]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/cgroup/cgroup.c
Merge tag 'for-linus-20181102' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63
64 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
65 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
68
69 /*
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
72 *
73 * css_set_lock protects task->cgroups pointer, the list of css_set
74 * objects, and the chain of tasks off each css_set.
75 *
76 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77 * cgroup.h can use them for lockdep annotations.
78 */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89
90 /*
91 * Protects cgroup_idr and css_idr so that IDs can be released without
92 * grabbing cgroup_mutex.
93 */
94 static DEFINE_SPINLOCK(cgroup_idr_lock);
95
96 /*
97 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
98 * against file removal/re-creation across css hiding.
99 */
100 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
101
102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
103
104 #define cgroup_assert_mutex_or_rcu_locked() \
105 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
106 !lockdep_is_held(&cgroup_mutex), \
107 "cgroup_mutex or RCU read lock required");
108
109 /*
110 * cgroup destruction makes heavy use of work items and there can be a lot
111 * of concurrent destructions. Use a separate workqueue so that cgroup
112 * destruction work items don't end up filling up max_active of system_wq
113 * which may lead to deadlock.
114 */
115 static struct workqueue_struct *cgroup_destroy_wq;
116
117 /* generate an array of cgroup subsystem pointers */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
119 struct cgroup_subsys *cgroup_subsys[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of cgroup subsystem names */
125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126 static const char *cgroup_subsys_name[] = {
127 #include <linux/cgroup_subsys.h>
128 };
129 #undef SUBSYS
130
131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 #define SUBSYS(_x) \
133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
134 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
136 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
137 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
139
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
141 static struct static_key_true *cgroup_subsys_enabled_key[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151
152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
153
154 /*
155 * The default hierarchy, reserved for the subsystems that are otherwise
156 * unattached - it never has more than a single cgroup, and all tasks are
157 * part of that cgroup.
158 */
159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
160 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
161
162 /*
163 * The default hierarchy always exists but is hidden until mounted for the
164 * first time. This is for backward compatibility.
165 */
166 static bool cgrp_dfl_visible;
167
168 /* some controllers are not supported in the default hierarchy */
169 static u16 cgrp_dfl_inhibit_ss_mask;
170
171 /* some controllers are implicitly enabled on the default hierarchy */
172 static u16 cgrp_dfl_implicit_ss_mask;
173
174 /* some controllers can be threaded on the default hierarchy */
175 static u16 cgrp_dfl_threaded_ss_mask;
176
177 /* The list of hierarchy roots */
178 LIST_HEAD(cgroup_roots);
179 static int cgroup_root_count;
180
181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
182 static DEFINE_IDR(cgroup_hierarchy_idr);
183
184 /*
185 * Assign a monotonically increasing serial number to csses. It guarantees
186 * cgroups with bigger numbers are newer than those with smaller numbers.
187 * Also, as csses are always appended to the parent's ->children list, it
188 * guarantees that sibling csses are always sorted in the ascending serial
189 * number order on the list. Protected by cgroup_mutex.
190 */
191 static u64 css_serial_nr_next = 1;
192
193 /*
194 * These bitmasks identify subsystems with specific features to avoid
195 * having to do iterative checks repeatedly.
196 */
197 static u16 have_fork_callback __read_mostly;
198 static u16 have_exit_callback __read_mostly;
199 static u16 have_free_callback __read_mostly;
200 static u16 have_canfork_callback __read_mostly;
201
202 /* cgroup namespace for init task */
203 struct cgroup_namespace init_cgroup_ns = {
204 .count = REFCOUNT_INIT(2),
205 .user_ns = &init_user_ns,
206 .ns.ops = &cgroupns_operations,
207 .ns.inum = PROC_CGROUP_INIT_INO,
208 .root_cset = &init_css_set,
209 };
210
211 static struct file_system_type cgroup2_fs_type;
212 static struct cftype cgroup_base_files[];
213
214 static int cgroup_apply_control(struct cgroup *cgrp);
215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
216 static void css_task_iter_advance(struct css_task_iter *it);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
225
226 /**
227 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228 * @ssid: subsys ID of interest
229 *
230 * cgroup_subsys_enabled() can only be used with literal subsys names which
231 * is fine for individual subsystems but unsuitable for cgroup core. This
232 * is slower static_key_enabled() based test indexed by @ssid.
233 */
234 bool cgroup_ssid_enabled(int ssid)
235 {
236 if (CGROUP_SUBSYS_COUNT == 0)
237 return false;
238
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241
242 /**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
295 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 return cgrp->root == &cgrp_dfl_root;
298 }
299
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303 {
304 int ret;
305
306 idr_preload(gfp_mask);
307 spin_lock_bh(&cgroup_idr_lock);
308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 spin_unlock_bh(&cgroup_idr_lock);
310 idr_preload_end();
311 return ret;
312 }
313
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 void *ret;
317
318 spin_lock_bh(&cgroup_idr_lock);
319 ret = idr_replace(idr, ptr, id);
320 spin_unlock_bh(&cgroup_idr_lock);
321 return ret;
322 }
323
324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 spin_lock_bh(&cgroup_idr_lock);
327 idr_remove(idr, id);
328 spin_unlock_bh(&cgroup_idr_lock);
329 }
330
331 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 {
333 return cgrp->nr_populated_csets;
334 }
335
336 bool cgroup_is_threaded(struct cgroup *cgrp)
337 {
338 return cgrp->dom_cgrp != cgrp;
339 }
340
341 /* can @cgrp host both domain and threaded children? */
342 static bool cgroup_is_mixable(struct cgroup *cgrp)
343 {
344 /*
345 * Root isn't under domain level resource control exempting it from
346 * the no-internal-process constraint, so it can serve as a thread
347 * root and a parent of resource domains at the same time.
348 */
349 return !cgroup_parent(cgrp);
350 }
351
352 /* can @cgrp become a thread root? should always be true for a thread root */
353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 {
355 /* mixables don't care */
356 if (cgroup_is_mixable(cgrp))
357 return true;
358
359 /* domain roots can't be nested under threaded */
360 if (cgroup_is_threaded(cgrp))
361 return false;
362
363 /* can only have either domain or threaded children */
364 if (cgrp->nr_populated_domain_children)
365 return false;
366
367 /* and no domain controllers can be enabled */
368 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369 return false;
370
371 return true;
372 }
373
374 /* is @cgrp root of a threaded subtree? */
375 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 {
377 /* thread root should be a domain */
378 if (cgroup_is_threaded(cgrp))
379 return false;
380
381 /* a domain w/ threaded children is a thread root */
382 if (cgrp->nr_threaded_children)
383 return true;
384
385 /*
386 * A domain which has tasks and explicit threaded controllers
387 * enabled is a thread root.
388 */
389 if (cgroup_has_tasks(cgrp) &&
390 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391 return true;
392
393 return false;
394 }
395
396 /* a domain which isn't connected to the root w/o brekage can't be used */
397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 {
399 /* the cgroup itself can be a thread root */
400 if (cgroup_is_threaded(cgrp))
401 return false;
402
403 /* but the ancestors can't be unless mixable */
404 while ((cgrp = cgroup_parent(cgrp))) {
405 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406 return false;
407 if (cgroup_is_threaded(cgrp))
408 return false;
409 }
410
411 return true;
412 }
413
414 /* subsystems visibly enabled on a cgroup */
415 static u16 cgroup_control(struct cgroup *cgrp)
416 {
417 struct cgroup *parent = cgroup_parent(cgrp);
418 u16 root_ss_mask = cgrp->root->subsys_mask;
419
420 if (parent) {
421 u16 ss_mask = parent->subtree_control;
422
423 /* threaded cgroups can only have threaded controllers */
424 if (cgroup_is_threaded(cgrp))
425 ss_mask &= cgrp_dfl_threaded_ss_mask;
426 return ss_mask;
427 }
428
429 if (cgroup_on_dfl(cgrp))
430 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431 cgrp_dfl_implicit_ss_mask);
432 return root_ss_mask;
433 }
434
435 /* subsystems enabled on a cgroup */
436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 {
438 struct cgroup *parent = cgroup_parent(cgrp);
439
440 if (parent) {
441 u16 ss_mask = parent->subtree_ss_mask;
442
443 /* threaded cgroups can only have threaded controllers */
444 if (cgroup_is_threaded(cgrp))
445 ss_mask &= cgrp_dfl_threaded_ss_mask;
446 return ss_mask;
447 }
448
449 return cgrp->root->subsys_mask;
450 }
451
452 /**
453 * cgroup_css - obtain a cgroup's css for the specified subsystem
454 * @cgrp: the cgroup of interest
455 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456 *
457 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
458 * function must be called either under cgroup_mutex or rcu_read_lock() and
459 * the caller is responsible for pinning the returned css if it wants to
460 * keep accessing it outside the said locks. This function may return
461 * %NULL if @cgrp doesn't have @subsys_id enabled.
462 */
463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464 struct cgroup_subsys *ss)
465 {
466 if (ss)
467 return rcu_dereference_check(cgrp->subsys[ss->id],
468 lockdep_is_held(&cgroup_mutex));
469 else
470 return &cgrp->self;
471 }
472
473 /**
474 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475 * @cgrp: the cgroup of interest
476 * @ss: the subsystem of interest
477 *
478 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
479 * or is offline, %NULL is returned.
480 */
481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482 struct cgroup_subsys *ss)
483 {
484 struct cgroup_subsys_state *css;
485
486 rcu_read_lock();
487 css = cgroup_css(cgrp, ss);
488 if (!css || !css_tryget_online(css))
489 css = NULL;
490 rcu_read_unlock();
491
492 return css;
493 }
494
495 /**
496 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
497 * @cgrp: the cgroup of interest
498 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499 *
500 * Similar to cgroup_css() but returns the effective css, which is defined
501 * as the matching css of the nearest ancestor including self which has @ss
502 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
503 * function is guaranteed to return non-NULL css.
504 */
505 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
506 struct cgroup_subsys *ss)
507 {
508 lockdep_assert_held(&cgroup_mutex);
509
510 if (!ss)
511 return &cgrp->self;
512
513 /*
514 * This function is used while updating css associations and thus
515 * can't test the csses directly. Test ss_mask.
516 */
517 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518 cgrp = cgroup_parent(cgrp);
519 if (!cgrp)
520 return NULL;
521 }
522
523 return cgroup_css(cgrp, ss);
524 }
525
526 /**
527 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
528 * @cgrp: the cgroup of interest
529 * @ss: the subsystem of interest
530 *
531 * Find and get the effective css of @cgrp for @ss. The effective css is
532 * defined as the matching css of the nearest ancestor including self which
533 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
534 * the root css is returned, so this function always returns a valid css.
535 * The returned css must be put using css_put().
536 */
537 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
538 struct cgroup_subsys *ss)
539 {
540 struct cgroup_subsys_state *css;
541
542 rcu_read_lock();
543
544 do {
545 css = cgroup_css(cgrp, ss);
546
547 if (css && css_tryget_online(css))
548 goto out_unlock;
549 cgrp = cgroup_parent(cgrp);
550 } while (cgrp);
551
552 css = init_css_set.subsys[ss->id];
553 css_get(css);
554 out_unlock:
555 rcu_read_unlock();
556 return css;
557 }
558
559 static void cgroup_get_live(struct cgroup *cgrp)
560 {
561 WARN_ON_ONCE(cgroup_is_dead(cgrp));
562 css_get(&cgrp->self);
563 }
564
565 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
566 {
567 struct cgroup *cgrp = of->kn->parent->priv;
568 struct cftype *cft = of_cft(of);
569
570 /*
571 * This is open and unprotected implementation of cgroup_css().
572 * seq_css() is only called from a kernfs file operation which has
573 * an active reference on the file. Because all the subsystem
574 * files are drained before a css is disassociated with a cgroup,
575 * the matching css from the cgroup's subsys table is guaranteed to
576 * be and stay valid until the enclosing operation is complete.
577 */
578 if (cft->ss)
579 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
580 else
581 return &cgrp->self;
582 }
583 EXPORT_SYMBOL_GPL(of_css);
584
585 /**
586 * for_each_css - iterate all css's of a cgroup
587 * @css: the iteration cursor
588 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
589 * @cgrp: the target cgroup to iterate css's of
590 *
591 * Should be called under cgroup_[tree_]mutex.
592 */
593 #define for_each_css(css, ssid, cgrp) \
594 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
595 if (!((css) = rcu_dereference_check( \
596 (cgrp)->subsys[(ssid)], \
597 lockdep_is_held(&cgroup_mutex)))) { } \
598 else
599
600 /**
601 * for_each_e_css - iterate all effective css's of a cgroup
602 * @css: the iteration cursor
603 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
604 * @cgrp: the target cgroup to iterate css's of
605 *
606 * Should be called under cgroup_[tree_]mutex.
607 */
608 #define for_each_e_css(css, ssid, cgrp) \
609 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
610 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611 ; \
612 else
613
614 /**
615 * do_each_subsys_mask - filter for_each_subsys with a bitmask
616 * @ss: the iteration cursor
617 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
618 * @ss_mask: the bitmask
619 *
620 * The block will only run for cases where the ssid-th bit (1 << ssid) of
621 * @ss_mask is set.
622 */
623 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
624 unsigned long __ss_mask = (ss_mask); \
625 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
626 (ssid) = 0; \
627 break; \
628 } \
629 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
630 (ss) = cgroup_subsys[ssid]; \
631 {
632
633 #define while_each_subsys_mask() \
634 } \
635 } \
636 } while (false)
637
638 /* iterate over child cgrps, lock should be held throughout iteration */
639 #define cgroup_for_each_live_child(child, cgrp) \
640 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
641 if (({ lockdep_assert_held(&cgroup_mutex); \
642 cgroup_is_dead(child); })) \
643 ; \
644 else
645
646 /* walk live descendants in preorder */
647 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
648 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
649 if (({ lockdep_assert_held(&cgroup_mutex); \
650 (dsct) = (d_css)->cgroup; \
651 cgroup_is_dead(dsct); })) \
652 ; \
653 else
654
655 /* walk live descendants in postorder */
656 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
657 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
658 if (({ lockdep_assert_held(&cgroup_mutex); \
659 (dsct) = (d_css)->cgroup; \
660 cgroup_is_dead(dsct); })) \
661 ; \
662 else
663
664 /*
665 * The default css_set - used by init and its children prior to any
666 * hierarchies being mounted. It contains a pointer to the root state
667 * for each subsystem. Also used to anchor the list of css_sets. Not
668 * reference-counted, to improve performance when child cgroups
669 * haven't been created.
670 */
671 struct css_set init_css_set = {
672 .refcount = REFCOUNT_INIT(1),
673 .dom_cset = &init_css_set,
674 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
675 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
676 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
677 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
678 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
679 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
680 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
681
682 /*
683 * The following field is re-initialized when this cset gets linked
684 * in cgroup_init(). However, let's initialize the field
685 * statically too so that the default cgroup can be accessed safely
686 * early during boot.
687 */
688 .dfl_cgrp = &cgrp_dfl_root.cgrp,
689 };
690
691 static int css_set_count = 1; /* 1 for init_css_set */
692
693 static bool css_set_threaded(struct css_set *cset)
694 {
695 return cset->dom_cset != cset;
696 }
697
698 /**
699 * css_set_populated - does a css_set contain any tasks?
700 * @cset: target css_set
701 *
702 * css_set_populated() should be the same as !!cset->nr_tasks at steady
703 * state. However, css_set_populated() can be called while a task is being
704 * added to or removed from the linked list before the nr_tasks is
705 * properly updated. Hence, we can't just look at ->nr_tasks here.
706 */
707 static bool css_set_populated(struct css_set *cset)
708 {
709 lockdep_assert_held(&css_set_lock);
710
711 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
712 }
713
714 /**
715 * cgroup_update_populated - update the populated count of a cgroup
716 * @cgrp: the target cgroup
717 * @populated: inc or dec populated count
718 *
719 * One of the css_sets associated with @cgrp is either getting its first
720 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
721 * count is propagated towards root so that a given cgroup's
722 * nr_populated_children is zero iff none of its descendants contain any
723 * tasks.
724 *
725 * @cgrp's interface file "cgroup.populated" is zero if both
726 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
727 * 1 otherwise. When the sum changes from or to zero, userland is notified
728 * that the content of the interface file has changed. This can be used to
729 * detect when @cgrp and its descendants become populated or empty.
730 */
731 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
732 {
733 struct cgroup *child = NULL;
734 int adj = populated ? 1 : -1;
735
736 lockdep_assert_held(&css_set_lock);
737
738 do {
739 bool was_populated = cgroup_is_populated(cgrp);
740
741 if (!child) {
742 cgrp->nr_populated_csets += adj;
743 } else {
744 if (cgroup_is_threaded(child))
745 cgrp->nr_populated_threaded_children += adj;
746 else
747 cgrp->nr_populated_domain_children += adj;
748 }
749
750 if (was_populated == cgroup_is_populated(cgrp))
751 break;
752
753 cgroup1_check_for_release(cgrp);
754 cgroup_file_notify(&cgrp->events_file);
755
756 child = cgrp;
757 cgrp = cgroup_parent(cgrp);
758 } while (cgrp);
759 }
760
761 /**
762 * css_set_update_populated - update populated state of a css_set
763 * @cset: target css_set
764 * @populated: whether @cset is populated or depopulated
765 *
766 * @cset is either getting the first task or losing the last. Update the
767 * populated counters of all associated cgroups accordingly.
768 */
769 static void css_set_update_populated(struct css_set *cset, bool populated)
770 {
771 struct cgrp_cset_link *link;
772
773 lockdep_assert_held(&css_set_lock);
774
775 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
776 cgroup_update_populated(link->cgrp, populated);
777 }
778
779 /**
780 * css_set_move_task - move a task from one css_set to another
781 * @task: task being moved
782 * @from_cset: css_set @task currently belongs to (may be NULL)
783 * @to_cset: new css_set @task is being moved to (may be NULL)
784 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
785 *
786 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
787 * css_set, @from_cset can be NULL. If @task is being disassociated
788 * instead of moved, @to_cset can be NULL.
789 *
790 * This function automatically handles populated counter updates and
791 * css_task_iter adjustments but the caller is responsible for managing
792 * @from_cset and @to_cset's reference counts.
793 */
794 static void css_set_move_task(struct task_struct *task,
795 struct css_set *from_cset, struct css_set *to_cset,
796 bool use_mg_tasks)
797 {
798 lockdep_assert_held(&css_set_lock);
799
800 if (to_cset && !css_set_populated(to_cset))
801 css_set_update_populated(to_cset, true);
802
803 if (from_cset) {
804 struct css_task_iter *it, *pos;
805
806 WARN_ON_ONCE(list_empty(&task->cg_list));
807
808 /*
809 * @task is leaving, advance task iterators which are
810 * pointing to it so that they can resume at the next
811 * position. Advancing an iterator might remove it from
812 * the list, use safe walk. See css_task_iter_advance*()
813 * for details.
814 */
815 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
816 iters_node)
817 if (it->task_pos == &task->cg_list)
818 css_task_iter_advance(it);
819
820 list_del_init(&task->cg_list);
821 if (!css_set_populated(from_cset))
822 css_set_update_populated(from_cset, false);
823 } else {
824 WARN_ON_ONCE(!list_empty(&task->cg_list));
825 }
826
827 if (to_cset) {
828 /*
829 * We are synchronized through cgroup_threadgroup_rwsem
830 * against PF_EXITING setting such that we can't race
831 * against cgroup_exit() changing the css_set to
832 * init_css_set and dropping the old one.
833 */
834 WARN_ON_ONCE(task->flags & PF_EXITING);
835
836 cgroup_move_task(task, to_cset);
837 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
838 &to_cset->tasks);
839 }
840 }
841
842 /*
843 * hash table for cgroup groups. This improves the performance to find
844 * an existing css_set. This hash doesn't (currently) take into
845 * account cgroups in empty hierarchies.
846 */
847 #define CSS_SET_HASH_BITS 7
848 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
849
850 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
851 {
852 unsigned long key = 0UL;
853 struct cgroup_subsys *ss;
854 int i;
855
856 for_each_subsys(ss, i)
857 key += (unsigned long)css[i];
858 key = (key >> 16) ^ key;
859
860 return key;
861 }
862
863 void put_css_set_locked(struct css_set *cset)
864 {
865 struct cgrp_cset_link *link, *tmp_link;
866 struct cgroup_subsys *ss;
867 int ssid;
868
869 lockdep_assert_held(&css_set_lock);
870
871 if (!refcount_dec_and_test(&cset->refcount))
872 return;
873
874 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
875
876 /* This css_set is dead. unlink it and release cgroup and css refs */
877 for_each_subsys(ss, ssid) {
878 list_del(&cset->e_cset_node[ssid]);
879 css_put(cset->subsys[ssid]);
880 }
881 hash_del(&cset->hlist);
882 css_set_count--;
883
884 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
885 list_del(&link->cset_link);
886 list_del(&link->cgrp_link);
887 if (cgroup_parent(link->cgrp))
888 cgroup_put(link->cgrp);
889 kfree(link);
890 }
891
892 if (css_set_threaded(cset)) {
893 list_del(&cset->threaded_csets_node);
894 put_css_set_locked(cset->dom_cset);
895 }
896
897 kfree_rcu(cset, rcu_head);
898 }
899
900 /**
901 * compare_css_sets - helper function for find_existing_css_set().
902 * @cset: candidate css_set being tested
903 * @old_cset: existing css_set for a task
904 * @new_cgrp: cgroup that's being entered by the task
905 * @template: desired set of css pointers in css_set (pre-calculated)
906 *
907 * Returns true if "cset" matches "old_cset" except for the hierarchy
908 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
909 */
910 static bool compare_css_sets(struct css_set *cset,
911 struct css_set *old_cset,
912 struct cgroup *new_cgrp,
913 struct cgroup_subsys_state *template[])
914 {
915 struct cgroup *new_dfl_cgrp;
916 struct list_head *l1, *l2;
917
918 /*
919 * On the default hierarchy, there can be csets which are
920 * associated with the same set of cgroups but different csses.
921 * Let's first ensure that csses match.
922 */
923 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
924 return false;
925
926
927 /* @cset's domain should match the default cgroup's */
928 if (cgroup_on_dfl(new_cgrp))
929 new_dfl_cgrp = new_cgrp;
930 else
931 new_dfl_cgrp = old_cset->dfl_cgrp;
932
933 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
934 return false;
935
936 /*
937 * Compare cgroup pointers in order to distinguish between
938 * different cgroups in hierarchies. As different cgroups may
939 * share the same effective css, this comparison is always
940 * necessary.
941 */
942 l1 = &cset->cgrp_links;
943 l2 = &old_cset->cgrp_links;
944 while (1) {
945 struct cgrp_cset_link *link1, *link2;
946 struct cgroup *cgrp1, *cgrp2;
947
948 l1 = l1->next;
949 l2 = l2->next;
950 /* See if we reached the end - both lists are equal length. */
951 if (l1 == &cset->cgrp_links) {
952 BUG_ON(l2 != &old_cset->cgrp_links);
953 break;
954 } else {
955 BUG_ON(l2 == &old_cset->cgrp_links);
956 }
957 /* Locate the cgroups associated with these links. */
958 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
959 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
960 cgrp1 = link1->cgrp;
961 cgrp2 = link2->cgrp;
962 /* Hierarchies should be linked in the same order. */
963 BUG_ON(cgrp1->root != cgrp2->root);
964
965 /*
966 * If this hierarchy is the hierarchy of the cgroup
967 * that's changing, then we need to check that this
968 * css_set points to the new cgroup; if it's any other
969 * hierarchy, then this css_set should point to the
970 * same cgroup as the old css_set.
971 */
972 if (cgrp1->root == new_cgrp->root) {
973 if (cgrp1 != new_cgrp)
974 return false;
975 } else {
976 if (cgrp1 != cgrp2)
977 return false;
978 }
979 }
980 return true;
981 }
982
983 /**
984 * find_existing_css_set - init css array and find the matching css_set
985 * @old_cset: the css_set that we're using before the cgroup transition
986 * @cgrp: the cgroup that we're moving into
987 * @template: out param for the new set of csses, should be clear on entry
988 */
989 static struct css_set *find_existing_css_set(struct css_set *old_cset,
990 struct cgroup *cgrp,
991 struct cgroup_subsys_state *template[])
992 {
993 struct cgroup_root *root = cgrp->root;
994 struct cgroup_subsys *ss;
995 struct css_set *cset;
996 unsigned long key;
997 int i;
998
999 /*
1000 * Build the set of subsystem state objects that we want to see in the
1001 * new css_set. while subsystems can change globally, the entries here
1002 * won't change, so no need for locking.
1003 */
1004 for_each_subsys(ss, i) {
1005 if (root->subsys_mask & (1UL << i)) {
1006 /*
1007 * @ss is in this hierarchy, so we want the
1008 * effective css from @cgrp.
1009 */
1010 template[i] = cgroup_e_css(cgrp, ss);
1011 } else {
1012 /*
1013 * @ss is not in this hierarchy, so we don't want
1014 * to change the css.
1015 */
1016 template[i] = old_cset->subsys[i];
1017 }
1018 }
1019
1020 key = css_set_hash(template);
1021 hash_for_each_possible(css_set_table, cset, hlist, key) {
1022 if (!compare_css_sets(cset, old_cset, cgrp, template))
1023 continue;
1024
1025 /* This css_set matches what we need */
1026 return cset;
1027 }
1028
1029 /* No existing cgroup group matched */
1030 return NULL;
1031 }
1032
1033 static void free_cgrp_cset_links(struct list_head *links_to_free)
1034 {
1035 struct cgrp_cset_link *link, *tmp_link;
1036
1037 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1038 list_del(&link->cset_link);
1039 kfree(link);
1040 }
1041 }
1042
1043 /**
1044 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1045 * @count: the number of links to allocate
1046 * @tmp_links: list_head the allocated links are put on
1047 *
1048 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1049 * through ->cset_link. Returns 0 on success or -errno.
1050 */
1051 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1052 {
1053 struct cgrp_cset_link *link;
1054 int i;
1055
1056 INIT_LIST_HEAD(tmp_links);
1057
1058 for (i = 0; i < count; i++) {
1059 link = kzalloc(sizeof(*link), GFP_KERNEL);
1060 if (!link) {
1061 free_cgrp_cset_links(tmp_links);
1062 return -ENOMEM;
1063 }
1064 list_add(&link->cset_link, tmp_links);
1065 }
1066 return 0;
1067 }
1068
1069 /**
1070 * link_css_set - a helper function to link a css_set to a cgroup
1071 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1072 * @cset: the css_set to be linked
1073 * @cgrp: the destination cgroup
1074 */
1075 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1076 struct cgroup *cgrp)
1077 {
1078 struct cgrp_cset_link *link;
1079
1080 BUG_ON(list_empty(tmp_links));
1081
1082 if (cgroup_on_dfl(cgrp))
1083 cset->dfl_cgrp = cgrp;
1084
1085 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1086 link->cset = cset;
1087 link->cgrp = cgrp;
1088
1089 /*
1090 * Always add links to the tail of the lists so that the lists are
1091 * in choronological order.
1092 */
1093 list_move_tail(&link->cset_link, &cgrp->cset_links);
1094 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1095
1096 if (cgroup_parent(cgrp))
1097 cgroup_get_live(cgrp);
1098 }
1099
1100 /**
1101 * find_css_set - return a new css_set with one cgroup updated
1102 * @old_cset: the baseline css_set
1103 * @cgrp: the cgroup to be updated
1104 *
1105 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1106 * substituted into the appropriate hierarchy.
1107 */
1108 static struct css_set *find_css_set(struct css_set *old_cset,
1109 struct cgroup *cgrp)
1110 {
1111 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1112 struct css_set *cset;
1113 struct list_head tmp_links;
1114 struct cgrp_cset_link *link;
1115 struct cgroup_subsys *ss;
1116 unsigned long key;
1117 int ssid;
1118
1119 lockdep_assert_held(&cgroup_mutex);
1120
1121 /* First see if we already have a cgroup group that matches
1122 * the desired set */
1123 spin_lock_irq(&css_set_lock);
1124 cset = find_existing_css_set(old_cset, cgrp, template);
1125 if (cset)
1126 get_css_set(cset);
1127 spin_unlock_irq(&css_set_lock);
1128
1129 if (cset)
1130 return cset;
1131
1132 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1133 if (!cset)
1134 return NULL;
1135
1136 /* Allocate all the cgrp_cset_link objects that we'll need */
1137 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1138 kfree(cset);
1139 return NULL;
1140 }
1141
1142 refcount_set(&cset->refcount, 1);
1143 cset->dom_cset = cset;
1144 INIT_LIST_HEAD(&cset->tasks);
1145 INIT_LIST_HEAD(&cset->mg_tasks);
1146 INIT_LIST_HEAD(&cset->task_iters);
1147 INIT_LIST_HEAD(&cset->threaded_csets);
1148 INIT_HLIST_NODE(&cset->hlist);
1149 INIT_LIST_HEAD(&cset->cgrp_links);
1150 INIT_LIST_HEAD(&cset->mg_preload_node);
1151 INIT_LIST_HEAD(&cset->mg_node);
1152
1153 /* Copy the set of subsystem state objects generated in
1154 * find_existing_css_set() */
1155 memcpy(cset->subsys, template, sizeof(cset->subsys));
1156
1157 spin_lock_irq(&css_set_lock);
1158 /* Add reference counts and links from the new css_set. */
1159 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1160 struct cgroup *c = link->cgrp;
1161
1162 if (c->root == cgrp->root)
1163 c = cgrp;
1164 link_css_set(&tmp_links, cset, c);
1165 }
1166
1167 BUG_ON(!list_empty(&tmp_links));
1168
1169 css_set_count++;
1170
1171 /* Add @cset to the hash table */
1172 key = css_set_hash(cset->subsys);
1173 hash_add(css_set_table, &cset->hlist, key);
1174
1175 for_each_subsys(ss, ssid) {
1176 struct cgroup_subsys_state *css = cset->subsys[ssid];
1177
1178 list_add_tail(&cset->e_cset_node[ssid],
1179 &css->cgroup->e_csets[ssid]);
1180 css_get(css);
1181 }
1182
1183 spin_unlock_irq(&css_set_lock);
1184
1185 /*
1186 * If @cset should be threaded, look up the matching dom_cset and
1187 * link them up. We first fully initialize @cset then look for the
1188 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1189 * to stay empty until we return.
1190 */
1191 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1192 struct css_set *dcset;
1193
1194 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1195 if (!dcset) {
1196 put_css_set(cset);
1197 return NULL;
1198 }
1199
1200 spin_lock_irq(&css_set_lock);
1201 cset->dom_cset = dcset;
1202 list_add_tail(&cset->threaded_csets_node,
1203 &dcset->threaded_csets);
1204 spin_unlock_irq(&css_set_lock);
1205 }
1206
1207 return cset;
1208 }
1209
1210 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1211 {
1212 struct cgroup *root_cgrp = kf_root->kn->priv;
1213
1214 return root_cgrp->root;
1215 }
1216
1217 static int cgroup_init_root_id(struct cgroup_root *root)
1218 {
1219 int id;
1220
1221 lockdep_assert_held(&cgroup_mutex);
1222
1223 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1224 if (id < 0)
1225 return id;
1226
1227 root->hierarchy_id = id;
1228 return 0;
1229 }
1230
1231 static void cgroup_exit_root_id(struct cgroup_root *root)
1232 {
1233 lockdep_assert_held(&cgroup_mutex);
1234
1235 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1236 }
1237
1238 void cgroup_free_root(struct cgroup_root *root)
1239 {
1240 if (root) {
1241 idr_destroy(&root->cgroup_idr);
1242 kfree(root);
1243 }
1244 }
1245
1246 static void cgroup_destroy_root(struct cgroup_root *root)
1247 {
1248 struct cgroup *cgrp = &root->cgrp;
1249 struct cgrp_cset_link *link, *tmp_link;
1250
1251 trace_cgroup_destroy_root(root);
1252
1253 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1254
1255 BUG_ON(atomic_read(&root->nr_cgrps));
1256 BUG_ON(!list_empty(&cgrp->self.children));
1257
1258 /* Rebind all subsystems back to the default hierarchy */
1259 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1260
1261 /*
1262 * Release all the links from cset_links to this hierarchy's
1263 * root cgroup
1264 */
1265 spin_lock_irq(&css_set_lock);
1266
1267 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1268 list_del(&link->cset_link);
1269 list_del(&link->cgrp_link);
1270 kfree(link);
1271 }
1272
1273 spin_unlock_irq(&css_set_lock);
1274
1275 if (!list_empty(&root->root_list)) {
1276 list_del(&root->root_list);
1277 cgroup_root_count--;
1278 }
1279
1280 cgroup_exit_root_id(root);
1281
1282 mutex_unlock(&cgroup_mutex);
1283
1284 kernfs_destroy_root(root->kf_root);
1285 cgroup_free_root(root);
1286 }
1287
1288 /*
1289 * look up cgroup associated with current task's cgroup namespace on the
1290 * specified hierarchy
1291 */
1292 static struct cgroup *
1293 current_cgns_cgroup_from_root(struct cgroup_root *root)
1294 {
1295 struct cgroup *res = NULL;
1296 struct css_set *cset;
1297
1298 lockdep_assert_held(&css_set_lock);
1299
1300 rcu_read_lock();
1301
1302 cset = current->nsproxy->cgroup_ns->root_cset;
1303 if (cset == &init_css_set) {
1304 res = &root->cgrp;
1305 } else {
1306 struct cgrp_cset_link *link;
1307
1308 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1309 struct cgroup *c = link->cgrp;
1310
1311 if (c->root == root) {
1312 res = c;
1313 break;
1314 }
1315 }
1316 }
1317 rcu_read_unlock();
1318
1319 BUG_ON(!res);
1320 return res;
1321 }
1322
1323 /* look up cgroup associated with given css_set on the specified hierarchy */
1324 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1325 struct cgroup_root *root)
1326 {
1327 struct cgroup *res = NULL;
1328
1329 lockdep_assert_held(&cgroup_mutex);
1330 lockdep_assert_held(&css_set_lock);
1331
1332 if (cset == &init_css_set) {
1333 res = &root->cgrp;
1334 } else if (root == &cgrp_dfl_root) {
1335 res = cset->dfl_cgrp;
1336 } else {
1337 struct cgrp_cset_link *link;
1338
1339 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1340 struct cgroup *c = link->cgrp;
1341
1342 if (c->root == root) {
1343 res = c;
1344 break;
1345 }
1346 }
1347 }
1348
1349 BUG_ON(!res);
1350 return res;
1351 }
1352
1353 /*
1354 * Return the cgroup for "task" from the given hierarchy. Must be
1355 * called with cgroup_mutex and css_set_lock held.
1356 */
1357 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1358 struct cgroup_root *root)
1359 {
1360 /*
1361 * No need to lock the task - since we hold cgroup_mutex the
1362 * task can't change groups, so the only thing that can happen
1363 * is that it exits and its css is set back to init_css_set.
1364 */
1365 return cset_cgroup_from_root(task_css_set(task), root);
1366 }
1367
1368 /*
1369 * A task must hold cgroup_mutex to modify cgroups.
1370 *
1371 * Any task can increment and decrement the count field without lock.
1372 * So in general, code holding cgroup_mutex can't rely on the count
1373 * field not changing. However, if the count goes to zero, then only
1374 * cgroup_attach_task() can increment it again. Because a count of zero
1375 * means that no tasks are currently attached, therefore there is no
1376 * way a task attached to that cgroup can fork (the other way to
1377 * increment the count). So code holding cgroup_mutex can safely
1378 * assume that if the count is zero, it will stay zero. Similarly, if
1379 * a task holds cgroup_mutex on a cgroup with zero count, it
1380 * knows that the cgroup won't be removed, as cgroup_rmdir()
1381 * needs that mutex.
1382 *
1383 * A cgroup can only be deleted if both its 'count' of using tasks
1384 * is zero, and its list of 'children' cgroups is empty. Since all
1385 * tasks in the system use _some_ cgroup, and since there is always at
1386 * least one task in the system (init, pid == 1), therefore, root cgroup
1387 * always has either children cgroups and/or using tasks. So we don't
1388 * need a special hack to ensure that root cgroup cannot be deleted.
1389 *
1390 * P.S. One more locking exception. RCU is used to guard the
1391 * update of a tasks cgroup pointer by cgroup_attach_task()
1392 */
1393
1394 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1395
1396 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1397 char *buf)
1398 {
1399 struct cgroup_subsys *ss = cft->ss;
1400
1401 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1402 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1403 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1404 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1405 cft->name);
1406 else
1407 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1408 return buf;
1409 }
1410
1411 /**
1412 * cgroup_file_mode - deduce file mode of a control file
1413 * @cft: the control file in question
1414 *
1415 * S_IRUGO for read, S_IWUSR for write.
1416 */
1417 static umode_t cgroup_file_mode(const struct cftype *cft)
1418 {
1419 umode_t mode = 0;
1420
1421 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1422 mode |= S_IRUGO;
1423
1424 if (cft->write_u64 || cft->write_s64 || cft->write) {
1425 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1426 mode |= S_IWUGO;
1427 else
1428 mode |= S_IWUSR;
1429 }
1430
1431 return mode;
1432 }
1433
1434 /**
1435 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1436 * @subtree_control: the new subtree_control mask to consider
1437 * @this_ss_mask: available subsystems
1438 *
1439 * On the default hierarchy, a subsystem may request other subsystems to be
1440 * enabled together through its ->depends_on mask. In such cases, more
1441 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1442 *
1443 * This function calculates which subsystems need to be enabled if
1444 * @subtree_control is to be applied while restricted to @this_ss_mask.
1445 */
1446 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1447 {
1448 u16 cur_ss_mask = subtree_control;
1449 struct cgroup_subsys *ss;
1450 int ssid;
1451
1452 lockdep_assert_held(&cgroup_mutex);
1453
1454 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1455
1456 while (true) {
1457 u16 new_ss_mask = cur_ss_mask;
1458
1459 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1460 new_ss_mask |= ss->depends_on;
1461 } while_each_subsys_mask();
1462
1463 /*
1464 * Mask out subsystems which aren't available. This can
1465 * happen only if some depended-upon subsystems were bound
1466 * to non-default hierarchies.
1467 */
1468 new_ss_mask &= this_ss_mask;
1469
1470 if (new_ss_mask == cur_ss_mask)
1471 break;
1472 cur_ss_mask = new_ss_mask;
1473 }
1474
1475 return cur_ss_mask;
1476 }
1477
1478 /**
1479 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1480 * @kn: the kernfs_node being serviced
1481 *
1482 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1483 * the method finishes if locking succeeded. Note that once this function
1484 * returns the cgroup returned by cgroup_kn_lock_live() may become
1485 * inaccessible any time. If the caller intends to continue to access the
1486 * cgroup, it should pin it before invoking this function.
1487 */
1488 void cgroup_kn_unlock(struct kernfs_node *kn)
1489 {
1490 struct cgroup *cgrp;
1491
1492 if (kernfs_type(kn) == KERNFS_DIR)
1493 cgrp = kn->priv;
1494 else
1495 cgrp = kn->parent->priv;
1496
1497 mutex_unlock(&cgroup_mutex);
1498
1499 kernfs_unbreak_active_protection(kn);
1500 cgroup_put(cgrp);
1501 }
1502
1503 /**
1504 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1505 * @kn: the kernfs_node being serviced
1506 * @drain_offline: perform offline draining on the cgroup
1507 *
1508 * This helper is to be used by a cgroup kernfs method currently servicing
1509 * @kn. It breaks the active protection, performs cgroup locking and
1510 * verifies that the associated cgroup is alive. Returns the cgroup if
1511 * alive; otherwise, %NULL. A successful return should be undone by a
1512 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1513 * cgroup is drained of offlining csses before return.
1514 *
1515 * Any cgroup kernfs method implementation which requires locking the
1516 * associated cgroup should use this helper. It avoids nesting cgroup
1517 * locking under kernfs active protection and allows all kernfs operations
1518 * including self-removal.
1519 */
1520 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1521 {
1522 struct cgroup *cgrp;
1523
1524 if (kernfs_type(kn) == KERNFS_DIR)
1525 cgrp = kn->priv;
1526 else
1527 cgrp = kn->parent->priv;
1528
1529 /*
1530 * We're gonna grab cgroup_mutex which nests outside kernfs
1531 * active_ref. cgroup liveliness check alone provides enough
1532 * protection against removal. Ensure @cgrp stays accessible and
1533 * break the active_ref protection.
1534 */
1535 if (!cgroup_tryget(cgrp))
1536 return NULL;
1537 kernfs_break_active_protection(kn);
1538
1539 if (drain_offline)
1540 cgroup_lock_and_drain_offline(cgrp);
1541 else
1542 mutex_lock(&cgroup_mutex);
1543
1544 if (!cgroup_is_dead(cgrp))
1545 return cgrp;
1546
1547 cgroup_kn_unlock(kn);
1548 return NULL;
1549 }
1550
1551 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1552 {
1553 char name[CGROUP_FILE_NAME_MAX];
1554
1555 lockdep_assert_held(&cgroup_mutex);
1556
1557 if (cft->file_offset) {
1558 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1559 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1560
1561 spin_lock_irq(&cgroup_file_kn_lock);
1562 cfile->kn = NULL;
1563 spin_unlock_irq(&cgroup_file_kn_lock);
1564
1565 del_timer_sync(&cfile->notify_timer);
1566 }
1567
1568 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1569 }
1570
1571 /**
1572 * css_clear_dir - remove subsys files in a cgroup directory
1573 * @css: taget css
1574 */
1575 static void css_clear_dir(struct cgroup_subsys_state *css)
1576 {
1577 struct cgroup *cgrp = css->cgroup;
1578 struct cftype *cfts;
1579
1580 if (!(css->flags & CSS_VISIBLE))
1581 return;
1582
1583 css->flags &= ~CSS_VISIBLE;
1584
1585 if (!css->ss) {
1586 if (cgroup_on_dfl(cgrp))
1587 cfts = cgroup_base_files;
1588 else
1589 cfts = cgroup1_base_files;
1590
1591 cgroup_addrm_files(css, cgrp, cfts, false);
1592 } else {
1593 list_for_each_entry(cfts, &css->ss->cfts, node)
1594 cgroup_addrm_files(css, cgrp, cfts, false);
1595 }
1596 }
1597
1598 /**
1599 * css_populate_dir - create subsys files in a cgroup directory
1600 * @css: target css
1601 *
1602 * On failure, no file is added.
1603 */
1604 static int css_populate_dir(struct cgroup_subsys_state *css)
1605 {
1606 struct cgroup *cgrp = css->cgroup;
1607 struct cftype *cfts, *failed_cfts;
1608 int ret;
1609
1610 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1611 return 0;
1612
1613 if (!css->ss) {
1614 if (cgroup_on_dfl(cgrp))
1615 cfts = cgroup_base_files;
1616 else
1617 cfts = cgroup1_base_files;
1618
1619 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1620 if (ret < 0)
1621 return ret;
1622 } else {
1623 list_for_each_entry(cfts, &css->ss->cfts, node) {
1624 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1625 if (ret < 0) {
1626 failed_cfts = cfts;
1627 goto err;
1628 }
1629 }
1630 }
1631
1632 css->flags |= CSS_VISIBLE;
1633
1634 return 0;
1635 err:
1636 list_for_each_entry(cfts, &css->ss->cfts, node) {
1637 if (cfts == failed_cfts)
1638 break;
1639 cgroup_addrm_files(css, cgrp, cfts, false);
1640 }
1641 return ret;
1642 }
1643
1644 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1645 {
1646 struct cgroup *dcgrp = &dst_root->cgrp;
1647 struct cgroup_subsys *ss;
1648 int ssid, i, ret;
1649
1650 lockdep_assert_held(&cgroup_mutex);
1651
1652 do_each_subsys_mask(ss, ssid, ss_mask) {
1653 /*
1654 * If @ss has non-root csses attached to it, can't move.
1655 * If @ss is an implicit controller, it is exempt from this
1656 * rule and can be stolen.
1657 */
1658 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1659 !ss->implicit_on_dfl)
1660 return -EBUSY;
1661
1662 /* can't move between two non-dummy roots either */
1663 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1664 return -EBUSY;
1665 } while_each_subsys_mask();
1666
1667 do_each_subsys_mask(ss, ssid, ss_mask) {
1668 struct cgroup_root *src_root = ss->root;
1669 struct cgroup *scgrp = &src_root->cgrp;
1670 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1671 struct css_set *cset;
1672
1673 WARN_ON(!css || cgroup_css(dcgrp, ss));
1674
1675 /* disable from the source */
1676 src_root->subsys_mask &= ~(1 << ssid);
1677 WARN_ON(cgroup_apply_control(scgrp));
1678 cgroup_finalize_control(scgrp, 0);
1679
1680 /* rebind */
1681 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1682 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1683 ss->root = dst_root;
1684 css->cgroup = dcgrp;
1685
1686 spin_lock_irq(&css_set_lock);
1687 hash_for_each(css_set_table, i, cset, hlist)
1688 list_move_tail(&cset->e_cset_node[ss->id],
1689 &dcgrp->e_csets[ss->id]);
1690 spin_unlock_irq(&css_set_lock);
1691
1692 /* default hierarchy doesn't enable controllers by default */
1693 dst_root->subsys_mask |= 1 << ssid;
1694 if (dst_root == &cgrp_dfl_root) {
1695 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1696 } else {
1697 dcgrp->subtree_control |= 1 << ssid;
1698 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1699 }
1700
1701 ret = cgroup_apply_control(dcgrp);
1702 if (ret)
1703 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1704 ss->name, ret);
1705
1706 if (ss->bind)
1707 ss->bind(css);
1708 } while_each_subsys_mask();
1709
1710 kernfs_activate(dcgrp->kn);
1711 return 0;
1712 }
1713
1714 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1715 struct kernfs_root *kf_root)
1716 {
1717 int len = 0;
1718 char *buf = NULL;
1719 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1720 struct cgroup *ns_cgroup;
1721
1722 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1723 if (!buf)
1724 return -ENOMEM;
1725
1726 spin_lock_irq(&css_set_lock);
1727 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1728 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1729 spin_unlock_irq(&css_set_lock);
1730
1731 if (len >= PATH_MAX)
1732 len = -ERANGE;
1733 else if (len > 0) {
1734 seq_escape(sf, buf, " \t\n\\");
1735 len = 0;
1736 }
1737 kfree(buf);
1738 return len;
1739 }
1740
1741 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1742 {
1743 char *token;
1744
1745 *root_flags = 0;
1746
1747 if (!data)
1748 return 0;
1749
1750 while ((token = strsep(&data, ",")) != NULL) {
1751 if (!strcmp(token, "nsdelegate")) {
1752 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1753 continue;
1754 }
1755
1756 pr_err("cgroup2: unknown option \"%s\"\n", token);
1757 return -EINVAL;
1758 }
1759
1760 return 0;
1761 }
1762
1763 static void apply_cgroup_root_flags(unsigned int root_flags)
1764 {
1765 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1766 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1767 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1768 else
1769 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1770 }
1771 }
1772
1773 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1774 {
1775 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1776 seq_puts(seq, ",nsdelegate");
1777 return 0;
1778 }
1779
1780 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1781 {
1782 unsigned int root_flags;
1783 int ret;
1784
1785 ret = parse_cgroup_root_flags(data, &root_flags);
1786 if (ret)
1787 return ret;
1788
1789 apply_cgroup_root_flags(root_flags);
1790 return 0;
1791 }
1792
1793 /*
1794 * To reduce the fork() overhead for systems that are not actually using
1795 * their cgroups capability, we don't maintain the lists running through
1796 * each css_set to its tasks until we see the list actually used - in other
1797 * words after the first mount.
1798 */
1799 static bool use_task_css_set_links __read_mostly;
1800
1801 static void cgroup_enable_task_cg_lists(void)
1802 {
1803 struct task_struct *p, *g;
1804
1805 /*
1806 * We need tasklist_lock because RCU is not safe against
1807 * while_each_thread(). Besides, a forking task that has passed
1808 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1809 * is not guaranteed to have its child immediately visible in the
1810 * tasklist if we walk through it with RCU.
1811 */
1812 read_lock(&tasklist_lock);
1813 spin_lock_irq(&css_set_lock);
1814
1815 if (use_task_css_set_links)
1816 goto out_unlock;
1817
1818 use_task_css_set_links = true;
1819
1820 do_each_thread(g, p) {
1821 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1822 task_css_set(p) != &init_css_set);
1823
1824 /*
1825 * We should check if the process is exiting, otherwise
1826 * it will race with cgroup_exit() in that the list
1827 * entry won't be deleted though the process has exited.
1828 * Do it while holding siglock so that we don't end up
1829 * racing against cgroup_exit().
1830 *
1831 * Interrupts were already disabled while acquiring
1832 * the css_set_lock, so we do not need to disable it
1833 * again when acquiring the sighand->siglock here.
1834 */
1835 spin_lock(&p->sighand->siglock);
1836 if (!(p->flags & PF_EXITING)) {
1837 struct css_set *cset = task_css_set(p);
1838
1839 if (!css_set_populated(cset))
1840 css_set_update_populated(cset, true);
1841 list_add_tail(&p->cg_list, &cset->tasks);
1842 get_css_set(cset);
1843 cset->nr_tasks++;
1844 }
1845 spin_unlock(&p->sighand->siglock);
1846 } while_each_thread(g, p);
1847 out_unlock:
1848 spin_unlock_irq(&css_set_lock);
1849 read_unlock(&tasklist_lock);
1850 }
1851
1852 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853 {
1854 struct cgroup_subsys *ss;
1855 int ssid;
1856
1857 INIT_LIST_HEAD(&cgrp->self.sibling);
1858 INIT_LIST_HEAD(&cgrp->self.children);
1859 INIT_LIST_HEAD(&cgrp->cset_links);
1860 INIT_LIST_HEAD(&cgrp->pidlists);
1861 mutex_init(&cgrp->pidlist_mutex);
1862 cgrp->self.cgroup = cgrp;
1863 cgrp->self.flags |= CSS_ONLINE;
1864 cgrp->dom_cgrp = cgrp;
1865 cgrp->max_descendants = INT_MAX;
1866 cgrp->max_depth = INT_MAX;
1867 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1868 prev_cputime_init(&cgrp->prev_cputime);
1869
1870 for_each_subsys(ss, ssid)
1871 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1872
1873 init_waitqueue_head(&cgrp->offline_waitq);
1874 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1875 }
1876
1877 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1878 {
1879 struct cgroup *cgrp = &root->cgrp;
1880
1881 INIT_LIST_HEAD(&root->root_list);
1882 atomic_set(&root->nr_cgrps, 1);
1883 cgrp->root = root;
1884 init_cgroup_housekeeping(cgrp);
1885 idr_init(&root->cgroup_idr);
1886
1887 root->flags = opts->flags;
1888 if (opts->release_agent)
1889 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1890 if (opts->name)
1891 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1892 if (opts->cpuset_clone_children)
1893 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1894 }
1895
1896 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1897 {
1898 LIST_HEAD(tmp_links);
1899 struct cgroup *root_cgrp = &root->cgrp;
1900 struct kernfs_syscall_ops *kf_sops;
1901 struct css_set *cset;
1902 int i, ret;
1903
1904 lockdep_assert_held(&cgroup_mutex);
1905
1906 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1907 if (ret < 0)
1908 goto out;
1909 root_cgrp->id = ret;
1910 root_cgrp->ancestor_ids[0] = ret;
1911
1912 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1913 ref_flags, GFP_KERNEL);
1914 if (ret)
1915 goto out;
1916
1917 /*
1918 * We're accessing css_set_count without locking css_set_lock here,
1919 * but that's OK - it can only be increased by someone holding
1920 * cgroup_lock, and that's us. Later rebinding may disable
1921 * controllers on the default hierarchy and thus create new csets,
1922 * which can't be more than the existing ones. Allocate 2x.
1923 */
1924 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1925 if (ret)
1926 goto cancel_ref;
1927
1928 ret = cgroup_init_root_id(root);
1929 if (ret)
1930 goto cancel_ref;
1931
1932 kf_sops = root == &cgrp_dfl_root ?
1933 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1934
1935 root->kf_root = kernfs_create_root(kf_sops,
1936 KERNFS_ROOT_CREATE_DEACTIVATED |
1937 KERNFS_ROOT_SUPPORT_EXPORTOP,
1938 root_cgrp);
1939 if (IS_ERR(root->kf_root)) {
1940 ret = PTR_ERR(root->kf_root);
1941 goto exit_root_id;
1942 }
1943 root_cgrp->kn = root->kf_root->kn;
1944
1945 ret = css_populate_dir(&root_cgrp->self);
1946 if (ret)
1947 goto destroy_root;
1948
1949 ret = rebind_subsystems(root, ss_mask);
1950 if (ret)
1951 goto destroy_root;
1952
1953 ret = cgroup_bpf_inherit(root_cgrp);
1954 WARN_ON_ONCE(ret);
1955
1956 trace_cgroup_setup_root(root);
1957
1958 /*
1959 * There must be no failure case after here, since rebinding takes
1960 * care of subsystems' refcounts, which are explicitly dropped in
1961 * the failure exit path.
1962 */
1963 list_add(&root->root_list, &cgroup_roots);
1964 cgroup_root_count++;
1965
1966 /*
1967 * Link the root cgroup in this hierarchy into all the css_set
1968 * objects.
1969 */
1970 spin_lock_irq(&css_set_lock);
1971 hash_for_each(css_set_table, i, cset, hlist) {
1972 link_css_set(&tmp_links, cset, root_cgrp);
1973 if (css_set_populated(cset))
1974 cgroup_update_populated(root_cgrp, true);
1975 }
1976 spin_unlock_irq(&css_set_lock);
1977
1978 BUG_ON(!list_empty(&root_cgrp->self.children));
1979 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1980
1981 kernfs_activate(root_cgrp->kn);
1982 ret = 0;
1983 goto out;
1984
1985 destroy_root:
1986 kernfs_destroy_root(root->kf_root);
1987 root->kf_root = NULL;
1988 exit_root_id:
1989 cgroup_exit_root_id(root);
1990 cancel_ref:
1991 percpu_ref_exit(&root_cgrp->self.refcnt);
1992 out:
1993 free_cgrp_cset_links(&tmp_links);
1994 return ret;
1995 }
1996
1997 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1998 struct cgroup_root *root, unsigned long magic,
1999 struct cgroup_namespace *ns)
2000 {
2001 struct dentry *dentry;
2002 bool new_sb;
2003
2004 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2005
2006 /*
2007 * In non-init cgroup namespace, instead of root cgroup's dentry,
2008 * we return the dentry corresponding to the cgroupns->root_cgrp.
2009 */
2010 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2011 struct dentry *nsdentry;
2012 struct cgroup *cgrp;
2013
2014 mutex_lock(&cgroup_mutex);
2015 spin_lock_irq(&css_set_lock);
2016
2017 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2018
2019 spin_unlock_irq(&css_set_lock);
2020 mutex_unlock(&cgroup_mutex);
2021
2022 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2023 dput(dentry);
2024 dentry = nsdentry;
2025 }
2026
2027 if (IS_ERR(dentry) || !new_sb)
2028 cgroup_put(&root->cgrp);
2029
2030 return dentry;
2031 }
2032
2033 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2034 int flags, const char *unused_dev_name,
2035 void *data)
2036 {
2037 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2038 struct dentry *dentry;
2039 int ret;
2040
2041 get_cgroup_ns(ns);
2042
2043 /* Check if the caller has permission to mount. */
2044 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2045 put_cgroup_ns(ns);
2046 return ERR_PTR(-EPERM);
2047 }
2048
2049 /*
2050 * The first time anyone tries to mount a cgroup, enable the list
2051 * linking each css_set to its tasks and fix up all existing tasks.
2052 */
2053 if (!use_task_css_set_links)
2054 cgroup_enable_task_cg_lists();
2055
2056 if (fs_type == &cgroup2_fs_type) {
2057 unsigned int root_flags;
2058
2059 ret = parse_cgroup_root_flags(data, &root_flags);
2060 if (ret) {
2061 put_cgroup_ns(ns);
2062 return ERR_PTR(ret);
2063 }
2064
2065 cgrp_dfl_visible = true;
2066 cgroup_get_live(&cgrp_dfl_root.cgrp);
2067
2068 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2069 CGROUP2_SUPER_MAGIC, ns);
2070 if (!IS_ERR(dentry))
2071 apply_cgroup_root_flags(root_flags);
2072 } else {
2073 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2074 CGROUP_SUPER_MAGIC, ns);
2075 }
2076
2077 put_cgroup_ns(ns);
2078 return dentry;
2079 }
2080
2081 static void cgroup_kill_sb(struct super_block *sb)
2082 {
2083 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2084 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2085
2086 /*
2087 * If @root doesn't have any mounts or children, start killing it.
2088 * This prevents new mounts by disabling percpu_ref_tryget_live().
2089 * cgroup_mount() may wait for @root's release.
2090 *
2091 * And don't kill the default root.
2092 */
2093 if (!list_empty(&root->cgrp.self.children) ||
2094 root == &cgrp_dfl_root)
2095 cgroup_put(&root->cgrp);
2096 else
2097 percpu_ref_kill(&root->cgrp.self.refcnt);
2098
2099 kernfs_kill_sb(sb);
2100 }
2101
2102 struct file_system_type cgroup_fs_type = {
2103 .name = "cgroup",
2104 .mount = cgroup_mount,
2105 .kill_sb = cgroup_kill_sb,
2106 .fs_flags = FS_USERNS_MOUNT,
2107 };
2108
2109 static struct file_system_type cgroup2_fs_type = {
2110 .name = "cgroup2",
2111 .mount = cgroup_mount,
2112 .kill_sb = cgroup_kill_sb,
2113 .fs_flags = FS_USERNS_MOUNT,
2114 };
2115
2116 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2117 struct cgroup_namespace *ns)
2118 {
2119 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2120
2121 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2122 }
2123
2124 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2125 struct cgroup_namespace *ns)
2126 {
2127 int ret;
2128
2129 mutex_lock(&cgroup_mutex);
2130 spin_lock_irq(&css_set_lock);
2131
2132 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2133
2134 spin_unlock_irq(&css_set_lock);
2135 mutex_unlock(&cgroup_mutex);
2136
2137 return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2140
2141 /**
2142 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2143 * @task: target task
2144 * @buf: the buffer to write the path into
2145 * @buflen: the length of the buffer
2146 *
2147 * Determine @task's cgroup on the first (the one with the lowest non-zero
2148 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2149 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2150 * cgroup controller callbacks.
2151 *
2152 * Return value is the same as kernfs_path().
2153 */
2154 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2155 {
2156 struct cgroup_root *root;
2157 struct cgroup *cgrp;
2158 int hierarchy_id = 1;
2159 int ret;
2160
2161 mutex_lock(&cgroup_mutex);
2162 spin_lock_irq(&css_set_lock);
2163
2164 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2165
2166 if (root) {
2167 cgrp = task_cgroup_from_root(task, root);
2168 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2169 } else {
2170 /* if no hierarchy exists, everyone is in "/" */
2171 ret = strlcpy(buf, "/", buflen);
2172 }
2173
2174 spin_unlock_irq(&css_set_lock);
2175 mutex_unlock(&cgroup_mutex);
2176 return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(task_cgroup_path);
2179
2180 /**
2181 * cgroup_migrate_add_task - add a migration target task to a migration context
2182 * @task: target task
2183 * @mgctx: target migration context
2184 *
2185 * Add @task, which is a migration target, to @mgctx->tset. This function
2186 * becomes noop if @task doesn't need to be migrated. @task's css_set
2187 * should have been added as a migration source and @task->cg_list will be
2188 * moved from the css_set's tasks list to mg_tasks one.
2189 */
2190 static void cgroup_migrate_add_task(struct task_struct *task,
2191 struct cgroup_mgctx *mgctx)
2192 {
2193 struct css_set *cset;
2194
2195 lockdep_assert_held(&css_set_lock);
2196
2197 /* @task either already exited or can't exit until the end */
2198 if (task->flags & PF_EXITING)
2199 return;
2200
2201 /* leave @task alone if post_fork() hasn't linked it yet */
2202 if (list_empty(&task->cg_list))
2203 return;
2204
2205 cset = task_css_set(task);
2206 if (!cset->mg_src_cgrp)
2207 return;
2208
2209 mgctx->tset.nr_tasks++;
2210
2211 list_move_tail(&task->cg_list, &cset->mg_tasks);
2212 if (list_empty(&cset->mg_node))
2213 list_add_tail(&cset->mg_node,
2214 &mgctx->tset.src_csets);
2215 if (list_empty(&cset->mg_dst_cset->mg_node))
2216 list_add_tail(&cset->mg_dst_cset->mg_node,
2217 &mgctx->tset.dst_csets);
2218 }
2219
2220 /**
2221 * cgroup_taskset_first - reset taskset and return the first task
2222 * @tset: taskset of interest
2223 * @dst_cssp: output variable for the destination css
2224 *
2225 * @tset iteration is initialized and the first task is returned.
2226 */
2227 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2228 struct cgroup_subsys_state **dst_cssp)
2229 {
2230 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2231 tset->cur_task = NULL;
2232
2233 return cgroup_taskset_next(tset, dst_cssp);
2234 }
2235
2236 /**
2237 * cgroup_taskset_next - iterate to the next task in taskset
2238 * @tset: taskset of interest
2239 * @dst_cssp: output variable for the destination css
2240 *
2241 * Return the next task in @tset. Iteration must have been initialized
2242 * with cgroup_taskset_first().
2243 */
2244 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2245 struct cgroup_subsys_state **dst_cssp)
2246 {
2247 struct css_set *cset = tset->cur_cset;
2248 struct task_struct *task = tset->cur_task;
2249
2250 while (&cset->mg_node != tset->csets) {
2251 if (!task)
2252 task = list_first_entry(&cset->mg_tasks,
2253 struct task_struct, cg_list);
2254 else
2255 task = list_next_entry(task, cg_list);
2256
2257 if (&task->cg_list != &cset->mg_tasks) {
2258 tset->cur_cset = cset;
2259 tset->cur_task = task;
2260
2261 /*
2262 * This function may be called both before and
2263 * after cgroup_taskset_migrate(). The two cases
2264 * can be distinguished by looking at whether @cset
2265 * has its ->mg_dst_cset set.
2266 */
2267 if (cset->mg_dst_cset)
2268 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2269 else
2270 *dst_cssp = cset->subsys[tset->ssid];
2271
2272 return task;
2273 }
2274
2275 cset = list_next_entry(cset, mg_node);
2276 task = NULL;
2277 }
2278
2279 return NULL;
2280 }
2281
2282 /**
2283 * cgroup_taskset_migrate - migrate a taskset
2284 * @mgctx: migration context
2285 *
2286 * Migrate tasks in @mgctx as setup by migration preparation functions.
2287 * This function fails iff one of the ->can_attach callbacks fails and
2288 * guarantees that either all or none of the tasks in @mgctx are migrated.
2289 * @mgctx is consumed regardless of success.
2290 */
2291 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2292 {
2293 struct cgroup_taskset *tset = &mgctx->tset;
2294 struct cgroup_subsys *ss;
2295 struct task_struct *task, *tmp_task;
2296 struct css_set *cset, *tmp_cset;
2297 int ssid, failed_ssid, ret;
2298
2299 /* check that we can legitimately attach to the cgroup */
2300 if (tset->nr_tasks) {
2301 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2302 if (ss->can_attach) {
2303 tset->ssid = ssid;
2304 ret = ss->can_attach(tset);
2305 if (ret) {
2306 failed_ssid = ssid;
2307 goto out_cancel_attach;
2308 }
2309 }
2310 } while_each_subsys_mask();
2311 }
2312
2313 /*
2314 * Now that we're guaranteed success, proceed to move all tasks to
2315 * the new cgroup. There are no failure cases after here, so this
2316 * is the commit point.
2317 */
2318 spin_lock_irq(&css_set_lock);
2319 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2320 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2321 struct css_set *from_cset = task_css_set(task);
2322 struct css_set *to_cset = cset->mg_dst_cset;
2323
2324 get_css_set(to_cset);
2325 to_cset->nr_tasks++;
2326 css_set_move_task(task, from_cset, to_cset, true);
2327 put_css_set_locked(from_cset);
2328 from_cset->nr_tasks--;
2329 }
2330 }
2331 spin_unlock_irq(&css_set_lock);
2332
2333 /*
2334 * Migration is committed, all target tasks are now on dst_csets.
2335 * Nothing is sensitive to fork() after this point. Notify
2336 * controllers that migration is complete.
2337 */
2338 tset->csets = &tset->dst_csets;
2339
2340 if (tset->nr_tasks) {
2341 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2342 if (ss->attach) {
2343 tset->ssid = ssid;
2344 ss->attach(tset);
2345 }
2346 } while_each_subsys_mask();
2347 }
2348
2349 ret = 0;
2350 goto out_release_tset;
2351
2352 out_cancel_attach:
2353 if (tset->nr_tasks) {
2354 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2355 if (ssid == failed_ssid)
2356 break;
2357 if (ss->cancel_attach) {
2358 tset->ssid = ssid;
2359 ss->cancel_attach(tset);
2360 }
2361 } while_each_subsys_mask();
2362 }
2363 out_release_tset:
2364 spin_lock_irq(&css_set_lock);
2365 list_splice_init(&tset->dst_csets, &tset->src_csets);
2366 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2367 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2368 list_del_init(&cset->mg_node);
2369 }
2370 spin_unlock_irq(&css_set_lock);
2371
2372 /*
2373 * Re-initialize the cgroup_taskset structure in case it is reused
2374 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2375 * iteration.
2376 */
2377 tset->nr_tasks = 0;
2378 tset->csets = &tset->src_csets;
2379 return ret;
2380 }
2381
2382 /**
2383 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2384 * @dst_cgrp: destination cgroup to test
2385 *
2386 * On the default hierarchy, except for the mixable, (possible) thread root
2387 * and threaded cgroups, subtree_control must be zero for migration
2388 * destination cgroups with tasks so that child cgroups don't compete
2389 * against tasks.
2390 */
2391 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2392 {
2393 /* v1 doesn't have any restriction */
2394 if (!cgroup_on_dfl(dst_cgrp))
2395 return 0;
2396
2397 /* verify @dst_cgrp can host resources */
2398 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2399 return -EOPNOTSUPP;
2400
2401 /* mixables don't care */
2402 if (cgroup_is_mixable(dst_cgrp))
2403 return 0;
2404
2405 /*
2406 * If @dst_cgrp is already or can become a thread root or is
2407 * threaded, it doesn't matter.
2408 */
2409 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2410 return 0;
2411
2412 /* apply no-internal-process constraint */
2413 if (dst_cgrp->subtree_control)
2414 return -EBUSY;
2415
2416 return 0;
2417 }
2418
2419 /**
2420 * cgroup_migrate_finish - cleanup after attach
2421 * @mgctx: migration context
2422 *
2423 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2424 * those functions for details.
2425 */
2426 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2427 {
2428 LIST_HEAD(preloaded);
2429 struct css_set *cset, *tmp_cset;
2430
2431 lockdep_assert_held(&cgroup_mutex);
2432
2433 spin_lock_irq(&css_set_lock);
2434
2435 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2436 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2437
2438 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2439 cset->mg_src_cgrp = NULL;
2440 cset->mg_dst_cgrp = NULL;
2441 cset->mg_dst_cset = NULL;
2442 list_del_init(&cset->mg_preload_node);
2443 put_css_set_locked(cset);
2444 }
2445
2446 spin_unlock_irq(&css_set_lock);
2447 }
2448
2449 /**
2450 * cgroup_migrate_add_src - add a migration source css_set
2451 * @src_cset: the source css_set to add
2452 * @dst_cgrp: the destination cgroup
2453 * @mgctx: migration context
2454 *
2455 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2456 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2457 * up by cgroup_migrate_finish().
2458 *
2459 * This function may be called without holding cgroup_threadgroup_rwsem
2460 * even if the target is a process. Threads may be created and destroyed
2461 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2462 * into play and the preloaded css_sets are guaranteed to cover all
2463 * migrations.
2464 */
2465 void cgroup_migrate_add_src(struct css_set *src_cset,
2466 struct cgroup *dst_cgrp,
2467 struct cgroup_mgctx *mgctx)
2468 {
2469 struct cgroup *src_cgrp;
2470
2471 lockdep_assert_held(&cgroup_mutex);
2472 lockdep_assert_held(&css_set_lock);
2473
2474 /*
2475 * If ->dead, @src_set is associated with one or more dead cgroups
2476 * and doesn't contain any migratable tasks. Ignore it early so
2477 * that the rest of migration path doesn't get confused by it.
2478 */
2479 if (src_cset->dead)
2480 return;
2481
2482 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2483
2484 if (!list_empty(&src_cset->mg_preload_node))
2485 return;
2486
2487 WARN_ON(src_cset->mg_src_cgrp);
2488 WARN_ON(src_cset->mg_dst_cgrp);
2489 WARN_ON(!list_empty(&src_cset->mg_tasks));
2490 WARN_ON(!list_empty(&src_cset->mg_node));
2491
2492 src_cset->mg_src_cgrp = src_cgrp;
2493 src_cset->mg_dst_cgrp = dst_cgrp;
2494 get_css_set(src_cset);
2495 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2496 }
2497
2498 /**
2499 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2500 * @mgctx: migration context
2501 *
2502 * Tasks are about to be moved and all the source css_sets have been
2503 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2504 * pins all destination css_sets, links each to its source, and append them
2505 * to @mgctx->preloaded_dst_csets.
2506 *
2507 * This function must be called after cgroup_migrate_add_src() has been
2508 * called on each migration source css_set. After migration is performed
2509 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2510 * @mgctx.
2511 */
2512 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2513 {
2514 struct css_set *src_cset, *tmp_cset;
2515
2516 lockdep_assert_held(&cgroup_mutex);
2517
2518 /* look up the dst cset for each src cset and link it to src */
2519 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2520 mg_preload_node) {
2521 struct css_set *dst_cset;
2522 struct cgroup_subsys *ss;
2523 int ssid;
2524
2525 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2526 if (!dst_cset)
2527 goto err;
2528
2529 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2530
2531 /*
2532 * If src cset equals dst, it's noop. Drop the src.
2533 * cgroup_migrate() will skip the cset too. Note that we
2534 * can't handle src == dst as some nodes are used by both.
2535 */
2536 if (src_cset == dst_cset) {
2537 src_cset->mg_src_cgrp = NULL;
2538 src_cset->mg_dst_cgrp = NULL;
2539 list_del_init(&src_cset->mg_preload_node);
2540 put_css_set(src_cset);
2541 put_css_set(dst_cset);
2542 continue;
2543 }
2544
2545 src_cset->mg_dst_cset = dst_cset;
2546
2547 if (list_empty(&dst_cset->mg_preload_node))
2548 list_add_tail(&dst_cset->mg_preload_node,
2549 &mgctx->preloaded_dst_csets);
2550 else
2551 put_css_set(dst_cset);
2552
2553 for_each_subsys(ss, ssid)
2554 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2555 mgctx->ss_mask |= 1 << ssid;
2556 }
2557
2558 return 0;
2559 err:
2560 cgroup_migrate_finish(mgctx);
2561 return -ENOMEM;
2562 }
2563
2564 /**
2565 * cgroup_migrate - migrate a process or task to a cgroup
2566 * @leader: the leader of the process or the task to migrate
2567 * @threadgroup: whether @leader points to the whole process or a single task
2568 * @mgctx: migration context
2569 *
2570 * Migrate a process or task denoted by @leader. If migrating a process,
2571 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2572 * responsible for invoking cgroup_migrate_add_src() and
2573 * cgroup_migrate_prepare_dst() on the targets before invoking this
2574 * function and following up with cgroup_migrate_finish().
2575 *
2576 * As long as a controller's ->can_attach() doesn't fail, this function is
2577 * guaranteed to succeed. This means that, excluding ->can_attach()
2578 * failure, when migrating multiple targets, the success or failure can be
2579 * decided for all targets by invoking group_migrate_prepare_dst() before
2580 * actually starting migrating.
2581 */
2582 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2583 struct cgroup_mgctx *mgctx)
2584 {
2585 struct task_struct *task;
2586
2587 /*
2588 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2589 * already PF_EXITING could be freed from underneath us unless we
2590 * take an rcu_read_lock.
2591 */
2592 spin_lock_irq(&css_set_lock);
2593 rcu_read_lock();
2594 task = leader;
2595 do {
2596 cgroup_migrate_add_task(task, mgctx);
2597 if (!threadgroup)
2598 break;
2599 } while_each_thread(leader, task);
2600 rcu_read_unlock();
2601 spin_unlock_irq(&css_set_lock);
2602
2603 return cgroup_migrate_execute(mgctx);
2604 }
2605
2606 /**
2607 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2608 * @dst_cgrp: the cgroup to attach to
2609 * @leader: the task or the leader of the threadgroup to be attached
2610 * @threadgroup: attach the whole threadgroup?
2611 *
2612 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2613 */
2614 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2615 bool threadgroup)
2616 {
2617 DEFINE_CGROUP_MGCTX(mgctx);
2618 struct task_struct *task;
2619 int ret;
2620
2621 ret = cgroup_migrate_vet_dst(dst_cgrp);
2622 if (ret)
2623 return ret;
2624
2625 /* look up all src csets */
2626 spin_lock_irq(&css_set_lock);
2627 rcu_read_lock();
2628 task = leader;
2629 do {
2630 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2631 if (!threadgroup)
2632 break;
2633 } while_each_thread(leader, task);
2634 rcu_read_unlock();
2635 spin_unlock_irq(&css_set_lock);
2636
2637 /* prepare dst csets and commit */
2638 ret = cgroup_migrate_prepare_dst(&mgctx);
2639 if (!ret)
2640 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2641
2642 cgroup_migrate_finish(&mgctx);
2643
2644 if (!ret)
2645 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2646
2647 return ret;
2648 }
2649
2650 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2651 __acquires(&cgroup_threadgroup_rwsem)
2652 {
2653 struct task_struct *tsk;
2654 pid_t pid;
2655
2656 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2657 return ERR_PTR(-EINVAL);
2658
2659 percpu_down_write(&cgroup_threadgroup_rwsem);
2660
2661 rcu_read_lock();
2662 if (pid) {
2663 tsk = find_task_by_vpid(pid);
2664 if (!tsk) {
2665 tsk = ERR_PTR(-ESRCH);
2666 goto out_unlock_threadgroup;
2667 }
2668 } else {
2669 tsk = current;
2670 }
2671
2672 if (threadgroup)
2673 tsk = tsk->group_leader;
2674
2675 /*
2676 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2677 * If userland migrates such a kthread to a non-root cgroup, it can
2678 * become trapped in a cpuset, or RT kthread may be born in a
2679 * cgroup with no rt_runtime allocated. Just say no.
2680 */
2681 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2682 tsk = ERR_PTR(-EINVAL);
2683 goto out_unlock_threadgroup;
2684 }
2685
2686 get_task_struct(tsk);
2687 goto out_unlock_rcu;
2688
2689 out_unlock_threadgroup:
2690 percpu_up_write(&cgroup_threadgroup_rwsem);
2691 out_unlock_rcu:
2692 rcu_read_unlock();
2693 return tsk;
2694 }
2695
2696 void cgroup_procs_write_finish(struct task_struct *task)
2697 __releases(&cgroup_threadgroup_rwsem)
2698 {
2699 struct cgroup_subsys *ss;
2700 int ssid;
2701
2702 /* release reference from cgroup_procs_write_start() */
2703 put_task_struct(task);
2704
2705 percpu_up_write(&cgroup_threadgroup_rwsem);
2706 for_each_subsys(ss, ssid)
2707 if (ss->post_attach)
2708 ss->post_attach();
2709 }
2710
2711 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2712 {
2713 struct cgroup_subsys *ss;
2714 bool printed = false;
2715 int ssid;
2716
2717 do_each_subsys_mask(ss, ssid, ss_mask) {
2718 if (printed)
2719 seq_putc(seq, ' ');
2720 seq_printf(seq, "%s", ss->name);
2721 printed = true;
2722 } while_each_subsys_mask();
2723 if (printed)
2724 seq_putc(seq, '\n');
2725 }
2726
2727 /* show controllers which are enabled from the parent */
2728 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2729 {
2730 struct cgroup *cgrp = seq_css(seq)->cgroup;
2731
2732 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2733 return 0;
2734 }
2735
2736 /* show controllers which are enabled for a given cgroup's children */
2737 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2738 {
2739 struct cgroup *cgrp = seq_css(seq)->cgroup;
2740
2741 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2742 return 0;
2743 }
2744
2745 /**
2746 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2747 * @cgrp: root of the subtree to update csses for
2748 *
2749 * @cgrp's control masks have changed and its subtree's css associations
2750 * need to be updated accordingly. This function looks up all css_sets
2751 * which are attached to the subtree, creates the matching updated css_sets
2752 * and migrates the tasks to the new ones.
2753 */
2754 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2755 {
2756 DEFINE_CGROUP_MGCTX(mgctx);
2757 struct cgroup_subsys_state *d_css;
2758 struct cgroup *dsct;
2759 struct css_set *src_cset;
2760 int ret;
2761
2762 lockdep_assert_held(&cgroup_mutex);
2763
2764 percpu_down_write(&cgroup_threadgroup_rwsem);
2765
2766 /* look up all csses currently attached to @cgrp's subtree */
2767 spin_lock_irq(&css_set_lock);
2768 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2769 struct cgrp_cset_link *link;
2770
2771 list_for_each_entry(link, &dsct->cset_links, cset_link)
2772 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2773 }
2774 spin_unlock_irq(&css_set_lock);
2775
2776 /* NULL dst indicates self on default hierarchy */
2777 ret = cgroup_migrate_prepare_dst(&mgctx);
2778 if (ret)
2779 goto out_finish;
2780
2781 spin_lock_irq(&css_set_lock);
2782 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2783 struct task_struct *task, *ntask;
2784
2785 /* all tasks in src_csets need to be migrated */
2786 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2787 cgroup_migrate_add_task(task, &mgctx);
2788 }
2789 spin_unlock_irq(&css_set_lock);
2790
2791 ret = cgroup_migrate_execute(&mgctx);
2792 out_finish:
2793 cgroup_migrate_finish(&mgctx);
2794 percpu_up_write(&cgroup_threadgroup_rwsem);
2795 return ret;
2796 }
2797
2798 /**
2799 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2800 * @cgrp: root of the target subtree
2801 *
2802 * Because css offlining is asynchronous, userland may try to re-enable a
2803 * controller while the previous css is still around. This function grabs
2804 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2805 */
2806 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2807 __acquires(&cgroup_mutex)
2808 {
2809 struct cgroup *dsct;
2810 struct cgroup_subsys_state *d_css;
2811 struct cgroup_subsys *ss;
2812 int ssid;
2813
2814 restart:
2815 mutex_lock(&cgroup_mutex);
2816
2817 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2818 for_each_subsys(ss, ssid) {
2819 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2820 DEFINE_WAIT(wait);
2821
2822 if (!css || !percpu_ref_is_dying(&css->refcnt))
2823 continue;
2824
2825 cgroup_get_live(dsct);
2826 prepare_to_wait(&dsct->offline_waitq, &wait,
2827 TASK_UNINTERRUPTIBLE);
2828
2829 mutex_unlock(&cgroup_mutex);
2830 schedule();
2831 finish_wait(&dsct->offline_waitq, &wait);
2832
2833 cgroup_put(dsct);
2834 goto restart;
2835 }
2836 }
2837 }
2838
2839 /**
2840 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2841 * @cgrp: root of the target subtree
2842 *
2843 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2844 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2845 * itself.
2846 */
2847 static void cgroup_save_control(struct cgroup *cgrp)
2848 {
2849 struct cgroup *dsct;
2850 struct cgroup_subsys_state *d_css;
2851
2852 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2853 dsct->old_subtree_control = dsct->subtree_control;
2854 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2855 dsct->old_dom_cgrp = dsct->dom_cgrp;
2856 }
2857 }
2858
2859 /**
2860 * cgroup_propagate_control - refresh control masks of a subtree
2861 * @cgrp: root of the target subtree
2862 *
2863 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2864 * ->subtree_control and propagate controller availability through the
2865 * subtree so that descendants don't have unavailable controllers enabled.
2866 */
2867 static void cgroup_propagate_control(struct cgroup *cgrp)
2868 {
2869 struct cgroup *dsct;
2870 struct cgroup_subsys_state *d_css;
2871
2872 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2873 dsct->subtree_control &= cgroup_control(dsct);
2874 dsct->subtree_ss_mask =
2875 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2876 cgroup_ss_mask(dsct));
2877 }
2878 }
2879
2880 /**
2881 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2882 * @cgrp: root of the target subtree
2883 *
2884 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2885 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2886 * itself.
2887 */
2888 static void cgroup_restore_control(struct cgroup *cgrp)
2889 {
2890 struct cgroup *dsct;
2891 struct cgroup_subsys_state *d_css;
2892
2893 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2894 dsct->subtree_control = dsct->old_subtree_control;
2895 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2896 dsct->dom_cgrp = dsct->old_dom_cgrp;
2897 }
2898 }
2899
2900 static bool css_visible(struct cgroup_subsys_state *css)
2901 {
2902 struct cgroup_subsys *ss = css->ss;
2903 struct cgroup *cgrp = css->cgroup;
2904
2905 if (cgroup_control(cgrp) & (1 << ss->id))
2906 return true;
2907 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2908 return false;
2909 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2910 }
2911
2912 /**
2913 * cgroup_apply_control_enable - enable or show csses according to control
2914 * @cgrp: root of the target subtree
2915 *
2916 * Walk @cgrp's subtree and create new csses or make the existing ones
2917 * visible. A css is created invisible if it's being implicitly enabled
2918 * through dependency. An invisible css is made visible when the userland
2919 * explicitly enables it.
2920 *
2921 * Returns 0 on success, -errno on failure. On failure, csses which have
2922 * been processed already aren't cleaned up. The caller is responsible for
2923 * cleaning up with cgroup_apply_control_disable().
2924 */
2925 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2926 {
2927 struct cgroup *dsct;
2928 struct cgroup_subsys_state *d_css;
2929 struct cgroup_subsys *ss;
2930 int ssid, ret;
2931
2932 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2933 for_each_subsys(ss, ssid) {
2934 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2935
2936 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2937
2938 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2939 continue;
2940
2941 if (!css) {
2942 css = css_create(dsct, ss);
2943 if (IS_ERR(css))
2944 return PTR_ERR(css);
2945 }
2946
2947 if (css_visible(css)) {
2948 ret = css_populate_dir(css);
2949 if (ret)
2950 return ret;
2951 }
2952 }
2953 }
2954
2955 return 0;
2956 }
2957
2958 /**
2959 * cgroup_apply_control_disable - kill or hide csses according to control
2960 * @cgrp: root of the target subtree
2961 *
2962 * Walk @cgrp's subtree and kill and hide csses so that they match
2963 * cgroup_ss_mask() and cgroup_visible_mask().
2964 *
2965 * A css is hidden when the userland requests it to be disabled while other
2966 * subsystems are still depending on it. The css must not actively control
2967 * resources and be in the vanilla state if it's made visible again later.
2968 * Controllers which may be depended upon should provide ->css_reset() for
2969 * this purpose.
2970 */
2971 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2972 {
2973 struct cgroup *dsct;
2974 struct cgroup_subsys_state *d_css;
2975 struct cgroup_subsys *ss;
2976 int ssid;
2977
2978 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2979 for_each_subsys(ss, ssid) {
2980 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2981
2982 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2983
2984 if (!css)
2985 continue;
2986
2987 if (css->parent &&
2988 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2989 kill_css(css);
2990 } else if (!css_visible(css)) {
2991 css_clear_dir(css);
2992 if (ss->css_reset)
2993 ss->css_reset(css);
2994 }
2995 }
2996 }
2997 }
2998
2999 /**
3000 * cgroup_apply_control - apply control mask updates to the subtree
3001 * @cgrp: root of the target subtree
3002 *
3003 * subsystems can be enabled and disabled in a subtree using the following
3004 * steps.
3005 *
3006 * 1. Call cgroup_save_control() to stash the current state.
3007 * 2. Update ->subtree_control masks in the subtree as desired.
3008 * 3. Call cgroup_apply_control() to apply the changes.
3009 * 4. Optionally perform other related operations.
3010 * 5. Call cgroup_finalize_control() to finish up.
3011 *
3012 * This function implements step 3 and propagates the mask changes
3013 * throughout @cgrp's subtree, updates csses accordingly and perform
3014 * process migrations.
3015 */
3016 static int cgroup_apply_control(struct cgroup *cgrp)
3017 {
3018 int ret;
3019
3020 cgroup_propagate_control(cgrp);
3021
3022 ret = cgroup_apply_control_enable(cgrp);
3023 if (ret)
3024 return ret;
3025
3026 /*
3027 * At this point, cgroup_e_css() results reflect the new csses
3028 * making the following cgroup_update_dfl_csses() properly update
3029 * css associations of all tasks in the subtree.
3030 */
3031 ret = cgroup_update_dfl_csses(cgrp);
3032 if (ret)
3033 return ret;
3034
3035 return 0;
3036 }
3037
3038 /**
3039 * cgroup_finalize_control - finalize control mask update
3040 * @cgrp: root of the target subtree
3041 * @ret: the result of the update
3042 *
3043 * Finalize control mask update. See cgroup_apply_control() for more info.
3044 */
3045 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3046 {
3047 if (ret) {
3048 cgroup_restore_control(cgrp);
3049 cgroup_propagate_control(cgrp);
3050 }
3051
3052 cgroup_apply_control_disable(cgrp);
3053 }
3054
3055 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3056 {
3057 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3058
3059 /* if nothing is getting enabled, nothing to worry about */
3060 if (!enable)
3061 return 0;
3062
3063 /* can @cgrp host any resources? */
3064 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3065 return -EOPNOTSUPP;
3066
3067 /* mixables don't care */
3068 if (cgroup_is_mixable(cgrp))
3069 return 0;
3070
3071 if (domain_enable) {
3072 /* can't enable domain controllers inside a thread subtree */
3073 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3074 return -EOPNOTSUPP;
3075 } else {
3076 /*
3077 * Threaded controllers can handle internal competitions
3078 * and are always allowed inside a (prospective) thread
3079 * subtree.
3080 */
3081 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3082 return 0;
3083 }
3084
3085 /*
3086 * Controllers can't be enabled for a cgroup with tasks to avoid
3087 * child cgroups competing against tasks.
3088 */
3089 if (cgroup_has_tasks(cgrp))
3090 return -EBUSY;
3091
3092 return 0;
3093 }
3094
3095 /* change the enabled child controllers for a cgroup in the default hierarchy */
3096 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3097 char *buf, size_t nbytes,
3098 loff_t off)
3099 {
3100 u16 enable = 0, disable = 0;
3101 struct cgroup *cgrp, *child;
3102 struct cgroup_subsys *ss;
3103 char *tok;
3104 int ssid, ret;
3105
3106 /*
3107 * Parse input - space separated list of subsystem names prefixed
3108 * with either + or -.
3109 */
3110 buf = strstrip(buf);
3111 while ((tok = strsep(&buf, " "))) {
3112 if (tok[0] == '\0')
3113 continue;
3114 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3115 if (!cgroup_ssid_enabled(ssid) ||
3116 strcmp(tok + 1, ss->name))
3117 continue;
3118
3119 if (*tok == '+') {
3120 enable |= 1 << ssid;
3121 disable &= ~(1 << ssid);
3122 } else if (*tok == '-') {
3123 disable |= 1 << ssid;
3124 enable &= ~(1 << ssid);
3125 } else {
3126 return -EINVAL;
3127 }
3128 break;
3129 } while_each_subsys_mask();
3130 if (ssid == CGROUP_SUBSYS_COUNT)
3131 return -EINVAL;
3132 }
3133
3134 cgrp = cgroup_kn_lock_live(of->kn, true);
3135 if (!cgrp)
3136 return -ENODEV;
3137
3138 for_each_subsys(ss, ssid) {
3139 if (enable & (1 << ssid)) {
3140 if (cgrp->subtree_control & (1 << ssid)) {
3141 enable &= ~(1 << ssid);
3142 continue;
3143 }
3144
3145 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3146 ret = -ENOENT;
3147 goto out_unlock;
3148 }
3149 } else if (disable & (1 << ssid)) {
3150 if (!(cgrp->subtree_control & (1 << ssid))) {
3151 disable &= ~(1 << ssid);
3152 continue;
3153 }
3154
3155 /* a child has it enabled? */
3156 cgroup_for_each_live_child(child, cgrp) {
3157 if (child->subtree_control & (1 << ssid)) {
3158 ret = -EBUSY;
3159 goto out_unlock;
3160 }
3161 }
3162 }
3163 }
3164
3165 if (!enable && !disable) {
3166 ret = 0;
3167 goto out_unlock;
3168 }
3169
3170 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3171 if (ret)
3172 goto out_unlock;
3173
3174 /* save and update control masks and prepare csses */
3175 cgroup_save_control(cgrp);
3176
3177 cgrp->subtree_control |= enable;
3178 cgrp->subtree_control &= ~disable;
3179
3180 ret = cgroup_apply_control(cgrp);
3181 cgroup_finalize_control(cgrp, ret);
3182 if (ret)
3183 goto out_unlock;
3184
3185 kernfs_activate(cgrp->kn);
3186 out_unlock:
3187 cgroup_kn_unlock(of->kn);
3188 return ret ?: nbytes;
3189 }
3190
3191 /**
3192 * cgroup_enable_threaded - make @cgrp threaded
3193 * @cgrp: the target cgroup
3194 *
3195 * Called when "threaded" is written to the cgroup.type interface file and
3196 * tries to make @cgrp threaded and join the parent's resource domain.
3197 * This function is never called on the root cgroup as cgroup.type doesn't
3198 * exist on it.
3199 */
3200 static int cgroup_enable_threaded(struct cgroup *cgrp)
3201 {
3202 struct cgroup *parent = cgroup_parent(cgrp);
3203 struct cgroup *dom_cgrp = parent->dom_cgrp;
3204 struct cgroup *dsct;
3205 struct cgroup_subsys_state *d_css;
3206 int ret;
3207
3208 lockdep_assert_held(&cgroup_mutex);
3209
3210 /* noop if already threaded */
3211 if (cgroup_is_threaded(cgrp))
3212 return 0;
3213
3214 /*
3215 * If @cgroup is populated or has domain controllers enabled, it
3216 * can't be switched. While the below cgroup_can_be_thread_root()
3217 * test can catch the same conditions, that's only when @parent is
3218 * not mixable, so let's check it explicitly.
3219 */
3220 if (cgroup_is_populated(cgrp) ||
3221 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3222 return -EOPNOTSUPP;
3223
3224 /* we're joining the parent's domain, ensure its validity */
3225 if (!cgroup_is_valid_domain(dom_cgrp) ||
3226 !cgroup_can_be_thread_root(dom_cgrp))
3227 return -EOPNOTSUPP;
3228
3229 /*
3230 * The following shouldn't cause actual migrations and should
3231 * always succeed.
3232 */
3233 cgroup_save_control(cgrp);
3234
3235 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3236 if (dsct == cgrp || cgroup_is_threaded(dsct))
3237 dsct->dom_cgrp = dom_cgrp;
3238
3239 ret = cgroup_apply_control(cgrp);
3240 if (!ret)
3241 parent->nr_threaded_children++;
3242
3243 cgroup_finalize_control(cgrp, ret);
3244 return ret;
3245 }
3246
3247 static int cgroup_type_show(struct seq_file *seq, void *v)
3248 {
3249 struct cgroup *cgrp = seq_css(seq)->cgroup;
3250
3251 if (cgroup_is_threaded(cgrp))
3252 seq_puts(seq, "threaded\n");
3253 else if (!cgroup_is_valid_domain(cgrp))
3254 seq_puts(seq, "domain invalid\n");
3255 else if (cgroup_is_thread_root(cgrp))
3256 seq_puts(seq, "domain threaded\n");
3257 else
3258 seq_puts(seq, "domain\n");
3259
3260 return 0;
3261 }
3262
3263 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3264 size_t nbytes, loff_t off)
3265 {
3266 struct cgroup *cgrp;
3267 int ret;
3268
3269 /* only switching to threaded mode is supported */
3270 if (strcmp(strstrip(buf), "threaded"))
3271 return -EINVAL;
3272
3273 cgrp = cgroup_kn_lock_live(of->kn, false);
3274 if (!cgrp)
3275 return -ENOENT;
3276
3277 /* threaded can only be enabled */
3278 ret = cgroup_enable_threaded(cgrp);
3279
3280 cgroup_kn_unlock(of->kn);
3281 return ret ?: nbytes;
3282 }
3283
3284 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3285 {
3286 struct cgroup *cgrp = seq_css(seq)->cgroup;
3287 int descendants = READ_ONCE(cgrp->max_descendants);
3288
3289 if (descendants == INT_MAX)
3290 seq_puts(seq, "max\n");
3291 else
3292 seq_printf(seq, "%d\n", descendants);
3293
3294 return 0;
3295 }
3296
3297 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3298 char *buf, size_t nbytes, loff_t off)
3299 {
3300 struct cgroup *cgrp;
3301 int descendants;
3302 ssize_t ret;
3303
3304 buf = strstrip(buf);
3305 if (!strcmp(buf, "max")) {
3306 descendants = INT_MAX;
3307 } else {
3308 ret = kstrtoint(buf, 0, &descendants);
3309 if (ret)
3310 return ret;
3311 }
3312
3313 if (descendants < 0)
3314 return -ERANGE;
3315
3316 cgrp = cgroup_kn_lock_live(of->kn, false);
3317 if (!cgrp)
3318 return -ENOENT;
3319
3320 cgrp->max_descendants = descendants;
3321
3322 cgroup_kn_unlock(of->kn);
3323
3324 return nbytes;
3325 }
3326
3327 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3328 {
3329 struct cgroup *cgrp = seq_css(seq)->cgroup;
3330 int depth = READ_ONCE(cgrp->max_depth);
3331
3332 if (depth == INT_MAX)
3333 seq_puts(seq, "max\n");
3334 else
3335 seq_printf(seq, "%d\n", depth);
3336
3337 return 0;
3338 }
3339
3340 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3341 char *buf, size_t nbytes, loff_t off)
3342 {
3343 struct cgroup *cgrp;
3344 ssize_t ret;
3345 int depth;
3346
3347 buf = strstrip(buf);
3348 if (!strcmp(buf, "max")) {
3349 depth = INT_MAX;
3350 } else {
3351 ret = kstrtoint(buf, 0, &depth);
3352 if (ret)
3353 return ret;
3354 }
3355
3356 if (depth < 0)
3357 return -ERANGE;
3358
3359 cgrp = cgroup_kn_lock_live(of->kn, false);
3360 if (!cgrp)
3361 return -ENOENT;
3362
3363 cgrp->max_depth = depth;
3364
3365 cgroup_kn_unlock(of->kn);
3366
3367 return nbytes;
3368 }
3369
3370 static int cgroup_events_show(struct seq_file *seq, void *v)
3371 {
3372 seq_printf(seq, "populated %d\n",
3373 cgroup_is_populated(seq_css(seq)->cgroup));
3374 return 0;
3375 }
3376
3377 static int cgroup_stat_show(struct seq_file *seq, void *v)
3378 {
3379 struct cgroup *cgroup = seq_css(seq)->cgroup;
3380
3381 seq_printf(seq, "nr_descendants %d\n",
3382 cgroup->nr_descendants);
3383 seq_printf(seq, "nr_dying_descendants %d\n",
3384 cgroup->nr_dying_descendants);
3385
3386 return 0;
3387 }
3388
3389 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3390 struct cgroup *cgrp, int ssid)
3391 {
3392 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3393 struct cgroup_subsys_state *css;
3394 int ret;
3395
3396 if (!ss->css_extra_stat_show)
3397 return 0;
3398
3399 css = cgroup_tryget_css(cgrp, ss);
3400 if (!css)
3401 return 0;
3402
3403 ret = ss->css_extra_stat_show(seq, css);
3404 css_put(css);
3405 return ret;
3406 }
3407
3408 static int cpu_stat_show(struct seq_file *seq, void *v)
3409 {
3410 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3411 int ret = 0;
3412
3413 cgroup_base_stat_cputime_show(seq);
3414 #ifdef CONFIG_CGROUP_SCHED
3415 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3416 #endif
3417 return ret;
3418 }
3419
3420 #ifdef CONFIG_PSI
3421 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3422 {
3423 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3424 }
3425 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3426 {
3427 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3428 }
3429 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3430 {
3431 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3432 }
3433 #endif
3434
3435 static int cgroup_file_open(struct kernfs_open_file *of)
3436 {
3437 struct cftype *cft = of->kn->priv;
3438
3439 if (cft->open)
3440 return cft->open(of);
3441 return 0;
3442 }
3443
3444 static void cgroup_file_release(struct kernfs_open_file *of)
3445 {
3446 struct cftype *cft = of->kn->priv;
3447
3448 if (cft->release)
3449 cft->release(of);
3450 }
3451
3452 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3453 size_t nbytes, loff_t off)
3454 {
3455 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3456 struct cgroup *cgrp = of->kn->parent->priv;
3457 struct cftype *cft = of->kn->priv;
3458 struct cgroup_subsys_state *css;
3459 int ret;
3460
3461 /*
3462 * If namespaces are delegation boundaries, disallow writes to
3463 * files in an non-init namespace root from inside the namespace
3464 * except for the files explicitly marked delegatable -
3465 * cgroup.procs and cgroup.subtree_control.
3466 */
3467 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3468 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3469 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3470 return -EPERM;
3471
3472 if (cft->write)
3473 return cft->write(of, buf, nbytes, off);
3474
3475 /*
3476 * kernfs guarantees that a file isn't deleted with operations in
3477 * flight, which means that the matching css is and stays alive and
3478 * doesn't need to be pinned. The RCU locking is not necessary
3479 * either. It's just for the convenience of using cgroup_css().
3480 */
3481 rcu_read_lock();
3482 css = cgroup_css(cgrp, cft->ss);
3483 rcu_read_unlock();
3484
3485 if (cft->write_u64) {
3486 unsigned long long v;
3487 ret = kstrtoull(buf, 0, &v);
3488 if (!ret)
3489 ret = cft->write_u64(css, cft, v);
3490 } else if (cft->write_s64) {
3491 long long v;
3492 ret = kstrtoll(buf, 0, &v);
3493 if (!ret)
3494 ret = cft->write_s64(css, cft, v);
3495 } else {
3496 ret = -EINVAL;
3497 }
3498
3499 return ret ?: nbytes;
3500 }
3501
3502 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3503 {
3504 return seq_cft(seq)->seq_start(seq, ppos);
3505 }
3506
3507 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3508 {
3509 return seq_cft(seq)->seq_next(seq, v, ppos);
3510 }
3511
3512 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3513 {
3514 if (seq_cft(seq)->seq_stop)
3515 seq_cft(seq)->seq_stop(seq, v);
3516 }
3517
3518 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3519 {
3520 struct cftype *cft = seq_cft(m);
3521 struct cgroup_subsys_state *css = seq_css(m);
3522
3523 if (cft->seq_show)
3524 return cft->seq_show(m, arg);
3525
3526 if (cft->read_u64)
3527 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3528 else if (cft->read_s64)
3529 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3530 else
3531 return -EINVAL;
3532 return 0;
3533 }
3534
3535 static struct kernfs_ops cgroup_kf_single_ops = {
3536 .atomic_write_len = PAGE_SIZE,
3537 .open = cgroup_file_open,
3538 .release = cgroup_file_release,
3539 .write = cgroup_file_write,
3540 .seq_show = cgroup_seqfile_show,
3541 };
3542
3543 static struct kernfs_ops cgroup_kf_ops = {
3544 .atomic_write_len = PAGE_SIZE,
3545 .open = cgroup_file_open,
3546 .release = cgroup_file_release,
3547 .write = cgroup_file_write,
3548 .seq_start = cgroup_seqfile_start,
3549 .seq_next = cgroup_seqfile_next,
3550 .seq_stop = cgroup_seqfile_stop,
3551 .seq_show = cgroup_seqfile_show,
3552 };
3553
3554 /* set uid and gid of cgroup dirs and files to that of the creator */
3555 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3556 {
3557 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3558 .ia_uid = current_fsuid(),
3559 .ia_gid = current_fsgid(), };
3560
3561 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3562 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3563 return 0;
3564
3565 return kernfs_setattr(kn, &iattr);
3566 }
3567
3568 static void cgroup_file_notify_timer(struct timer_list *timer)
3569 {
3570 cgroup_file_notify(container_of(timer, struct cgroup_file,
3571 notify_timer));
3572 }
3573
3574 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3575 struct cftype *cft)
3576 {
3577 char name[CGROUP_FILE_NAME_MAX];
3578 struct kernfs_node *kn;
3579 struct lock_class_key *key = NULL;
3580 int ret;
3581
3582 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3583 key = &cft->lockdep_key;
3584 #endif
3585 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3586 cgroup_file_mode(cft),
3587 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3588 0, cft->kf_ops, cft,
3589 NULL, key);
3590 if (IS_ERR(kn))
3591 return PTR_ERR(kn);
3592
3593 ret = cgroup_kn_set_ugid(kn);
3594 if (ret) {
3595 kernfs_remove(kn);
3596 return ret;
3597 }
3598
3599 if (cft->file_offset) {
3600 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3601
3602 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3603
3604 spin_lock_irq(&cgroup_file_kn_lock);
3605 cfile->kn = kn;
3606 spin_unlock_irq(&cgroup_file_kn_lock);
3607 }
3608
3609 return 0;
3610 }
3611
3612 /**
3613 * cgroup_addrm_files - add or remove files to a cgroup directory
3614 * @css: the target css
3615 * @cgrp: the target cgroup (usually css->cgroup)
3616 * @cfts: array of cftypes to be added
3617 * @is_add: whether to add or remove
3618 *
3619 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3620 * For removals, this function never fails.
3621 */
3622 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3623 struct cgroup *cgrp, struct cftype cfts[],
3624 bool is_add)
3625 {
3626 struct cftype *cft, *cft_end = NULL;
3627 int ret = 0;
3628
3629 lockdep_assert_held(&cgroup_mutex);
3630
3631 restart:
3632 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3633 /* does cft->flags tell us to skip this file on @cgrp? */
3634 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3635 continue;
3636 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3637 continue;
3638 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3639 continue;
3640 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3641 continue;
3642
3643 if (is_add) {
3644 ret = cgroup_add_file(css, cgrp, cft);
3645 if (ret) {
3646 pr_warn("%s: failed to add %s, err=%d\n",
3647 __func__, cft->name, ret);
3648 cft_end = cft;
3649 is_add = false;
3650 goto restart;
3651 }
3652 } else {
3653 cgroup_rm_file(cgrp, cft);
3654 }
3655 }
3656 return ret;
3657 }
3658
3659 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3660 {
3661 struct cgroup_subsys *ss = cfts[0].ss;
3662 struct cgroup *root = &ss->root->cgrp;
3663 struct cgroup_subsys_state *css;
3664 int ret = 0;
3665
3666 lockdep_assert_held(&cgroup_mutex);
3667
3668 /* add/rm files for all cgroups created before */
3669 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3670 struct cgroup *cgrp = css->cgroup;
3671
3672 if (!(css->flags & CSS_VISIBLE))
3673 continue;
3674
3675 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3676 if (ret)
3677 break;
3678 }
3679
3680 if (is_add && !ret)
3681 kernfs_activate(root->kn);
3682 return ret;
3683 }
3684
3685 static void cgroup_exit_cftypes(struct cftype *cfts)
3686 {
3687 struct cftype *cft;
3688
3689 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3690 /* free copy for custom atomic_write_len, see init_cftypes() */
3691 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3692 kfree(cft->kf_ops);
3693 cft->kf_ops = NULL;
3694 cft->ss = NULL;
3695
3696 /* revert flags set by cgroup core while adding @cfts */
3697 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3698 }
3699 }
3700
3701 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3702 {
3703 struct cftype *cft;
3704
3705 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3706 struct kernfs_ops *kf_ops;
3707
3708 WARN_ON(cft->ss || cft->kf_ops);
3709
3710 if (cft->seq_start)
3711 kf_ops = &cgroup_kf_ops;
3712 else
3713 kf_ops = &cgroup_kf_single_ops;
3714
3715 /*
3716 * Ugh... if @cft wants a custom max_write_len, we need to
3717 * make a copy of kf_ops to set its atomic_write_len.
3718 */
3719 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3720 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3721 if (!kf_ops) {
3722 cgroup_exit_cftypes(cfts);
3723 return -ENOMEM;
3724 }
3725 kf_ops->atomic_write_len = cft->max_write_len;
3726 }
3727
3728 cft->kf_ops = kf_ops;
3729 cft->ss = ss;
3730 }
3731
3732 return 0;
3733 }
3734
3735 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3736 {
3737 lockdep_assert_held(&cgroup_mutex);
3738
3739 if (!cfts || !cfts[0].ss)
3740 return -ENOENT;
3741
3742 list_del(&cfts->node);
3743 cgroup_apply_cftypes(cfts, false);
3744 cgroup_exit_cftypes(cfts);
3745 return 0;
3746 }
3747
3748 /**
3749 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3750 * @cfts: zero-length name terminated array of cftypes
3751 *
3752 * Unregister @cfts. Files described by @cfts are removed from all
3753 * existing cgroups and all future cgroups won't have them either. This
3754 * function can be called anytime whether @cfts' subsys is attached or not.
3755 *
3756 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3757 * registered.
3758 */
3759 int cgroup_rm_cftypes(struct cftype *cfts)
3760 {
3761 int ret;
3762
3763 mutex_lock(&cgroup_mutex);
3764 ret = cgroup_rm_cftypes_locked(cfts);
3765 mutex_unlock(&cgroup_mutex);
3766 return ret;
3767 }
3768
3769 /**
3770 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3771 * @ss: target cgroup subsystem
3772 * @cfts: zero-length name terminated array of cftypes
3773 *
3774 * Register @cfts to @ss. Files described by @cfts are created for all
3775 * existing cgroups to which @ss is attached and all future cgroups will
3776 * have them too. This function can be called anytime whether @ss is
3777 * attached or not.
3778 *
3779 * Returns 0 on successful registration, -errno on failure. Note that this
3780 * function currently returns 0 as long as @cfts registration is successful
3781 * even if some file creation attempts on existing cgroups fail.
3782 */
3783 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3784 {
3785 int ret;
3786
3787 if (!cgroup_ssid_enabled(ss->id))
3788 return 0;
3789
3790 if (!cfts || cfts[0].name[0] == '\0')
3791 return 0;
3792
3793 ret = cgroup_init_cftypes(ss, cfts);
3794 if (ret)
3795 return ret;
3796
3797 mutex_lock(&cgroup_mutex);
3798
3799 list_add_tail(&cfts->node, &ss->cfts);
3800 ret = cgroup_apply_cftypes(cfts, true);
3801 if (ret)
3802 cgroup_rm_cftypes_locked(cfts);
3803
3804 mutex_unlock(&cgroup_mutex);
3805 return ret;
3806 }
3807
3808 /**
3809 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3810 * @ss: target cgroup subsystem
3811 * @cfts: zero-length name terminated array of cftypes
3812 *
3813 * Similar to cgroup_add_cftypes() but the added files are only used for
3814 * the default hierarchy.
3815 */
3816 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3817 {
3818 struct cftype *cft;
3819
3820 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3821 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3822 return cgroup_add_cftypes(ss, cfts);
3823 }
3824
3825 /**
3826 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3827 * @ss: target cgroup subsystem
3828 * @cfts: zero-length name terminated array of cftypes
3829 *
3830 * Similar to cgroup_add_cftypes() but the added files are only used for
3831 * the legacy hierarchies.
3832 */
3833 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3834 {
3835 struct cftype *cft;
3836
3837 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3838 cft->flags |= __CFTYPE_NOT_ON_DFL;
3839 return cgroup_add_cftypes(ss, cfts);
3840 }
3841
3842 /**
3843 * cgroup_file_notify - generate a file modified event for a cgroup_file
3844 * @cfile: target cgroup_file
3845 *
3846 * @cfile must have been obtained by setting cftype->file_offset.
3847 */
3848 void cgroup_file_notify(struct cgroup_file *cfile)
3849 {
3850 unsigned long flags;
3851
3852 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3853 if (cfile->kn) {
3854 unsigned long last = cfile->notified_at;
3855 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3856
3857 if (time_in_range(jiffies, last, next)) {
3858 timer_reduce(&cfile->notify_timer, next);
3859 } else {
3860 kernfs_notify(cfile->kn);
3861 cfile->notified_at = jiffies;
3862 }
3863 }
3864 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3865 }
3866
3867 /**
3868 * css_next_child - find the next child of a given css
3869 * @pos: the current position (%NULL to initiate traversal)
3870 * @parent: css whose children to walk
3871 *
3872 * This function returns the next child of @parent and should be called
3873 * under either cgroup_mutex or RCU read lock. The only requirement is
3874 * that @parent and @pos are accessible. The next sibling is guaranteed to
3875 * be returned regardless of their states.
3876 *
3877 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3878 * css which finished ->css_online() is guaranteed to be visible in the
3879 * future iterations and will stay visible until the last reference is put.
3880 * A css which hasn't finished ->css_online() or already finished
3881 * ->css_offline() may show up during traversal. It's each subsystem's
3882 * responsibility to synchronize against on/offlining.
3883 */
3884 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3885 struct cgroup_subsys_state *parent)
3886 {
3887 struct cgroup_subsys_state *next;
3888
3889 cgroup_assert_mutex_or_rcu_locked();
3890
3891 /*
3892 * @pos could already have been unlinked from the sibling list.
3893 * Once a cgroup is removed, its ->sibling.next is no longer
3894 * updated when its next sibling changes. CSS_RELEASED is set when
3895 * @pos is taken off list, at which time its next pointer is valid,
3896 * and, as releases are serialized, the one pointed to by the next
3897 * pointer is guaranteed to not have started release yet. This
3898 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3899 * critical section, the one pointed to by its next pointer is
3900 * guaranteed to not have finished its RCU grace period even if we
3901 * have dropped rcu_read_lock() inbetween iterations.
3902 *
3903 * If @pos has CSS_RELEASED set, its next pointer can't be
3904 * dereferenced; however, as each css is given a monotonically
3905 * increasing unique serial number and always appended to the
3906 * sibling list, the next one can be found by walking the parent's
3907 * children until the first css with higher serial number than
3908 * @pos's. While this path can be slower, it happens iff iteration
3909 * races against release and the race window is very small.
3910 */
3911 if (!pos) {
3912 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3913 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3914 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3915 } else {
3916 list_for_each_entry_rcu(next, &parent->children, sibling)
3917 if (next->serial_nr > pos->serial_nr)
3918 break;
3919 }
3920
3921 /*
3922 * @next, if not pointing to the head, can be dereferenced and is
3923 * the next sibling.
3924 */
3925 if (&next->sibling != &parent->children)
3926 return next;
3927 return NULL;
3928 }
3929
3930 /**
3931 * css_next_descendant_pre - find the next descendant for pre-order walk
3932 * @pos: the current position (%NULL to initiate traversal)
3933 * @root: css whose descendants to walk
3934 *
3935 * To be used by css_for_each_descendant_pre(). Find the next descendant
3936 * to visit for pre-order traversal of @root's descendants. @root is
3937 * included in the iteration and the first node to be visited.
3938 *
3939 * While this function requires cgroup_mutex or RCU read locking, it
3940 * doesn't require the whole traversal to be contained in a single critical
3941 * section. This function will return the correct next descendant as long
3942 * as both @pos and @root are accessible and @pos is a descendant of @root.
3943 *
3944 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3945 * css which finished ->css_online() is guaranteed to be visible in the
3946 * future iterations and will stay visible until the last reference is put.
3947 * A css which hasn't finished ->css_online() or already finished
3948 * ->css_offline() may show up during traversal. It's each subsystem's
3949 * responsibility to synchronize against on/offlining.
3950 */
3951 struct cgroup_subsys_state *
3952 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3953 struct cgroup_subsys_state *root)
3954 {
3955 struct cgroup_subsys_state *next;
3956
3957 cgroup_assert_mutex_or_rcu_locked();
3958
3959 /* if first iteration, visit @root */
3960 if (!pos)
3961 return root;
3962
3963 /* visit the first child if exists */
3964 next = css_next_child(NULL, pos);
3965 if (next)
3966 return next;
3967
3968 /* no child, visit my or the closest ancestor's next sibling */
3969 while (pos != root) {
3970 next = css_next_child(pos, pos->parent);
3971 if (next)
3972 return next;
3973 pos = pos->parent;
3974 }
3975
3976 return NULL;
3977 }
3978
3979 /**
3980 * css_rightmost_descendant - return the rightmost descendant of a css
3981 * @pos: css of interest
3982 *
3983 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3984 * is returned. This can be used during pre-order traversal to skip
3985 * subtree of @pos.
3986 *
3987 * While this function requires cgroup_mutex or RCU read locking, it
3988 * doesn't require the whole traversal to be contained in a single critical
3989 * section. This function will return the correct rightmost descendant as
3990 * long as @pos is accessible.
3991 */
3992 struct cgroup_subsys_state *
3993 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3994 {
3995 struct cgroup_subsys_state *last, *tmp;
3996
3997 cgroup_assert_mutex_or_rcu_locked();
3998
3999 do {
4000 last = pos;
4001 /* ->prev isn't RCU safe, walk ->next till the end */
4002 pos = NULL;
4003 css_for_each_child(tmp, last)
4004 pos = tmp;
4005 } while (pos);
4006
4007 return last;
4008 }
4009
4010 static struct cgroup_subsys_state *
4011 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4012 {
4013 struct cgroup_subsys_state *last;
4014
4015 do {
4016 last = pos;
4017 pos = css_next_child(NULL, pos);
4018 } while (pos);
4019
4020 return last;
4021 }
4022
4023 /**
4024 * css_next_descendant_post - find the next descendant for post-order walk
4025 * @pos: the current position (%NULL to initiate traversal)
4026 * @root: css whose descendants to walk
4027 *
4028 * To be used by css_for_each_descendant_post(). Find the next descendant
4029 * to visit for post-order traversal of @root's descendants. @root is
4030 * included in the iteration and the last node to be visited.
4031 *
4032 * While this function requires cgroup_mutex or RCU read locking, it
4033 * doesn't require the whole traversal to be contained in a single critical
4034 * section. This function will return the correct next descendant as long
4035 * as both @pos and @cgroup are accessible and @pos is a descendant of
4036 * @cgroup.
4037 *
4038 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4039 * css which finished ->css_online() is guaranteed to be visible in the
4040 * future iterations and will stay visible until the last reference is put.
4041 * A css which hasn't finished ->css_online() or already finished
4042 * ->css_offline() may show up during traversal. It's each subsystem's
4043 * responsibility to synchronize against on/offlining.
4044 */
4045 struct cgroup_subsys_state *
4046 css_next_descendant_post(struct cgroup_subsys_state *pos,
4047 struct cgroup_subsys_state *root)
4048 {
4049 struct cgroup_subsys_state *next;
4050
4051 cgroup_assert_mutex_or_rcu_locked();
4052
4053 /* if first iteration, visit leftmost descendant which may be @root */
4054 if (!pos)
4055 return css_leftmost_descendant(root);
4056
4057 /* if we visited @root, we're done */
4058 if (pos == root)
4059 return NULL;
4060
4061 /* if there's an unvisited sibling, visit its leftmost descendant */
4062 next = css_next_child(pos, pos->parent);
4063 if (next)
4064 return css_leftmost_descendant(next);
4065
4066 /* no sibling left, visit parent */
4067 return pos->parent;
4068 }
4069
4070 /**
4071 * css_has_online_children - does a css have online children
4072 * @css: the target css
4073 *
4074 * Returns %true if @css has any online children; otherwise, %false. This
4075 * function can be called from any context but the caller is responsible
4076 * for synchronizing against on/offlining as necessary.
4077 */
4078 bool css_has_online_children(struct cgroup_subsys_state *css)
4079 {
4080 struct cgroup_subsys_state *child;
4081 bool ret = false;
4082
4083 rcu_read_lock();
4084 css_for_each_child(child, css) {
4085 if (child->flags & CSS_ONLINE) {
4086 ret = true;
4087 break;
4088 }
4089 }
4090 rcu_read_unlock();
4091 return ret;
4092 }
4093
4094 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4095 {
4096 struct list_head *l;
4097 struct cgrp_cset_link *link;
4098 struct css_set *cset;
4099
4100 lockdep_assert_held(&css_set_lock);
4101
4102 /* find the next threaded cset */
4103 if (it->tcset_pos) {
4104 l = it->tcset_pos->next;
4105
4106 if (l != it->tcset_head) {
4107 it->tcset_pos = l;
4108 return container_of(l, struct css_set,
4109 threaded_csets_node);
4110 }
4111
4112 it->tcset_pos = NULL;
4113 }
4114
4115 /* find the next cset */
4116 l = it->cset_pos;
4117 l = l->next;
4118 if (l == it->cset_head) {
4119 it->cset_pos = NULL;
4120 return NULL;
4121 }
4122
4123 if (it->ss) {
4124 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4125 } else {
4126 link = list_entry(l, struct cgrp_cset_link, cset_link);
4127 cset = link->cset;
4128 }
4129
4130 it->cset_pos = l;
4131
4132 /* initialize threaded css_set walking */
4133 if (it->flags & CSS_TASK_ITER_THREADED) {
4134 if (it->cur_dcset)
4135 put_css_set_locked(it->cur_dcset);
4136 it->cur_dcset = cset;
4137 get_css_set(cset);
4138
4139 it->tcset_head = &cset->threaded_csets;
4140 it->tcset_pos = &cset->threaded_csets;
4141 }
4142
4143 return cset;
4144 }
4145
4146 /**
4147 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4148 * @it: the iterator to advance
4149 *
4150 * Advance @it to the next css_set to walk.
4151 */
4152 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4153 {
4154 struct css_set *cset;
4155
4156 lockdep_assert_held(&css_set_lock);
4157
4158 /* Advance to the next non-empty css_set */
4159 do {
4160 cset = css_task_iter_next_css_set(it);
4161 if (!cset) {
4162 it->task_pos = NULL;
4163 return;
4164 }
4165 } while (!css_set_populated(cset));
4166
4167 if (!list_empty(&cset->tasks))
4168 it->task_pos = cset->tasks.next;
4169 else
4170 it->task_pos = cset->mg_tasks.next;
4171
4172 it->tasks_head = &cset->tasks;
4173 it->mg_tasks_head = &cset->mg_tasks;
4174
4175 /*
4176 * We don't keep css_sets locked across iteration steps and thus
4177 * need to take steps to ensure that iteration can be resumed after
4178 * the lock is re-acquired. Iteration is performed at two levels -
4179 * css_sets and tasks in them.
4180 *
4181 * Once created, a css_set never leaves its cgroup lists, so a
4182 * pinned css_set is guaranteed to stay put and we can resume
4183 * iteration afterwards.
4184 *
4185 * Tasks may leave @cset across iteration steps. This is resolved
4186 * by registering each iterator with the css_set currently being
4187 * walked and making css_set_move_task() advance iterators whose
4188 * next task is leaving.
4189 */
4190 if (it->cur_cset) {
4191 list_del(&it->iters_node);
4192 put_css_set_locked(it->cur_cset);
4193 }
4194 get_css_set(cset);
4195 it->cur_cset = cset;
4196 list_add(&it->iters_node, &cset->task_iters);
4197 }
4198
4199 static void css_task_iter_advance(struct css_task_iter *it)
4200 {
4201 struct list_head *next;
4202
4203 lockdep_assert_held(&css_set_lock);
4204 repeat:
4205 /*
4206 * Advance iterator to find next entry. cset->tasks is consumed
4207 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4208 * next cset.
4209 */
4210 next = it->task_pos->next;
4211
4212 if (next == it->tasks_head)
4213 next = it->mg_tasks_head->next;
4214
4215 if (next == it->mg_tasks_head)
4216 css_task_iter_advance_css_set(it);
4217 else
4218 it->task_pos = next;
4219
4220 /* if PROCS, skip over tasks which aren't group leaders */
4221 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4222 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4223 cg_list)))
4224 goto repeat;
4225 }
4226
4227 /**
4228 * css_task_iter_start - initiate task iteration
4229 * @css: the css to walk tasks of
4230 * @flags: CSS_TASK_ITER_* flags
4231 * @it: the task iterator to use
4232 *
4233 * Initiate iteration through the tasks of @css. The caller can call
4234 * css_task_iter_next() to walk through the tasks until the function
4235 * returns NULL. On completion of iteration, css_task_iter_end() must be
4236 * called.
4237 */
4238 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4239 struct css_task_iter *it)
4240 {
4241 /* no one should try to iterate before mounting cgroups */
4242 WARN_ON_ONCE(!use_task_css_set_links);
4243
4244 memset(it, 0, sizeof(*it));
4245
4246 spin_lock_irq(&css_set_lock);
4247
4248 it->ss = css->ss;
4249 it->flags = flags;
4250
4251 if (it->ss)
4252 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4253 else
4254 it->cset_pos = &css->cgroup->cset_links;
4255
4256 it->cset_head = it->cset_pos;
4257
4258 css_task_iter_advance_css_set(it);
4259
4260 spin_unlock_irq(&css_set_lock);
4261 }
4262
4263 /**
4264 * css_task_iter_next - return the next task for the iterator
4265 * @it: the task iterator being iterated
4266 *
4267 * The "next" function for task iteration. @it should have been
4268 * initialized via css_task_iter_start(). Returns NULL when the iteration
4269 * reaches the end.
4270 */
4271 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4272 {
4273 if (it->cur_task) {
4274 put_task_struct(it->cur_task);
4275 it->cur_task = NULL;
4276 }
4277
4278 spin_lock_irq(&css_set_lock);
4279
4280 if (it->task_pos) {
4281 it->cur_task = list_entry(it->task_pos, struct task_struct,
4282 cg_list);
4283 get_task_struct(it->cur_task);
4284 css_task_iter_advance(it);
4285 }
4286
4287 spin_unlock_irq(&css_set_lock);
4288
4289 return it->cur_task;
4290 }
4291
4292 /**
4293 * css_task_iter_end - finish task iteration
4294 * @it: the task iterator to finish
4295 *
4296 * Finish task iteration started by css_task_iter_start().
4297 */
4298 void css_task_iter_end(struct css_task_iter *it)
4299 {
4300 if (it->cur_cset) {
4301 spin_lock_irq(&css_set_lock);
4302 list_del(&it->iters_node);
4303 put_css_set_locked(it->cur_cset);
4304 spin_unlock_irq(&css_set_lock);
4305 }
4306
4307 if (it->cur_dcset)
4308 put_css_set(it->cur_dcset);
4309
4310 if (it->cur_task)
4311 put_task_struct(it->cur_task);
4312 }
4313
4314 static void cgroup_procs_release(struct kernfs_open_file *of)
4315 {
4316 if (of->priv) {
4317 css_task_iter_end(of->priv);
4318 kfree(of->priv);
4319 }
4320 }
4321
4322 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4323 {
4324 struct kernfs_open_file *of = s->private;
4325 struct css_task_iter *it = of->priv;
4326
4327 return css_task_iter_next(it);
4328 }
4329
4330 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4331 unsigned int iter_flags)
4332 {
4333 struct kernfs_open_file *of = s->private;
4334 struct cgroup *cgrp = seq_css(s)->cgroup;
4335 struct css_task_iter *it = of->priv;
4336
4337 /*
4338 * When a seq_file is seeked, it's always traversed sequentially
4339 * from position 0, so we can simply keep iterating on !0 *pos.
4340 */
4341 if (!it) {
4342 if (WARN_ON_ONCE((*pos)++))
4343 return ERR_PTR(-EINVAL);
4344
4345 it = kzalloc(sizeof(*it), GFP_KERNEL);
4346 if (!it)
4347 return ERR_PTR(-ENOMEM);
4348 of->priv = it;
4349 css_task_iter_start(&cgrp->self, iter_flags, it);
4350 } else if (!(*pos)++) {
4351 css_task_iter_end(it);
4352 css_task_iter_start(&cgrp->self, iter_flags, it);
4353 }
4354
4355 return cgroup_procs_next(s, NULL, NULL);
4356 }
4357
4358 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4359 {
4360 struct cgroup *cgrp = seq_css(s)->cgroup;
4361
4362 /*
4363 * All processes of a threaded subtree belong to the domain cgroup
4364 * of the subtree. Only threads can be distributed across the
4365 * subtree. Reject reads on cgroup.procs in the subtree proper.
4366 * They're always empty anyway.
4367 */
4368 if (cgroup_is_threaded(cgrp))
4369 return ERR_PTR(-EOPNOTSUPP);
4370
4371 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4372 CSS_TASK_ITER_THREADED);
4373 }
4374
4375 static int cgroup_procs_show(struct seq_file *s, void *v)
4376 {
4377 seq_printf(s, "%d\n", task_pid_vnr(v));
4378 return 0;
4379 }
4380
4381 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4382 struct cgroup *dst_cgrp,
4383 struct super_block *sb)
4384 {
4385 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4386 struct cgroup *com_cgrp = src_cgrp;
4387 struct inode *inode;
4388 int ret;
4389
4390 lockdep_assert_held(&cgroup_mutex);
4391
4392 /* find the common ancestor */
4393 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4394 com_cgrp = cgroup_parent(com_cgrp);
4395
4396 /* %current should be authorized to migrate to the common ancestor */
4397 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4398 if (!inode)
4399 return -ENOMEM;
4400
4401 ret = inode_permission(inode, MAY_WRITE);
4402 iput(inode);
4403 if (ret)
4404 return ret;
4405
4406 /*
4407 * If namespaces are delegation boundaries, %current must be able
4408 * to see both source and destination cgroups from its namespace.
4409 */
4410 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4411 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4412 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4413 return -ENOENT;
4414
4415 return 0;
4416 }
4417
4418 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4419 char *buf, size_t nbytes, loff_t off)
4420 {
4421 struct cgroup *src_cgrp, *dst_cgrp;
4422 struct task_struct *task;
4423 ssize_t ret;
4424
4425 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4426 if (!dst_cgrp)
4427 return -ENODEV;
4428
4429 task = cgroup_procs_write_start(buf, true);
4430 ret = PTR_ERR_OR_ZERO(task);
4431 if (ret)
4432 goto out_unlock;
4433
4434 /* find the source cgroup */
4435 spin_lock_irq(&css_set_lock);
4436 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4437 spin_unlock_irq(&css_set_lock);
4438
4439 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4440 of->file->f_path.dentry->d_sb);
4441 if (ret)
4442 goto out_finish;
4443
4444 ret = cgroup_attach_task(dst_cgrp, task, true);
4445
4446 out_finish:
4447 cgroup_procs_write_finish(task);
4448 out_unlock:
4449 cgroup_kn_unlock(of->kn);
4450
4451 return ret ?: nbytes;
4452 }
4453
4454 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4455 {
4456 return __cgroup_procs_start(s, pos, 0);
4457 }
4458
4459 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4460 char *buf, size_t nbytes, loff_t off)
4461 {
4462 struct cgroup *src_cgrp, *dst_cgrp;
4463 struct task_struct *task;
4464 ssize_t ret;
4465
4466 buf = strstrip(buf);
4467
4468 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4469 if (!dst_cgrp)
4470 return -ENODEV;
4471
4472 task = cgroup_procs_write_start(buf, false);
4473 ret = PTR_ERR_OR_ZERO(task);
4474 if (ret)
4475 goto out_unlock;
4476
4477 /* find the source cgroup */
4478 spin_lock_irq(&css_set_lock);
4479 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4480 spin_unlock_irq(&css_set_lock);
4481
4482 /* thread migrations follow the cgroup.procs delegation rule */
4483 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4484 of->file->f_path.dentry->d_sb);
4485 if (ret)
4486 goto out_finish;
4487
4488 /* and must be contained in the same domain */
4489 ret = -EOPNOTSUPP;
4490 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4491 goto out_finish;
4492
4493 ret = cgroup_attach_task(dst_cgrp, task, false);
4494
4495 out_finish:
4496 cgroup_procs_write_finish(task);
4497 out_unlock:
4498 cgroup_kn_unlock(of->kn);
4499
4500 return ret ?: nbytes;
4501 }
4502
4503 /* cgroup core interface files for the default hierarchy */
4504 static struct cftype cgroup_base_files[] = {
4505 {
4506 .name = "cgroup.type",
4507 .flags = CFTYPE_NOT_ON_ROOT,
4508 .seq_show = cgroup_type_show,
4509 .write = cgroup_type_write,
4510 },
4511 {
4512 .name = "cgroup.procs",
4513 .flags = CFTYPE_NS_DELEGATABLE,
4514 .file_offset = offsetof(struct cgroup, procs_file),
4515 .release = cgroup_procs_release,
4516 .seq_start = cgroup_procs_start,
4517 .seq_next = cgroup_procs_next,
4518 .seq_show = cgroup_procs_show,
4519 .write = cgroup_procs_write,
4520 },
4521 {
4522 .name = "cgroup.threads",
4523 .flags = CFTYPE_NS_DELEGATABLE,
4524 .release = cgroup_procs_release,
4525 .seq_start = cgroup_threads_start,
4526 .seq_next = cgroup_procs_next,
4527 .seq_show = cgroup_procs_show,
4528 .write = cgroup_threads_write,
4529 },
4530 {
4531 .name = "cgroup.controllers",
4532 .seq_show = cgroup_controllers_show,
4533 },
4534 {
4535 .name = "cgroup.subtree_control",
4536 .flags = CFTYPE_NS_DELEGATABLE,
4537 .seq_show = cgroup_subtree_control_show,
4538 .write = cgroup_subtree_control_write,
4539 },
4540 {
4541 .name = "cgroup.events",
4542 .flags = CFTYPE_NOT_ON_ROOT,
4543 .file_offset = offsetof(struct cgroup, events_file),
4544 .seq_show = cgroup_events_show,
4545 },
4546 {
4547 .name = "cgroup.max.descendants",
4548 .seq_show = cgroup_max_descendants_show,
4549 .write = cgroup_max_descendants_write,
4550 },
4551 {
4552 .name = "cgroup.max.depth",
4553 .seq_show = cgroup_max_depth_show,
4554 .write = cgroup_max_depth_write,
4555 },
4556 {
4557 .name = "cgroup.stat",
4558 .seq_show = cgroup_stat_show,
4559 },
4560 {
4561 .name = "cpu.stat",
4562 .flags = CFTYPE_NOT_ON_ROOT,
4563 .seq_show = cpu_stat_show,
4564 },
4565 #ifdef CONFIG_PSI
4566 {
4567 .name = "io.pressure",
4568 .flags = CFTYPE_NOT_ON_ROOT,
4569 .seq_show = cgroup_io_pressure_show,
4570 },
4571 {
4572 .name = "memory.pressure",
4573 .flags = CFTYPE_NOT_ON_ROOT,
4574 .seq_show = cgroup_memory_pressure_show,
4575 },
4576 {
4577 .name = "cpu.pressure",
4578 .flags = CFTYPE_NOT_ON_ROOT,
4579 .seq_show = cgroup_cpu_pressure_show,
4580 },
4581 #endif
4582 { } /* terminate */
4583 };
4584
4585 /*
4586 * css destruction is four-stage process.
4587 *
4588 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4589 * Implemented in kill_css().
4590 *
4591 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4592 * and thus css_tryget_online() is guaranteed to fail, the css can be
4593 * offlined by invoking offline_css(). After offlining, the base ref is
4594 * put. Implemented in css_killed_work_fn().
4595 *
4596 * 3. When the percpu_ref reaches zero, the only possible remaining
4597 * accessors are inside RCU read sections. css_release() schedules the
4598 * RCU callback.
4599 *
4600 * 4. After the grace period, the css can be freed. Implemented in
4601 * css_free_work_fn().
4602 *
4603 * It is actually hairier because both step 2 and 4 require process context
4604 * and thus involve punting to css->destroy_work adding two additional
4605 * steps to the already complex sequence.
4606 */
4607 static void css_free_rwork_fn(struct work_struct *work)
4608 {
4609 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4610 struct cgroup_subsys_state, destroy_rwork);
4611 struct cgroup_subsys *ss = css->ss;
4612 struct cgroup *cgrp = css->cgroup;
4613
4614 percpu_ref_exit(&css->refcnt);
4615
4616 if (ss) {
4617 /* css free path */
4618 struct cgroup_subsys_state *parent = css->parent;
4619 int id = css->id;
4620
4621 ss->css_free(css);
4622 cgroup_idr_remove(&ss->css_idr, id);
4623 cgroup_put(cgrp);
4624
4625 if (parent)
4626 css_put(parent);
4627 } else {
4628 /* cgroup free path */
4629 atomic_dec(&cgrp->root->nr_cgrps);
4630 cgroup1_pidlist_destroy_all(cgrp);
4631 cancel_work_sync(&cgrp->release_agent_work);
4632
4633 if (cgroup_parent(cgrp)) {
4634 /*
4635 * We get a ref to the parent, and put the ref when
4636 * this cgroup is being freed, so it's guaranteed
4637 * that the parent won't be destroyed before its
4638 * children.
4639 */
4640 cgroup_put(cgroup_parent(cgrp));
4641 kernfs_put(cgrp->kn);
4642 psi_cgroup_free(cgrp);
4643 if (cgroup_on_dfl(cgrp))
4644 cgroup_rstat_exit(cgrp);
4645 kfree(cgrp);
4646 } else {
4647 /*
4648 * This is root cgroup's refcnt reaching zero,
4649 * which indicates that the root should be
4650 * released.
4651 */
4652 cgroup_destroy_root(cgrp->root);
4653 }
4654 }
4655 }
4656
4657 static void css_release_work_fn(struct work_struct *work)
4658 {
4659 struct cgroup_subsys_state *css =
4660 container_of(work, struct cgroup_subsys_state, destroy_work);
4661 struct cgroup_subsys *ss = css->ss;
4662 struct cgroup *cgrp = css->cgroup;
4663
4664 mutex_lock(&cgroup_mutex);
4665
4666 css->flags |= CSS_RELEASED;
4667 list_del_rcu(&css->sibling);
4668
4669 if (ss) {
4670 /* css release path */
4671 if (!list_empty(&css->rstat_css_node)) {
4672 cgroup_rstat_flush(cgrp);
4673 list_del_rcu(&css->rstat_css_node);
4674 }
4675
4676 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4677 if (ss->css_released)
4678 ss->css_released(css);
4679 } else {
4680 struct cgroup *tcgrp;
4681
4682 /* cgroup release path */
4683 TRACE_CGROUP_PATH(release, cgrp);
4684
4685 if (cgroup_on_dfl(cgrp))
4686 cgroup_rstat_flush(cgrp);
4687
4688 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4689 tcgrp = cgroup_parent(tcgrp))
4690 tcgrp->nr_dying_descendants--;
4691
4692 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4693 cgrp->id = -1;
4694
4695 /*
4696 * There are two control paths which try to determine
4697 * cgroup from dentry without going through kernfs -
4698 * cgroupstats_build() and css_tryget_online_from_dir().
4699 * Those are supported by RCU protecting clearing of
4700 * cgrp->kn->priv backpointer.
4701 */
4702 if (cgrp->kn)
4703 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4704 NULL);
4705
4706 cgroup_bpf_put(cgrp);
4707 }
4708
4709 mutex_unlock(&cgroup_mutex);
4710
4711 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4712 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4713 }
4714
4715 static void css_release(struct percpu_ref *ref)
4716 {
4717 struct cgroup_subsys_state *css =
4718 container_of(ref, struct cgroup_subsys_state, refcnt);
4719
4720 INIT_WORK(&css->destroy_work, css_release_work_fn);
4721 queue_work(cgroup_destroy_wq, &css->destroy_work);
4722 }
4723
4724 static void init_and_link_css(struct cgroup_subsys_state *css,
4725 struct cgroup_subsys *ss, struct cgroup *cgrp)
4726 {
4727 lockdep_assert_held(&cgroup_mutex);
4728
4729 cgroup_get_live(cgrp);
4730
4731 memset(css, 0, sizeof(*css));
4732 css->cgroup = cgrp;
4733 css->ss = ss;
4734 css->id = -1;
4735 INIT_LIST_HEAD(&css->sibling);
4736 INIT_LIST_HEAD(&css->children);
4737 INIT_LIST_HEAD(&css->rstat_css_node);
4738 css->serial_nr = css_serial_nr_next++;
4739 atomic_set(&css->online_cnt, 0);
4740
4741 if (cgroup_parent(cgrp)) {
4742 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4743 css_get(css->parent);
4744 }
4745
4746 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4747 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4748
4749 BUG_ON(cgroup_css(cgrp, ss));
4750 }
4751
4752 /* invoke ->css_online() on a new CSS and mark it online if successful */
4753 static int online_css(struct cgroup_subsys_state *css)
4754 {
4755 struct cgroup_subsys *ss = css->ss;
4756 int ret = 0;
4757
4758 lockdep_assert_held(&cgroup_mutex);
4759
4760 if (ss->css_online)
4761 ret = ss->css_online(css);
4762 if (!ret) {
4763 css->flags |= CSS_ONLINE;
4764 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4765
4766 atomic_inc(&css->online_cnt);
4767 if (css->parent)
4768 atomic_inc(&css->parent->online_cnt);
4769 }
4770 return ret;
4771 }
4772
4773 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4774 static void offline_css(struct cgroup_subsys_state *css)
4775 {
4776 struct cgroup_subsys *ss = css->ss;
4777
4778 lockdep_assert_held(&cgroup_mutex);
4779
4780 if (!(css->flags & CSS_ONLINE))
4781 return;
4782
4783 if (ss->css_offline)
4784 ss->css_offline(css);
4785
4786 css->flags &= ~CSS_ONLINE;
4787 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4788
4789 wake_up_all(&css->cgroup->offline_waitq);
4790 }
4791
4792 /**
4793 * css_create - create a cgroup_subsys_state
4794 * @cgrp: the cgroup new css will be associated with
4795 * @ss: the subsys of new css
4796 *
4797 * Create a new css associated with @cgrp - @ss pair. On success, the new
4798 * css is online and installed in @cgrp. This function doesn't create the
4799 * interface files. Returns 0 on success, -errno on failure.
4800 */
4801 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4802 struct cgroup_subsys *ss)
4803 {
4804 struct cgroup *parent = cgroup_parent(cgrp);
4805 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4806 struct cgroup_subsys_state *css;
4807 int err;
4808
4809 lockdep_assert_held(&cgroup_mutex);
4810
4811 css = ss->css_alloc(parent_css);
4812 if (!css)
4813 css = ERR_PTR(-ENOMEM);
4814 if (IS_ERR(css))
4815 return css;
4816
4817 init_and_link_css(css, ss, cgrp);
4818
4819 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4820 if (err)
4821 goto err_free_css;
4822
4823 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4824 if (err < 0)
4825 goto err_free_css;
4826 css->id = err;
4827
4828 /* @css is ready to be brought online now, make it visible */
4829 list_add_tail_rcu(&css->sibling, &parent_css->children);
4830 cgroup_idr_replace(&ss->css_idr, css, css->id);
4831
4832 err = online_css(css);
4833 if (err)
4834 goto err_list_del;
4835
4836 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4837 cgroup_parent(parent)) {
4838 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4839 current->comm, current->pid, ss->name);
4840 if (!strcmp(ss->name, "memory"))
4841 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4842 ss->warned_broken_hierarchy = true;
4843 }
4844
4845 return css;
4846
4847 err_list_del:
4848 list_del_rcu(&css->sibling);
4849 err_free_css:
4850 list_del_rcu(&css->rstat_css_node);
4851 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4852 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4853 return ERR_PTR(err);
4854 }
4855
4856 /*
4857 * The returned cgroup is fully initialized including its control mask, but
4858 * it isn't associated with its kernfs_node and doesn't have the control
4859 * mask applied.
4860 */
4861 static struct cgroup *cgroup_create(struct cgroup *parent)
4862 {
4863 struct cgroup_root *root = parent->root;
4864 struct cgroup *cgrp, *tcgrp;
4865 int level = parent->level + 1;
4866 int ret;
4867
4868 /* allocate the cgroup and its ID, 0 is reserved for the root */
4869 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4870 GFP_KERNEL);
4871 if (!cgrp)
4872 return ERR_PTR(-ENOMEM);
4873
4874 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4875 if (ret)
4876 goto out_free_cgrp;
4877
4878 if (cgroup_on_dfl(parent)) {
4879 ret = cgroup_rstat_init(cgrp);
4880 if (ret)
4881 goto out_cancel_ref;
4882 }
4883
4884 /*
4885 * Temporarily set the pointer to NULL, so idr_find() won't return
4886 * a half-baked cgroup.
4887 */
4888 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4889 if (cgrp->id < 0) {
4890 ret = -ENOMEM;
4891 goto out_stat_exit;
4892 }
4893
4894 init_cgroup_housekeeping(cgrp);
4895
4896 cgrp->self.parent = &parent->self;
4897 cgrp->root = root;
4898 cgrp->level = level;
4899
4900 ret = psi_cgroup_alloc(cgrp);
4901 if (ret)
4902 goto out_idr_free;
4903
4904 ret = cgroup_bpf_inherit(cgrp);
4905 if (ret)
4906 goto out_psi_free;
4907
4908 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4909 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4910
4911 if (tcgrp != cgrp)
4912 tcgrp->nr_descendants++;
4913 }
4914
4915 if (notify_on_release(parent))
4916 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4917
4918 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4919 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4920
4921 cgrp->self.serial_nr = css_serial_nr_next++;
4922
4923 /* allocation complete, commit to creation */
4924 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4925 atomic_inc(&root->nr_cgrps);
4926 cgroup_get_live(parent);
4927
4928 /*
4929 * @cgrp is now fully operational. If something fails after this
4930 * point, it'll be released via the normal destruction path.
4931 */
4932 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4933
4934 /*
4935 * On the default hierarchy, a child doesn't automatically inherit
4936 * subtree_control from the parent. Each is configured manually.
4937 */
4938 if (!cgroup_on_dfl(cgrp))
4939 cgrp->subtree_control = cgroup_control(cgrp);
4940
4941 cgroup_propagate_control(cgrp);
4942
4943 return cgrp;
4944
4945 out_psi_free:
4946 psi_cgroup_free(cgrp);
4947 out_idr_free:
4948 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4949 out_stat_exit:
4950 if (cgroup_on_dfl(parent))
4951 cgroup_rstat_exit(cgrp);
4952 out_cancel_ref:
4953 percpu_ref_exit(&cgrp->self.refcnt);
4954 out_free_cgrp:
4955 kfree(cgrp);
4956 return ERR_PTR(ret);
4957 }
4958
4959 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4960 {
4961 struct cgroup *cgroup;
4962 int ret = false;
4963 int level = 1;
4964
4965 lockdep_assert_held(&cgroup_mutex);
4966
4967 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4968 if (cgroup->nr_descendants >= cgroup->max_descendants)
4969 goto fail;
4970
4971 if (level > cgroup->max_depth)
4972 goto fail;
4973
4974 level++;
4975 }
4976
4977 ret = true;
4978 fail:
4979 return ret;
4980 }
4981
4982 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4983 {
4984 struct cgroup *parent, *cgrp;
4985 struct kernfs_node *kn;
4986 int ret;
4987
4988 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4989 if (strchr(name, '\n'))
4990 return -EINVAL;
4991
4992 parent = cgroup_kn_lock_live(parent_kn, false);
4993 if (!parent)
4994 return -ENODEV;
4995
4996 if (!cgroup_check_hierarchy_limits(parent)) {
4997 ret = -EAGAIN;
4998 goto out_unlock;
4999 }
5000
5001 cgrp = cgroup_create(parent);
5002 if (IS_ERR(cgrp)) {
5003 ret = PTR_ERR(cgrp);
5004 goto out_unlock;
5005 }
5006
5007 /* create the directory */
5008 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5009 if (IS_ERR(kn)) {
5010 ret = PTR_ERR(kn);
5011 goto out_destroy;
5012 }
5013 cgrp->kn = kn;
5014
5015 /*
5016 * This extra ref will be put in cgroup_free_fn() and guarantees
5017 * that @cgrp->kn is always accessible.
5018 */
5019 kernfs_get(kn);
5020
5021 ret = cgroup_kn_set_ugid(kn);
5022 if (ret)
5023 goto out_destroy;
5024
5025 ret = css_populate_dir(&cgrp->self);
5026 if (ret)
5027 goto out_destroy;
5028
5029 ret = cgroup_apply_control_enable(cgrp);
5030 if (ret)
5031 goto out_destroy;
5032
5033 TRACE_CGROUP_PATH(mkdir, cgrp);
5034
5035 /* let's create and online css's */
5036 kernfs_activate(kn);
5037
5038 ret = 0;
5039 goto out_unlock;
5040
5041 out_destroy:
5042 cgroup_destroy_locked(cgrp);
5043 out_unlock:
5044 cgroup_kn_unlock(parent_kn);
5045 return ret;
5046 }
5047
5048 /*
5049 * This is called when the refcnt of a css is confirmed to be killed.
5050 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5051 * initate destruction and put the css ref from kill_css().
5052 */
5053 static void css_killed_work_fn(struct work_struct *work)
5054 {
5055 struct cgroup_subsys_state *css =
5056 container_of(work, struct cgroup_subsys_state, destroy_work);
5057
5058 mutex_lock(&cgroup_mutex);
5059
5060 do {
5061 offline_css(css);
5062 css_put(css);
5063 /* @css can't go away while we're holding cgroup_mutex */
5064 css = css->parent;
5065 } while (css && atomic_dec_and_test(&css->online_cnt));
5066
5067 mutex_unlock(&cgroup_mutex);
5068 }
5069
5070 /* css kill confirmation processing requires process context, bounce */
5071 static void css_killed_ref_fn(struct percpu_ref *ref)
5072 {
5073 struct cgroup_subsys_state *css =
5074 container_of(ref, struct cgroup_subsys_state, refcnt);
5075
5076 if (atomic_dec_and_test(&css->online_cnt)) {
5077 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5078 queue_work(cgroup_destroy_wq, &css->destroy_work);
5079 }
5080 }
5081
5082 /**
5083 * kill_css - destroy a css
5084 * @css: css to destroy
5085 *
5086 * This function initiates destruction of @css by removing cgroup interface
5087 * files and putting its base reference. ->css_offline() will be invoked
5088 * asynchronously once css_tryget_online() is guaranteed to fail and when
5089 * the reference count reaches zero, @css will be released.
5090 */
5091 static void kill_css(struct cgroup_subsys_state *css)
5092 {
5093 lockdep_assert_held(&cgroup_mutex);
5094
5095 if (css->flags & CSS_DYING)
5096 return;
5097
5098 css->flags |= CSS_DYING;
5099
5100 /*
5101 * This must happen before css is disassociated with its cgroup.
5102 * See seq_css() for details.
5103 */
5104 css_clear_dir(css);
5105
5106 /*
5107 * Killing would put the base ref, but we need to keep it alive
5108 * until after ->css_offline().
5109 */
5110 css_get(css);
5111
5112 /*
5113 * cgroup core guarantees that, by the time ->css_offline() is
5114 * invoked, no new css reference will be given out via
5115 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5116 * proceed to offlining css's because percpu_ref_kill() doesn't
5117 * guarantee that the ref is seen as killed on all CPUs on return.
5118 *
5119 * Use percpu_ref_kill_and_confirm() to get notifications as each
5120 * css is confirmed to be seen as killed on all CPUs.
5121 */
5122 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5123 }
5124
5125 /**
5126 * cgroup_destroy_locked - the first stage of cgroup destruction
5127 * @cgrp: cgroup to be destroyed
5128 *
5129 * css's make use of percpu refcnts whose killing latency shouldn't be
5130 * exposed to userland and are RCU protected. Also, cgroup core needs to
5131 * guarantee that css_tryget_online() won't succeed by the time
5132 * ->css_offline() is invoked. To satisfy all the requirements,
5133 * destruction is implemented in the following two steps.
5134 *
5135 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5136 * userland visible parts and start killing the percpu refcnts of
5137 * css's. Set up so that the next stage will be kicked off once all
5138 * the percpu refcnts are confirmed to be killed.
5139 *
5140 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5141 * rest of destruction. Once all cgroup references are gone, the
5142 * cgroup is RCU-freed.
5143 *
5144 * This function implements s1. After this step, @cgrp is gone as far as
5145 * the userland is concerned and a new cgroup with the same name may be
5146 * created. As cgroup doesn't care about the names internally, this
5147 * doesn't cause any problem.
5148 */
5149 static int cgroup_destroy_locked(struct cgroup *cgrp)
5150 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5151 {
5152 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5153 struct cgroup_subsys_state *css;
5154 struct cgrp_cset_link *link;
5155 int ssid;
5156
5157 lockdep_assert_held(&cgroup_mutex);
5158
5159 /*
5160 * Only migration can raise populated from zero and we're already
5161 * holding cgroup_mutex.
5162 */
5163 if (cgroup_is_populated(cgrp))
5164 return -EBUSY;
5165
5166 /*
5167 * Make sure there's no live children. We can't test emptiness of
5168 * ->self.children as dead children linger on it while being
5169 * drained; otherwise, "rmdir parent/child parent" may fail.
5170 */
5171 if (css_has_online_children(&cgrp->self))
5172 return -EBUSY;
5173
5174 /*
5175 * Mark @cgrp and the associated csets dead. The former prevents
5176 * further task migration and child creation by disabling
5177 * cgroup_lock_live_group(). The latter makes the csets ignored by
5178 * the migration path.
5179 */
5180 cgrp->self.flags &= ~CSS_ONLINE;
5181
5182 spin_lock_irq(&css_set_lock);
5183 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5184 link->cset->dead = true;
5185 spin_unlock_irq(&css_set_lock);
5186
5187 /* initiate massacre of all css's */
5188 for_each_css(css, ssid, cgrp)
5189 kill_css(css);
5190
5191 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5192 css_clear_dir(&cgrp->self);
5193 kernfs_remove(cgrp->kn);
5194
5195 if (parent && cgroup_is_threaded(cgrp))
5196 parent->nr_threaded_children--;
5197
5198 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5199 tcgrp->nr_descendants--;
5200 tcgrp->nr_dying_descendants++;
5201 }
5202
5203 cgroup1_check_for_release(parent);
5204
5205 /* put the base reference */
5206 percpu_ref_kill(&cgrp->self.refcnt);
5207
5208 return 0;
5209 };
5210
5211 int cgroup_rmdir(struct kernfs_node *kn)
5212 {
5213 struct cgroup *cgrp;
5214 int ret = 0;
5215
5216 cgrp = cgroup_kn_lock_live(kn, false);
5217 if (!cgrp)
5218 return 0;
5219
5220 ret = cgroup_destroy_locked(cgrp);
5221 if (!ret)
5222 TRACE_CGROUP_PATH(rmdir, cgrp);
5223
5224 cgroup_kn_unlock(kn);
5225 return ret;
5226 }
5227
5228 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5229 .show_options = cgroup_show_options,
5230 .remount_fs = cgroup_remount,
5231 .mkdir = cgroup_mkdir,
5232 .rmdir = cgroup_rmdir,
5233 .show_path = cgroup_show_path,
5234 };
5235
5236 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5237 {
5238 struct cgroup_subsys_state *css;
5239
5240 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5241
5242 mutex_lock(&cgroup_mutex);
5243
5244 idr_init(&ss->css_idr);
5245 INIT_LIST_HEAD(&ss->cfts);
5246
5247 /* Create the root cgroup state for this subsystem */
5248 ss->root = &cgrp_dfl_root;
5249 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5250 /* We don't handle early failures gracefully */
5251 BUG_ON(IS_ERR(css));
5252 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5253
5254 /*
5255 * Root csses are never destroyed and we can't initialize
5256 * percpu_ref during early init. Disable refcnting.
5257 */
5258 css->flags |= CSS_NO_REF;
5259
5260 if (early) {
5261 /* allocation can't be done safely during early init */
5262 css->id = 1;
5263 } else {
5264 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5265 BUG_ON(css->id < 0);
5266 }
5267
5268 /* Update the init_css_set to contain a subsys
5269 * pointer to this state - since the subsystem is
5270 * newly registered, all tasks and hence the
5271 * init_css_set is in the subsystem's root cgroup. */
5272 init_css_set.subsys[ss->id] = css;
5273
5274 have_fork_callback |= (bool)ss->fork << ss->id;
5275 have_exit_callback |= (bool)ss->exit << ss->id;
5276 have_free_callback |= (bool)ss->free << ss->id;
5277 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5278
5279 /* At system boot, before all subsystems have been
5280 * registered, no tasks have been forked, so we don't
5281 * need to invoke fork callbacks here. */
5282 BUG_ON(!list_empty(&init_task.tasks));
5283
5284 BUG_ON(online_css(css));
5285
5286 mutex_unlock(&cgroup_mutex);
5287 }
5288
5289 /**
5290 * cgroup_init_early - cgroup initialization at system boot
5291 *
5292 * Initialize cgroups at system boot, and initialize any
5293 * subsystems that request early init.
5294 */
5295 int __init cgroup_init_early(void)
5296 {
5297 static struct cgroup_sb_opts __initdata opts;
5298 struct cgroup_subsys *ss;
5299 int i;
5300
5301 init_cgroup_root(&cgrp_dfl_root, &opts);
5302 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5303
5304 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5305
5306 for_each_subsys(ss, i) {
5307 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5308 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5309 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5310 ss->id, ss->name);
5311 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5312 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5313
5314 ss->id = i;
5315 ss->name = cgroup_subsys_name[i];
5316 if (!ss->legacy_name)
5317 ss->legacy_name = cgroup_subsys_name[i];
5318
5319 if (ss->early_init)
5320 cgroup_init_subsys(ss, true);
5321 }
5322 return 0;
5323 }
5324
5325 static u16 cgroup_disable_mask __initdata;
5326
5327 /**
5328 * cgroup_init - cgroup initialization
5329 *
5330 * Register cgroup filesystem and /proc file, and initialize
5331 * any subsystems that didn't request early init.
5332 */
5333 int __init cgroup_init(void)
5334 {
5335 struct cgroup_subsys *ss;
5336 int ssid;
5337
5338 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5339 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5340 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5341 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5342
5343 cgroup_rstat_boot();
5344
5345 /*
5346 * The latency of the synchronize_sched() is too high for cgroups,
5347 * avoid it at the cost of forcing all readers into the slow path.
5348 */
5349 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5350
5351 get_user_ns(init_cgroup_ns.user_ns);
5352
5353 mutex_lock(&cgroup_mutex);
5354
5355 /*
5356 * Add init_css_set to the hash table so that dfl_root can link to
5357 * it during init.
5358 */
5359 hash_add(css_set_table, &init_css_set.hlist,
5360 css_set_hash(init_css_set.subsys));
5361
5362 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5363
5364 mutex_unlock(&cgroup_mutex);
5365
5366 for_each_subsys(ss, ssid) {
5367 if (ss->early_init) {
5368 struct cgroup_subsys_state *css =
5369 init_css_set.subsys[ss->id];
5370
5371 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5372 GFP_KERNEL);
5373 BUG_ON(css->id < 0);
5374 } else {
5375 cgroup_init_subsys(ss, false);
5376 }
5377
5378 list_add_tail(&init_css_set.e_cset_node[ssid],
5379 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5380
5381 /*
5382 * Setting dfl_root subsys_mask needs to consider the
5383 * disabled flag and cftype registration needs kmalloc,
5384 * both of which aren't available during early_init.
5385 */
5386 if (cgroup_disable_mask & (1 << ssid)) {
5387 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5388 printk(KERN_INFO "Disabling %s control group subsystem\n",
5389 ss->name);
5390 continue;
5391 }
5392
5393 if (cgroup1_ssid_disabled(ssid))
5394 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5395 ss->name);
5396
5397 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5398
5399 /* implicit controllers must be threaded too */
5400 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5401
5402 if (ss->implicit_on_dfl)
5403 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5404 else if (!ss->dfl_cftypes)
5405 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5406
5407 if (ss->threaded)
5408 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5409
5410 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5411 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5412 } else {
5413 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5414 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5415 }
5416
5417 if (ss->bind)
5418 ss->bind(init_css_set.subsys[ssid]);
5419
5420 mutex_lock(&cgroup_mutex);
5421 css_populate_dir(init_css_set.subsys[ssid]);
5422 mutex_unlock(&cgroup_mutex);
5423 }
5424
5425 /* init_css_set.subsys[] has been updated, re-hash */
5426 hash_del(&init_css_set.hlist);
5427 hash_add(css_set_table, &init_css_set.hlist,
5428 css_set_hash(init_css_set.subsys));
5429
5430 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5431 WARN_ON(register_filesystem(&cgroup_fs_type));
5432 WARN_ON(register_filesystem(&cgroup2_fs_type));
5433 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5434
5435 return 0;
5436 }
5437
5438 static int __init cgroup_wq_init(void)
5439 {
5440 /*
5441 * There isn't much point in executing destruction path in
5442 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5443 * Use 1 for @max_active.
5444 *
5445 * We would prefer to do this in cgroup_init() above, but that
5446 * is called before init_workqueues(): so leave this until after.
5447 */
5448 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5449 BUG_ON(!cgroup_destroy_wq);
5450 return 0;
5451 }
5452 core_initcall(cgroup_wq_init);
5453
5454 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5455 char *buf, size_t buflen)
5456 {
5457 struct kernfs_node *kn;
5458
5459 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5460 if (!kn)
5461 return;
5462 kernfs_path(kn, buf, buflen);
5463 kernfs_put(kn);
5464 }
5465
5466 /*
5467 * proc_cgroup_show()
5468 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5469 * - Used for /proc/<pid>/cgroup.
5470 */
5471 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5472 struct pid *pid, struct task_struct *tsk)
5473 {
5474 char *buf;
5475 int retval;
5476 struct cgroup_root *root;
5477
5478 retval = -ENOMEM;
5479 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5480 if (!buf)
5481 goto out;
5482
5483 mutex_lock(&cgroup_mutex);
5484 spin_lock_irq(&css_set_lock);
5485
5486 for_each_root(root) {
5487 struct cgroup_subsys *ss;
5488 struct cgroup *cgrp;
5489 int ssid, count = 0;
5490
5491 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5492 continue;
5493
5494 seq_printf(m, "%d:", root->hierarchy_id);
5495 if (root != &cgrp_dfl_root)
5496 for_each_subsys(ss, ssid)
5497 if (root->subsys_mask & (1 << ssid))
5498 seq_printf(m, "%s%s", count++ ? "," : "",
5499 ss->legacy_name);
5500 if (strlen(root->name))
5501 seq_printf(m, "%sname=%s", count ? "," : "",
5502 root->name);
5503 seq_putc(m, ':');
5504
5505 cgrp = task_cgroup_from_root(tsk, root);
5506
5507 /*
5508 * On traditional hierarchies, all zombie tasks show up as
5509 * belonging to the root cgroup. On the default hierarchy,
5510 * while a zombie doesn't show up in "cgroup.procs" and
5511 * thus can't be migrated, its /proc/PID/cgroup keeps
5512 * reporting the cgroup it belonged to before exiting. If
5513 * the cgroup is removed before the zombie is reaped,
5514 * " (deleted)" is appended to the cgroup path.
5515 */
5516 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5517 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5518 current->nsproxy->cgroup_ns);
5519 if (retval >= PATH_MAX)
5520 retval = -ENAMETOOLONG;
5521 if (retval < 0)
5522 goto out_unlock;
5523
5524 seq_puts(m, buf);
5525 } else {
5526 seq_puts(m, "/");
5527 }
5528
5529 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5530 seq_puts(m, " (deleted)\n");
5531 else
5532 seq_putc(m, '\n');
5533 }
5534
5535 retval = 0;
5536 out_unlock:
5537 spin_unlock_irq(&css_set_lock);
5538 mutex_unlock(&cgroup_mutex);
5539 kfree(buf);
5540 out:
5541 return retval;
5542 }
5543
5544 /**
5545 * cgroup_fork - initialize cgroup related fields during copy_process()
5546 * @child: pointer to task_struct of forking parent process.
5547 *
5548 * A task is associated with the init_css_set until cgroup_post_fork()
5549 * attaches it to the parent's css_set. Empty cg_list indicates that
5550 * @child isn't holding reference to its css_set.
5551 */
5552 void cgroup_fork(struct task_struct *child)
5553 {
5554 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5555 INIT_LIST_HEAD(&child->cg_list);
5556 }
5557
5558 /**
5559 * cgroup_can_fork - called on a new task before the process is exposed
5560 * @child: the task in question.
5561 *
5562 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5563 * returns an error, the fork aborts with that error code. This allows for
5564 * a cgroup subsystem to conditionally allow or deny new forks.
5565 */
5566 int cgroup_can_fork(struct task_struct *child)
5567 {
5568 struct cgroup_subsys *ss;
5569 int i, j, ret;
5570
5571 do_each_subsys_mask(ss, i, have_canfork_callback) {
5572 ret = ss->can_fork(child);
5573 if (ret)
5574 goto out_revert;
5575 } while_each_subsys_mask();
5576
5577 return 0;
5578
5579 out_revert:
5580 for_each_subsys(ss, j) {
5581 if (j >= i)
5582 break;
5583 if (ss->cancel_fork)
5584 ss->cancel_fork(child);
5585 }
5586
5587 return ret;
5588 }
5589
5590 /**
5591 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5592 * @child: the task in question
5593 *
5594 * This calls the cancel_fork() callbacks if a fork failed *after*
5595 * cgroup_can_fork() succeded.
5596 */
5597 void cgroup_cancel_fork(struct task_struct *child)
5598 {
5599 struct cgroup_subsys *ss;
5600 int i;
5601
5602 for_each_subsys(ss, i)
5603 if (ss->cancel_fork)
5604 ss->cancel_fork(child);
5605 }
5606
5607 /**
5608 * cgroup_post_fork - called on a new task after adding it to the task list
5609 * @child: the task in question
5610 *
5611 * Adds the task to the list running through its css_set if necessary and
5612 * call the subsystem fork() callbacks. Has to be after the task is
5613 * visible on the task list in case we race with the first call to
5614 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5615 * list.
5616 */
5617 void cgroup_post_fork(struct task_struct *child)
5618 {
5619 struct cgroup_subsys *ss;
5620 int i;
5621
5622 /*
5623 * This may race against cgroup_enable_task_cg_lists(). As that
5624 * function sets use_task_css_set_links before grabbing
5625 * tasklist_lock and we just went through tasklist_lock to add
5626 * @child, it's guaranteed that either we see the set
5627 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5628 * @child during its iteration.
5629 *
5630 * If we won the race, @child is associated with %current's
5631 * css_set. Grabbing css_set_lock guarantees both that the
5632 * association is stable, and, on completion of the parent's
5633 * migration, @child is visible in the source of migration or
5634 * already in the destination cgroup. This guarantee is necessary
5635 * when implementing operations which need to migrate all tasks of
5636 * a cgroup to another.
5637 *
5638 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5639 * will remain in init_css_set. This is safe because all tasks are
5640 * in the init_css_set before cg_links is enabled and there's no
5641 * operation which transfers all tasks out of init_css_set.
5642 */
5643 if (use_task_css_set_links) {
5644 struct css_set *cset;
5645
5646 spin_lock_irq(&css_set_lock);
5647 cset = task_css_set(current);
5648 if (list_empty(&child->cg_list)) {
5649 get_css_set(cset);
5650 cset->nr_tasks++;
5651 css_set_move_task(child, NULL, cset, false);
5652 }
5653 spin_unlock_irq(&css_set_lock);
5654 }
5655
5656 /*
5657 * Call ss->fork(). This must happen after @child is linked on
5658 * css_set; otherwise, @child might change state between ->fork()
5659 * and addition to css_set.
5660 */
5661 do_each_subsys_mask(ss, i, have_fork_callback) {
5662 ss->fork(child);
5663 } while_each_subsys_mask();
5664 }
5665
5666 /**
5667 * cgroup_exit - detach cgroup from exiting task
5668 * @tsk: pointer to task_struct of exiting process
5669 *
5670 * Description: Detach cgroup from @tsk and release it.
5671 *
5672 * Note that cgroups marked notify_on_release force every task in
5673 * them to take the global cgroup_mutex mutex when exiting.
5674 * This could impact scaling on very large systems. Be reluctant to
5675 * use notify_on_release cgroups where very high task exit scaling
5676 * is required on large systems.
5677 *
5678 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5679 * call cgroup_exit() while the task is still competent to handle
5680 * notify_on_release(), then leave the task attached to the root cgroup in
5681 * each hierarchy for the remainder of its exit. No need to bother with
5682 * init_css_set refcnting. init_css_set never goes away and we can't race
5683 * with migration path - PF_EXITING is visible to migration path.
5684 */
5685 void cgroup_exit(struct task_struct *tsk)
5686 {
5687 struct cgroup_subsys *ss;
5688 struct css_set *cset;
5689 int i;
5690
5691 /*
5692 * Unlink from @tsk from its css_set. As migration path can't race
5693 * with us, we can check css_set and cg_list without synchronization.
5694 */
5695 cset = task_css_set(tsk);
5696
5697 if (!list_empty(&tsk->cg_list)) {
5698 spin_lock_irq(&css_set_lock);
5699 css_set_move_task(tsk, cset, NULL, false);
5700 cset->nr_tasks--;
5701 spin_unlock_irq(&css_set_lock);
5702 } else {
5703 get_css_set(cset);
5704 }
5705
5706 /* see cgroup_post_fork() for details */
5707 do_each_subsys_mask(ss, i, have_exit_callback) {
5708 ss->exit(tsk);
5709 } while_each_subsys_mask();
5710 }
5711
5712 void cgroup_free(struct task_struct *task)
5713 {
5714 struct css_set *cset = task_css_set(task);
5715 struct cgroup_subsys *ss;
5716 int ssid;
5717
5718 do_each_subsys_mask(ss, ssid, have_free_callback) {
5719 ss->free(task);
5720 } while_each_subsys_mask();
5721
5722 put_css_set(cset);
5723 }
5724
5725 static int __init cgroup_disable(char *str)
5726 {
5727 struct cgroup_subsys *ss;
5728 char *token;
5729 int i;
5730
5731 while ((token = strsep(&str, ",")) != NULL) {
5732 if (!*token)
5733 continue;
5734
5735 for_each_subsys(ss, i) {
5736 if (strcmp(token, ss->name) &&
5737 strcmp(token, ss->legacy_name))
5738 continue;
5739 cgroup_disable_mask |= 1 << i;
5740 }
5741 }
5742 return 1;
5743 }
5744 __setup("cgroup_disable=", cgroup_disable);
5745
5746 /**
5747 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5748 * @dentry: directory dentry of interest
5749 * @ss: subsystem of interest
5750 *
5751 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5752 * to get the corresponding css and return it. If such css doesn't exist
5753 * or can't be pinned, an ERR_PTR value is returned.
5754 */
5755 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5756 struct cgroup_subsys *ss)
5757 {
5758 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5759 struct file_system_type *s_type = dentry->d_sb->s_type;
5760 struct cgroup_subsys_state *css = NULL;
5761 struct cgroup *cgrp;
5762
5763 /* is @dentry a cgroup dir? */
5764 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5765 !kn || kernfs_type(kn) != KERNFS_DIR)
5766 return ERR_PTR(-EBADF);
5767
5768 rcu_read_lock();
5769
5770 /*
5771 * This path doesn't originate from kernfs and @kn could already
5772 * have been or be removed at any point. @kn->priv is RCU
5773 * protected for this access. See css_release_work_fn() for details.
5774 */
5775 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5776 if (cgrp)
5777 css = cgroup_css(cgrp, ss);
5778
5779 if (!css || !css_tryget_online(css))
5780 css = ERR_PTR(-ENOENT);
5781
5782 rcu_read_unlock();
5783 return css;
5784 }
5785
5786 /**
5787 * css_from_id - lookup css by id
5788 * @id: the cgroup id
5789 * @ss: cgroup subsys to be looked into
5790 *
5791 * Returns the css if there's valid one with @id, otherwise returns NULL.
5792 * Should be called under rcu_read_lock().
5793 */
5794 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5795 {
5796 WARN_ON_ONCE(!rcu_read_lock_held());
5797 return idr_find(&ss->css_idr, id);
5798 }
5799
5800 /**
5801 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5802 * @path: path on the default hierarchy
5803 *
5804 * Find the cgroup at @path on the default hierarchy, increment its
5805 * reference count and return it. Returns pointer to the found cgroup on
5806 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5807 * if @path points to a non-directory.
5808 */
5809 struct cgroup *cgroup_get_from_path(const char *path)
5810 {
5811 struct kernfs_node *kn;
5812 struct cgroup *cgrp;
5813
5814 mutex_lock(&cgroup_mutex);
5815
5816 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5817 if (kn) {
5818 if (kernfs_type(kn) == KERNFS_DIR) {
5819 cgrp = kn->priv;
5820 cgroup_get_live(cgrp);
5821 } else {
5822 cgrp = ERR_PTR(-ENOTDIR);
5823 }
5824 kernfs_put(kn);
5825 } else {
5826 cgrp = ERR_PTR(-ENOENT);
5827 }
5828
5829 mutex_unlock(&cgroup_mutex);
5830 return cgrp;
5831 }
5832 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5833
5834 /**
5835 * cgroup_get_from_fd - get a cgroup pointer from a fd
5836 * @fd: fd obtained by open(cgroup2_dir)
5837 *
5838 * Find the cgroup from a fd which should be obtained
5839 * by opening a cgroup directory. Returns a pointer to the
5840 * cgroup on success. ERR_PTR is returned if the cgroup
5841 * cannot be found.
5842 */
5843 struct cgroup *cgroup_get_from_fd(int fd)
5844 {
5845 struct cgroup_subsys_state *css;
5846 struct cgroup *cgrp;
5847 struct file *f;
5848
5849 f = fget_raw(fd);
5850 if (!f)
5851 return ERR_PTR(-EBADF);
5852
5853 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5854 fput(f);
5855 if (IS_ERR(css))
5856 return ERR_CAST(css);
5857
5858 cgrp = css->cgroup;
5859 if (!cgroup_on_dfl(cgrp)) {
5860 cgroup_put(cgrp);
5861 return ERR_PTR(-EBADF);
5862 }
5863
5864 return cgrp;
5865 }
5866 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5867
5868 /*
5869 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5870 * definition in cgroup-defs.h.
5871 */
5872 #ifdef CONFIG_SOCK_CGROUP_DATA
5873
5874 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5875
5876 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5877 static bool cgroup_sk_alloc_disabled __read_mostly;
5878
5879 void cgroup_sk_alloc_disable(void)
5880 {
5881 if (cgroup_sk_alloc_disabled)
5882 return;
5883 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5884 cgroup_sk_alloc_disabled = true;
5885 }
5886
5887 #else
5888
5889 #define cgroup_sk_alloc_disabled false
5890
5891 #endif
5892
5893 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5894 {
5895 if (cgroup_sk_alloc_disabled)
5896 return;
5897
5898 /* Socket clone path */
5899 if (skcd->val) {
5900 /*
5901 * We might be cloning a socket which is left in an empty
5902 * cgroup and the cgroup might have already been rmdir'd.
5903 * Don't use cgroup_get_live().
5904 */
5905 cgroup_get(sock_cgroup_ptr(skcd));
5906 return;
5907 }
5908
5909 rcu_read_lock();
5910
5911 while (true) {
5912 struct css_set *cset;
5913
5914 cset = task_css_set(current);
5915 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5916 skcd->val = (unsigned long)cset->dfl_cgrp;
5917 break;
5918 }
5919 cpu_relax();
5920 }
5921
5922 rcu_read_unlock();
5923 }
5924
5925 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5926 {
5927 cgroup_put(sock_cgroup_ptr(skcd));
5928 }
5929
5930 #endif /* CONFIG_SOCK_CGROUP_DATA */
5931
5932 #ifdef CONFIG_CGROUP_BPF
5933 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5934 enum bpf_attach_type type, u32 flags)
5935 {
5936 int ret;
5937
5938 mutex_lock(&cgroup_mutex);
5939 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5940 mutex_unlock(&cgroup_mutex);
5941 return ret;
5942 }
5943 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5944 enum bpf_attach_type type, u32 flags)
5945 {
5946 int ret;
5947
5948 mutex_lock(&cgroup_mutex);
5949 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5950 mutex_unlock(&cgroup_mutex);
5951 return ret;
5952 }
5953 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5954 union bpf_attr __user *uattr)
5955 {
5956 int ret;
5957
5958 mutex_lock(&cgroup_mutex);
5959 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5960 mutex_unlock(&cgroup_mutex);
5961 return ret;
5962 }
5963 #endif /* CONFIG_CGROUP_BPF */
5964
5965 #ifdef CONFIG_SYSFS
5966 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5967 ssize_t size, const char *prefix)
5968 {
5969 struct cftype *cft;
5970 ssize_t ret = 0;
5971
5972 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5973 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5974 continue;
5975
5976 if (prefix)
5977 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5978
5979 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5980
5981 if (unlikely(ret >= size)) {
5982 WARN_ON(1);
5983 break;
5984 }
5985 }
5986
5987 return ret;
5988 }
5989
5990 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5991 char *buf)
5992 {
5993 struct cgroup_subsys *ss;
5994 int ssid;
5995 ssize_t ret = 0;
5996
5997 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5998 NULL);
5999
6000 for_each_subsys(ss, ssid)
6001 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6002 PAGE_SIZE - ret,
6003 cgroup_subsys_name[ssid]);
6004
6005 return ret;
6006 }
6007 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6008
6009 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6010 char *buf)
6011 {
6012 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6013 }
6014 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6015
6016 static struct attribute *cgroup_sysfs_attrs[] = {
6017 &cgroup_delegate_attr.attr,
6018 &cgroup_features_attr.attr,
6019 NULL,
6020 };
6021
6022 static const struct attribute_group cgroup_sysfs_attr_group = {
6023 .attrs = cgroup_sysfs_attrs,
6024 .name = "cgroup",
6025 };
6026
6027 static int __init cgroup_sysfs_init(void)
6028 {
6029 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6030 }
6031 subsys_initcall(cgroup_sysfs_init);
6032 #endif /* CONFIG_SYSFS */