]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/bpf/devmap.c
1e525d70f83354e451b738ffb8e42d83b5fa932f
[thirdparty/kernel/linux.git] / kernel / bpf / devmap.c
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15 * spent some effort to ensure the datapath with redirect maps does not use
16 * any locking. This is a quick note on the details.
17 *
18 * We have three possible paths to get into the devmap control plane bpf
19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20 * will invoke an update, delete, or lookup operation. To ensure updates and
21 * deletes appear atomic from the datapath side xchg() is used to modify the
22 * netdev_map array. Then because the datapath does a lookup into the netdev_map
23 * array (read-only) from an RCU critical section we use call_rcu() to wait for
24 * an rcu grace period before free'ing the old data structures. This ensures the
25 * datapath always has a valid copy. However, the datapath does a "flush"
26 * operation that pushes any pending packets in the driver outside the RCU
27 * critical section. Each bpf_dtab_netdev tracks these pending operations using
28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29 * until all bits are cleared indicating outstanding flush operations have
30 * completed.
31 *
32 * BPF syscalls may race with BPF program calls on any of the update, delete
33 * or lookup operations. As noted above the xchg() operation also keep the
34 * netdev_map consistent in this case. From the devmap side BPF programs
35 * calling into these operations are the same as multiple user space threads
36 * making system calls.
37 *
38 * Finally, any of the above may race with a netdev_unregister notifier. The
39 * unregister notifier must search for net devices in the map structure that
40 * contain a reference to the net device and remove them. This is a two step
41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42 * check to see if the ifindex is the same as the net_device being removed.
43 * When removing the dev a cmpxchg() is used to ensure the correct dev is
44 * removed, in the case of a concurrent update or delete operation it is
45 * possible that the initially referenced dev is no longer in the map. As the
46 * notifier hook walks the map we know that new dev references can not be
47 * added by the user because core infrastructure ensures dev_get_by_index()
48 * calls will fail at this point.
49 */
50 #include <linux/bpf.h>
51 #include <net/xdp.h>
52 #include <linux/filter.h>
53 #include <trace/events/xdp.h>
54
55 #define DEV_CREATE_FLAG_MASK \
56 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
57
58 #define DEV_MAP_BULK_SIZE 16
59 struct xdp_bulk_queue {
60 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61 struct net_device *dev_rx;
62 unsigned int count;
63 };
64
65 struct bpf_dtab_netdev {
66 struct net_device *dev; /* must be first member, due to tracepoint */
67 struct bpf_dtab *dtab;
68 unsigned int bit;
69 struct xdp_bulk_queue __percpu *bulkq;
70 struct rcu_head rcu;
71 };
72
73 struct bpf_dtab {
74 struct bpf_map map;
75 struct bpf_dtab_netdev **netdev_map;
76 unsigned long __percpu *flush_needed;
77 struct list_head list;
78 };
79
80 static DEFINE_SPINLOCK(dev_map_lock);
81 static LIST_HEAD(dev_map_list);
82
83 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
84 {
85 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
86 }
87
88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
89 {
90 struct bpf_dtab *dtab;
91 int err = -EINVAL;
92 u64 cost;
93
94 if (!capable(CAP_NET_ADMIN))
95 return ERR_PTR(-EPERM);
96
97 /* check sanity of attributes */
98 if (attr->max_entries == 0 || attr->key_size != 4 ||
99 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 return ERR_PTR(-EINVAL);
101
102 dtab = kzalloc(sizeof(*dtab), GFP_USER);
103 if (!dtab)
104 return ERR_PTR(-ENOMEM);
105
106 bpf_map_init_from_attr(&dtab->map, attr);
107
108 /* make sure page count doesn't overflow */
109 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110 cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 if (cost >= U32_MAX - PAGE_SIZE)
112 goto free_dtab;
113
114 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
115
116 /* if map size is larger than memlock limit, reject it early */
117 err = bpf_map_precharge_memlock(dtab->map.pages);
118 if (err)
119 goto free_dtab;
120
121 err = -ENOMEM;
122
123 /* A per cpu bitfield with a bit per possible net device */
124 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
125 __alignof__(unsigned long),
126 GFP_KERNEL | __GFP_NOWARN);
127 if (!dtab->flush_needed)
128 goto free_dtab;
129
130 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 sizeof(struct bpf_dtab_netdev *),
132 dtab->map.numa_node);
133 if (!dtab->netdev_map)
134 goto free_dtab;
135
136 spin_lock(&dev_map_lock);
137 list_add_tail_rcu(&dtab->list, &dev_map_list);
138 spin_unlock(&dev_map_lock);
139
140 return &dtab->map;
141 free_dtab:
142 free_percpu(dtab->flush_needed);
143 kfree(dtab);
144 return ERR_PTR(err);
145 }
146
147 static void dev_map_free(struct bpf_map *map)
148 {
149 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150 int i, cpu;
151
152 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
153 * so the programs (can be more than one that used this map) were
154 * disconnected from events. Wait for outstanding critical sections in
155 * these programs to complete. The rcu critical section only guarantees
156 * no further reads against netdev_map. It does __not__ ensure pending
157 * flush operations (if any) are complete.
158 */
159
160 spin_lock(&dev_map_lock);
161 list_del_rcu(&dtab->list);
162 spin_unlock(&dev_map_lock);
163
164 bpf_clear_redirect_map(map);
165 synchronize_rcu();
166
167 /* Make sure prior __dev_map_entry_free() have completed. */
168 rcu_barrier();
169
170 /* To ensure all pending flush operations have completed wait for flush
171 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
172 * Because the above synchronize_rcu() ensures the map is disconnected
173 * from the program we can assume no new bits will be set.
174 */
175 for_each_online_cpu(cpu) {
176 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
177
178 while (!bitmap_empty(bitmap, dtab->map.max_entries))
179 cond_resched();
180 }
181
182 for (i = 0; i < dtab->map.max_entries; i++) {
183 struct bpf_dtab_netdev *dev;
184
185 dev = dtab->netdev_map[i];
186 if (!dev)
187 continue;
188
189 dev_put(dev->dev);
190 kfree(dev);
191 }
192
193 free_percpu(dtab->flush_needed);
194 bpf_map_area_free(dtab->netdev_map);
195 kfree(dtab);
196 }
197
198 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
199 {
200 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
201 u32 index = key ? *(u32 *)key : U32_MAX;
202 u32 *next = next_key;
203
204 if (index >= dtab->map.max_entries) {
205 *next = 0;
206 return 0;
207 }
208
209 if (index == dtab->map.max_entries - 1)
210 return -ENOENT;
211 *next = index + 1;
212 return 0;
213 }
214
215 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
216 {
217 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
218 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
219
220 __set_bit(bit, bitmap);
221 }
222
223 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
224 struct xdp_bulk_queue *bq, u32 flags,
225 bool in_napi_ctx)
226 {
227 struct net_device *dev = obj->dev;
228 int sent = 0, drops = 0, err = 0;
229 int i;
230
231 if (unlikely(!bq->count))
232 return 0;
233
234 for (i = 0; i < bq->count; i++) {
235 struct xdp_frame *xdpf = bq->q[i];
236
237 prefetch(xdpf);
238 }
239
240 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
241 if (sent < 0) {
242 err = sent;
243 sent = 0;
244 goto error;
245 }
246 drops = bq->count - sent;
247 out:
248 bq->count = 0;
249
250 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
251 sent, drops, bq->dev_rx, dev, err);
252 bq->dev_rx = NULL;
253 return 0;
254 error:
255 /* If ndo_xdp_xmit fails with an errno, no frames have been
256 * xmit'ed and it's our responsibility to them free all.
257 */
258 for (i = 0; i < bq->count; i++) {
259 struct xdp_frame *xdpf = bq->q[i];
260
261 /* RX path under NAPI protection, can return frames faster */
262 if (likely(in_napi_ctx))
263 xdp_return_frame_rx_napi(xdpf);
264 else
265 xdp_return_frame(xdpf);
266 drops++;
267 }
268 goto out;
269 }
270
271 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
272 * from the driver before returning from its napi->poll() routine. The poll()
273 * routine is called either from busy_poll context or net_rx_action signaled
274 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
275 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
276 * is zeroed before completing to ensure all flush operations have completed.
277 */
278 void __dev_map_flush(struct bpf_map *map)
279 {
280 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
281 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
282 u32 bit;
283
284 for_each_set_bit(bit, bitmap, map->max_entries) {
285 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
286 struct xdp_bulk_queue *bq;
287
288 /* This is possible if the dev entry is removed by user space
289 * between xdp redirect and flush op.
290 */
291 if (unlikely(!dev))
292 continue;
293
294 __clear_bit(bit, bitmap);
295
296 bq = this_cpu_ptr(dev->bulkq);
297 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
298 }
299 }
300
301 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
302 * update happens in parallel here a dev_put wont happen until after reading the
303 * ifindex.
304 */
305 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
306 {
307 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
308 struct bpf_dtab_netdev *obj;
309
310 if (key >= map->max_entries)
311 return NULL;
312
313 obj = READ_ONCE(dtab->netdev_map[key]);
314 return obj;
315 }
316
317 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
318 * Thus, safe percpu variable access.
319 */
320 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
321 struct net_device *dev_rx)
322
323 {
324 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
325
326 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
327 bq_xmit_all(obj, bq, 0, true);
328
329 /* Ingress dev_rx will be the same for all xdp_frame's in
330 * bulk_queue, because bq stored per-CPU and must be flushed
331 * from net_device drivers NAPI func end.
332 */
333 if (!bq->dev_rx)
334 bq->dev_rx = dev_rx;
335
336 bq->q[bq->count++] = xdpf;
337 return 0;
338 }
339
340 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
341 struct net_device *dev_rx)
342 {
343 struct net_device *dev = dst->dev;
344 struct xdp_frame *xdpf;
345 int err;
346
347 if (!dev->netdev_ops->ndo_xdp_xmit)
348 return -EOPNOTSUPP;
349
350 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
351 if (unlikely(err))
352 return err;
353
354 xdpf = convert_to_xdp_frame(xdp);
355 if (unlikely(!xdpf))
356 return -EOVERFLOW;
357
358 return bq_enqueue(dst, xdpf, dev_rx);
359 }
360
361 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
362 struct bpf_prog *xdp_prog)
363 {
364 int err;
365
366 err = xdp_ok_fwd_dev(dst->dev, skb->len);
367 if (unlikely(err))
368 return err;
369 skb->dev = dst->dev;
370 generic_xdp_tx(skb, xdp_prog);
371
372 return 0;
373 }
374
375 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
376 {
377 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
378 struct net_device *dev = obj ? obj->dev : NULL;
379
380 return dev ? &dev->ifindex : NULL;
381 }
382
383 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
384 {
385 if (dev->dev->netdev_ops->ndo_xdp_xmit) {
386 struct xdp_bulk_queue *bq;
387 unsigned long *bitmap;
388
389 int cpu;
390
391 for_each_online_cpu(cpu) {
392 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
393 __clear_bit(dev->bit, bitmap);
394
395 bq = per_cpu_ptr(dev->bulkq, cpu);
396 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
397 }
398 }
399 }
400
401 static void __dev_map_entry_free(struct rcu_head *rcu)
402 {
403 struct bpf_dtab_netdev *dev;
404
405 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
406 dev_map_flush_old(dev);
407 free_percpu(dev->bulkq);
408 dev_put(dev->dev);
409 kfree(dev);
410 }
411
412 static int dev_map_delete_elem(struct bpf_map *map, void *key)
413 {
414 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
415 struct bpf_dtab_netdev *old_dev;
416 int k = *(u32 *)key;
417
418 if (k >= map->max_entries)
419 return -EINVAL;
420
421 /* Use call_rcu() here to ensure any rcu critical sections have
422 * completed, but this does not guarantee a flush has happened
423 * yet. Because driver side rcu_read_lock/unlock only protects the
424 * running XDP program. However, for pending flush operations the
425 * dev and ctx are stored in another per cpu map. And additionally,
426 * the driver tear down ensures all soft irqs are complete before
427 * removing the net device in the case of dev_put equals zero.
428 */
429 old_dev = xchg(&dtab->netdev_map[k], NULL);
430 if (old_dev)
431 call_rcu(&old_dev->rcu, __dev_map_entry_free);
432 return 0;
433 }
434
435 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
436 u64 map_flags)
437 {
438 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
439 struct net *net = current->nsproxy->net_ns;
440 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
441 struct bpf_dtab_netdev *dev, *old_dev;
442 u32 i = *(u32 *)key;
443 u32 ifindex = *(u32 *)value;
444
445 if (unlikely(map_flags > BPF_EXIST))
446 return -EINVAL;
447 if (unlikely(i >= dtab->map.max_entries))
448 return -E2BIG;
449 if (unlikely(map_flags == BPF_NOEXIST))
450 return -EEXIST;
451
452 if (!ifindex) {
453 dev = NULL;
454 } else {
455 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
456 if (!dev)
457 return -ENOMEM;
458
459 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
460 sizeof(void *), gfp);
461 if (!dev->bulkq) {
462 kfree(dev);
463 return -ENOMEM;
464 }
465
466 dev->dev = dev_get_by_index(net, ifindex);
467 if (!dev->dev) {
468 free_percpu(dev->bulkq);
469 kfree(dev);
470 return -EINVAL;
471 }
472
473 dev->bit = i;
474 dev->dtab = dtab;
475 }
476
477 /* Use call_rcu() here to ensure rcu critical sections have completed
478 * Remembering the driver side flush operation will happen before the
479 * net device is removed.
480 */
481 old_dev = xchg(&dtab->netdev_map[i], dev);
482 if (old_dev)
483 call_rcu(&old_dev->rcu, __dev_map_entry_free);
484
485 return 0;
486 }
487
488 const struct bpf_map_ops dev_map_ops = {
489 .map_alloc = dev_map_alloc,
490 .map_free = dev_map_free,
491 .map_get_next_key = dev_map_get_next_key,
492 .map_lookup_elem = dev_map_lookup_elem,
493 .map_update_elem = dev_map_update_elem,
494 .map_delete_elem = dev_map_delete_elem,
495 .map_check_btf = map_check_no_btf,
496 };
497
498 static int dev_map_notification(struct notifier_block *notifier,
499 ulong event, void *ptr)
500 {
501 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
502 struct bpf_dtab *dtab;
503 int i;
504
505 switch (event) {
506 case NETDEV_UNREGISTER:
507 /* This rcu_read_lock/unlock pair is needed because
508 * dev_map_list is an RCU list AND to ensure a delete
509 * operation does not free a netdev_map entry while we
510 * are comparing it against the netdev being unregistered.
511 */
512 rcu_read_lock();
513 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
514 for (i = 0; i < dtab->map.max_entries; i++) {
515 struct bpf_dtab_netdev *dev, *odev;
516
517 dev = READ_ONCE(dtab->netdev_map[i]);
518 if (!dev || netdev != dev->dev)
519 continue;
520 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
521 if (dev == odev)
522 call_rcu(&dev->rcu,
523 __dev_map_entry_free);
524 }
525 }
526 rcu_read_unlock();
527 break;
528 default:
529 break;
530 }
531 return NOTIFY_OK;
532 }
533
534 static struct notifier_block dev_map_notifier = {
535 .notifier_call = dev_map_notification,
536 };
537
538 static int __init dev_map_init(void)
539 {
540 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
541 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
542 offsetof(struct _bpf_dtab_netdev, dev));
543 register_netdevice_notifier(&dev_map_notifier);
544 return 0;
545 }
546
547 subsys_initcall(dev_map_init);