]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/cgroup/cpuset.c
Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[thirdparty/kernel/linux.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/mm.h>
49 #include <linux/sched/task.h>
50 #include <linux/seq_file.h>
51 #include <linux/security.h>
52 #include <linux/slab.h>
53 #include <linux/spinlock.h>
54 #include <linux/stat.h>
55 #include <linux/string.h>
56 #include <linux/time.h>
57 #include <linux/time64.h>
58 #include <linux/backing-dev.h>
59 #include <linux/sort.h>
60 #include <linux/oom.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/uaccess.h>
63 #include <linux/atomic.h>
64 #include <linux/mutex.h>
65 #include <linux/cgroup.h>
66 #include <linux/wait.h>
67
68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70
71 /* See "Frequency meter" comments, below. */
72
73 struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
76 time64_t time; /* clock (secs) when val computed */
77 spinlock_t lock; /* guards read or write of above */
78 };
79
80 struct cpuset {
81 struct cgroup_subsys_state css;
82
83 unsigned long flags; /* "unsigned long" so bitops work */
84
85 /*
86 * On default hierarchy:
87 *
88 * The user-configured masks can only be changed by writing to
89 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 * parent masks.
91 *
92 * The effective masks is the real masks that apply to the tasks
93 * in the cpuset. They may be changed if the configured masks are
94 * changed or hotplug happens.
95 *
96 * effective_mask == configured_mask & parent's effective_mask,
97 * and if it ends up empty, it will inherit the parent's mask.
98 *
99 *
100 * On legacy hierachy:
101 *
102 * The user-configured masks are always the same with effective masks.
103 */
104
105 /* user-configured CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t cpus_allowed;
107 nodemask_t mems_allowed;
108
109 /* effective CPUs and Memory Nodes allow to tasks */
110 cpumask_var_t effective_cpus;
111 nodemask_t effective_mems;
112
113 /*
114 * CPUs allocated to child sub-partitions (default hierarchy only)
115 * - CPUs granted by the parent = effective_cpus U subparts_cpus
116 * - effective_cpus and subparts_cpus are mutually exclusive.
117 *
118 * effective_cpus contains only onlined CPUs, but subparts_cpus
119 * may have offlined ones.
120 */
121 cpumask_var_t subparts_cpus;
122
123 /*
124 * This is old Memory Nodes tasks took on.
125 *
126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
127 * - A new cpuset's old_mems_allowed is initialized when some
128 * task is moved into it.
129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
130 * cpuset.mems_allowed and have tasks' nodemask updated, and
131 * then old_mems_allowed is updated to mems_allowed.
132 */
133 nodemask_t old_mems_allowed;
134
135 struct fmeter fmeter; /* memory_pressure filter */
136
137 /*
138 * Tasks are being attached to this cpuset. Used to prevent
139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
140 */
141 int attach_in_progress;
142
143 /* partition number for rebuild_sched_domains() */
144 int pn;
145
146 /* for custom sched domain */
147 int relax_domain_level;
148
149 /* number of CPUs in subparts_cpus */
150 int nr_subparts_cpus;
151
152 /* partition root state */
153 int partition_root_state;
154
155 /*
156 * Default hierarchy only:
157 * use_parent_ecpus - set if using parent's effective_cpus
158 * child_ecpus_count - # of children with use_parent_ecpus set
159 */
160 int use_parent_ecpus;
161 int child_ecpus_count;
162 };
163
164 /*
165 * Partition root states:
166 *
167 * 0 - not a partition root
168 *
169 * 1 - partition root
170 *
171 * -1 - invalid partition root
172 * None of the cpus in cpus_allowed can be put into the parent's
173 * subparts_cpus. In this case, the cpuset is not a real partition
174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
175 * and the cpuset can be restored back to a partition root if the
176 * parent cpuset can give more CPUs back to this child cpuset.
177 */
178 #define PRS_DISABLED 0
179 #define PRS_ENABLED 1
180 #define PRS_ERROR -1
181
182 /*
183 * Temporary cpumasks for working with partitions that are passed among
184 * functions to avoid memory allocation in inner functions.
185 */
186 struct tmpmasks {
187 cpumask_var_t addmask, delmask; /* For partition root */
188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
189 };
190
191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
192 {
193 return css ? container_of(css, struct cpuset, css) : NULL;
194 }
195
196 /* Retrieve the cpuset for a task */
197 static inline struct cpuset *task_cs(struct task_struct *task)
198 {
199 return css_cs(task_css(task, cpuset_cgrp_id));
200 }
201
202 static inline struct cpuset *parent_cs(struct cpuset *cs)
203 {
204 return css_cs(cs->css.parent);
205 }
206
207 /* bits in struct cpuset flags field */
208 typedef enum {
209 CS_ONLINE,
210 CS_CPU_EXCLUSIVE,
211 CS_MEM_EXCLUSIVE,
212 CS_MEM_HARDWALL,
213 CS_MEMORY_MIGRATE,
214 CS_SCHED_LOAD_BALANCE,
215 CS_SPREAD_PAGE,
216 CS_SPREAD_SLAB,
217 } cpuset_flagbits_t;
218
219 /* convenient tests for these bits */
220 static inline bool is_cpuset_online(struct cpuset *cs)
221 {
222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
223 }
224
225 static inline int is_cpu_exclusive(const struct cpuset *cs)
226 {
227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
228 }
229
230 static inline int is_mem_exclusive(const struct cpuset *cs)
231 {
232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
233 }
234
235 static inline int is_mem_hardwall(const struct cpuset *cs)
236 {
237 return test_bit(CS_MEM_HARDWALL, &cs->flags);
238 }
239
240 static inline int is_sched_load_balance(const struct cpuset *cs)
241 {
242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
243 }
244
245 static inline int is_memory_migrate(const struct cpuset *cs)
246 {
247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
248 }
249
250 static inline int is_spread_page(const struct cpuset *cs)
251 {
252 return test_bit(CS_SPREAD_PAGE, &cs->flags);
253 }
254
255 static inline int is_spread_slab(const struct cpuset *cs)
256 {
257 return test_bit(CS_SPREAD_SLAB, &cs->flags);
258 }
259
260 static inline int is_partition_root(const struct cpuset *cs)
261 {
262 return cs->partition_root_state > 0;
263 }
264
265 static struct cpuset top_cpuset = {
266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
267 (1 << CS_MEM_EXCLUSIVE)),
268 .partition_root_state = PRS_ENABLED,
269 };
270
271 /**
272 * cpuset_for_each_child - traverse online children of a cpuset
273 * @child_cs: loop cursor pointing to the current child
274 * @pos_css: used for iteration
275 * @parent_cs: target cpuset to walk children of
276 *
277 * Walk @child_cs through the online children of @parent_cs. Must be used
278 * with RCU read locked.
279 */
280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
281 css_for_each_child((pos_css), &(parent_cs)->css) \
282 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
283
284 /**
285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
286 * @des_cs: loop cursor pointing to the current descendant
287 * @pos_css: used for iteration
288 * @root_cs: target cpuset to walk ancestor of
289 *
290 * Walk @des_cs through the online descendants of @root_cs. Must be used
291 * with RCU read locked. The caller may modify @pos_css by calling
292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
293 * iteration and the first node to be visited.
294 */
295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
297 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
298
299 /*
300 * There are two global locks guarding cpuset structures - cpuset_mutex and
301 * callback_lock. We also require taking task_lock() when dereferencing a
302 * task's cpuset pointer. See "The task_lock() exception", at the end of this
303 * comment.
304 *
305 * A task must hold both locks to modify cpusets. If a task holds
306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
307 * is the only task able to also acquire callback_lock and be able to
308 * modify cpusets. It can perform various checks on the cpuset structure
309 * first, knowing nothing will change. It can also allocate memory while
310 * just holding cpuset_mutex. While it is performing these checks, various
311 * callback routines can briefly acquire callback_lock to query cpusets.
312 * Once it is ready to make the changes, it takes callback_lock, blocking
313 * everyone else.
314 *
315 * Calls to the kernel memory allocator can not be made while holding
316 * callback_lock, as that would risk double tripping on callback_lock
317 * from one of the callbacks into the cpuset code from within
318 * __alloc_pages().
319 *
320 * If a task is only holding callback_lock, then it has read-only
321 * access to cpusets.
322 *
323 * Now, the task_struct fields mems_allowed and mempolicy may be changed
324 * by other task, we use alloc_lock in the task_struct fields to protect
325 * them.
326 *
327 * The cpuset_common_file_read() handlers only hold callback_lock across
328 * small pieces of code, such as when reading out possibly multi-word
329 * cpumasks and nodemasks.
330 *
331 * Accessing a task's cpuset should be done in accordance with the
332 * guidelines for accessing subsystem state in kernel/cgroup.c
333 */
334
335 static DEFINE_MUTEX(cpuset_mutex);
336 static DEFINE_SPINLOCK(callback_lock);
337
338 static struct workqueue_struct *cpuset_migrate_mm_wq;
339
340 /*
341 * CPU / memory hotplug is handled asynchronously.
342 */
343 static void cpuset_hotplug_workfn(struct work_struct *work);
344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
345
346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
347
348 /*
349 * Cgroup v2 behavior is used when on default hierarchy or the
350 * cgroup_v2_mode flag is set.
351 */
352 static inline bool is_in_v2_mode(void)
353 {
354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
356 }
357
358 /*
359 * This is ugly, but preserves the userspace API for existing cpuset
360 * users. If someone tries to mount the "cpuset" filesystem, we
361 * silently switch it to mount "cgroup" instead
362 */
363 static int cpuset_get_tree(struct fs_context *fc)
364 {
365 struct file_system_type *cgroup_fs;
366 struct fs_context *new_fc;
367 int ret;
368
369 cgroup_fs = get_fs_type("cgroup");
370 if (!cgroup_fs)
371 return -ENODEV;
372
373 new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags);
374 if (IS_ERR(new_fc)) {
375 ret = PTR_ERR(new_fc);
376 } else {
377 static const char agent_path[] = "/sbin/cpuset_release_agent";
378 ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0);
379 if (!ret)
380 ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0);
381 if (!ret)
382 ret = vfs_parse_fs_string(new_fc, "release_agent",
383 agent_path, sizeof(agent_path) - 1);
384 if (!ret)
385 ret = vfs_get_tree(new_fc);
386 if (!ret) { /* steal the result */
387 fc->root = new_fc->root;
388 new_fc->root = NULL;
389 }
390 put_fs_context(new_fc);
391 }
392 put_filesystem(cgroup_fs);
393 return ret;
394 }
395
396 static const struct fs_context_operations cpuset_fs_context_ops = {
397 .get_tree = cpuset_get_tree,
398 };
399
400 static int cpuset_init_fs_context(struct fs_context *fc)
401 {
402 fc->ops = &cpuset_fs_context_ops;
403 return 0;
404 }
405
406 static struct file_system_type cpuset_fs_type = {
407 .name = "cpuset",
408 .init_fs_context = cpuset_init_fs_context,
409 };
410
411 /*
412 * Return in pmask the portion of a cpusets's cpus_allowed that
413 * are online. If none are online, walk up the cpuset hierarchy
414 * until we find one that does have some online cpus.
415 *
416 * One way or another, we guarantee to return some non-empty subset
417 * of cpu_online_mask.
418 *
419 * Call with callback_lock or cpuset_mutex held.
420 */
421 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
422 {
423 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
424 cs = parent_cs(cs);
425 if (unlikely(!cs)) {
426 /*
427 * The top cpuset doesn't have any online cpu as a
428 * consequence of a race between cpuset_hotplug_work
429 * and cpu hotplug notifier. But we know the top
430 * cpuset's effective_cpus is on its way to to be
431 * identical to cpu_online_mask.
432 */
433 cpumask_copy(pmask, cpu_online_mask);
434 return;
435 }
436 }
437 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
438 }
439
440 /*
441 * Return in *pmask the portion of a cpusets's mems_allowed that
442 * are online, with memory. If none are online with memory, walk
443 * up the cpuset hierarchy until we find one that does have some
444 * online mems. The top cpuset always has some mems online.
445 *
446 * One way or another, we guarantee to return some non-empty subset
447 * of node_states[N_MEMORY].
448 *
449 * Call with callback_lock or cpuset_mutex held.
450 */
451 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
452 {
453 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
454 cs = parent_cs(cs);
455 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
456 }
457
458 /*
459 * update task's spread flag if cpuset's page/slab spread flag is set
460 *
461 * Call with callback_lock or cpuset_mutex held.
462 */
463 static void cpuset_update_task_spread_flag(struct cpuset *cs,
464 struct task_struct *tsk)
465 {
466 if (is_spread_page(cs))
467 task_set_spread_page(tsk);
468 else
469 task_clear_spread_page(tsk);
470
471 if (is_spread_slab(cs))
472 task_set_spread_slab(tsk);
473 else
474 task_clear_spread_slab(tsk);
475 }
476
477 /*
478 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
479 *
480 * One cpuset is a subset of another if all its allowed CPUs and
481 * Memory Nodes are a subset of the other, and its exclusive flags
482 * are only set if the other's are set. Call holding cpuset_mutex.
483 */
484
485 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
486 {
487 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
488 nodes_subset(p->mems_allowed, q->mems_allowed) &&
489 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
490 is_mem_exclusive(p) <= is_mem_exclusive(q);
491 }
492
493 /**
494 * alloc_cpumasks - allocate three cpumasks for cpuset
495 * @cs: the cpuset that have cpumasks to be allocated.
496 * @tmp: the tmpmasks structure pointer
497 * Return: 0 if successful, -ENOMEM otherwise.
498 *
499 * Only one of the two input arguments should be non-NULL.
500 */
501 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 cpumask_var_t *pmask1, *pmask2, *pmask3;
504
505 if (cs) {
506 pmask1 = &cs->cpus_allowed;
507 pmask2 = &cs->effective_cpus;
508 pmask3 = &cs->subparts_cpus;
509 } else {
510 pmask1 = &tmp->new_cpus;
511 pmask2 = &tmp->addmask;
512 pmask3 = &tmp->delmask;
513 }
514
515 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
516 return -ENOMEM;
517
518 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
519 goto free_one;
520
521 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
522 goto free_two;
523
524 return 0;
525
526 free_two:
527 free_cpumask_var(*pmask2);
528 free_one:
529 free_cpumask_var(*pmask1);
530 return -ENOMEM;
531 }
532
533 /**
534 * free_cpumasks - free cpumasks in a tmpmasks structure
535 * @cs: the cpuset that have cpumasks to be free.
536 * @tmp: the tmpmasks structure pointer
537 */
538 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
539 {
540 if (cs) {
541 free_cpumask_var(cs->cpus_allowed);
542 free_cpumask_var(cs->effective_cpus);
543 free_cpumask_var(cs->subparts_cpus);
544 }
545 if (tmp) {
546 free_cpumask_var(tmp->new_cpus);
547 free_cpumask_var(tmp->addmask);
548 free_cpumask_var(tmp->delmask);
549 }
550 }
551
552 /**
553 * alloc_trial_cpuset - allocate a trial cpuset
554 * @cs: the cpuset that the trial cpuset duplicates
555 */
556 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
557 {
558 struct cpuset *trial;
559
560 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
561 if (!trial)
562 return NULL;
563
564 if (alloc_cpumasks(trial, NULL)) {
565 kfree(trial);
566 return NULL;
567 }
568
569 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
570 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
571 return trial;
572 }
573
574 /**
575 * free_cpuset - free the cpuset
576 * @cs: the cpuset to be freed
577 */
578 static inline void free_cpuset(struct cpuset *cs)
579 {
580 free_cpumasks(cs, NULL);
581 kfree(cs);
582 }
583
584 /*
585 * validate_change() - Used to validate that any proposed cpuset change
586 * follows the structural rules for cpusets.
587 *
588 * If we replaced the flag and mask values of the current cpuset
589 * (cur) with those values in the trial cpuset (trial), would
590 * our various subset and exclusive rules still be valid? Presumes
591 * cpuset_mutex held.
592 *
593 * 'cur' is the address of an actual, in-use cpuset. Operations
594 * such as list traversal that depend on the actual address of the
595 * cpuset in the list must use cur below, not trial.
596 *
597 * 'trial' is the address of bulk structure copy of cur, with
598 * perhaps one or more of the fields cpus_allowed, mems_allowed,
599 * or flags changed to new, trial values.
600 *
601 * Return 0 if valid, -errno if not.
602 */
603
604 static int validate_change(struct cpuset *cur, struct cpuset *trial)
605 {
606 struct cgroup_subsys_state *css;
607 struct cpuset *c, *par;
608 int ret;
609
610 rcu_read_lock();
611
612 /* Each of our child cpusets must be a subset of us */
613 ret = -EBUSY;
614 cpuset_for_each_child(c, css, cur)
615 if (!is_cpuset_subset(c, trial))
616 goto out;
617
618 /* Remaining checks don't apply to root cpuset */
619 ret = 0;
620 if (cur == &top_cpuset)
621 goto out;
622
623 par = parent_cs(cur);
624
625 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
626 ret = -EACCES;
627 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
628 goto out;
629
630 /*
631 * If either I or some sibling (!= me) is exclusive, we can't
632 * overlap
633 */
634 ret = -EINVAL;
635 cpuset_for_each_child(c, css, par) {
636 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
637 c != cur &&
638 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
639 goto out;
640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
641 c != cur &&
642 nodes_intersects(trial->mems_allowed, c->mems_allowed))
643 goto out;
644 }
645
646 /*
647 * Cpusets with tasks - existing or newly being attached - can't
648 * be changed to have empty cpus_allowed or mems_allowed.
649 */
650 ret = -ENOSPC;
651 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
652 if (!cpumask_empty(cur->cpus_allowed) &&
653 cpumask_empty(trial->cpus_allowed))
654 goto out;
655 if (!nodes_empty(cur->mems_allowed) &&
656 nodes_empty(trial->mems_allowed))
657 goto out;
658 }
659
660 /*
661 * We can't shrink if we won't have enough room for SCHED_DEADLINE
662 * tasks.
663 */
664 ret = -EBUSY;
665 if (is_cpu_exclusive(cur) &&
666 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
667 trial->cpus_allowed))
668 goto out;
669
670 ret = 0;
671 out:
672 rcu_read_unlock();
673 return ret;
674 }
675
676 #ifdef CONFIG_SMP
677 /*
678 * Helper routine for generate_sched_domains().
679 * Do cpusets a, b have overlapping effective cpus_allowed masks?
680 */
681 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
682 {
683 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
684 }
685
686 static void
687 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
688 {
689 if (dattr->relax_domain_level < c->relax_domain_level)
690 dattr->relax_domain_level = c->relax_domain_level;
691 return;
692 }
693
694 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
695 struct cpuset *root_cs)
696 {
697 struct cpuset *cp;
698 struct cgroup_subsys_state *pos_css;
699
700 rcu_read_lock();
701 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
702 /* skip the whole subtree if @cp doesn't have any CPU */
703 if (cpumask_empty(cp->cpus_allowed)) {
704 pos_css = css_rightmost_descendant(pos_css);
705 continue;
706 }
707
708 if (is_sched_load_balance(cp))
709 update_domain_attr(dattr, cp);
710 }
711 rcu_read_unlock();
712 }
713
714 /* Must be called with cpuset_mutex held. */
715 static inline int nr_cpusets(void)
716 {
717 /* jump label reference count + the top-level cpuset */
718 return static_key_count(&cpusets_enabled_key.key) + 1;
719 }
720
721 /*
722 * generate_sched_domains()
723 *
724 * This function builds a partial partition of the systems CPUs
725 * A 'partial partition' is a set of non-overlapping subsets whose
726 * union is a subset of that set.
727 * The output of this function needs to be passed to kernel/sched/core.c
728 * partition_sched_domains() routine, which will rebuild the scheduler's
729 * load balancing domains (sched domains) as specified by that partial
730 * partition.
731 *
732 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
733 * for a background explanation of this.
734 *
735 * Does not return errors, on the theory that the callers of this
736 * routine would rather not worry about failures to rebuild sched
737 * domains when operating in the severe memory shortage situations
738 * that could cause allocation failures below.
739 *
740 * Must be called with cpuset_mutex held.
741 *
742 * The three key local variables below are:
743 * q - a linked-list queue of cpuset pointers, used to implement a
744 * top-down scan of all cpusets. This scan loads a pointer
745 * to each cpuset marked is_sched_load_balance into the
746 * array 'csa'. For our purposes, rebuilding the schedulers
747 * sched domains, we can ignore !is_sched_load_balance cpusets.
748 * csa - (for CpuSet Array) Array of pointers to all the cpusets
749 * that need to be load balanced, for convenient iterative
750 * access by the subsequent code that finds the best partition,
751 * i.e the set of domains (subsets) of CPUs such that the
752 * cpus_allowed of every cpuset marked is_sched_load_balance
753 * is a subset of one of these domains, while there are as
754 * many such domains as possible, each as small as possible.
755 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
756 * the kernel/sched/core.c routine partition_sched_domains() in a
757 * convenient format, that can be easily compared to the prior
758 * value to determine what partition elements (sched domains)
759 * were changed (added or removed.)
760 *
761 * Finding the best partition (set of domains):
762 * The triple nested loops below over i, j, k scan over the
763 * load balanced cpusets (using the array of cpuset pointers in
764 * csa[]) looking for pairs of cpusets that have overlapping
765 * cpus_allowed, but which don't have the same 'pn' partition
766 * number and gives them in the same partition number. It keeps
767 * looping on the 'restart' label until it can no longer find
768 * any such pairs.
769 *
770 * The union of the cpus_allowed masks from the set of
771 * all cpusets having the same 'pn' value then form the one
772 * element of the partition (one sched domain) to be passed to
773 * partition_sched_domains().
774 */
775 static int generate_sched_domains(cpumask_var_t **domains,
776 struct sched_domain_attr **attributes)
777 {
778 struct cpuset *cp; /* scans q */
779 struct cpuset **csa; /* array of all cpuset ptrs */
780 int csn; /* how many cpuset ptrs in csa so far */
781 int i, j, k; /* indices for partition finding loops */
782 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
783 struct sched_domain_attr *dattr; /* attributes for custom domains */
784 int ndoms = 0; /* number of sched domains in result */
785 int nslot; /* next empty doms[] struct cpumask slot */
786 struct cgroup_subsys_state *pos_css;
787 bool root_load_balance = is_sched_load_balance(&top_cpuset);
788
789 doms = NULL;
790 dattr = NULL;
791 csa = NULL;
792
793 /* Special case for the 99% of systems with one, full, sched domain */
794 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
795 ndoms = 1;
796 doms = alloc_sched_domains(ndoms);
797 if (!doms)
798 goto done;
799
800 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
801 if (dattr) {
802 *dattr = SD_ATTR_INIT;
803 update_domain_attr_tree(dattr, &top_cpuset);
804 }
805 cpumask_and(doms[0], top_cpuset.effective_cpus,
806 housekeeping_cpumask(HK_FLAG_DOMAIN));
807
808 goto done;
809 }
810
811 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
812 if (!csa)
813 goto done;
814 csn = 0;
815
816 rcu_read_lock();
817 if (root_load_balance)
818 csa[csn++] = &top_cpuset;
819 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
820 if (cp == &top_cpuset)
821 continue;
822 /*
823 * Continue traversing beyond @cp iff @cp has some CPUs and
824 * isn't load balancing. The former is obvious. The
825 * latter: All child cpusets contain a subset of the
826 * parent's cpus, so just skip them, and then we call
827 * update_domain_attr_tree() to calc relax_domain_level of
828 * the corresponding sched domain.
829 *
830 * If root is load-balancing, we can skip @cp if it
831 * is a subset of the root's effective_cpus.
832 */
833 if (!cpumask_empty(cp->cpus_allowed) &&
834 !(is_sched_load_balance(cp) &&
835 cpumask_intersects(cp->cpus_allowed,
836 housekeeping_cpumask(HK_FLAG_DOMAIN))))
837 continue;
838
839 if (root_load_balance &&
840 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
841 continue;
842
843 if (is_sched_load_balance(cp))
844 csa[csn++] = cp;
845
846 /* skip @cp's subtree if not a partition root */
847 if (!is_partition_root(cp))
848 pos_css = css_rightmost_descendant(pos_css);
849 }
850 rcu_read_unlock();
851
852 for (i = 0; i < csn; i++)
853 csa[i]->pn = i;
854 ndoms = csn;
855
856 restart:
857 /* Find the best partition (set of sched domains) */
858 for (i = 0; i < csn; i++) {
859 struct cpuset *a = csa[i];
860 int apn = a->pn;
861
862 for (j = 0; j < csn; j++) {
863 struct cpuset *b = csa[j];
864 int bpn = b->pn;
865
866 if (apn != bpn && cpusets_overlap(a, b)) {
867 for (k = 0; k < csn; k++) {
868 struct cpuset *c = csa[k];
869
870 if (c->pn == bpn)
871 c->pn = apn;
872 }
873 ndoms--; /* one less element */
874 goto restart;
875 }
876 }
877 }
878
879 /*
880 * Now we know how many domains to create.
881 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
882 */
883 doms = alloc_sched_domains(ndoms);
884 if (!doms)
885 goto done;
886
887 /*
888 * The rest of the code, including the scheduler, can deal with
889 * dattr==NULL case. No need to abort if alloc fails.
890 */
891 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
892 GFP_KERNEL);
893
894 for (nslot = 0, i = 0; i < csn; i++) {
895 struct cpuset *a = csa[i];
896 struct cpumask *dp;
897 int apn = a->pn;
898
899 if (apn < 0) {
900 /* Skip completed partitions */
901 continue;
902 }
903
904 dp = doms[nslot];
905
906 if (nslot == ndoms) {
907 static int warnings = 10;
908 if (warnings) {
909 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
910 nslot, ndoms, csn, i, apn);
911 warnings--;
912 }
913 continue;
914 }
915
916 cpumask_clear(dp);
917 if (dattr)
918 *(dattr + nslot) = SD_ATTR_INIT;
919 for (j = i; j < csn; j++) {
920 struct cpuset *b = csa[j];
921
922 if (apn == b->pn) {
923 cpumask_or(dp, dp, b->effective_cpus);
924 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
925 if (dattr)
926 update_domain_attr_tree(dattr + nslot, b);
927
928 /* Done with this partition */
929 b->pn = -1;
930 }
931 }
932 nslot++;
933 }
934 BUG_ON(nslot != ndoms);
935
936 done:
937 kfree(csa);
938
939 /*
940 * Fallback to the default domain if kmalloc() failed.
941 * See comments in partition_sched_domains().
942 */
943 if (doms == NULL)
944 ndoms = 1;
945
946 *domains = doms;
947 *attributes = dattr;
948 return ndoms;
949 }
950
951 /*
952 * Rebuild scheduler domains.
953 *
954 * If the flag 'sched_load_balance' of any cpuset with non-empty
955 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
956 * which has that flag enabled, or if any cpuset with a non-empty
957 * 'cpus' is removed, then call this routine to rebuild the
958 * scheduler's dynamic sched domains.
959 *
960 * Call with cpuset_mutex held. Takes get_online_cpus().
961 */
962 static void rebuild_sched_domains_locked(void)
963 {
964 struct sched_domain_attr *attr;
965 cpumask_var_t *doms;
966 int ndoms;
967
968 lockdep_assert_held(&cpuset_mutex);
969 get_online_cpus();
970
971 /*
972 * We have raced with CPU hotplug. Don't do anything to avoid
973 * passing doms with offlined cpu to partition_sched_domains().
974 * Anyways, hotplug work item will rebuild sched domains.
975 */
976 if (!top_cpuset.nr_subparts_cpus &&
977 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
978 goto out;
979
980 if (top_cpuset.nr_subparts_cpus &&
981 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
982 goto out;
983
984 /* Generate domain masks and attrs */
985 ndoms = generate_sched_domains(&doms, &attr);
986
987 /* Have scheduler rebuild the domains */
988 partition_sched_domains(ndoms, doms, attr);
989 out:
990 put_online_cpus();
991 }
992 #else /* !CONFIG_SMP */
993 static void rebuild_sched_domains_locked(void)
994 {
995 }
996 #endif /* CONFIG_SMP */
997
998 void rebuild_sched_domains(void)
999 {
1000 mutex_lock(&cpuset_mutex);
1001 rebuild_sched_domains_locked();
1002 mutex_unlock(&cpuset_mutex);
1003 }
1004
1005 /**
1006 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1007 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1008 *
1009 * Iterate through each task of @cs updating its cpus_allowed to the
1010 * effective cpuset's. As this function is called with cpuset_mutex held,
1011 * cpuset membership stays stable.
1012 */
1013 static void update_tasks_cpumask(struct cpuset *cs)
1014 {
1015 struct css_task_iter it;
1016 struct task_struct *task;
1017
1018 css_task_iter_start(&cs->css, 0, &it);
1019 while ((task = css_task_iter_next(&it)))
1020 set_cpus_allowed_ptr(task, cs->effective_cpus);
1021 css_task_iter_end(&it);
1022 }
1023
1024 /**
1025 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1026 * @new_cpus: the temp variable for the new effective_cpus mask
1027 * @cs: the cpuset the need to recompute the new effective_cpus mask
1028 * @parent: the parent cpuset
1029 *
1030 * If the parent has subpartition CPUs, include them in the list of
1031 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1032 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1033 * to mask those out.
1034 */
1035 static void compute_effective_cpumask(struct cpumask *new_cpus,
1036 struct cpuset *cs, struct cpuset *parent)
1037 {
1038 if (parent->nr_subparts_cpus) {
1039 cpumask_or(new_cpus, parent->effective_cpus,
1040 parent->subparts_cpus);
1041 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1042 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1043 } else {
1044 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1045 }
1046 }
1047
1048 /*
1049 * Commands for update_parent_subparts_cpumask
1050 */
1051 enum subparts_cmd {
1052 partcmd_enable, /* Enable partition root */
1053 partcmd_disable, /* Disable partition root */
1054 partcmd_update, /* Update parent's subparts_cpus */
1055 };
1056
1057 /**
1058 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1059 * @cpuset: The cpuset that requests change in partition root state
1060 * @cmd: Partition root state change command
1061 * @newmask: Optional new cpumask for partcmd_update
1062 * @tmp: Temporary addmask and delmask
1063 * Return: 0, 1 or an error code
1064 *
1065 * For partcmd_enable, the cpuset is being transformed from a non-partition
1066 * root to a partition root. The cpus_allowed mask of the given cpuset will
1067 * be put into parent's subparts_cpus and taken away from parent's
1068 * effective_cpus. The function will return 0 if all the CPUs listed in
1069 * cpus_allowed can be granted or an error code will be returned.
1070 *
1071 * For partcmd_disable, the cpuset is being transofrmed from a partition
1072 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1073 * parent's subparts_cpus will be taken away from that cpumask and put back
1074 * into parent's effective_cpus. 0 should always be returned.
1075 *
1076 * For partcmd_update, if the optional newmask is specified, the cpu
1077 * list is to be changed from cpus_allowed to newmask. Otherwise,
1078 * cpus_allowed is assumed to remain the same. The cpuset should either
1079 * be a partition root or an invalid partition root. The partition root
1080 * state may change if newmask is NULL and none of the requested CPUs can
1081 * be granted by the parent. The function will return 1 if changes to
1082 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1083 * Error code should only be returned when newmask is non-NULL.
1084 *
1085 * The partcmd_enable and partcmd_disable commands are used by
1086 * update_prstate(). The partcmd_update command is used by
1087 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1088 * newmask set.
1089 *
1090 * The checking is more strict when enabling partition root than the
1091 * other two commands.
1092 *
1093 * Because of the implicit cpu exclusive nature of a partition root,
1094 * cpumask changes that violates the cpu exclusivity rule will not be
1095 * permitted when checked by validate_change(). The validate_change()
1096 * function will also prevent any changes to the cpu list if it is not
1097 * a superset of children's cpu lists.
1098 */
1099 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1100 struct cpumask *newmask,
1101 struct tmpmasks *tmp)
1102 {
1103 struct cpuset *parent = parent_cs(cpuset);
1104 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1105 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1106 bool part_error = false; /* Partition error? */
1107
1108 lockdep_assert_held(&cpuset_mutex);
1109
1110 /*
1111 * The parent must be a partition root.
1112 * The new cpumask, if present, or the current cpus_allowed must
1113 * not be empty.
1114 */
1115 if (!is_partition_root(parent) ||
1116 (newmask && cpumask_empty(newmask)) ||
1117 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1118 return -EINVAL;
1119
1120 /*
1121 * Enabling/disabling partition root is not allowed if there are
1122 * online children.
1123 */
1124 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1125 return -EBUSY;
1126
1127 /*
1128 * Enabling partition root is not allowed if not all the CPUs
1129 * can be granted from parent's effective_cpus or at least one
1130 * CPU will be left after that.
1131 */
1132 if ((cmd == partcmd_enable) &&
1133 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1134 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1135 return -EINVAL;
1136
1137 /*
1138 * A cpumask update cannot make parent's effective_cpus become empty.
1139 */
1140 adding = deleting = false;
1141 if (cmd == partcmd_enable) {
1142 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1143 adding = true;
1144 } else if (cmd == partcmd_disable) {
1145 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1146 parent->subparts_cpus);
1147 } else if (newmask) {
1148 /*
1149 * partcmd_update with newmask:
1150 *
1151 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1152 * addmask = newmask & parent->effective_cpus
1153 * & ~parent->subparts_cpus
1154 */
1155 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1156 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1157 parent->subparts_cpus);
1158
1159 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1160 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1161 parent->subparts_cpus);
1162 /*
1163 * Return error if the new effective_cpus could become empty.
1164 */
1165 if (adding &&
1166 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1167 if (!deleting)
1168 return -EINVAL;
1169 /*
1170 * As some of the CPUs in subparts_cpus might have
1171 * been offlined, we need to compute the real delmask
1172 * to confirm that.
1173 */
1174 if (!cpumask_and(tmp->addmask, tmp->delmask,
1175 cpu_active_mask))
1176 return -EINVAL;
1177 cpumask_copy(tmp->addmask, parent->effective_cpus);
1178 }
1179 } else {
1180 /*
1181 * partcmd_update w/o newmask:
1182 *
1183 * addmask = cpus_allowed & parent->effectiveb_cpus
1184 *
1185 * Note that parent's subparts_cpus may have been
1186 * pre-shrunk in case there is a change in the cpu list.
1187 * So no deletion is needed.
1188 */
1189 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1190 parent->effective_cpus);
1191 part_error = cpumask_equal(tmp->addmask,
1192 parent->effective_cpus);
1193 }
1194
1195 if (cmd == partcmd_update) {
1196 int prev_prs = cpuset->partition_root_state;
1197
1198 /*
1199 * Check for possible transition between PRS_ENABLED
1200 * and PRS_ERROR.
1201 */
1202 switch (cpuset->partition_root_state) {
1203 case PRS_ENABLED:
1204 if (part_error)
1205 cpuset->partition_root_state = PRS_ERROR;
1206 break;
1207 case PRS_ERROR:
1208 if (!part_error)
1209 cpuset->partition_root_state = PRS_ENABLED;
1210 break;
1211 }
1212 /*
1213 * Set part_error if previously in invalid state.
1214 */
1215 part_error = (prev_prs == PRS_ERROR);
1216 }
1217
1218 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1219 return 0; /* Nothing need to be done */
1220
1221 if (cpuset->partition_root_state == PRS_ERROR) {
1222 /*
1223 * Remove all its cpus from parent's subparts_cpus.
1224 */
1225 adding = false;
1226 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1227 parent->subparts_cpus);
1228 }
1229
1230 if (!adding && !deleting)
1231 return 0;
1232
1233 /*
1234 * Change the parent's subparts_cpus.
1235 * Newly added CPUs will be removed from effective_cpus and
1236 * newly deleted ones will be added back to effective_cpus.
1237 */
1238 spin_lock_irq(&callback_lock);
1239 if (adding) {
1240 cpumask_or(parent->subparts_cpus,
1241 parent->subparts_cpus, tmp->addmask);
1242 cpumask_andnot(parent->effective_cpus,
1243 parent->effective_cpus, tmp->addmask);
1244 }
1245 if (deleting) {
1246 cpumask_andnot(parent->subparts_cpus,
1247 parent->subparts_cpus, tmp->delmask);
1248 /*
1249 * Some of the CPUs in subparts_cpus might have been offlined.
1250 */
1251 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1252 cpumask_or(parent->effective_cpus,
1253 parent->effective_cpus, tmp->delmask);
1254 }
1255
1256 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1257 spin_unlock_irq(&callback_lock);
1258
1259 return cmd == partcmd_update;
1260 }
1261
1262 /*
1263 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1264 * @cs: the cpuset to consider
1265 * @tmp: temp variables for calculating effective_cpus & partition setup
1266 *
1267 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1268 * and all its descendants need to be updated.
1269 *
1270 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1271 *
1272 * Called with cpuset_mutex held
1273 */
1274 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1275 {
1276 struct cpuset *cp;
1277 struct cgroup_subsys_state *pos_css;
1278 bool need_rebuild_sched_domains = false;
1279
1280 rcu_read_lock();
1281 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1282 struct cpuset *parent = parent_cs(cp);
1283
1284 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1285
1286 /*
1287 * If it becomes empty, inherit the effective mask of the
1288 * parent, which is guaranteed to have some CPUs.
1289 */
1290 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1291 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1292 if (!cp->use_parent_ecpus) {
1293 cp->use_parent_ecpus = true;
1294 parent->child_ecpus_count++;
1295 }
1296 } else if (cp->use_parent_ecpus) {
1297 cp->use_parent_ecpus = false;
1298 WARN_ON_ONCE(!parent->child_ecpus_count);
1299 parent->child_ecpus_count--;
1300 }
1301
1302 /*
1303 * Skip the whole subtree if the cpumask remains the same
1304 * and has no partition root state.
1305 */
1306 if (!cp->partition_root_state &&
1307 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1308 pos_css = css_rightmost_descendant(pos_css);
1309 continue;
1310 }
1311
1312 /*
1313 * update_parent_subparts_cpumask() should have been called
1314 * for cs already in update_cpumask(). We should also call
1315 * update_tasks_cpumask() again for tasks in the parent
1316 * cpuset if the parent's subparts_cpus changes.
1317 */
1318 if ((cp != cs) && cp->partition_root_state) {
1319 switch (parent->partition_root_state) {
1320 case PRS_DISABLED:
1321 /*
1322 * If parent is not a partition root or an
1323 * invalid partition root, clear the state
1324 * state and the CS_CPU_EXCLUSIVE flag.
1325 */
1326 WARN_ON_ONCE(cp->partition_root_state
1327 != PRS_ERROR);
1328 cp->partition_root_state = 0;
1329
1330 /*
1331 * clear_bit() is an atomic operation and
1332 * readers aren't interested in the state
1333 * of CS_CPU_EXCLUSIVE anyway. So we can
1334 * just update the flag without holding
1335 * the callback_lock.
1336 */
1337 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1338 break;
1339
1340 case PRS_ENABLED:
1341 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1342 update_tasks_cpumask(parent);
1343 break;
1344
1345 case PRS_ERROR:
1346 /*
1347 * When parent is invalid, it has to be too.
1348 */
1349 cp->partition_root_state = PRS_ERROR;
1350 if (cp->nr_subparts_cpus) {
1351 cp->nr_subparts_cpus = 0;
1352 cpumask_clear(cp->subparts_cpus);
1353 }
1354 break;
1355 }
1356 }
1357
1358 if (!css_tryget_online(&cp->css))
1359 continue;
1360 rcu_read_unlock();
1361
1362 spin_lock_irq(&callback_lock);
1363
1364 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1365 if (cp->nr_subparts_cpus &&
1366 (cp->partition_root_state != PRS_ENABLED)) {
1367 cp->nr_subparts_cpus = 0;
1368 cpumask_clear(cp->subparts_cpus);
1369 } else if (cp->nr_subparts_cpus) {
1370 /*
1371 * Make sure that effective_cpus & subparts_cpus
1372 * are mutually exclusive.
1373 *
1374 * In the unlikely event that effective_cpus
1375 * becomes empty. we clear cp->nr_subparts_cpus and
1376 * let its child partition roots to compete for
1377 * CPUs again.
1378 */
1379 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1380 cp->subparts_cpus);
1381 if (cpumask_empty(cp->effective_cpus)) {
1382 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1383 cpumask_clear(cp->subparts_cpus);
1384 cp->nr_subparts_cpus = 0;
1385 } else if (!cpumask_subset(cp->subparts_cpus,
1386 tmp->new_cpus)) {
1387 cpumask_andnot(cp->subparts_cpus,
1388 cp->subparts_cpus, tmp->new_cpus);
1389 cp->nr_subparts_cpus
1390 = cpumask_weight(cp->subparts_cpus);
1391 }
1392 }
1393 spin_unlock_irq(&callback_lock);
1394
1395 WARN_ON(!is_in_v2_mode() &&
1396 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1397
1398 update_tasks_cpumask(cp);
1399
1400 /*
1401 * On legacy hierarchy, if the effective cpumask of any non-
1402 * empty cpuset is changed, we need to rebuild sched domains.
1403 * On default hierarchy, the cpuset needs to be a partition
1404 * root as well.
1405 */
1406 if (!cpumask_empty(cp->cpus_allowed) &&
1407 is_sched_load_balance(cp) &&
1408 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1409 is_partition_root(cp)))
1410 need_rebuild_sched_domains = true;
1411
1412 rcu_read_lock();
1413 css_put(&cp->css);
1414 }
1415 rcu_read_unlock();
1416
1417 if (need_rebuild_sched_domains)
1418 rebuild_sched_domains_locked();
1419 }
1420
1421 /**
1422 * update_sibling_cpumasks - Update siblings cpumasks
1423 * @parent: Parent cpuset
1424 * @cs: Current cpuset
1425 * @tmp: Temp variables
1426 */
1427 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1428 struct tmpmasks *tmp)
1429 {
1430 struct cpuset *sibling;
1431 struct cgroup_subsys_state *pos_css;
1432
1433 /*
1434 * Check all its siblings and call update_cpumasks_hier()
1435 * if their use_parent_ecpus flag is set in order for them
1436 * to use the right effective_cpus value.
1437 */
1438 rcu_read_lock();
1439 cpuset_for_each_child(sibling, pos_css, parent) {
1440 if (sibling == cs)
1441 continue;
1442 if (!sibling->use_parent_ecpus)
1443 continue;
1444
1445 update_cpumasks_hier(sibling, tmp);
1446 }
1447 rcu_read_unlock();
1448 }
1449
1450 /**
1451 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1452 * @cs: the cpuset to consider
1453 * @trialcs: trial cpuset
1454 * @buf: buffer of cpu numbers written to this cpuset
1455 */
1456 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1457 const char *buf)
1458 {
1459 int retval;
1460 struct tmpmasks tmp;
1461
1462 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1463 if (cs == &top_cpuset)
1464 return -EACCES;
1465
1466 /*
1467 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1468 * Since cpulist_parse() fails on an empty mask, we special case
1469 * that parsing. The validate_change() call ensures that cpusets
1470 * with tasks have cpus.
1471 */
1472 if (!*buf) {
1473 cpumask_clear(trialcs->cpus_allowed);
1474 } else {
1475 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1476 if (retval < 0)
1477 return retval;
1478
1479 if (!cpumask_subset(trialcs->cpus_allowed,
1480 top_cpuset.cpus_allowed))
1481 return -EINVAL;
1482 }
1483
1484 /* Nothing to do if the cpus didn't change */
1485 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1486 return 0;
1487
1488 retval = validate_change(cs, trialcs);
1489 if (retval < 0)
1490 return retval;
1491
1492 #ifdef CONFIG_CPUMASK_OFFSTACK
1493 /*
1494 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1495 * to allocated cpumasks.
1496 */
1497 tmp.addmask = trialcs->subparts_cpus;
1498 tmp.delmask = trialcs->effective_cpus;
1499 tmp.new_cpus = trialcs->cpus_allowed;
1500 #endif
1501
1502 if (cs->partition_root_state) {
1503 /* Cpumask of a partition root cannot be empty */
1504 if (cpumask_empty(trialcs->cpus_allowed))
1505 return -EINVAL;
1506 if (update_parent_subparts_cpumask(cs, partcmd_update,
1507 trialcs->cpus_allowed, &tmp) < 0)
1508 return -EINVAL;
1509 }
1510
1511 spin_lock_irq(&callback_lock);
1512 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1513
1514 /*
1515 * Make sure that subparts_cpus is a subset of cpus_allowed.
1516 */
1517 if (cs->nr_subparts_cpus) {
1518 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1519 cs->cpus_allowed);
1520 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1521 }
1522 spin_unlock_irq(&callback_lock);
1523
1524 update_cpumasks_hier(cs, &tmp);
1525
1526 if (cs->partition_root_state) {
1527 struct cpuset *parent = parent_cs(cs);
1528
1529 /*
1530 * For partition root, update the cpumasks of sibling
1531 * cpusets if they use parent's effective_cpus.
1532 */
1533 if (parent->child_ecpus_count)
1534 update_sibling_cpumasks(parent, cs, &tmp);
1535 }
1536 return 0;
1537 }
1538
1539 /*
1540 * Migrate memory region from one set of nodes to another. This is
1541 * performed asynchronously as it can be called from process migration path
1542 * holding locks involved in process management. All mm migrations are
1543 * performed in the queued order and can be waited for by flushing
1544 * cpuset_migrate_mm_wq.
1545 */
1546
1547 struct cpuset_migrate_mm_work {
1548 struct work_struct work;
1549 struct mm_struct *mm;
1550 nodemask_t from;
1551 nodemask_t to;
1552 };
1553
1554 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1555 {
1556 struct cpuset_migrate_mm_work *mwork =
1557 container_of(work, struct cpuset_migrate_mm_work, work);
1558
1559 /* on a wq worker, no need to worry about %current's mems_allowed */
1560 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1561 mmput(mwork->mm);
1562 kfree(mwork);
1563 }
1564
1565 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1566 const nodemask_t *to)
1567 {
1568 struct cpuset_migrate_mm_work *mwork;
1569
1570 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1571 if (mwork) {
1572 mwork->mm = mm;
1573 mwork->from = *from;
1574 mwork->to = *to;
1575 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1576 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1577 } else {
1578 mmput(mm);
1579 }
1580 }
1581
1582 static void cpuset_post_attach(void)
1583 {
1584 flush_workqueue(cpuset_migrate_mm_wq);
1585 }
1586
1587 /*
1588 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1589 * @tsk: the task to change
1590 * @newmems: new nodes that the task will be set
1591 *
1592 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1593 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1594 * parallel, it might temporarily see an empty intersection, which results in
1595 * a seqlock check and retry before OOM or allocation failure.
1596 */
1597 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1598 nodemask_t *newmems)
1599 {
1600 task_lock(tsk);
1601
1602 local_irq_disable();
1603 write_seqcount_begin(&tsk->mems_allowed_seq);
1604
1605 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1606 mpol_rebind_task(tsk, newmems);
1607 tsk->mems_allowed = *newmems;
1608
1609 write_seqcount_end(&tsk->mems_allowed_seq);
1610 local_irq_enable();
1611
1612 task_unlock(tsk);
1613 }
1614
1615 static void *cpuset_being_rebound;
1616
1617 /**
1618 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1619 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1620 *
1621 * Iterate through each task of @cs updating its mems_allowed to the
1622 * effective cpuset's. As this function is called with cpuset_mutex held,
1623 * cpuset membership stays stable.
1624 */
1625 static void update_tasks_nodemask(struct cpuset *cs)
1626 {
1627 static nodemask_t newmems; /* protected by cpuset_mutex */
1628 struct css_task_iter it;
1629 struct task_struct *task;
1630
1631 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1632
1633 guarantee_online_mems(cs, &newmems);
1634
1635 /*
1636 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1637 * take while holding tasklist_lock. Forks can happen - the
1638 * mpol_dup() cpuset_being_rebound check will catch such forks,
1639 * and rebind their vma mempolicies too. Because we still hold
1640 * the global cpuset_mutex, we know that no other rebind effort
1641 * will be contending for the global variable cpuset_being_rebound.
1642 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1643 * is idempotent. Also migrate pages in each mm to new nodes.
1644 */
1645 css_task_iter_start(&cs->css, 0, &it);
1646 while ((task = css_task_iter_next(&it))) {
1647 struct mm_struct *mm;
1648 bool migrate;
1649
1650 cpuset_change_task_nodemask(task, &newmems);
1651
1652 mm = get_task_mm(task);
1653 if (!mm)
1654 continue;
1655
1656 migrate = is_memory_migrate(cs);
1657
1658 mpol_rebind_mm(mm, &cs->mems_allowed);
1659 if (migrate)
1660 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1661 else
1662 mmput(mm);
1663 }
1664 css_task_iter_end(&it);
1665
1666 /*
1667 * All the tasks' nodemasks have been updated, update
1668 * cs->old_mems_allowed.
1669 */
1670 cs->old_mems_allowed = newmems;
1671
1672 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1673 cpuset_being_rebound = NULL;
1674 }
1675
1676 /*
1677 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1678 * @cs: the cpuset to consider
1679 * @new_mems: a temp variable for calculating new effective_mems
1680 *
1681 * When configured nodemask is changed, the effective nodemasks of this cpuset
1682 * and all its descendants need to be updated.
1683 *
1684 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1685 *
1686 * Called with cpuset_mutex held
1687 */
1688 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1689 {
1690 struct cpuset *cp;
1691 struct cgroup_subsys_state *pos_css;
1692
1693 rcu_read_lock();
1694 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1695 struct cpuset *parent = parent_cs(cp);
1696
1697 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1698
1699 /*
1700 * If it becomes empty, inherit the effective mask of the
1701 * parent, which is guaranteed to have some MEMs.
1702 */
1703 if (is_in_v2_mode() && nodes_empty(*new_mems))
1704 *new_mems = parent->effective_mems;
1705
1706 /* Skip the whole subtree if the nodemask remains the same. */
1707 if (nodes_equal(*new_mems, cp->effective_mems)) {
1708 pos_css = css_rightmost_descendant(pos_css);
1709 continue;
1710 }
1711
1712 if (!css_tryget_online(&cp->css))
1713 continue;
1714 rcu_read_unlock();
1715
1716 spin_lock_irq(&callback_lock);
1717 cp->effective_mems = *new_mems;
1718 spin_unlock_irq(&callback_lock);
1719
1720 WARN_ON(!is_in_v2_mode() &&
1721 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1722
1723 update_tasks_nodemask(cp);
1724
1725 rcu_read_lock();
1726 css_put(&cp->css);
1727 }
1728 rcu_read_unlock();
1729 }
1730
1731 /*
1732 * Handle user request to change the 'mems' memory placement
1733 * of a cpuset. Needs to validate the request, update the
1734 * cpusets mems_allowed, and for each task in the cpuset,
1735 * update mems_allowed and rebind task's mempolicy and any vma
1736 * mempolicies and if the cpuset is marked 'memory_migrate',
1737 * migrate the tasks pages to the new memory.
1738 *
1739 * Call with cpuset_mutex held. May take callback_lock during call.
1740 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1741 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1742 * their mempolicies to the cpusets new mems_allowed.
1743 */
1744 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1745 const char *buf)
1746 {
1747 int retval;
1748
1749 /*
1750 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1751 * it's read-only
1752 */
1753 if (cs == &top_cpuset) {
1754 retval = -EACCES;
1755 goto done;
1756 }
1757
1758 /*
1759 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1760 * Since nodelist_parse() fails on an empty mask, we special case
1761 * that parsing. The validate_change() call ensures that cpusets
1762 * with tasks have memory.
1763 */
1764 if (!*buf) {
1765 nodes_clear(trialcs->mems_allowed);
1766 } else {
1767 retval = nodelist_parse(buf, trialcs->mems_allowed);
1768 if (retval < 0)
1769 goto done;
1770
1771 if (!nodes_subset(trialcs->mems_allowed,
1772 top_cpuset.mems_allowed)) {
1773 retval = -EINVAL;
1774 goto done;
1775 }
1776 }
1777
1778 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1779 retval = 0; /* Too easy - nothing to do */
1780 goto done;
1781 }
1782 retval = validate_change(cs, trialcs);
1783 if (retval < 0)
1784 goto done;
1785
1786 spin_lock_irq(&callback_lock);
1787 cs->mems_allowed = trialcs->mems_allowed;
1788 spin_unlock_irq(&callback_lock);
1789
1790 /* use trialcs->mems_allowed as a temp variable */
1791 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1792 done:
1793 return retval;
1794 }
1795
1796 bool current_cpuset_is_being_rebound(void)
1797 {
1798 bool ret;
1799
1800 rcu_read_lock();
1801 ret = task_cs(current) == cpuset_being_rebound;
1802 rcu_read_unlock();
1803
1804 return ret;
1805 }
1806
1807 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1808 {
1809 #ifdef CONFIG_SMP
1810 if (val < -1 || val >= sched_domain_level_max)
1811 return -EINVAL;
1812 #endif
1813
1814 if (val != cs->relax_domain_level) {
1815 cs->relax_domain_level = val;
1816 if (!cpumask_empty(cs->cpus_allowed) &&
1817 is_sched_load_balance(cs))
1818 rebuild_sched_domains_locked();
1819 }
1820
1821 return 0;
1822 }
1823
1824 /**
1825 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1826 * @cs: the cpuset in which each task's spread flags needs to be changed
1827 *
1828 * Iterate through each task of @cs updating its spread flags. As this
1829 * function is called with cpuset_mutex held, cpuset membership stays
1830 * stable.
1831 */
1832 static void update_tasks_flags(struct cpuset *cs)
1833 {
1834 struct css_task_iter it;
1835 struct task_struct *task;
1836
1837 css_task_iter_start(&cs->css, 0, &it);
1838 while ((task = css_task_iter_next(&it)))
1839 cpuset_update_task_spread_flag(cs, task);
1840 css_task_iter_end(&it);
1841 }
1842
1843 /*
1844 * update_flag - read a 0 or a 1 in a file and update associated flag
1845 * bit: the bit to update (see cpuset_flagbits_t)
1846 * cs: the cpuset to update
1847 * turning_on: whether the flag is being set or cleared
1848 *
1849 * Call with cpuset_mutex held.
1850 */
1851
1852 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1853 int turning_on)
1854 {
1855 struct cpuset *trialcs;
1856 int balance_flag_changed;
1857 int spread_flag_changed;
1858 int err;
1859
1860 trialcs = alloc_trial_cpuset(cs);
1861 if (!trialcs)
1862 return -ENOMEM;
1863
1864 if (turning_on)
1865 set_bit(bit, &trialcs->flags);
1866 else
1867 clear_bit(bit, &trialcs->flags);
1868
1869 err = validate_change(cs, trialcs);
1870 if (err < 0)
1871 goto out;
1872
1873 balance_flag_changed = (is_sched_load_balance(cs) !=
1874 is_sched_load_balance(trialcs));
1875
1876 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1877 || (is_spread_page(cs) != is_spread_page(trialcs)));
1878
1879 spin_lock_irq(&callback_lock);
1880 cs->flags = trialcs->flags;
1881 spin_unlock_irq(&callback_lock);
1882
1883 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1884 rebuild_sched_domains_locked();
1885
1886 if (spread_flag_changed)
1887 update_tasks_flags(cs);
1888 out:
1889 free_cpuset(trialcs);
1890 return err;
1891 }
1892
1893 /*
1894 * update_prstate - update partititon_root_state
1895 * cs: the cpuset to update
1896 * val: 0 - disabled, 1 - enabled
1897 *
1898 * Call with cpuset_mutex held.
1899 */
1900 static int update_prstate(struct cpuset *cs, int val)
1901 {
1902 int err;
1903 struct cpuset *parent = parent_cs(cs);
1904 struct tmpmasks tmp;
1905
1906 if ((val != 0) && (val != 1))
1907 return -EINVAL;
1908 if (val == cs->partition_root_state)
1909 return 0;
1910
1911 /*
1912 * Cannot force a partial or invalid partition root to a full
1913 * partition root.
1914 */
1915 if (val && cs->partition_root_state)
1916 return -EINVAL;
1917
1918 if (alloc_cpumasks(NULL, &tmp))
1919 return -ENOMEM;
1920
1921 err = -EINVAL;
1922 if (!cs->partition_root_state) {
1923 /*
1924 * Turning on partition root requires setting the
1925 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1926 * cannot be NULL.
1927 */
1928 if (cpumask_empty(cs->cpus_allowed))
1929 goto out;
1930
1931 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1932 if (err)
1933 goto out;
1934
1935 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1936 NULL, &tmp);
1937 if (err) {
1938 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1939 goto out;
1940 }
1941 cs->partition_root_state = PRS_ENABLED;
1942 } else {
1943 /*
1944 * Turning off partition root will clear the
1945 * CS_CPU_EXCLUSIVE bit.
1946 */
1947 if (cs->partition_root_state == PRS_ERROR) {
1948 cs->partition_root_state = 0;
1949 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1950 err = 0;
1951 goto out;
1952 }
1953
1954 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1955 NULL, &tmp);
1956 if (err)
1957 goto out;
1958
1959 cs->partition_root_state = 0;
1960
1961 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1962 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1963 }
1964
1965 /*
1966 * Update cpumask of parent's tasks except when it is the top
1967 * cpuset as some system daemons cannot be mapped to other CPUs.
1968 */
1969 if (parent != &top_cpuset)
1970 update_tasks_cpumask(parent);
1971
1972 if (parent->child_ecpus_count)
1973 update_sibling_cpumasks(parent, cs, &tmp);
1974
1975 rebuild_sched_domains_locked();
1976 out:
1977 free_cpumasks(NULL, &tmp);
1978 return err;
1979 }
1980
1981 /*
1982 * Frequency meter - How fast is some event occurring?
1983 *
1984 * These routines manage a digitally filtered, constant time based,
1985 * event frequency meter. There are four routines:
1986 * fmeter_init() - initialize a frequency meter.
1987 * fmeter_markevent() - called each time the event happens.
1988 * fmeter_getrate() - returns the recent rate of such events.
1989 * fmeter_update() - internal routine used to update fmeter.
1990 *
1991 * A common data structure is passed to each of these routines,
1992 * which is used to keep track of the state required to manage the
1993 * frequency meter and its digital filter.
1994 *
1995 * The filter works on the number of events marked per unit time.
1996 * The filter is single-pole low-pass recursive (IIR). The time unit
1997 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1998 * simulate 3 decimal digits of precision (multiplied by 1000).
1999 *
2000 * With an FM_COEF of 933, and a time base of 1 second, the filter
2001 * has a half-life of 10 seconds, meaning that if the events quit
2002 * happening, then the rate returned from the fmeter_getrate()
2003 * will be cut in half each 10 seconds, until it converges to zero.
2004 *
2005 * It is not worth doing a real infinitely recursive filter. If more
2006 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2007 * just compute FM_MAXTICKS ticks worth, by which point the level
2008 * will be stable.
2009 *
2010 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2011 * arithmetic overflow in the fmeter_update() routine.
2012 *
2013 * Given the simple 32 bit integer arithmetic used, this meter works
2014 * best for reporting rates between one per millisecond (msec) and
2015 * one per 32 (approx) seconds. At constant rates faster than one
2016 * per msec it maxes out at values just under 1,000,000. At constant
2017 * rates between one per msec, and one per second it will stabilize
2018 * to a value N*1000, where N is the rate of events per second.
2019 * At constant rates between one per second and one per 32 seconds,
2020 * it will be choppy, moving up on the seconds that have an event,
2021 * and then decaying until the next event. At rates slower than
2022 * about one in 32 seconds, it decays all the way back to zero between
2023 * each event.
2024 */
2025
2026 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2027 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2028 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2029 #define FM_SCALE 1000 /* faux fixed point scale */
2030
2031 /* Initialize a frequency meter */
2032 static void fmeter_init(struct fmeter *fmp)
2033 {
2034 fmp->cnt = 0;
2035 fmp->val = 0;
2036 fmp->time = 0;
2037 spin_lock_init(&fmp->lock);
2038 }
2039
2040 /* Internal meter update - process cnt events and update value */
2041 static void fmeter_update(struct fmeter *fmp)
2042 {
2043 time64_t now;
2044 u32 ticks;
2045
2046 now = ktime_get_seconds();
2047 ticks = now - fmp->time;
2048
2049 if (ticks == 0)
2050 return;
2051
2052 ticks = min(FM_MAXTICKS, ticks);
2053 while (ticks-- > 0)
2054 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2055 fmp->time = now;
2056
2057 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2058 fmp->cnt = 0;
2059 }
2060
2061 /* Process any previous ticks, then bump cnt by one (times scale). */
2062 static void fmeter_markevent(struct fmeter *fmp)
2063 {
2064 spin_lock(&fmp->lock);
2065 fmeter_update(fmp);
2066 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2067 spin_unlock(&fmp->lock);
2068 }
2069
2070 /* Process any previous ticks, then return current value. */
2071 static int fmeter_getrate(struct fmeter *fmp)
2072 {
2073 int val;
2074
2075 spin_lock(&fmp->lock);
2076 fmeter_update(fmp);
2077 val = fmp->val;
2078 spin_unlock(&fmp->lock);
2079 return val;
2080 }
2081
2082 static struct cpuset *cpuset_attach_old_cs;
2083
2084 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2085 static int cpuset_can_attach(struct cgroup_taskset *tset)
2086 {
2087 struct cgroup_subsys_state *css;
2088 struct cpuset *cs;
2089 struct task_struct *task;
2090 int ret;
2091
2092 /* used later by cpuset_attach() */
2093 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2094 cs = css_cs(css);
2095
2096 mutex_lock(&cpuset_mutex);
2097
2098 /* allow moving tasks into an empty cpuset if on default hierarchy */
2099 ret = -ENOSPC;
2100 if (!is_in_v2_mode() &&
2101 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2102 goto out_unlock;
2103
2104 cgroup_taskset_for_each(task, css, tset) {
2105 ret = task_can_attach(task, cs->cpus_allowed);
2106 if (ret)
2107 goto out_unlock;
2108 ret = security_task_setscheduler(task);
2109 if (ret)
2110 goto out_unlock;
2111 }
2112
2113 /*
2114 * Mark attach is in progress. This makes validate_change() fail
2115 * changes which zero cpus/mems_allowed.
2116 */
2117 cs->attach_in_progress++;
2118 ret = 0;
2119 out_unlock:
2120 mutex_unlock(&cpuset_mutex);
2121 return ret;
2122 }
2123
2124 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2125 {
2126 struct cgroup_subsys_state *css;
2127
2128 cgroup_taskset_first(tset, &css);
2129
2130 mutex_lock(&cpuset_mutex);
2131 css_cs(css)->attach_in_progress--;
2132 mutex_unlock(&cpuset_mutex);
2133 }
2134
2135 /*
2136 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2137 * but we can't allocate it dynamically there. Define it global and
2138 * allocate from cpuset_init().
2139 */
2140 static cpumask_var_t cpus_attach;
2141
2142 static void cpuset_attach(struct cgroup_taskset *tset)
2143 {
2144 /* static buf protected by cpuset_mutex */
2145 static nodemask_t cpuset_attach_nodemask_to;
2146 struct task_struct *task;
2147 struct task_struct *leader;
2148 struct cgroup_subsys_state *css;
2149 struct cpuset *cs;
2150 struct cpuset *oldcs = cpuset_attach_old_cs;
2151
2152 cgroup_taskset_first(tset, &css);
2153 cs = css_cs(css);
2154
2155 mutex_lock(&cpuset_mutex);
2156
2157 /* prepare for attach */
2158 if (cs == &top_cpuset)
2159 cpumask_copy(cpus_attach, cpu_possible_mask);
2160 else
2161 guarantee_online_cpus(cs, cpus_attach);
2162
2163 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2164
2165 cgroup_taskset_for_each(task, css, tset) {
2166 /*
2167 * can_attach beforehand should guarantee that this doesn't
2168 * fail. TODO: have a better way to handle failure here
2169 */
2170 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2171
2172 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2173 cpuset_update_task_spread_flag(cs, task);
2174 }
2175
2176 /*
2177 * Change mm for all threadgroup leaders. This is expensive and may
2178 * sleep and should be moved outside migration path proper.
2179 */
2180 cpuset_attach_nodemask_to = cs->effective_mems;
2181 cgroup_taskset_for_each_leader(leader, css, tset) {
2182 struct mm_struct *mm = get_task_mm(leader);
2183
2184 if (mm) {
2185 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2186
2187 /*
2188 * old_mems_allowed is the same with mems_allowed
2189 * here, except if this task is being moved
2190 * automatically due to hotplug. In that case
2191 * @mems_allowed has been updated and is empty, so
2192 * @old_mems_allowed is the right nodesets that we
2193 * migrate mm from.
2194 */
2195 if (is_memory_migrate(cs))
2196 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2197 &cpuset_attach_nodemask_to);
2198 else
2199 mmput(mm);
2200 }
2201 }
2202
2203 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2204
2205 cs->attach_in_progress--;
2206 if (!cs->attach_in_progress)
2207 wake_up(&cpuset_attach_wq);
2208
2209 mutex_unlock(&cpuset_mutex);
2210 }
2211
2212 /* The various types of files and directories in a cpuset file system */
2213
2214 typedef enum {
2215 FILE_MEMORY_MIGRATE,
2216 FILE_CPULIST,
2217 FILE_MEMLIST,
2218 FILE_EFFECTIVE_CPULIST,
2219 FILE_EFFECTIVE_MEMLIST,
2220 FILE_SUBPARTS_CPULIST,
2221 FILE_CPU_EXCLUSIVE,
2222 FILE_MEM_EXCLUSIVE,
2223 FILE_MEM_HARDWALL,
2224 FILE_SCHED_LOAD_BALANCE,
2225 FILE_PARTITION_ROOT,
2226 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2227 FILE_MEMORY_PRESSURE_ENABLED,
2228 FILE_MEMORY_PRESSURE,
2229 FILE_SPREAD_PAGE,
2230 FILE_SPREAD_SLAB,
2231 } cpuset_filetype_t;
2232
2233 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2234 u64 val)
2235 {
2236 struct cpuset *cs = css_cs(css);
2237 cpuset_filetype_t type = cft->private;
2238 int retval = 0;
2239
2240 mutex_lock(&cpuset_mutex);
2241 if (!is_cpuset_online(cs)) {
2242 retval = -ENODEV;
2243 goto out_unlock;
2244 }
2245
2246 switch (type) {
2247 case FILE_CPU_EXCLUSIVE:
2248 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2249 break;
2250 case FILE_MEM_EXCLUSIVE:
2251 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2252 break;
2253 case FILE_MEM_HARDWALL:
2254 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2255 break;
2256 case FILE_SCHED_LOAD_BALANCE:
2257 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2258 break;
2259 case FILE_MEMORY_MIGRATE:
2260 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2261 break;
2262 case FILE_MEMORY_PRESSURE_ENABLED:
2263 cpuset_memory_pressure_enabled = !!val;
2264 break;
2265 case FILE_SPREAD_PAGE:
2266 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2267 break;
2268 case FILE_SPREAD_SLAB:
2269 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2270 break;
2271 default:
2272 retval = -EINVAL;
2273 break;
2274 }
2275 out_unlock:
2276 mutex_unlock(&cpuset_mutex);
2277 return retval;
2278 }
2279
2280 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2281 s64 val)
2282 {
2283 struct cpuset *cs = css_cs(css);
2284 cpuset_filetype_t type = cft->private;
2285 int retval = -ENODEV;
2286
2287 mutex_lock(&cpuset_mutex);
2288 if (!is_cpuset_online(cs))
2289 goto out_unlock;
2290
2291 switch (type) {
2292 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2293 retval = update_relax_domain_level(cs, val);
2294 break;
2295 default:
2296 retval = -EINVAL;
2297 break;
2298 }
2299 out_unlock:
2300 mutex_unlock(&cpuset_mutex);
2301 return retval;
2302 }
2303
2304 /*
2305 * Common handling for a write to a "cpus" or "mems" file.
2306 */
2307 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2308 char *buf, size_t nbytes, loff_t off)
2309 {
2310 struct cpuset *cs = css_cs(of_css(of));
2311 struct cpuset *trialcs;
2312 int retval = -ENODEV;
2313
2314 buf = strstrip(buf);
2315
2316 /*
2317 * CPU or memory hotunplug may leave @cs w/o any execution
2318 * resources, in which case the hotplug code asynchronously updates
2319 * configuration and transfers all tasks to the nearest ancestor
2320 * which can execute.
2321 *
2322 * As writes to "cpus" or "mems" may restore @cs's execution
2323 * resources, wait for the previously scheduled operations before
2324 * proceeding, so that we don't end up keep removing tasks added
2325 * after execution capability is restored.
2326 *
2327 * cpuset_hotplug_work calls back into cgroup core via
2328 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2329 * operation like this one can lead to a deadlock through kernfs
2330 * active_ref protection. Let's break the protection. Losing the
2331 * protection is okay as we check whether @cs is online after
2332 * grabbing cpuset_mutex anyway. This only happens on the legacy
2333 * hierarchies.
2334 */
2335 css_get(&cs->css);
2336 kernfs_break_active_protection(of->kn);
2337 flush_work(&cpuset_hotplug_work);
2338
2339 mutex_lock(&cpuset_mutex);
2340 if (!is_cpuset_online(cs))
2341 goto out_unlock;
2342
2343 trialcs = alloc_trial_cpuset(cs);
2344 if (!trialcs) {
2345 retval = -ENOMEM;
2346 goto out_unlock;
2347 }
2348
2349 switch (of_cft(of)->private) {
2350 case FILE_CPULIST:
2351 retval = update_cpumask(cs, trialcs, buf);
2352 break;
2353 case FILE_MEMLIST:
2354 retval = update_nodemask(cs, trialcs, buf);
2355 break;
2356 default:
2357 retval = -EINVAL;
2358 break;
2359 }
2360
2361 free_cpuset(trialcs);
2362 out_unlock:
2363 mutex_unlock(&cpuset_mutex);
2364 kernfs_unbreak_active_protection(of->kn);
2365 css_put(&cs->css);
2366 flush_workqueue(cpuset_migrate_mm_wq);
2367 return retval ?: nbytes;
2368 }
2369
2370 /*
2371 * These ascii lists should be read in a single call, by using a user
2372 * buffer large enough to hold the entire map. If read in smaller
2373 * chunks, there is no guarantee of atomicity. Since the display format
2374 * used, list of ranges of sequential numbers, is variable length,
2375 * and since these maps can change value dynamically, one could read
2376 * gibberish by doing partial reads while a list was changing.
2377 */
2378 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2379 {
2380 struct cpuset *cs = css_cs(seq_css(sf));
2381 cpuset_filetype_t type = seq_cft(sf)->private;
2382 int ret = 0;
2383
2384 spin_lock_irq(&callback_lock);
2385
2386 switch (type) {
2387 case FILE_CPULIST:
2388 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2389 break;
2390 case FILE_MEMLIST:
2391 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2392 break;
2393 case FILE_EFFECTIVE_CPULIST:
2394 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2395 break;
2396 case FILE_EFFECTIVE_MEMLIST:
2397 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2398 break;
2399 case FILE_SUBPARTS_CPULIST:
2400 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2401 break;
2402 default:
2403 ret = -EINVAL;
2404 }
2405
2406 spin_unlock_irq(&callback_lock);
2407 return ret;
2408 }
2409
2410 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2411 {
2412 struct cpuset *cs = css_cs(css);
2413 cpuset_filetype_t type = cft->private;
2414 switch (type) {
2415 case FILE_CPU_EXCLUSIVE:
2416 return is_cpu_exclusive(cs);
2417 case FILE_MEM_EXCLUSIVE:
2418 return is_mem_exclusive(cs);
2419 case FILE_MEM_HARDWALL:
2420 return is_mem_hardwall(cs);
2421 case FILE_SCHED_LOAD_BALANCE:
2422 return is_sched_load_balance(cs);
2423 case FILE_MEMORY_MIGRATE:
2424 return is_memory_migrate(cs);
2425 case FILE_MEMORY_PRESSURE_ENABLED:
2426 return cpuset_memory_pressure_enabled;
2427 case FILE_MEMORY_PRESSURE:
2428 return fmeter_getrate(&cs->fmeter);
2429 case FILE_SPREAD_PAGE:
2430 return is_spread_page(cs);
2431 case FILE_SPREAD_SLAB:
2432 return is_spread_slab(cs);
2433 default:
2434 BUG();
2435 }
2436
2437 /* Unreachable but makes gcc happy */
2438 return 0;
2439 }
2440
2441 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2442 {
2443 struct cpuset *cs = css_cs(css);
2444 cpuset_filetype_t type = cft->private;
2445 switch (type) {
2446 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2447 return cs->relax_domain_level;
2448 default:
2449 BUG();
2450 }
2451
2452 /* Unrechable but makes gcc happy */
2453 return 0;
2454 }
2455
2456 static int sched_partition_show(struct seq_file *seq, void *v)
2457 {
2458 struct cpuset *cs = css_cs(seq_css(seq));
2459
2460 switch (cs->partition_root_state) {
2461 case PRS_ENABLED:
2462 seq_puts(seq, "root\n");
2463 break;
2464 case PRS_DISABLED:
2465 seq_puts(seq, "member\n");
2466 break;
2467 case PRS_ERROR:
2468 seq_puts(seq, "root invalid\n");
2469 break;
2470 }
2471 return 0;
2472 }
2473
2474 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2475 size_t nbytes, loff_t off)
2476 {
2477 struct cpuset *cs = css_cs(of_css(of));
2478 int val;
2479 int retval = -ENODEV;
2480
2481 buf = strstrip(buf);
2482
2483 /*
2484 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2485 */
2486 if (!strcmp(buf, "root"))
2487 val = PRS_ENABLED;
2488 else if (!strcmp(buf, "member"))
2489 val = PRS_DISABLED;
2490 else
2491 return -EINVAL;
2492
2493 css_get(&cs->css);
2494 mutex_lock(&cpuset_mutex);
2495 if (!is_cpuset_online(cs))
2496 goto out_unlock;
2497
2498 retval = update_prstate(cs, val);
2499 out_unlock:
2500 mutex_unlock(&cpuset_mutex);
2501 css_put(&cs->css);
2502 return retval ?: nbytes;
2503 }
2504
2505 /*
2506 * for the common functions, 'private' gives the type of file
2507 */
2508
2509 static struct cftype legacy_files[] = {
2510 {
2511 .name = "cpus",
2512 .seq_show = cpuset_common_seq_show,
2513 .write = cpuset_write_resmask,
2514 .max_write_len = (100U + 6 * NR_CPUS),
2515 .private = FILE_CPULIST,
2516 },
2517
2518 {
2519 .name = "mems",
2520 .seq_show = cpuset_common_seq_show,
2521 .write = cpuset_write_resmask,
2522 .max_write_len = (100U + 6 * MAX_NUMNODES),
2523 .private = FILE_MEMLIST,
2524 },
2525
2526 {
2527 .name = "effective_cpus",
2528 .seq_show = cpuset_common_seq_show,
2529 .private = FILE_EFFECTIVE_CPULIST,
2530 },
2531
2532 {
2533 .name = "effective_mems",
2534 .seq_show = cpuset_common_seq_show,
2535 .private = FILE_EFFECTIVE_MEMLIST,
2536 },
2537
2538 {
2539 .name = "cpu_exclusive",
2540 .read_u64 = cpuset_read_u64,
2541 .write_u64 = cpuset_write_u64,
2542 .private = FILE_CPU_EXCLUSIVE,
2543 },
2544
2545 {
2546 .name = "mem_exclusive",
2547 .read_u64 = cpuset_read_u64,
2548 .write_u64 = cpuset_write_u64,
2549 .private = FILE_MEM_EXCLUSIVE,
2550 },
2551
2552 {
2553 .name = "mem_hardwall",
2554 .read_u64 = cpuset_read_u64,
2555 .write_u64 = cpuset_write_u64,
2556 .private = FILE_MEM_HARDWALL,
2557 },
2558
2559 {
2560 .name = "sched_load_balance",
2561 .read_u64 = cpuset_read_u64,
2562 .write_u64 = cpuset_write_u64,
2563 .private = FILE_SCHED_LOAD_BALANCE,
2564 },
2565
2566 {
2567 .name = "sched_relax_domain_level",
2568 .read_s64 = cpuset_read_s64,
2569 .write_s64 = cpuset_write_s64,
2570 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2571 },
2572
2573 {
2574 .name = "memory_migrate",
2575 .read_u64 = cpuset_read_u64,
2576 .write_u64 = cpuset_write_u64,
2577 .private = FILE_MEMORY_MIGRATE,
2578 },
2579
2580 {
2581 .name = "memory_pressure",
2582 .read_u64 = cpuset_read_u64,
2583 .private = FILE_MEMORY_PRESSURE,
2584 },
2585
2586 {
2587 .name = "memory_spread_page",
2588 .read_u64 = cpuset_read_u64,
2589 .write_u64 = cpuset_write_u64,
2590 .private = FILE_SPREAD_PAGE,
2591 },
2592
2593 {
2594 .name = "memory_spread_slab",
2595 .read_u64 = cpuset_read_u64,
2596 .write_u64 = cpuset_write_u64,
2597 .private = FILE_SPREAD_SLAB,
2598 },
2599
2600 {
2601 .name = "memory_pressure_enabled",
2602 .flags = CFTYPE_ONLY_ON_ROOT,
2603 .read_u64 = cpuset_read_u64,
2604 .write_u64 = cpuset_write_u64,
2605 .private = FILE_MEMORY_PRESSURE_ENABLED,
2606 },
2607
2608 { } /* terminate */
2609 };
2610
2611 /*
2612 * This is currently a minimal set for the default hierarchy. It can be
2613 * expanded later on by migrating more features and control files from v1.
2614 */
2615 static struct cftype dfl_files[] = {
2616 {
2617 .name = "cpus",
2618 .seq_show = cpuset_common_seq_show,
2619 .write = cpuset_write_resmask,
2620 .max_write_len = (100U + 6 * NR_CPUS),
2621 .private = FILE_CPULIST,
2622 .flags = CFTYPE_NOT_ON_ROOT,
2623 },
2624
2625 {
2626 .name = "mems",
2627 .seq_show = cpuset_common_seq_show,
2628 .write = cpuset_write_resmask,
2629 .max_write_len = (100U + 6 * MAX_NUMNODES),
2630 .private = FILE_MEMLIST,
2631 .flags = CFTYPE_NOT_ON_ROOT,
2632 },
2633
2634 {
2635 .name = "cpus.effective",
2636 .seq_show = cpuset_common_seq_show,
2637 .private = FILE_EFFECTIVE_CPULIST,
2638 },
2639
2640 {
2641 .name = "mems.effective",
2642 .seq_show = cpuset_common_seq_show,
2643 .private = FILE_EFFECTIVE_MEMLIST,
2644 },
2645
2646 {
2647 .name = "cpus.partition",
2648 .seq_show = sched_partition_show,
2649 .write = sched_partition_write,
2650 .private = FILE_PARTITION_ROOT,
2651 .flags = CFTYPE_NOT_ON_ROOT,
2652 },
2653
2654 {
2655 .name = "cpus.subpartitions",
2656 .seq_show = cpuset_common_seq_show,
2657 .private = FILE_SUBPARTS_CPULIST,
2658 .flags = CFTYPE_DEBUG,
2659 },
2660
2661 { } /* terminate */
2662 };
2663
2664
2665 /*
2666 * cpuset_css_alloc - allocate a cpuset css
2667 * cgrp: control group that the new cpuset will be part of
2668 */
2669
2670 static struct cgroup_subsys_state *
2671 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2672 {
2673 struct cpuset *cs;
2674
2675 if (!parent_css)
2676 return &top_cpuset.css;
2677
2678 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2679 if (!cs)
2680 return ERR_PTR(-ENOMEM);
2681
2682 if (alloc_cpumasks(cs, NULL)) {
2683 kfree(cs);
2684 return ERR_PTR(-ENOMEM);
2685 }
2686
2687 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2688 nodes_clear(cs->mems_allowed);
2689 nodes_clear(cs->effective_mems);
2690 fmeter_init(&cs->fmeter);
2691 cs->relax_domain_level = -1;
2692
2693 return &cs->css;
2694 }
2695
2696 static int cpuset_css_online(struct cgroup_subsys_state *css)
2697 {
2698 struct cpuset *cs = css_cs(css);
2699 struct cpuset *parent = parent_cs(cs);
2700 struct cpuset *tmp_cs;
2701 struct cgroup_subsys_state *pos_css;
2702
2703 if (!parent)
2704 return 0;
2705
2706 mutex_lock(&cpuset_mutex);
2707
2708 set_bit(CS_ONLINE, &cs->flags);
2709 if (is_spread_page(parent))
2710 set_bit(CS_SPREAD_PAGE, &cs->flags);
2711 if (is_spread_slab(parent))
2712 set_bit(CS_SPREAD_SLAB, &cs->flags);
2713
2714 cpuset_inc();
2715
2716 spin_lock_irq(&callback_lock);
2717 if (is_in_v2_mode()) {
2718 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2719 cs->effective_mems = parent->effective_mems;
2720 cs->use_parent_ecpus = true;
2721 parent->child_ecpus_count++;
2722 }
2723 spin_unlock_irq(&callback_lock);
2724
2725 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2726 goto out_unlock;
2727
2728 /*
2729 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2730 * set. This flag handling is implemented in cgroup core for
2731 * histrical reasons - the flag may be specified during mount.
2732 *
2733 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2734 * refuse to clone the configuration - thereby refusing the task to
2735 * be entered, and as a result refusing the sys_unshare() or
2736 * clone() which initiated it. If this becomes a problem for some
2737 * users who wish to allow that scenario, then this could be
2738 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2739 * (and likewise for mems) to the new cgroup.
2740 */
2741 rcu_read_lock();
2742 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2743 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2744 rcu_read_unlock();
2745 goto out_unlock;
2746 }
2747 }
2748 rcu_read_unlock();
2749
2750 spin_lock_irq(&callback_lock);
2751 cs->mems_allowed = parent->mems_allowed;
2752 cs->effective_mems = parent->mems_allowed;
2753 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2754 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2755 spin_unlock_irq(&callback_lock);
2756 out_unlock:
2757 mutex_unlock(&cpuset_mutex);
2758 return 0;
2759 }
2760
2761 /*
2762 * If the cpuset being removed has its flag 'sched_load_balance'
2763 * enabled, then simulate turning sched_load_balance off, which
2764 * will call rebuild_sched_domains_locked(). That is not needed
2765 * in the default hierarchy where only changes in partition
2766 * will cause repartitioning.
2767 *
2768 * If the cpuset has the 'sched.partition' flag enabled, simulate
2769 * turning 'sched.partition" off.
2770 */
2771
2772 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2773 {
2774 struct cpuset *cs = css_cs(css);
2775
2776 mutex_lock(&cpuset_mutex);
2777
2778 if (is_partition_root(cs))
2779 update_prstate(cs, 0);
2780
2781 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2782 is_sched_load_balance(cs))
2783 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2784
2785 if (cs->use_parent_ecpus) {
2786 struct cpuset *parent = parent_cs(cs);
2787
2788 cs->use_parent_ecpus = false;
2789 parent->child_ecpus_count--;
2790 }
2791
2792 cpuset_dec();
2793 clear_bit(CS_ONLINE, &cs->flags);
2794
2795 mutex_unlock(&cpuset_mutex);
2796 }
2797
2798 static void cpuset_css_free(struct cgroup_subsys_state *css)
2799 {
2800 struct cpuset *cs = css_cs(css);
2801
2802 free_cpuset(cs);
2803 }
2804
2805 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2806 {
2807 mutex_lock(&cpuset_mutex);
2808 spin_lock_irq(&callback_lock);
2809
2810 if (is_in_v2_mode()) {
2811 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2812 top_cpuset.mems_allowed = node_possible_map;
2813 } else {
2814 cpumask_copy(top_cpuset.cpus_allowed,
2815 top_cpuset.effective_cpus);
2816 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2817 }
2818
2819 spin_unlock_irq(&callback_lock);
2820 mutex_unlock(&cpuset_mutex);
2821 }
2822
2823 /*
2824 * Make sure the new task conform to the current state of its parent,
2825 * which could have been changed by cpuset just after it inherits the
2826 * state from the parent and before it sits on the cgroup's task list.
2827 */
2828 static void cpuset_fork(struct task_struct *task)
2829 {
2830 if (task_css_is_root(task, cpuset_cgrp_id))
2831 return;
2832
2833 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2834 task->mems_allowed = current->mems_allowed;
2835 }
2836
2837 struct cgroup_subsys cpuset_cgrp_subsys = {
2838 .css_alloc = cpuset_css_alloc,
2839 .css_online = cpuset_css_online,
2840 .css_offline = cpuset_css_offline,
2841 .css_free = cpuset_css_free,
2842 .can_attach = cpuset_can_attach,
2843 .cancel_attach = cpuset_cancel_attach,
2844 .attach = cpuset_attach,
2845 .post_attach = cpuset_post_attach,
2846 .bind = cpuset_bind,
2847 .fork = cpuset_fork,
2848 .legacy_cftypes = legacy_files,
2849 .dfl_cftypes = dfl_files,
2850 .early_init = true,
2851 .threaded = true,
2852 };
2853
2854 /**
2855 * cpuset_init - initialize cpusets at system boot
2856 *
2857 * Description: Initialize top_cpuset and the cpuset internal file system,
2858 **/
2859
2860 int __init cpuset_init(void)
2861 {
2862 int err = 0;
2863
2864 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2865 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2866 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2867
2868 cpumask_setall(top_cpuset.cpus_allowed);
2869 nodes_setall(top_cpuset.mems_allowed);
2870 cpumask_setall(top_cpuset.effective_cpus);
2871 nodes_setall(top_cpuset.effective_mems);
2872
2873 fmeter_init(&top_cpuset.fmeter);
2874 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2875 top_cpuset.relax_domain_level = -1;
2876
2877 err = register_filesystem(&cpuset_fs_type);
2878 if (err < 0)
2879 return err;
2880
2881 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2882
2883 return 0;
2884 }
2885
2886 /*
2887 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2888 * or memory nodes, we need to walk over the cpuset hierarchy,
2889 * removing that CPU or node from all cpusets. If this removes the
2890 * last CPU or node from a cpuset, then move the tasks in the empty
2891 * cpuset to its next-highest non-empty parent.
2892 */
2893 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2894 {
2895 struct cpuset *parent;
2896
2897 /*
2898 * Find its next-highest non-empty parent, (top cpuset
2899 * has online cpus, so can't be empty).
2900 */
2901 parent = parent_cs(cs);
2902 while (cpumask_empty(parent->cpus_allowed) ||
2903 nodes_empty(parent->mems_allowed))
2904 parent = parent_cs(parent);
2905
2906 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2907 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2908 pr_cont_cgroup_name(cs->css.cgroup);
2909 pr_cont("\n");
2910 }
2911 }
2912
2913 static void
2914 hotplug_update_tasks_legacy(struct cpuset *cs,
2915 struct cpumask *new_cpus, nodemask_t *new_mems,
2916 bool cpus_updated, bool mems_updated)
2917 {
2918 bool is_empty;
2919
2920 spin_lock_irq(&callback_lock);
2921 cpumask_copy(cs->cpus_allowed, new_cpus);
2922 cpumask_copy(cs->effective_cpus, new_cpus);
2923 cs->mems_allowed = *new_mems;
2924 cs->effective_mems = *new_mems;
2925 spin_unlock_irq(&callback_lock);
2926
2927 /*
2928 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2929 * as the tasks will be migratecd to an ancestor.
2930 */
2931 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2932 update_tasks_cpumask(cs);
2933 if (mems_updated && !nodes_empty(cs->mems_allowed))
2934 update_tasks_nodemask(cs);
2935
2936 is_empty = cpumask_empty(cs->cpus_allowed) ||
2937 nodes_empty(cs->mems_allowed);
2938
2939 mutex_unlock(&cpuset_mutex);
2940
2941 /*
2942 * Move tasks to the nearest ancestor with execution resources,
2943 * This is full cgroup operation which will also call back into
2944 * cpuset. Should be done outside any lock.
2945 */
2946 if (is_empty)
2947 remove_tasks_in_empty_cpuset(cs);
2948
2949 mutex_lock(&cpuset_mutex);
2950 }
2951
2952 static void
2953 hotplug_update_tasks(struct cpuset *cs,
2954 struct cpumask *new_cpus, nodemask_t *new_mems,
2955 bool cpus_updated, bool mems_updated)
2956 {
2957 if (cpumask_empty(new_cpus))
2958 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2959 if (nodes_empty(*new_mems))
2960 *new_mems = parent_cs(cs)->effective_mems;
2961
2962 spin_lock_irq(&callback_lock);
2963 cpumask_copy(cs->effective_cpus, new_cpus);
2964 cs->effective_mems = *new_mems;
2965 spin_unlock_irq(&callback_lock);
2966
2967 if (cpus_updated)
2968 update_tasks_cpumask(cs);
2969 if (mems_updated)
2970 update_tasks_nodemask(cs);
2971 }
2972
2973 static bool force_rebuild;
2974
2975 void cpuset_force_rebuild(void)
2976 {
2977 force_rebuild = true;
2978 }
2979
2980 /**
2981 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2982 * @cs: cpuset in interest
2983 * @tmp: the tmpmasks structure pointer
2984 *
2985 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2986 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2987 * all its tasks are moved to the nearest ancestor with both resources.
2988 */
2989 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2990 {
2991 static cpumask_t new_cpus;
2992 static nodemask_t new_mems;
2993 bool cpus_updated;
2994 bool mems_updated;
2995 struct cpuset *parent;
2996 retry:
2997 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2998
2999 mutex_lock(&cpuset_mutex);
3000
3001 /*
3002 * We have raced with task attaching. We wait until attaching
3003 * is finished, so we won't attach a task to an empty cpuset.
3004 */
3005 if (cs->attach_in_progress) {
3006 mutex_unlock(&cpuset_mutex);
3007 goto retry;
3008 }
3009
3010 parent = parent_cs(cs);
3011 compute_effective_cpumask(&new_cpus, cs, parent);
3012 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3013
3014 if (cs->nr_subparts_cpus)
3015 /*
3016 * Make sure that CPUs allocated to child partitions
3017 * do not show up in effective_cpus.
3018 */
3019 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3020
3021 if (!tmp || !cs->partition_root_state)
3022 goto update_tasks;
3023
3024 /*
3025 * In the unlikely event that a partition root has empty
3026 * effective_cpus or its parent becomes erroneous, we have to
3027 * transition it to the erroneous state.
3028 */
3029 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3030 (parent->partition_root_state == PRS_ERROR))) {
3031 if (cs->nr_subparts_cpus) {
3032 cs->nr_subparts_cpus = 0;
3033 cpumask_clear(cs->subparts_cpus);
3034 compute_effective_cpumask(&new_cpus, cs, parent);
3035 }
3036
3037 /*
3038 * If the effective_cpus is empty because the child
3039 * partitions take away all the CPUs, we can keep
3040 * the current partition and let the child partitions
3041 * fight for available CPUs.
3042 */
3043 if ((parent->partition_root_state == PRS_ERROR) ||
3044 cpumask_empty(&new_cpus)) {
3045 update_parent_subparts_cpumask(cs, partcmd_disable,
3046 NULL, tmp);
3047 cs->partition_root_state = PRS_ERROR;
3048 }
3049 cpuset_force_rebuild();
3050 }
3051
3052 /*
3053 * On the other hand, an erroneous partition root may be transitioned
3054 * back to a regular one or a partition root with no CPU allocated
3055 * from the parent may change to erroneous.
3056 */
3057 if (is_partition_root(parent) &&
3058 ((cs->partition_root_state == PRS_ERROR) ||
3059 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3060 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3061 cpuset_force_rebuild();
3062
3063 update_tasks:
3064 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3065 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3066
3067 if (is_in_v2_mode())
3068 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3069 cpus_updated, mems_updated);
3070 else
3071 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3072 cpus_updated, mems_updated);
3073
3074 mutex_unlock(&cpuset_mutex);
3075 }
3076
3077 /**
3078 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3079 *
3080 * This function is called after either CPU or memory configuration has
3081 * changed and updates cpuset accordingly. The top_cpuset is always
3082 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3083 * order to make cpusets transparent (of no affect) on systems that are
3084 * actively using CPU hotplug but making no active use of cpusets.
3085 *
3086 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3087 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3088 * all descendants.
3089 *
3090 * Note that CPU offlining during suspend is ignored. We don't modify
3091 * cpusets across suspend/resume cycles at all.
3092 */
3093 static void cpuset_hotplug_workfn(struct work_struct *work)
3094 {
3095 static cpumask_t new_cpus;
3096 static nodemask_t new_mems;
3097 bool cpus_updated, mems_updated;
3098 bool on_dfl = is_in_v2_mode();
3099 struct tmpmasks tmp, *ptmp = NULL;
3100
3101 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3102 ptmp = &tmp;
3103
3104 mutex_lock(&cpuset_mutex);
3105
3106 /* fetch the available cpus/mems and find out which changed how */
3107 cpumask_copy(&new_cpus, cpu_active_mask);
3108 new_mems = node_states[N_MEMORY];
3109
3110 /*
3111 * If subparts_cpus is populated, it is likely that the check below
3112 * will produce a false positive on cpus_updated when the cpu list
3113 * isn't changed. It is extra work, but it is better to be safe.
3114 */
3115 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3116 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3117
3118 /* synchronize cpus_allowed to cpu_active_mask */
3119 if (cpus_updated) {
3120 spin_lock_irq(&callback_lock);
3121 if (!on_dfl)
3122 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3123 /*
3124 * Make sure that CPUs allocated to child partitions
3125 * do not show up in effective_cpus. If no CPU is left,
3126 * we clear the subparts_cpus & let the child partitions
3127 * fight for the CPUs again.
3128 */
3129 if (top_cpuset.nr_subparts_cpus) {
3130 if (cpumask_subset(&new_cpus,
3131 top_cpuset.subparts_cpus)) {
3132 top_cpuset.nr_subparts_cpus = 0;
3133 cpumask_clear(top_cpuset.subparts_cpus);
3134 } else {
3135 cpumask_andnot(&new_cpus, &new_cpus,
3136 top_cpuset.subparts_cpus);
3137 }
3138 }
3139 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3140 spin_unlock_irq(&callback_lock);
3141 /* we don't mess with cpumasks of tasks in top_cpuset */
3142 }
3143
3144 /* synchronize mems_allowed to N_MEMORY */
3145 if (mems_updated) {
3146 spin_lock_irq(&callback_lock);
3147 if (!on_dfl)
3148 top_cpuset.mems_allowed = new_mems;
3149 top_cpuset.effective_mems = new_mems;
3150 spin_unlock_irq(&callback_lock);
3151 update_tasks_nodemask(&top_cpuset);
3152 }
3153
3154 mutex_unlock(&cpuset_mutex);
3155
3156 /* if cpus or mems changed, we need to propagate to descendants */
3157 if (cpus_updated || mems_updated) {
3158 struct cpuset *cs;
3159 struct cgroup_subsys_state *pos_css;
3160
3161 rcu_read_lock();
3162 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3163 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3164 continue;
3165 rcu_read_unlock();
3166
3167 cpuset_hotplug_update_tasks(cs, ptmp);
3168
3169 rcu_read_lock();
3170 css_put(&cs->css);
3171 }
3172 rcu_read_unlock();
3173 }
3174
3175 /* rebuild sched domains if cpus_allowed has changed */
3176 if (cpus_updated || force_rebuild) {
3177 force_rebuild = false;
3178 rebuild_sched_domains();
3179 }
3180
3181 free_cpumasks(NULL, ptmp);
3182 }
3183
3184 void cpuset_update_active_cpus(void)
3185 {
3186 /*
3187 * We're inside cpu hotplug critical region which usually nests
3188 * inside cgroup synchronization. Bounce actual hotplug processing
3189 * to a work item to avoid reverse locking order.
3190 */
3191 schedule_work(&cpuset_hotplug_work);
3192 }
3193
3194 void cpuset_wait_for_hotplug(void)
3195 {
3196 flush_work(&cpuset_hotplug_work);
3197 }
3198
3199 /*
3200 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3201 * Call this routine anytime after node_states[N_MEMORY] changes.
3202 * See cpuset_update_active_cpus() for CPU hotplug handling.
3203 */
3204 static int cpuset_track_online_nodes(struct notifier_block *self,
3205 unsigned long action, void *arg)
3206 {
3207 schedule_work(&cpuset_hotplug_work);
3208 return NOTIFY_OK;
3209 }
3210
3211 static struct notifier_block cpuset_track_online_nodes_nb = {
3212 .notifier_call = cpuset_track_online_nodes,
3213 .priority = 10, /* ??! */
3214 };
3215
3216 /**
3217 * cpuset_init_smp - initialize cpus_allowed
3218 *
3219 * Description: Finish top cpuset after cpu, node maps are initialized
3220 */
3221 void __init cpuset_init_smp(void)
3222 {
3223 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3224 top_cpuset.mems_allowed = node_states[N_MEMORY];
3225 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3226
3227 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3228 top_cpuset.effective_mems = node_states[N_MEMORY];
3229
3230 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3231
3232 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3233 BUG_ON(!cpuset_migrate_mm_wq);
3234 }
3235
3236 /**
3237 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3238 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3239 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3240 *
3241 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3242 * attached to the specified @tsk. Guaranteed to return some non-empty
3243 * subset of cpu_online_mask, even if this means going outside the
3244 * tasks cpuset.
3245 **/
3246
3247 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3248 {
3249 unsigned long flags;
3250
3251 spin_lock_irqsave(&callback_lock, flags);
3252 rcu_read_lock();
3253 guarantee_online_cpus(task_cs(tsk), pmask);
3254 rcu_read_unlock();
3255 spin_unlock_irqrestore(&callback_lock, flags);
3256 }
3257
3258 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3259 {
3260 rcu_read_lock();
3261 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
3262 rcu_read_unlock();
3263
3264 /*
3265 * We own tsk->cpus_allowed, nobody can change it under us.
3266 *
3267 * But we used cs && cs->cpus_allowed lockless and thus can
3268 * race with cgroup_attach_task() or update_cpumask() and get
3269 * the wrong tsk->cpus_allowed. However, both cases imply the
3270 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3271 * which takes task_rq_lock().
3272 *
3273 * If we are called after it dropped the lock we must see all
3274 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3275 * set any mask even if it is not right from task_cs() pov,
3276 * the pending set_cpus_allowed_ptr() will fix things.
3277 *
3278 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3279 * if required.
3280 */
3281 }
3282
3283 void __init cpuset_init_current_mems_allowed(void)
3284 {
3285 nodes_setall(current->mems_allowed);
3286 }
3287
3288 /**
3289 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3290 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3291 *
3292 * Description: Returns the nodemask_t mems_allowed of the cpuset
3293 * attached to the specified @tsk. Guaranteed to return some non-empty
3294 * subset of node_states[N_MEMORY], even if this means going outside the
3295 * tasks cpuset.
3296 **/
3297
3298 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3299 {
3300 nodemask_t mask;
3301 unsigned long flags;
3302
3303 spin_lock_irqsave(&callback_lock, flags);
3304 rcu_read_lock();
3305 guarantee_online_mems(task_cs(tsk), &mask);
3306 rcu_read_unlock();
3307 spin_unlock_irqrestore(&callback_lock, flags);
3308
3309 return mask;
3310 }
3311
3312 /**
3313 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3314 * @nodemask: the nodemask to be checked
3315 *
3316 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3317 */
3318 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3319 {
3320 return nodes_intersects(*nodemask, current->mems_allowed);
3321 }
3322
3323 /*
3324 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3325 * mem_hardwall ancestor to the specified cpuset. Call holding
3326 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3327 * (an unusual configuration), then returns the root cpuset.
3328 */
3329 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3330 {
3331 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3332 cs = parent_cs(cs);
3333 return cs;
3334 }
3335
3336 /**
3337 * cpuset_node_allowed - Can we allocate on a memory node?
3338 * @node: is this an allowed node?
3339 * @gfp_mask: memory allocation flags
3340 *
3341 * If we're in interrupt, yes, we can always allocate. If @node is set in
3342 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3343 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3344 * yes. If current has access to memory reserves as an oom victim, yes.
3345 * Otherwise, no.
3346 *
3347 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3348 * and do not allow allocations outside the current tasks cpuset
3349 * unless the task has been OOM killed.
3350 * GFP_KERNEL allocations are not so marked, so can escape to the
3351 * nearest enclosing hardwalled ancestor cpuset.
3352 *
3353 * Scanning up parent cpusets requires callback_lock. The
3354 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3355 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3356 * current tasks mems_allowed came up empty on the first pass over
3357 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3358 * cpuset are short of memory, might require taking the callback_lock.
3359 *
3360 * The first call here from mm/page_alloc:get_page_from_freelist()
3361 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3362 * so no allocation on a node outside the cpuset is allowed (unless
3363 * in interrupt, of course).
3364 *
3365 * The second pass through get_page_from_freelist() doesn't even call
3366 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3367 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3368 * in alloc_flags. That logic and the checks below have the combined
3369 * affect that:
3370 * in_interrupt - any node ok (current task context irrelevant)
3371 * GFP_ATOMIC - any node ok
3372 * tsk_is_oom_victim - any node ok
3373 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3374 * GFP_USER - only nodes in current tasks mems allowed ok.
3375 */
3376 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3377 {
3378 struct cpuset *cs; /* current cpuset ancestors */
3379 int allowed; /* is allocation in zone z allowed? */
3380 unsigned long flags;
3381
3382 if (in_interrupt())
3383 return true;
3384 if (node_isset(node, current->mems_allowed))
3385 return true;
3386 /*
3387 * Allow tasks that have access to memory reserves because they have
3388 * been OOM killed to get memory anywhere.
3389 */
3390 if (unlikely(tsk_is_oom_victim(current)))
3391 return true;
3392 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3393 return false;
3394
3395 if (current->flags & PF_EXITING) /* Let dying task have memory */
3396 return true;
3397
3398 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3399 spin_lock_irqsave(&callback_lock, flags);
3400
3401 rcu_read_lock();
3402 cs = nearest_hardwall_ancestor(task_cs(current));
3403 allowed = node_isset(node, cs->mems_allowed);
3404 rcu_read_unlock();
3405
3406 spin_unlock_irqrestore(&callback_lock, flags);
3407 return allowed;
3408 }
3409
3410 /**
3411 * cpuset_mem_spread_node() - On which node to begin search for a file page
3412 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3413 *
3414 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3415 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3416 * and if the memory allocation used cpuset_mem_spread_node()
3417 * to determine on which node to start looking, as it will for
3418 * certain page cache or slab cache pages such as used for file
3419 * system buffers and inode caches, then instead of starting on the
3420 * local node to look for a free page, rather spread the starting
3421 * node around the tasks mems_allowed nodes.
3422 *
3423 * We don't have to worry about the returned node being offline
3424 * because "it can't happen", and even if it did, it would be ok.
3425 *
3426 * The routines calling guarantee_online_mems() are careful to
3427 * only set nodes in task->mems_allowed that are online. So it
3428 * should not be possible for the following code to return an
3429 * offline node. But if it did, that would be ok, as this routine
3430 * is not returning the node where the allocation must be, only
3431 * the node where the search should start. The zonelist passed to
3432 * __alloc_pages() will include all nodes. If the slab allocator
3433 * is passed an offline node, it will fall back to the local node.
3434 * See kmem_cache_alloc_node().
3435 */
3436
3437 static int cpuset_spread_node(int *rotor)
3438 {
3439 return *rotor = next_node_in(*rotor, current->mems_allowed);
3440 }
3441
3442 int cpuset_mem_spread_node(void)
3443 {
3444 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3445 current->cpuset_mem_spread_rotor =
3446 node_random(&current->mems_allowed);
3447
3448 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3449 }
3450
3451 int cpuset_slab_spread_node(void)
3452 {
3453 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3454 current->cpuset_slab_spread_rotor =
3455 node_random(&current->mems_allowed);
3456
3457 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3458 }
3459
3460 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3461
3462 /**
3463 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3464 * @tsk1: pointer to task_struct of some task.
3465 * @tsk2: pointer to task_struct of some other task.
3466 *
3467 * Description: Return true if @tsk1's mems_allowed intersects the
3468 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3469 * one of the task's memory usage might impact the memory available
3470 * to the other.
3471 **/
3472
3473 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3474 const struct task_struct *tsk2)
3475 {
3476 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3477 }
3478
3479 /**
3480 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3481 *
3482 * Description: Prints current's name, cpuset name, and cached copy of its
3483 * mems_allowed to the kernel log.
3484 */
3485 void cpuset_print_current_mems_allowed(void)
3486 {
3487 struct cgroup *cgrp;
3488
3489 rcu_read_lock();
3490
3491 cgrp = task_cs(current)->css.cgroup;
3492 pr_cont(",cpuset=");
3493 pr_cont_cgroup_name(cgrp);
3494 pr_cont(",mems_allowed=%*pbl",
3495 nodemask_pr_args(&current->mems_allowed));
3496
3497 rcu_read_unlock();
3498 }
3499
3500 /*
3501 * Collection of memory_pressure is suppressed unless
3502 * this flag is enabled by writing "1" to the special
3503 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3504 */
3505
3506 int cpuset_memory_pressure_enabled __read_mostly;
3507
3508 /**
3509 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3510 *
3511 * Keep a running average of the rate of synchronous (direct)
3512 * page reclaim efforts initiated by tasks in each cpuset.
3513 *
3514 * This represents the rate at which some task in the cpuset
3515 * ran low on memory on all nodes it was allowed to use, and
3516 * had to enter the kernels page reclaim code in an effort to
3517 * create more free memory by tossing clean pages or swapping
3518 * or writing dirty pages.
3519 *
3520 * Display to user space in the per-cpuset read-only file
3521 * "memory_pressure". Value displayed is an integer
3522 * representing the recent rate of entry into the synchronous
3523 * (direct) page reclaim by any task attached to the cpuset.
3524 **/
3525
3526 void __cpuset_memory_pressure_bump(void)
3527 {
3528 rcu_read_lock();
3529 fmeter_markevent(&task_cs(current)->fmeter);
3530 rcu_read_unlock();
3531 }
3532
3533 #ifdef CONFIG_PROC_PID_CPUSET
3534 /*
3535 * proc_cpuset_show()
3536 * - Print tasks cpuset path into seq_file.
3537 * - Used for /proc/<pid>/cpuset.
3538 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3539 * doesn't really matter if tsk->cpuset changes after we read it,
3540 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3541 * anyway.
3542 */
3543 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3544 struct pid *pid, struct task_struct *tsk)
3545 {
3546 char *buf;
3547 struct cgroup_subsys_state *css;
3548 int retval;
3549
3550 retval = -ENOMEM;
3551 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3552 if (!buf)
3553 goto out;
3554
3555 css = task_get_css(tsk, cpuset_cgrp_id);
3556 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3557 current->nsproxy->cgroup_ns);
3558 css_put(css);
3559 if (retval >= PATH_MAX)
3560 retval = -ENAMETOOLONG;
3561 if (retval < 0)
3562 goto out_free;
3563 seq_puts(m, buf);
3564 seq_putc(m, '\n');
3565 retval = 0;
3566 out_free:
3567 kfree(buf);
3568 out:
3569 return retval;
3570 }
3571 #endif /* CONFIG_PROC_PID_CPUSET */
3572
3573 /* Display task mems_allowed in /proc/<pid>/status file. */
3574 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3575 {
3576 seq_printf(m, "Mems_allowed:\t%*pb\n",
3577 nodemask_pr_args(&task->mems_allowed));
3578 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3579 nodemask_pr_args(&task->mems_allowed));
3580 }