;
468 if (unlikely(qsize > 16384)) /* sanity limit on qsize */
469 return -EOVERFLOW;
470
471 /* Make sure CPU is a valid possible cpu */
472 if (!cpu_possible(key_cpu))
473 return -ENODEV;
474
475 if (qsize == 0) {
476 rcpu = NULL; /* Same as deleting */
477 } else {
478 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
479 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
480 if (!rcpu)
481 return -ENOMEM;
482 rcpu->cmap = cmap;
483 }
484 rcu_read_lock();
485 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
486 rcu_read_unlock();
487 return 0;
488 }
489
490 static void cpu_map_free(struct bpf_map *map)
491 {
492 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
493 u32 i;
494
495 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
496 * so the bpf programs (can be more than one that used this map) were
497 * disconnected from events. Wait for outstanding critical sections in
498 * these programs to complete. The rcu critical section only guarantees
499 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
500 * It does __not__ ensure pending flush operations (if any) are
501 * complete.
502 */
503
504 bpf_clear_redirect_map(map);
505 synchronize_rcu();
506
507 /* For cpu_map the remote CPUs can still be using the entries
508 * (struct bpf_cpu_map_entry).
509 */
510 for (i = 0; i < cmap->map.max_entries; i++) {
511 struct bpf_cpu_map_entry *rcpu;
512
513 rcpu = READ_ONCE(cmap->cpu_map[i]);
514 if (!rcpu)
515 continue;
516
517 /* bq flush and cleanup happens after RCU grace-period */
518 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
519 }
520 bpf_map_area_free(cmap->cpu_map);
521 kfree(cmap);
522 }
523
524 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
525 {
526 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
527 struct bpf_cpu_map_entry *rcpu;
528
529 if (key >= map->max_entries)
530 return NULL;
531
532 rcpu = READ_ONCE(cmap->cpu_map[key]);
533 return rcpu;
534 }
535
536 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
537 {
538 struct bpf_cpu_map_entry *rcpu =
539 __cpu_map_lookup_elem(map, *(u32 *)key);
540
541 return rcpu ? &rcpu->qsize : NULL;
542 }
543
544 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
545 {
546 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
547 u32 index = key ? *(u32 *)key : U32_MAX;
548 u32 *next = next_key;
549
550 if (index >= cmap->map.max_entries) {
551 *next = 0;
552 return 0;
553 }
554
555 if (index == cmap->map.max_entries - 1)
556 return -ENOENT;
557 *next = index + 1;
558 return 0;
559 }
560
561 const struct bpf_map_ops cpu_map_ops = {
562 .map_alloc = cpu_map_alloc,
563 .map_free = cpu_map_free,
564 .map_delete_elem = cpu_map_delete_elem,
565 .map_update_elem = cpu_map_update_elem,
566 .map_lookup_elem = cpu_map_lookup_elem,
567 .map_get_next_key = cpu_map_get_next_key,
568 .map_check_btf = map_check_no_btf,
569 };
570
571 static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
572 {
573 struct bpf_cpu_map_entry *rcpu = bq->obj;
574 unsigned int processed = 0, drops = 0;
575 const int to_cpu = rcpu->cpu;
576 struct ptr_ring *q;
577 int i;
578
579 if (unlikely(!bq->count))
580 return 0;
581
582 q = rcpu->queue;
583 spin_lock(&q->producer_lock);
584
585 for (i = 0; i < bq->count; i++) {
586 struct xdp_frame *xdpf = bq->q[i];
587 int err;
588
589 err = __ptr_ring_produce(q, xdpf);
590 if (err) {
591 drops++;
592 xdp_return_frame_rx_napi(xdpf);
593 }
594 processed++;
595 }
596 bq->count = 0;
597 spin_unlock(&q->producer_lock);
598
599 __list_del_clearprev(&bq->flush_node);
600
601 /* Feedback loop via tracepoints */
602 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
603 return 0;
604 }
605
606 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
607 * Thus, safe percpu variable access.
608 */
609 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
610 {
611 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
612 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
613
614 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
615 bq_flush_to_queue(bq);
616
617 /* Notice, xdp_buff/page MUST be queued here, long enough for
618 * driver to code invoking us to finished, due to driver
619 * (e.g. ixgbe) recycle tricks based on page-refcnt.
620 *
621 * Thus, incoming xdp_frame is always queued here (else we race
622 * with another CPU on page-refcnt and remaining driver code).
623 * Queue time is very short, as driver will invoke flush
624 * operation, when completing napi->poll call.
625 */
626 bq->q[bq->count++] = xdpf;
627
628 if (!bq->flush_node.prev)
629 list_add(&bq->flush_node, flush_list);
630
631 return 0;
632 }
633
634 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
635 struct net_device *dev_rx)
636 {
637 struct xdp_frame *xdpf;
638
639 xdpf = convert_to_xdp_frame(xdp);
640 if (unlikely(!xdpf))
641 return -EOVERFLOW;
642
643 /* Info needed when constructing SKB on remote CPU */
644 xdpf->dev_rx = dev_rx;
645
646 bq_enqueue(rcpu, xdpf);
647 return 0;
648 }
649
650 void __cpu_map_flush(void)
651 {
652 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
653 struct xdp_bulk_queue *bq, *tmp;
654
655 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
656 bq_flush_to_queue(bq);
657
658 /* If already running, costs spin_lock_irqsave + smb_mb */
659 wake_up_process(bq->obj->kthread);
660 }
661 }
662
663 static int __init cpu_map_init(void)
664 {
665 int cpu;
666
667 for_each_possible_cpu(cpu)
668 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
669 return 0;
670 }
671
672 subsys_initcall(cpu_map_init);