]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - kernel/cpu.c
PM: domains: Introduce dev_pm_domain_set_performance_state()
[thirdparty/kernel/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @cpu: CPU number
58 * @node: Remote CPU node; for multi-instance, do a
59 * single entry callback for install/remove
60 * @last: For multi-instance rollback, remember how far we got
61 * @cb_state: The state for a single callback (install/uninstall)
62 * @result: Result of the operation
63 * @ap_sync_state: State for AP synchronization
64 * @done_up: Signal completion to the issuer of the task for cpu-up
65 * @done_down: Signal completion to the issuer of the task for cpu-down
66 */
67 struct cpuhp_cpu_state {
68 enum cpuhp_state state;
69 enum cpuhp_state target;
70 enum cpuhp_state fail;
71 #ifdef CONFIG_SMP
72 struct task_struct *thread;
73 bool should_run;
74 bool rollback;
75 bool single;
76 bool bringup;
77 struct hlist_node *node;
78 struct hlist_node *last;
79 enum cpuhp_state cb_state;
80 int result;
81 atomic_t ap_sync_state;
82 struct completion done_up;
83 struct completion done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119 * struct cpuhp_step - Hotplug state machine step
120 * @name: Name of the step
121 * @startup: Startup function of the step
122 * @teardown: Teardown function of the step
123 * @cant_stop: Bringup/teardown can't be stopped at this step
124 * @multi_instance: State has multiple instances which get added afterwards
125 */
126 struct cpuhp_step {
127 const char *name;
128 union {
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
132 } startup;
133 union {
134 int (*single)(unsigned int cpu);
135 int (*multi)(unsigned int cpu,
136 struct hlist_node *node);
137 } teardown;
138 /* private: */
139 struct hlist_head list;
140 /* public: */
141 bool cant_stop;
142 bool multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu: The cpu for which the callback should be invoked
161 * @state: The state to do callbacks for
162 * @bringup: True if the bringup callback should be invoked
163 * @node: For multi-instance, do a single entry callback for install/remove
164 * @lastp: For multi-instance rollback, remember how far we got
165 *
166 * Called from cpu hotplug and from the state register machinery.
167 *
168 * Return: %0 on success or a negative errno code
169 */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 bool bringup, struct hlist_node *node,
172 struct hlist_node **lastp)
173 {
174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 struct cpuhp_step *step = cpuhp_get_step(state);
176 int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 int (*cb)(unsigned int cpu);
178 int ret, cnt;
179
180 if (st->fail == state) {
181 st->fail = CPUHP_INVALID;
182 return -EAGAIN;
183 }
184
185 if (cpuhp_step_empty(bringup, step)) {
186 WARN_ON_ONCE(1);
187 return 0;
188 }
189
190 if (!step->multi_instance) {
191 WARN_ON_ONCE(lastp && *lastp);
192 cb = bringup ? step->startup.single : step->teardown.single;
193
194 trace_cpuhp_enter(cpu, st->target, state, cb);
195 ret = cb(cpu);
196 trace_cpuhp_exit(cpu, st->state, state, ret);
197 return ret;
198 }
199 cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201 /* Single invocation for instance add/remove */
202 if (node) {
203 WARN_ON_ONCE(lastp && *lastp);
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
207 return ret;
208 }
209
210 /* State transition. Invoke on all instances */
211 cnt = 0;
212 hlist_for_each(node, &step->list) {
213 if (lastp && node == *lastp)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 if (ret) {
220 if (!lastp)
221 goto err;
222
223 *lastp = node;
224 return ret;
225 }
226 cnt++;
227 }
228 if (lastp)
229 *lastp = NULL;
230 return 0;
231 err:
232 /* Rollback the instances if one failed */
233 cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 if (!cbm)
235 return ret;
236
237 hlist_for_each(node, &step->list) {
238 if (!cnt--)
239 break;
240
241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 ret = cbm(cpu, node);
243 trace_cpuhp_exit(cpu, st->state, state, ret);
244 /*
245 * Rollback must not fail,
246 */
247 WARN_ON_ONCE(ret);
248 }
249 return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 /*
256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 * purposes as that state is handled explicitly in cpu_down.
258 */
259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 struct completion *done = bringup ? &st->done_up : &st->done_down;
265 wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 struct completion *done = bringup ? &st->done_up : &st->done_down;
271 complete(done);
272 }
273
274 /*
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 SYNC_STATE_DEAD,
285 SYNC_STATE_KICKED,
286 SYNC_STATE_SHOULD_DIE,
287 SYNC_STATE_ALIVE,
288 SYNC_STATE_SHOULD_ONLINE,
289 SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state: The synchronization state to set
296 *
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304 (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 enum cpuhp_sync_state next_state)
311 {
312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 ktime_t now, end, start = ktime_get();
314 int sync;
315
316 end = start + 10ULL * NSEC_PER_SEC;
317
318 sync = atomic_read(st);
319 while (1) {
320 if (sync == state) {
321 if (!atomic_try_cmpxchg(st, &sync, next_state))
322 continue;
323 return true;
324 }
325
326 now = ktime_get();
327 if (now > end) {
328 /* Timeout. Leave the state unchanged */
329 return false;
330 } else if (now - start < NSEC_PER_MSEC) {
331 /* Poll for one millisecond */
332 arch_cpuhp_sync_state_poll();
333 } else {
334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 }
336 sync = atomic_read(st);
337 }
338 return true;
339 }
340 #else /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 *
348 * No synchronization point. Just update of the synchronization state.
349 */
350 void cpuhp_ap_report_dead(void)
351 {
352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
360 */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 int sync = atomic_read(st);
365
366 do {
367 /* CPU can have reported dead already. Don't overwrite that! */
368 if (sync == SYNC_STATE_DEAD)
369 break;
370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 /* CPU reached dead state. Invoke the cleanup function */
374 arch_cpuhp_cleanup_dead_cpu(cpu);
375 return;
376 }
377
378 /* No further action possible. Emit message and give up. */
379 pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 *
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
391 */
392 void cpuhp_ap_sync_alive(void)
393 {
394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398 /* Wait for the control CPU to release it. */
399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 int sync = atomic_read(st);
407
408 again:
409 switch (sync) {
410 case SYNC_STATE_DEAD:
411 /* CPU is properly dead */
412 break;
413 case SYNC_STATE_KICKED:
414 /* CPU did not come up in previous attempt */
415 break;
416 case SYNC_STATE_ALIVE:
417 /* CPU is stuck cpuhp_ap_sync_alive(). */
418 break;
419 default:
420 /* CPU failed to report online or dead and is in limbo state. */
421 return false;
422 }
423
424 /* Prepare for booting */
425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 goto again;
427
428 return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
436 */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 int ret = 0;
440
441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 return 0;
443
444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 pr_err("CPU%u failed to report alive state\n", cpu);
446 ret = -EIO;
447 }
448
449 /* Let the architecture cleanup the kick alive mechanics. */
450 arch_cpuhp_cleanup_kick_cpu(cpu);
451 return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 */
467 void cpu_maps_update_begin(void)
468 {
469 mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474 mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
480 */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489 percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495 return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501 percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507 percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512 percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517 /*
518 * We can't have hotplug operations before userspace starts running,
519 * and some init codepaths will knowingly not take the hotplug lock.
520 * This is all valid, so mute lockdep until it makes sense to report
521 * unheld locks.
522 */
523 if (system_state < SYSTEM_RUNNING)
524 return;
525
526 percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532 return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547 * Wait for currently running CPU hotplug operations to complete (if any) and
548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550 * hotplug path before performing hotplug operations. So acquiring that lock
551 * guarantees mutual exclusion from any currently running hotplug operations.
552 */
553 void cpu_hotplug_disable(void)
554 {
555 cpu_maps_update_begin();
556 cpu_hotplug_disabled++;
557 cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 return;
565 cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570 cpu_maps_update_begin();
571 __cpu_hotplug_enable();
572 cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif /* CONFIG_HOTPLUG_CPU */
587
588 /*
589 * Architectures that need SMT-specific errata handling during SMT hotplug
590 * should override this.
591 */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600 void __init cpu_smt_disable(bool force)
601 {
602 if (!cpu_smt_possible())
603 return;
604
605 if (force) {
606 pr_info("SMT: Force disabled\n");
607 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608 } else {
609 pr_info("SMT: disabled\n");
610 cpu_smt_control = CPU_SMT_DISABLED;
611 }
612 cpu_smt_num_threads = 1;
613 }
614
615 /*
616 * The decision whether SMT is supported can only be done after the full
617 * CPU identification. Called from architecture code.
618 */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 unsigned int max_threads)
621 {
622 WARN_ON(!num_threads || (num_threads > max_threads));
623
624 if (max_threads == 1)
625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627 cpu_smt_max_threads = max_threads;
628
629 /*
630 * If SMT has been disabled via the kernel command line or SMT is
631 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 * If enabled, take the architecture requested number of threads
633 * to bring up into account.
634 */
635 if (cpu_smt_control != CPU_SMT_ENABLED)
636 cpu_smt_num_threads = 1;
637 else if (num_threads < cpu_smt_num_threads)
638 cpu_smt_num_threads = num_threads;
639 }
640
641 static int __init smt_cmdline_disable(char *str)
642 {
643 cpu_smt_disable(str && !strcmp(str, "force"));
644 return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647
648 /*
649 * For Archicture supporting partial SMT states check if the thread is allowed.
650 * Otherwise this has already been checked through cpu_smt_max_threads when
651 * setting the SMT level.
652 */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 return topology_smt_thread_allowed(cpu);
657 #else
658 return true;
659 #endif
660 }
661
662 static inline bool cpu_smt_allowed(unsigned int cpu)
663 {
664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665 return true;
666
667 if (topology_is_primary_thread(cpu))
668 return true;
669
670 /*
671 * On x86 it's required to boot all logical CPUs at least once so
672 * that the init code can get a chance to set CR4.MCE on each
673 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674 * core will shutdown the machine.
675 */
676 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677 }
678
679 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
680 bool cpu_smt_possible(void)
681 {
682 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684 }
685 EXPORT_SYMBOL_GPL(cpu_smt_possible);
686
687 #else
688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689 #endif
690
691 static inline enum cpuhp_state
692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693 {
694 enum cpuhp_state prev_state = st->state;
695 bool bringup = st->state < target;
696
697 st->rollback = false;
698 st->last = NULL;
699
700 st->target = target;
701 st->single = false;
702 st->bringup = bringup;
703 if (cpu_dying(cpu) != !bringup)
704 set_cpu_dying(cpu, !bringup);
705
706 return prev_state;
707 }
708
709 static inline void
710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711 enum cpuhp_state prev_state)
712 {
713 bool bringup = !st->bringup;
714
715 st->target = prev_state;
716
717 /*
718 * Already rolling back. No need invert the bringup value or to change
719 * the current state.
720 */
721 if (st->rollback)
722 return;
723
724 st->rollback = true;
725
726 /*
727 * If we have st->last we need to undo partial multi_instance of this
728 * state first. Otherwise start undo at the previous state.
729 */
730 if (!st->last) {
731 if (st->bringup)
732 st->state--;
733 else
734 st->state++;
735 }
736
737 st->bringup = bringup;
738 if (cpu_dying(cpu) != !bringup)
739 set_cpu_dying(cpu, !bringup);
740 }
741
742 /* Regular hotplug invocation of the AP hotplug thread */
743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744 {
745 if (!st->single && st->state == st->target)
746 return;
747
748 st->result = 0;
749 /*
750 * Make sure the above stores are visible before should_run becomes
751 * true. Paired with the mb() above in cpuhp_thread_fun()
752 */
753 smp_mb();
754 st->should_run = true;
755 wake_up_process(st->thread);
756 wait_for_ap_thread(st, st->bringup);
757 }
758
759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760 enum cpuhp_state target)
761 {
762 enum cpuhp_state prev_state;
763 int ret;
764
765 prev_state = cpuhp_set_state(cpu, st, target);
766 __cpuhp_kick_ap(st);
767 if ((ret = st->result)) {
768 cpuhp_reset_state(cpu, st, prev_state);
769 __cpuhp_kick_ap(st);
770 }
771
772 return ret;
773 }
774
775 static int bringup_wait_for_ap_online(unsigned int cpu)
776 {
777 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778
779 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780 wait_for_ap_thread(st, true);
781 if (WARN_ON_ONCE((!cpu_online(cpu))))
782 return -ECANCELED;
783
784 /* Unpark the hotplug thread of the target cpu */
785 kthread_unpark(st->thread);
786
787 /*
788 * SMT soft disabling on X86 requires to bring the CPU out of the
789 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
790 * CPU marked itself as booted_once in notify_cpu_starting() so the
791 * cpu_smt_allowed() check will now return false if this is not the
792 * primary sibling.
793 */
794 if (!cpu_smt_allowed(cpu))
795 return -ECANCELED;
796 return 0;
797 }
798
799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800 static int cpuhp_kick_ap_alive(unsigned int cpu)
801 {
802 if (!cpuhp_can_boot_ap(cpu))
803 return -EAGAIN;
804
805 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806 }
807
808 static int cpuhp_bringup_ap(unsigned int cpu)
809 {
810 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 int ret;
812
813 /*
814 * Some architectures have to walk the irq descriptors to
815 * setup the vector space for the cpu which comes online.
816 * Prevent irq alloc/free across the bringup.
817 */
818 irq_lock_sparse();
819
820 ret = cpuhp_bp_sync_alive(cpu);
821 if (ret)
822 goto out_unlock;
823
824 ret = bringup_wait_for_ap_online(cpu);
825 if (ret)
826 goto out_unlock;
827
828 irq_unlock_sparse();
829
830 if (st->target <= CPUHP_AP_ONLINE_IDLE)
831 return 0;
832
833 return cpuhp_kick_ap(cpu, st, st->target);
834
835 out_unlock:
836 irq_unlock_sparse();
837 return ret;
838 }
839 #else
840 static int bringup_cpu(unsigned int cpu)
841 {
842 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843 struct task_struct *idle = idle_thread_get(cpu);
844 int ret;
845
846 if (!cpuhp_can_boot_ap(cpu))
847 return -EAGAIN;
848
849 /*
850 * Some architectures have to walk the irq descriptors to
851 * setup the vector space for the cpu which comes online.
852 *
853 * Prevent irq alloc/free across the bringup by acquiring the
854 * sparse irq lock. Hold it until the upcoming CPU completes the
855 * startup in cpuhp_online_idle() which allows to avoid
856 * intermediate synchronization points in the architecture code.
857 */
858 irq_lock_sparse();
859
860 ret = __cpu_up(cpu, idle);
861 if (ret)
862 goto out_unlock;
863
864 ret = cpuhp_bp_sync_alive(cpu);
865 if (ret)
866 goto out_unlock;
867
868 ret = bringup_wait_for_ap_online(cpu);
869 if (ret)
870 goto out_unlock;
871
872 irq_unlock_sparse();
873
874 if (st->target <= CPUHP_AP_ONLINE_IDLE)
875 return 0;
876
877 return cpuhp_kick_ap(cpu, st, st->target);
878
879 out_unlock:
880 irq_unlock_sparse();
881 return ret;
882 }
883 #endif
884
885 static int finish_cpu(unsigned int cpu)
886 {
887 struct task_struct *idle = idle_thread_get(cpu);
888 struct mm_struct *mm = idle->active_mm;
889
890 /*
891 * idle_task_exit() will have switched to &init_mm, now
892 * clean up any remaining active_mm state.
893 */
894 if (mm != &init_mm)
895 idle->active_mm = &init_mm;
896 mmdrop_lazy_tlb(mm);
897 return 0;
898 }
899
900 /*
901 * Hotplug state machine related functions
902 */
903
904 /*
905 * Get the next state to run. Empty ones will be skipped. Returns true if a
906 * state must be run.
907 *
908 * st->state will be modified ahead of time, to match state_to_run, as if it
909 * has already ran.
910 */
911 static bool cpuhp_next_state(bool bringup,
912 enum cpuhp_state *state_to_run,
913 struct cpuhp_cpu_state *st,
914 enum cpuhp_state target)
915 {
916 do {
917 if (bringup) {
918 if (st->state >= target)
919 return false;
920
921 *state_to_run = ++st->state;
922 } else {
923 if (st->state <= target)
924 return false;
925
926 *state_to_run = st->state--;
927 }
928
929 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930 break;
931 } while (true);
932
933 return true;
934 }
935
936 static int __cpuhp_invoke_callback_range(bool bringup,
937 unsigned int cpu,
938 struct cpuhp_cpu_state *st,
939 enum cpuhp_state target,
940 bool nofail)
941 {
942 enum cpuhp_state state;
943 int ret = 0;
944
945 while (cpuhp_next_state(bringup, &state, st, target)) {
946 int err;
947
948 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949 if (!err)
950 continue;
951
952 if (nofail) {
953 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954 cpu, bringup ? "UP" : "DOWN",
955 cpuhp_get_step(st->state)->name,
956 st->state, err);
957 ret = -1;
958 } else {
959 ret = err;
960 break;
961 }
962 }
963
964 return ret;
965 }
966
967 static inline int cpuhp_invoke_callback_range(bool bringup,
968 unsigned int cpu,
969 struct cpuhp_cpu_state *st,
970 enum cpuhp_state target)
971 {
972 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973 }
974
975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976 unsigned int cpu,
977 struct cpuhp_cpu_state *st,
978 enum cpuhp_state target)
979 {
980 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981 }
982
983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984 {
985 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986 return true;
987 /*
988 * When CPU hotplug is disabled, then taking the CPU down is not
989 * possible because takedown_cpu() and the architecture and
990 * subsystem specific mechanisms are not available. So the CPU
991 * which would be completely unplugged again needs to stay around
992 * in the current state.
993 */
994 return st->state <= CPUHP_BRINGUP_CPU;
995 }
996
997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998 enum cpuhp_state target)
999 {
1000 enum cpuhp_state prev_state = st->state;
1001 int ret = 0;
1002
1003 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004 if (ret) {
1005 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006 ret, cpu, cpuhp_get_step(st->state)->name,
1007 st->state);
1008
1009 cpuhp_reset_state(cpu, st, prev_state);
1010 if (can_rollback_cpu(st))
1011 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012 prev_state));
1013 }
1014 return ret;
1015 }
1016
1017 /*
1018 * The cpu hotplug threads manage the bringup and teardown of the cpus
1019 */
1020 static int cpuhp_should_run(unsigned int cpu)
1021 {
1022 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023
1024 return st->should_run;
1025 }
1026
1027 /*
1028 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029 * callbacks when a state gets [un]installed at runtime.
1030 *
1031 * Each invocation of this function by the smpboot thread does a single AP
1032 * state callback.
1033 *
1034 * It has 3 modes of operation:
1035 * - single: runs st->cb_state
1036 * - up: runs ++st->state, while st->state < st->target
1037 * - down: runs st->state--, while st->state > st->target
1038 *
1039 * When complete or on error, should_run is cleared and the completion is fired.
1040 */
1041 static void cpuhp_thread_fun(unsigned int cpu)
1042 {
1043 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044 bool bringup = st->bringup;
1045 enum cpuhp_state state;
1046
1047 if (WARN_ON_ONCE(!st->should_run))
1048 return;
1049
1050 /*
1051 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052 * that if we see ->should_run we also see the rest of the state.
1053 */
1054 smp_mb();
1055
1056 /*
1057 * The BP holds the hotplug lock, but we're now running on the AP,
1058 * ensure that anybody asserting the lock is held, will actually find
1059 * it so.
1060 */
1061 lockdep_acquire_cpus_lock();
1062 cpuhp_lock_acquire(bringup);
1063
1064 if (st->single) {
1065 state = st->cb_state;
1066 st->should_run = false;
1067 } else {
1068 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069 if (!st->should_run)
1070 goto end;
1071 }
1072
1073 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074
1075 if (cpuhp_is_atomic_state(state)) {
1076 local_irq_disable();
1077 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078 local_irq_enable();
1079
1080 /*
1081 * STARTING/DYING must not fail!
1082 */
1083 WARN_ON_ONCE(st->result);
1084 } else {
1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086 }
1087
1088 if (st->result) {
1089 /*
1090 * If we fail on a rollback, we're up a creek without no
1091 * paddle, no way forward, no way back. We loose, thanks for
1092 * playing.
1093 */
1094 WARN_ON_ONCE(st->rollback);
1095 st->should_run = false;
1096 }
1097
1098 end:
1099 cpuhp_lock_release(bringup);
1100 lockdep_release_cpus_lock();
1101
1102 if (!st->should_run)
1103 complete_ap_thread(st, bringup);
1104 }
1105
1106 /* Invoke a single callback on a remote cpu */
1107 static int
1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109 struct hlist_node *node)
1110 {
1111 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112 int ret;
1113
1114 if (!cpu_online(cpu))
1115 return 0;
1116
1117 cpuhp_lock_acquire(false);
1118 cpuhp_lock_release(false);
1119
1120 cpuhp_lock_acquire(true);
1121 cpuhp_lock_release(true);
1122
1123 /*
1124 * If we are up and running, use the hotplug thread. For early calls
1125 * we invoke the thread function directly.
1126 */
1127 if (!st->thread)
1128 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129
1130 st->rollback = false;
1131 st->last = NULL;
1132
1133 st->node = node;
1134 st->bringup = bringup;
1135 st->cb_state = state;
1136 st->single = true;
1137
1138 __cpuhp_kick_ap(st);
1139
1140 /*
1141 * If we failed and did a partial, do a rollback.
1142 */
1143 if ((ret = st->result) && st->last) {
1144 st->rollback = true;
1145 st->bringup = !bringup;
1146
1147 __cpuhp_kick_ap(st);
1148 }
1149
1150 /*
1151 * Clean up the leftovers so the next hotplug operation wont use stale
1152 * data.
1153 */
1154 st->node = st->last = NULL;
1155 return ret;
1156 }
1157
1158 static int cpuhp_kick_ap_work(unsigned int cpu)
1159 {
1160 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161 enum cpuhp_state prev_state = st->state;
1162 int ret;
1163
1164 cpuhp_lock_acquire(false);
1165 cpuhp_lock_release(false);
1166
1167 cpuhp_lock_acquire(true);
1168 cpuhp_lock_release(true);
1169
1170 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171 ret = cpuhp_kick_ap(cpu, st, st->target);
1172 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173
1174 return ret;
1175 }
1176
1177 static struct smp_hotplug_thread cpuhp_threads = {
1178 .store = &cpuhp_state.thread,
1179 .thread_should_run = cpuhp_should_run,
1180 .thread_fn = cpuhp_thread_fun,
1181 .thread_comm = "cpuhp/%u",
1182 .selfparking = true,
1183 };
1184
1185 static __init void cpuhp_init_state(void)
1186 {
1187 struct cpuhp_cpu_state *st;
1188 int cpu;
1189
1190 for_each_possible_cpu(cpu) {
1191 st = per_cpu_ptr(&cpuhp_state, cpu);
1192 init_completion(&st->done_up);
1193 init_completion(&st->done_down);
1194 }
1195 }
1196
1197 void __init cpuhp_threads_init(void)
1198 {
1199 cpuhp_init_state();
1200 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202 }
1203
1204 /*
1205 *
1206 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207 * protected region.
1208 *
1209 * The operation is still serialized against concurrent CPU hotplug via
1210 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
1211 * serialized against other hotplug related activity like adding or
1212 * removing of state callbacks and state instances, which invoke either the
1213 * startup or the teardown callback of the affected state.
1214 *
1215 * This is required for subsystems which are unfixable vs. CPU hotplug and
1216 * evade lock inversion problems by scheduling work which has to be
1217 * completed _before_ cpu_up()/_cpu_down() returns.
1218 *
1219 * Don't even think about adding anything to this for any new code or even
1220 * drivers. It's only purpose is to keep existing lock order trainwrecks
1221 * working.
1222 *
1223 * For cpu_down() there might be valid reasons to finish cleanups which are
1224 * not required to be done under cpu_hotplug_lock, but that's a different
1225 * story and would be not invoked via this.
1226 */
1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228 {
1229 /*
1230 * cpusets delegate hotplug operations to a worker to "solve" the
1231 * lock order problems. Wait for the worker, but only if tasks are
1232 * _not_ frozen (suspend, hibernate) as that would wait forever.
1233 *
1234 * The wait is required because otherwise the hotplug operation
1235 * returns with inconsistent state, which could even be observed in
1236 * user space when a new CPU is brought up. The CPU plug uevent
1237 * would be delivered and user space reacting on it would fail to
1238 * move tasks to the newly plugged CPU up to the point where the
1239 * work has finished because up to that point the newly plugged CPU
1240 * is not assignable in cpusets/cgroups. On unplug that's not
1241 * necessarily a visible issue, but it is still inconsistent state,
1242 * which is the real problem which needs to be "fixed". This can't
1243 * prevent the transient state between scheduling the work and
1244 * returning from waiting for it.
1245 */
1246 if (!tasks_frozen)
1247 cpuset_wait_for_hotplug();
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 #ifndef arch_clear_mm_cpumask_cpu
1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253 #endif
1254
1255 /**
1256 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257 * @cpu: a CPU id
1258 *
1259 * This function walks all processes, finds a valid mm struct for each one and
1260 * then clears a corresponding bit in mm's cpumask. While this all sounds
1261 * trivial, there are various non-obvious corner cases, which this function
1262 * tries to solve in a safe manner.
1263 *
1264 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265 * be called only for an already offlined CPU.
1266 */
1267 void clear_tasks_mm_cpumask(int cpu)
1268 {
1269 struct task_struct *p;
1270
1271 /*
1272 * This function is called after the cpu is taken down and marked
1273 * offline, so its not like new tasks will ever get this cpu set in
1274 * their mm mask. -- Peter Zijlstra
1275 * Thus, we may use rcu_read_lock() here, instead of grabbing
1276 * full-fledged tasklist_lock.
1277 */
1278 WARN_ON(cpu_online(cpu));
1279 rcu_read_lock();
1280 for_each_process(p) {
1281 struct task_struct *t;
1282
1283 /*
1284 * Main thread might exit, but other threads may still have
1285 * a valid mm. Find one.
1286 */
1287 t = find_lock_task_mm(p);
1288 if (!t)
1289 continue;
1290 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291 task_unlock(t);
1292 }
1293 rcu_read_unlock();
1294 }
1295
1296 /* Take this CPU down. */
1297 static int take_cpu_down(void *_param)
1298 {
1299 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301 int err, cpu = smp_processor_id();
1302
1303 /* Ensure this CPU doesn't handle any more interrupts. */
1304 err = __cpu_disable();
1305 if (err < 0)
1306 return err;
1307
1308 /*
1309 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311 */
1312 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313
1314 /*
1315 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316 */
1317 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318
1319 /* Give up timekeeping duties */
1320 tick_handover_do_timer();
1321 /* Remove CPU from timer broadcasting */
1322 tick_offline_cpu(cpu);
1323 /* Park the stopper thread */
1324 stop_machine_park(cpu);
1325 return 0;
1326 }
1327
1328 static int takedown_cpu(unsigned int cpu)
1329 {
1330 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 int err;
1332
1333 /* Park the smpboot threads */
1334 kthread_park(st->thread);
1335
1336 /*
1337 * Prevent irq alloc/free while the dying cpu reorganizes the
1338 * interrupt affinities.
1339 */
1340 irq_lock_sparse();
1341
1342 /*
1343 * So now all preempt/rcu users must observe !cpu_active().
1344 */
1345 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346 if (err) {
1347 /* CPU refused to die */
1348 irq_unlock_sparse();
1349 /* Unpark the hotplug thread so we can rollback there */
1350 kthread_unpark(st->thread);
1351 return err;
1352 }
1353 BUG_ON(cpu_online(cpu));
1354
1355 /*
1356 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357 * all runnable tasks from the CPU, there's only the idle task left now
1358 * that the migration thread is done doing the stop_machine thing.
1359 *
1360 * Wait for the stop thread to go away.
1361 */
1362 wait_for_ap_thread(st, false);
1363 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364
1365 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366 irq_unlock_sparse();
1367
1368 hotplug_cpu__broadcast_tick_pull(cpu);
1369 /* This actually kills the CPU. */
1370 __cpu_die(cpu);
1371
1372 cpuhp_bp_sync_dead(cpu);
1373
1374 tick_cleanup_dead_cpu(cpu);
1375 rcutree_migrate_callbacks(cpu);
1376 return 0;
1377 }
1378
1379 static void cpuhp_complete_idle_dead(void *arg)
1380 {
1381 struct cpuhp_cpu_state *st = arg;
1382
1383 complete_ap_thread(st, false);
1384 }
1385
1386 void cpuhp_report_idle_dead(void)
1387 {
1388 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389
1390 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391 rcu_report_dead(smp_processor_id());
1392 st->state = CPUHP_AP_IDLE_DEAD;
1393 /*
1394 * We cannot call complete after rcu_report_dead() so we delegate it
1395 * to an online cpu.
1396 */
1397 smp_call_function_single(cpumask_first(cpu_online_mask),
1398 cpuhp_complete_idle_dead, st, 0);
1399 }
1400
1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402 enum cpuhp_state target)
1403 {
1404 enum cpuhp_state prev_state = st->state;
1405 int ret = 0;
1406
1407 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408 if (ret) {
1409 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410 ret, cpu, cpuhp_get_step(st->state)->name,
1411 st->state);
1412
1413 cpuhp_reset_state(cpu, st, prev_state);
1414
1415 if (st->state < prev_state)
1416 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417 prev_state));
1418 }
1419
1420 return ret;
1421 }
1422
1423 /* Requires cpu_add_remove_lock to be held */
1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425 enum cpuhp_state target)
1426 {
1427 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428 int prev_state, ret = 0;
1429
1430 if (num_online_cpus() == 1)
1431 return -EBUSY;
1432
1433 if (!cpu_present(cpu))
1434 return -EINVAL;
1435
1436 cpus_write_lock();
1437
1438 cpuhp_tasks_frozen = tasks_frozen;
1439
1440 prev_state = cpuhp_set_state(cpu, st, target);
1441 /*
1442 * If the current CPU state is in the range of the AP hotplug thread,
1443 * then we need to kick the thread.
1444 */
1445 if (st->state > CPUHP_TEARDOWN_CPU) {
1446 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447 ret = cpuhp_kick_ap_work(cpu);
1448 /*
1449 * The AP side has done the error rollback already. Just
1450 * return the error code..
1451 */
1452 if (ret)
1453 goto out;
1454
1455 /*
1456 * We might have stopped still in the range of the AP hotplug
1457 * thread. Nothing to do anymore.
1458 */
1459 if (st->state > CPUHP_TEARDOWN_CPU)
1460 goto out;
1461
1462 st->target = target;
1463 }
1464 /*
1465 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466 * to do the further cleanups.
1467 */
1468 ret = cpuhp_down_callbacks(cpu, st, target);
1469 if (ret && st->state < prev_state) {
1470 if (st->state == CPUHP_TEARDOWN_CPU) {
1471 cpuhp_reset_state(cpu, st, prev_state);
1472 __cpuhp_kick_ap(st);
1473 } else {
1474 WARN(1, "DEAD callback error for CPU%d", cpu);
1475 }
1476 }
1477
1478 out:
1479 cpus_write_unlock();
1480 /*
1481 * Do post unplug cleanup. This is still protected against
1482 * concurrent CPU hotplug via cpu_add_remove_lock.
1483 */
1484 lockup_detector_cleanup();
1485 arch_smt_update();
1486 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487 return ret;
1488 }
1489
1490 struct cpu_down_work {
1491 unsigned int cpu;
1492 enum cpuhp_state target;
1493 };
1494
1495 static long __cpu_down_maps_locked(void *arg)
1496 {
1497 struct cpu_down_work *work = arg;
1498
1499 return _cpu_down(work->cpu, 0, work->target);
1500 }
1501
1502 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1503 {
1504 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1505
1506 /*
1507 * If the platform does not support hotplug, report it explicitly to
1508 * differentiate it from a transient offlining failure.
1509 */
1510 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1511 return -EOPNOTSUPP;
1512 if (cpu_hotplug_disabled)
1513 return -EBUSY;
1514
1515 /*
1516 * Ensure that the control task does not run on the to be offlined
1517 * CPU to prevent a deadlock against cfs_b->period_timer.
1518 */
1519 cpu = cpumask_any_but(cpu_online_mask, cpu);
1520 if (cpu >= nr_cpu_ids)
1521 return -EBUSY;
1522 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1523 }
1524
1525 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1526 {
1527 int err;
1528
1529 cpu_maps_update_begin();
1530 err = cpu_down_maps_locked(cpu, target);
1531 cpu_maps_update_done();
1532 return err;
1533 }
1534
1535 /**
1536 * cpu_device_down - Bring down a cpu device
1537 * @dev: Pointer to the cpu device to offline
1538 *
1539 * This function is meant to be used by device core cpu subsystem only.
1540 *
1541 * Other subsystems should use remove_cpu() instead.
1542 *
1543 * Return: %0 on success or a negative errno code
1544 */
1545 int cpu_device_down(struct device *dev)
1546 {
1547 return cpu_down(dev->id, CPUHP_OFFLINE);
1548 }
1549
1550 int remove_cpu(unsigned int cpu)
1551 {
1552 int ret;
1553
1554 lock_device_hotplug();
1555 ret = device_offline(get_cpu_device(cpu));
1556 unlock_device_hotplug();
1557
1558 return ret;
1559 }
1560 EXPORT_SYMBOL_GPL(remove_cpu);
1561
1562 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1563 {
1564 unsigned int cpu;
1565 int error;
1566
1567 cpu_maps_update_begin();
1568
1569 /*
1570 * Make certain the cpu I'm about to reboot on is online.
1571 *
1572 * This is inline to what migrate_to_reboot_cpu() already do.
1573 */
1574 if (!cpu_online(primary_cpu))
1575 primary_cpu = cpumask_first(cpu_online_mask);
1576
1577 for_each_online_cpu(cpu) {
1578 if (cpu == primary_cpu)
1579 continue;
1580
1581 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1582 if (error) {
1583 pr_err("Failed to offline CPU%d - error=%d",
1584 cpu, error);
1585 break;
1586 }
1587 }
1588
1589 /*
1590 * Ensure all but the reboot CPU are offline.
1591 */
1592 BUG_ON(num_online_cpus() > 1);
1593
1594 /*
1595 * Make sure the CPUs won't be enabled by someone else after this
1596 * point. Kexec will reboot to a new kernel shortly resetting
1597 * everything along the way.
1598 */
1599 cpu_hotplug_disabled++;
1600
1601 cpu_maps_update_done();
1602 }
1603
1604 #else
1605 #define takedown_cpu NULL
1606 #endif /*CONFIG_HOTPLUG_CPU*/
1607
1608 /**
1609 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1610 * @cpu: cpu that just started
1611 *
1612 * It must be called by the arch code on the new cpu, before the new cpu
1613 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1614 */
1615 void notify_cpu_starting(unsigned int cpu)
1616 {
1617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1618 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1619
1620 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1621 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1622
1623 /*
1624 * STARTING must not fail!
1625 */
1626 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1627 }
1628
1629 /*
1630 * Called from the idle task. Wake up the controlling task which brings the
1631 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1632 * online bringup to the hotplug thread.
1633 */
1634 void cpuhp_online_idle(enum cpuhp_state state)
1635 {
1636 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1637
1638 /* Happens for the boot cpu */
1639 if (state != CPUHP_AP_ONLINE_IDLE)
1640 return;
1641
1642 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1643
1644 /*
1645 * Unpark the stopper thread before we start the idle loop (and start
1646 * scheduling); this ensures the stopper task is always available.
1647 */
1648 stop_machine_unpark(smp_processor_id());
1649
1650 st->state = CPUHP_AP_ONLINE_IDLE;
1651 complete_ap_thread(st, true);
1652 }
1653
1654 /* Requires cpu_add_remove_lock to be held */
1655 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1656 {
1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 struct task_struct *idle;
1659 int ret = 0;
1660
1661 cpus_write_lock();
1662
1663 if (!cpu_present(cpu)) {
1664 ret = -EINVAL;
1665 goto out;
1666 }
1667
1668 /*
1669 * The caller of cpu_up() might have raced with another
1670 * caller. Nothing to do.
1671 */
1672 if (st->state >= target)
1673 goto out;
1674
1675 if (st->state == CPUHP_OFFLINE) {
1676 /* Let it fail before we try to bring the cpu up */
1677 idle = idle_thread_get(cpu);
1678 if (IS_ERR(idle)) {
1679 ret = PTR_ERR(idle);
1680 goto out;
1681 }
1682
1683 /*
1684 * Reset stale stack state from the last time this CPU was online.
1685 */
1686 scs_task_reset(idle);
1687 kasan_unpoison_task_stack(idle);
1688 }
1689
1690 cpuhp_tasks_frozen = tasks_frozen;
1691
1692 cpuhp_set_state(cpu, st, target);
1693 /*
1694 * If the current CPU state is in the range of the AP hotplug thread,
1695 * then we need to kick the thread once more.
1696 */
1697 if (st->state > CPUHP_BRINGUP_CPU) {
1698 ret = cpuhp_kick_ap_work(cpu);
1699 /*
1700 * The AP side has done the error rollback already. Just
1701 * return the error code..
1702 */
1703 if (ret)
1704 goto out;
1705 }
1706
1707 /*
1708 * Try to reach the target state. We max out on the BP at
1709 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1710 * responsible for bringing it up to the target state.
1711 */
1712 target = min((int)target, CPUHP_BRINGUP_CPU);
1713 ret = cpuhp_up_callbacks(cpu, st, target);
1714 out:
1715 cpus_write_unlock();
1716 arch_smt_update();
1717 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1718 return ret;
1719 }
1720
1721 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1722 {
1723 int err = 0;
1724
1725 if (!cpu_possible(cpu)) {
1726 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1727 cpu);
1728 #if defined(CONFIG_IA64)
1729 pr_err("please check additional_cpus= boot parameter\n");
1730 #endif
1731 return -EINVAL;
1732 }
1733
1734 err = try_online_node(cpu_to_node(cpu));
1735 if (err)
1736 return err;
1737
1738 cpu_maps_update_begin();
1739
1740 if (cpu_hotplug_disabled) {
1741 err = -EBUSY;
1742 goto out;
1743 }
1744 if (!cpu_smt_allowed(cpu)) {
1745 err = -EPERM;
1746 goto out;
1747 }
1748
1749 err = _cpu_up(cpu, 0, target);
1750 out:
1751 cpu_maps_update_done();
1752 return err;
1753 }
1754
1755 /**
1756 * cpu_device_up - Bring up a cpu device
1757 * @dev: Pointer to the cpu device to online
1758 *
1759 * This function is meant to be used by device core cpu subsystem only.
1760 *
1761 * Other subsystems should use add_cpu() instead.
1762 *
1763 * Return: %0 on success or a negative errno code
1764 */
1765 int cpu_device_up(struct device *dev)
1766 {
1767 return cpu_up(dev->id, CPUHP_ONLINE);
1768 }
1769
1770 int add_cpu(unsigned int cpu)
1771 {
1772 int ret;
1773
1774 lock_device_hotplug();
1775 ret = device_online(get_cpu_device(cpu));
1776 unlock_device_hotplug();
1777
1778 return ret;
1779 }
1780 EXPORT_SYMBOL_GPL(add_cpu);
1781
1782 /**
1783 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1784 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1785 *
1786 * On some architectures like arm64, we can hibernate on any CPU, but on
1787 * wake up the CPU we hibernated on might be offline as a side effect of
1788 * using maxcpus= for example.
1789 *
1790 * Return: %0 on success or a negative errno code
1791 */
1792 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1793 {
1794 int ret;
1795
1796 if (!cpu_online(sleep_cpu)) {
1797 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1798 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1799 if (ret) {
1800 pr_err("Failed to bring hibernate-CPU up!\n");
1801 return ret;
1802 }
1803 }
1804 return 0;
1805 }
1806
1807 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1808 enum cpuhp_state target)
1809 {
1810 unsigned int cpu;
1811
1812 for_each_cpu(cpu, mask) {
1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814
1815 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1816 /*
1817 * If this failed then cpu_up() might have only
1818 * rolled back to CPUHP_BP_KICK_AP for the final
1819 * online. Clean it up. NOOP if already rolled back.
1820 */
1821 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1822 }
1823
1824 if (!--ncpus)
1825 break;
1826 }
1827 }
1828
1829 #ifdef CONFIG_HOTPLUG_PARALLEL
1830 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1831
1832 static int __init parallel_bringup_parse_param(char *arg)
1833 {
1834 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1835 }
1836 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1837
1838 static inline bool cpuhp_smt_aware(void)
1839 {
1840 return cpu_smt_max_threads > 1;
1841 }
1842
1843 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1844 {
1845 return cpu_primary_thread_mask;
1846 }
1847
1848 /*
1849 * On architectures which have enabled parallel bringup this invokes all BP
1850 * prepare states for each of the to be onlined APs first. The last state
1851 * sends the startup IPI to the APs. The APs proceed through the low level
1852 * bringup code in parallel and then wait for the control CPU to release
1853 * them one by one for the final onlining procedure.
1854 *
1855 * This avoids waiting for each AP to respond to the startup IPI in
1856 * CPUHP_BRINGUP_CPU.
1857 */
1858 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1859 {
1860 const struct cpumask *mask = cpu_present_mask;
1861
1862 if (__cpuhp_parallel_bringup)
1863 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1864 if (!__cpuhp_parallel_bringup)
1865 return false;
1866
1867 if (cpuhp_smt_aware()) {
1868 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1869 static struct cpumask tmp_mask __initdata;
1870
1871 /*
1872 * X86 requires to prevent that SMT siblings stopped while
1873 * the primary thread does a microcode update for various
1874 * reasons. Bring the primary threads up first.
1875 */
1876 cpumask_and(&tmp_mask, mask, pmask);
1877 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1878 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1879 /* Account for the online CPUs */
1880 ncpus -= num_online_cpus();
1881 if (!ncpus)
1882 return true;
1883 /* Create the mask for secondary CPUs */
1884 cpumask_andnot(&tmp_mask, mask, pmask);
1885 mask = &tmp_mask;
1886 }
1887
1888 /* Bring the not-yet started CPUs up */
1889 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1890 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1891 return true;
1892 }
1893 #else
1894 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1895 #endif /* CONFIG_HOTPLUG_PARALLEL */
1896
1897 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1898 {
1899 /* Try parallel bringup optimization if enabled */
1900 if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1901 return;
1902
1903 /* Full per CPU serialized bringup */
1904 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1905 }
1906
1907 #ifdef CONFIG_PM_SLEEP_SMP
1908 static cpumask_var_t frozen_cpus;
1909
1910 int freeze_secondary_cpus(int primary)
1911 {
1912 int cpu, error = 0;
1913
1914 cpu_maps_update_begin();
1915 if (primary == -1) {
1916 primary = cpumask_first(cpu_online_mask);
1917 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1918 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1919 } else {
1920 if (!cpu_online(primary))
1921 primary = cpumask_first(cpu_online_mask);
1922 }
1923
1924 /*
1925 * We take down all of the non-boot CPUs in one shot to avoid races
1926 * with the userspace trying to use the CPU hotplug at the same time
1927 */
1928 cpumask_clear(frozen_cpus);
1929
1930 pr_info("Disabling non-boot CPUs ...\n");
1931 for_each_online_cpu(cpu) {
1932 if (cpu == primary)
1933 continue;
1934
1935 if (pm_wakeup_pending()) {
1936 pr_info("Wakeup pending. Abort CPU freeze\n");
1937 error = -EBUSY;
1938 break;
1939 }
1940
1941 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1942 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1943 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1944 if (!error)
1945 cpumask_set_cpu(cpu, frozen_cpus);
1946 else {
1947 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1948 break;
1949 }
1950 }
1951
1952 if (!error)
1953 BUG_ON(num_online_cpus() > 1);
1954 else
1955 pr_err("Non-boot CPUs are not disabled\n");
1956
1957 /*
1958 * Make sure the CPUs won't be enabled by someone else. We need to do
1959 * this even in case of failure as all freeze_secondary_cpus() users are
1960 * supposed to do thaw_secondary_cpus() on the failure path.
1961 */
1962 cpu_hotplug_disabled++;
1963
1964 cpu_maps_update_done();
1965 return error;
1966 }
1967
1968 void __weak arch_thaw_secondary_cpus_begin(void)
1969 {
1970 }
1971
1972 void __weak arch_thaw_secondary_cpus_end(void)
1973 {
1974 }
1975
1976 void thaw_secondary_cpus(void)
1977 {
1978 int cpu, error;
1979
1980 /* Allow everyone to use the CPU hotplug again */
1981 cpu_maps_update_begin();
1982 __cpu_hotplug_enable();
1983 if (cpumask_empty(frozen_cpus))
1984 goto out;
1985
1986 pr_info("Enabling non-boot CPUs ...\n");
1987
1988 arch_thaw_secondary_cpus_begin();
1989
1990 for_each_cpu(cpu, frozen_cpus) {
1991 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1992 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1993 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1994 if (!error) {
1995 pr_info("CPU%d is up\n", cpu);
1996 continue;
1997 }
1998 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1999 }
2000
2001 arch_thaw_secondary_cpus_end();
2002
2003 cpumask_clear(frozen_cpus);
2004 out:
2005 cpu_maps_update_done();
2006 }
2007
2008 static int __init alloc_frozen_cpus(void)
2009 {
2010 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2011 return -ENOMEM;
2012 return 0;
2013 }
2014 core_initcall(alloc_frozen_cpus);
2015
2016 /*
2017 * When callbacks for CPU hotplug notifications are being executed, we must
2018 * ensure that the state of the system with respect to the tasks being frozen
2019 * or not, as reported by the notification, remains unchanged *throughout the
2020 * duration* of the execution of the callbacks.
2021 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2022 *
2023 * This synchronization is implemented by mutually excluding regular CPU
2024 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2025 * Hibernate notifications.
2026 */
2027 static int
2028 cpu_hotplug_pm_callback(struct notifier_block *nb,
2029 unsigned long action, void *ptr)
2030 {
2031 switch (action) {
2032
2033 case PM_SUSPEND_PREPARE:
2034 case PM_HIBERNATION_PREPARE:
2035 cpu_hotplug_disable();
2036 break;
2037
2038 case PM_POST_SUSPEND:
2039 case PM_POST_HIBERNATION:
2040 cpu_hotplug_enable();
2041 break;
2042
2043 default:
2044 return NOTIFY_DONE;
2045 }
2046
2047 return NOTIFY_OK;
2048 }
2049
2050
2051 static int __init cpu_hotplug_pm_sync_init(void)
2052 {
2053 /*
2054 * cpu_hotplug_pm_callback has higher priority than x86
2055 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2056 * to disable cpu hotplug to avoid cpu hotplug race.
2057 */
2058 pm_notifier(cpu_hotplug_pm_callback, 0);
2059 return 0;
2060 }
2061 core_initcall(cpu_hotplug_pm_sync_init);
2062
2063 #endif /* CONFIG_PM_SLEEP_SMP */
2064
2065 int __boot_cpu_id;
2066
2067 #endif /* CONFIG_SMP */
2068
2069 /* Boot processor state steps */
2070 static struct cpuhp_step cpuhp_hp_states[] = {
2071 [CPUHP_OFFLINE] = {
2072 .name = "offline",
2073 .startup.single = NULL,
2074 .teardown.single = NULL,
2075 },
2076 #ifdef CONFIG_SMP
2077 [CPUHP_CREATE_THREADS]= {
2078 .name = "threads:prepare",
2079 .startup.single = smpboot_create_threads,
2080 .teardown.single = NULL,
2081 .cant_stop = true,
2082 },
2083 [CPUHP_PERF_PREPARE] = {
2084 .name = "perf:prepare",
2085 .startup.single = perf_event_init_cpu,
2086 .teardown.single = perf_event_exit_cpu,
2087 },
2088 [CPUHP_RANDOM_PREPARE] = {
2089 .name = "random:prepare",
2090 .startup.single = random_prepare_cpu,
2091 .teardown.single = NULL,
2092 },
2093 [CPUHP_WORKQUEUE_PREP] = {
2094 .name = "workqueue:prepare",
2095 .startup.single = workqueue_prepare_cpu,
2096 .teardown.single = NULL,
2097 },
2098 [CPUHP_HRTIMERS_PREPARE] = {
2099 .name = "hrtimers:prepare",
2100 .startup.single = hrtimers_prepare_cpu,
2101 .teardown.single = hrtimers_dead_cpu,
2102 },
2103 [CPUHP_SMPCFD_PREPARE] = {
2104 .name = "smpcfd:prepare",
2105 .startup.single = smpcfd_prepare_cpu,
2106 .teardown.single = smpcfd_dead_cpu,
2107 },
2108 [CPUHP_RELAY_PREPARE] = {
2109 .name = "relay:prepare",
2110 .startup.single = relay_prepare_cpu,
2111 .teardown.single = NULL,
2112 },
2113 [CPUHP_SLAB_PREPARE] = {
2114 .name = "slab:prepare",
2115 .startup.single = slab_prepare_cpu,
2116 .teardown.single = slab_dead_cpu,
2117 },
2118 [CPUHP_RCUTREE_PREP] = {
2119 .name = "RCU/tree:prepare",
2120 .startup.single = rcutree_prepare_cpu,
2121 .teardown.single = rcutree_dead_cpu,
2122 },
2123 /*
2124 * On the tear-down path, timers_dead_cpu() must be invoked
2125 * before blk_mq_queue_reinit_notify() from notify_dead(),
2126 * otherwise a RCU stall occurs.
2127 */
2128 [CPUHP_TIMERS_PREPARE] = {
2129 .name = "timers:prepare",
2130 .startup.single = timers_prepare_cpu,
2131 .teardown.single = timers_dead_cpu,
2132 },
2133
2134 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2135 /*
2136 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2137 * the next step will release it.
2138 */
2139 [CPUHP_BP_KICK_AP] = {
2140 .name = "cpu:kick_ap",
2141 .startup.single = cpuhp_kick_ap_alive,
2142 },
2143
2144 /*
2145 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2146 * releases it for the complete bringup.
2147 */
2148 [CPUHP_BRINGUP_CPU] = {
2149 .name = "cpu:bringup",
2150 .startup.single = cpuhp_bringup_ap,
2151 .teardown.single = finish_cpu,
2152 .cant_stop = true,
2153 },
2154 #else
2155 /*
2156 * All-in-one CPU bringup state which includes the kick alive.
2157 */
2158 [CPUHP_BRINGUP_CPU] = {
2159 .name = "cpu:bringup",
2160 .startup.single = bringup_cpu,
2161 .teardown.single = finish_cpu,
2162 .cant_stop = true,
2163 },
2164 #endif
2165 /* Final state before CPU kills itself */
2166 [CPUHP_AP_IDLE_DEAD] = {
2167 .name = "idle:dead",
2168 },
2169 /*
2170 * Last state before CPU enters the idle loop to die. Transient state
2171 * for synchronization.
2172 */
2173 [CPUHP_AP_OFFLINE] = {
2174 .name = "ap:offline",
2175 .cant_stop = true,
2176 },
2177 /* First state is scheduler control. Interrupts are disabled */
2178 [CPUHP_AP_SCHED_STARTING] = {
2179 .name = "sched:starting",
2180 .startup.single = sched_cpu_starting,
2181 .teardown.single = sched_cpu_dying,
2182 },
2183 [CPUHP_AP_RCUTREE_DYING] = {
2184 .name = "RCU/tree:dying",
2185 .startup.single = NULL,
2186 .teardown.single = rcutree_dying_cpu,
2187 },
2188 [CPUHP_AP_SMPCFD_DYING] = {
2189 .name = "smpcfd:dying",
2190 .startup.single = NULL,
2191 .teardown.single = smpcfd_dying_cpu,
2192 },
2193 /* Entry state on starting. Interrupts enabled from here on. Transient
2194 * state for synchronsization */
2195 [CPUHP_AP_ONLINE] = {
2196 .name = "ap:online",
2197 },
2198 /*
2199 * Handled on control processor until the plugged processor manages
2200 * this itself.
2201 */
2202 [CPUHP_TEARDOWN_CPU] = {
2203 .name = "cpu:teardown",
2204 .startup.single = NULL,
2205 .teardown.single = takedown_cpu,
2206 .cant_stop = true,
2207 },
2208
2209 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2210 .name = "sched:waitempty",
2211 .startup.single = NULL,
2212 .teardown.single = sched_cpu_wait_empty,
2213 },
2214
2215 /* Handle smpboot threads park/unpark */
2216 [CPUHP_AP_SMPBOOT_THREADS] = {
2217 .name = "smpboot/threads:online",
2218 .startup.single = smpboot_unpark_threads,
2219 .teardown.single = smpboot_park_threads,
2220 },
2221 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2222 .name = "irq/affinity:online",
2223 .startup.single = irq_affinity_online_cpu,
2224 .teardown.single = NULL,
2225 },
2226 [CPUHP_AP_PERF_ONLINE] = {
2227 .name = "perf:online",
2228 .startup.single = perf_event_init_cpu,
2229 .teardown.single = perf_event_exit_cpu,
2230 },
2231 [CPUHP_AP_WATCHDOG_ONLINE] = {
2232 .name = "lockup_detector:online",
2233 .startup.single = lockup_detector_online_cpu,
2234 .teardown.single = lockup_detector_offline_cpu,
2235 },
2236 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2237 .name = "workqueue:online",
2238 .startup.single = workqueue_online_cpu,
2239 .teardown.single = workqueue_offline_cpu,
2240 },
2241 [CPUHP_AP_RANDOM_ONLINE] = {
2242 .name = "random:online",
2243 .startup.single = random_online_cpu,
2244 .teardown.single = NULL,
2245 },
2246 [CPUHP_AP_RCUTREE_ONLINE] = {
2247 .name = "RCU/tree:online",
2248 .startup.single = rcutree_online_cpu,
2249 .teardown.single = rcutree_offline_cpu,
2250 },
2251 #endif
2252 /*
2253 * The dynamically registered state space is here
2254 */
2255
2256 #ifdef CONFIG_SMP
2257 /* Last state is scheduler control setting the cpu active */
2258 [CPUHP_AP_ACTIVE] = {
2259 .name = "sched:active",
2260 .startup.single = sched_cpu_activate,
2261 .teardown.single = sched_cpu_deactivate,
2262 },
2263 #endif
2264
2265 /* CPU is fully up and running. */
2266 [CPUHP_ONLINE] = {
2267 .name = "online",
2268 .startup.single = NULL,
2269 .teardown.single = NULL,
2270 },
2271 };
2272
2273 /* Sanity check for callbacks */
2274 static int cpuhp_cb_check(enum cpuhp_state state)
2275 {
2276 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2277 return -EINVAL;
2278 return 0;
2279 }
2280
2281 /*
2282 * Returns a free for dynamic slot assignment of the Online state. The states
2283 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2284 * by having no name assigned.
2285 */
2286 static int cpuhp_reserve_state(enum cpuhp_state state)
2287 {
2288 enum cpuhp_state i, end;
2289 struct cpuhp_step *step;
2290
2291 switch (state) {
2292 case CPUHP_AP_ONLINE_DYN:
2293 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2294 end = CPUHP_AP_ONLINE_DYN_END;
2295 break;
2296 case CPUHP_BP_PREPARE_DYN:
2297 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2298 end = CPUHP_BP_PREPARE_DYN_END;
2299 break;
2300 default:
2301 return -EINVAL;
2302 }
2303
2304 for (i = state; i <= end; i++, step++) {
2305 if (!step->name)
2306 return i;
2307 }
2308 WARN(1, "No more dynamic states available for CPU hotplug\n");
2309 return -ENOSPC;
2310 }
2311
2312 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2313 int (*startup)(unsigned int cpu),
2314 int (*teardown)(unsigned int cpu),
2315 bool multi_instance)
2316 {
2317 /* (Un)Install the callbacks for further cpu hotplug operations */
2318 struct cpuhp_step *sp;
2319 int ret = 0;
2320
2321 /*
2322 * If name is NULL, then the state gets removed.
2323 *
2324 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2325 * the first allocation from these dynamic ranges, so the removal
2326 * would trigger a new allocation and clear the wrong (already
2327 * empty) state, leaving the callbacks of the to be cleared state
2328 * dangling, which causes wreckage on the next hotplug operation.
2329 */
2330 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2331 state == CPUHP_BP_PREPARE_DYN)) {
2332 ret = cpuhp_reserve_state(state);
2333 if (ret < 0)
2334 return ret;
2335 state = ret;
2336 }
2337 sp = cpuhp_get_step(state);
2338 if (name && sp->name)
2339 return -EBUSY;
2340
2341 sp->startup.single = startup;
2342 sp->teardown.single = teardown;
2343 sp->name = name;
2344 sp->multi_instance = multi_instance;
2345 INIT_HLIST_HEAD(&sp->list);
2346 return ret;
2347 }
2348
2349 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2350 {
2351 return cpuhp_get_step(state)->teardown.single;
2352 }
2353
2354 /*
2355 * Call the startup/teardown function for a step either on the AP or
2356 * on the current CPU.
2357 */
2358 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2359 struct hlist_node *node)
2360 {
2361 struct cpuhp_step *sp = cpuhp_get_step(state);
2362 int ret;
2363
2364 /*
2365 * If there's nothing to do, we done.
2366 * Relies on the union for multi_instance.
2367 */
2368 if (cpuhp_step_empty(bringup, sp))
2369 return 0;
2370 /*
2371 * The non AP bound callbacks can fail on bringup. On teardown
2372 * e.g. module removal we crash for now.
2373 */
2374 #ifdef CONFIG_SMP
2375 if (cpuhp_is_ap_state(state))
2376 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2377 else
2378 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2379 #else
2380 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2381 #endif
2382 BUG_ON(ret && !bringup);
2383 return ret;
2384 }
2385
2386 /*
2387 * Called from __cpuhp_setup_state on a recoverable failure.
2388 *
2389 * Note: The teardown callbacks for rollback are not allowed to fail!
2390 */
2391 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2392 struct hlist_node *node)
2393 {
2394 int cpu;
2395
2396 /* Roll back the already executed steps on the other cpus */
2397 for_each_present_cpu(cpu) {
2398 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2399 int cpustate = st->state;
2400
2401 if (cpu >= failedcpu)
2402 break;
2403
2404 /* Did we invoke the startup call on that cpu ? */
2405 if (cpustate >= state)
2406 cpuhp_issue_call(cpu, state, false, node);
2407 }
2408 }
2409
2410 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2411 struct hlist_node *node,
2412 bool invoke)
2413 {
2414 struct cpuhp_step *sp;
2415 int cpu;
2416 int ret;
2417
2418 lockdep_assert_cpus_held();
2419
2420 sp = cpuhp_get_step(state);
2421 if (sp->multi_instance == false)
2422 return -EINVAL;
2423
2424 mutex_lock(&cpuhp_state_mutex);
2425
2426 if (!invoke || !sp->startup.multi)
2427 goto add_node;
2428
2429 /*
2430 * Try to call the startup callback for each present cpu
2431 * depending on the hotplug state of the cpu.
2432 */
2433 for_each_present_cpu(cpu) {
2434 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2435 int cpustate = st->state;
2436
2437 if (cpustate < state)
2438 continue;
2439
2440 ret = cpuhp_issue_call(cpu, state, true, node);
2441 if (ret) {
2442 if (sp->teardown.multi)
2443 cpuhp_rollback_install(cpu, state, node);
2444 goto unlock;
2445 }
2446 }
2447 add_node:
2448 ret = 0;
2449 hlist_add_head(node, &sp->list);
2450 unlock:
2451 mutex_unlock(&cpuhp_state_mutex);
2452 return ret;
2453 }
2454
2455 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2456 bool invoke)
2457 {
2458 int ret;
2459
2460 cpus_read_lock();
2461 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2462 cpus_read_unlock();
2463 return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2466
2467 /**
2468 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2469 * @state: The state to setup
2470 * @name: Name of the step
2471 * @invoke: If true, the startup function is invoked for cpus where
2472 * cpu state >= @state
2473 * @startup: startup callback function
2474 * @teardown: teardown callback function
2475 * @multi_instance: State is set up for multiple instances which get
2476 * added afterwards.
2477 *
2478 * The caller needs to hold cpus read locked while calling this function.
2479 * Return:
2480 * On success:
2481 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2482 * 0 for all other states
2483 * On failure: proper (negative) error code
2484 */
2485 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2486 const char *name, bool invoke,
2487 int (*startup)(unsigned int cpu),
2488 int (*teardown)(unsigned int cpu),
2489 bool multi_instance)
2490 {
2491 int cpu, ret = 0;
2492 bool dynstate;
2493
2494 lockdep_assert_cpus_held();
2495
2496 if (cpuhp_cb_check(state) || !name)
2497 return -EINVAL;
2498
2499 mutex_lock(&cpuhp_state_mutex);
2500
2501 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2502 multi_instance);
2503
2504 dynstate = state == CPUHP_AP_ONLINE_DYN;
2505 if (ret > 0 && dynstate) {
2506 state = ret;
2507 ret = 0;
2508 }
2509
2510 if (ret || !invoke || !startup)
2511 goto out;
2512
2513 /*
2514 * Try to call the startup callback for each present cpu
2515 * depending on the hotplug state of the cpu.
2516 */
2517 for_each_present_cpu(cpu) {
2518 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2519 int cpustate = st->state;
2520
2521 if (cpustate < state)
2522 continue;
2523
2524 ret = cpuhp_issue_call(cpu, state, true, NULL);
2525 if (ret) {
2526 if (teardown)
2527 cpuhp_rollback_install(cpu, state, NULL);
2528 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2529 goto out;
2530 }
2531 }
2532 out:
2533 mutex_unlock(&cpuhp_state_mutex);
2534 /*
2535 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2536 * dynamically allocated state in case of success.
2537 */
2538 if (!ret && dynstate)
2539 return state;
2540 return ret;
2541 }
2542 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2543
2544 int __cpuhp_setup_state(enum cpuhp_state state,
2545 const char *name, bool invoke,
2546 int (*startup)(unsigned int cpu),
2547 int (*teardown)(unsigned int cpu),
2548 bool multi_instance)
2549 {
2550 int ret;
2551
2552 cpus_read_lock();
2553 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2554 teardown, multi_instance);
2555 cpus_read_unlock();
2556 return ret;
2557 }
2558 EXPORT_SYMBOL(__cpuhp_setup_state);
2559
2560 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2561 struct hlist_node *node, bool invoke)
2562 {
2563 struct cpuhp_step *sp = cpuhp_get_step(state);
2564 int cpu;
2565
2566 BUG_ON(cpuhp_cb_check(state));
2567
2568 if (!sp->multi_instance)
2569 return -EINVAL;
2570
2571 cpus_read_lock();
2572 mutex_lock(&cpuhp_state_mutex);
2573
2574 if (!invoke || !cpuhp_get_teardown_cb(state))
2575 goto remove;
2576 /*
2577 * Call the teardown callback for each present cpu depending
2578 * on the hotplug state of the cpu. This function is not
2579 * allowed to fail currently!
2580 */
2581 for_each_present_cpu(cpu) {
2582 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583 int cpustate = st->state;
2584
2585 if (cpustate >= state)
2586 cpuhp_issue_call(cpu, state, false, node);
2587 }
2588
2589 remove:
2590 hlist_del(node);
2591 mutex_unlock(&cpuhp_state_mutex);
2592 cpus_read_unlock();
2593
2594 return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2597
2598 /**
2599 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2600 * @state: The state to remove
2601 * @invoke: If true, the teardown function is invoked for cpus where
2602 * cpu state >= @state
2603 *
2604 * The caller needs to hold cpus read locked while calling this function.
2605 * The teardown callback is currently not allowed to fail. Think
2606 * about module removal!
2607 */
2608 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2609 {
2610 struct cpuhp_step *sp = cpuhp_get_step(state);
2611 int cpu;
2612
2613 BUG_ON(cpuhp_cb_check(state));
2614
2615 lockdep_assert_cpus_held();
2616
2617 mutex_lock(&cpuhp_state_mutex);
2618 if (sp->multi_instance) {
2619 WARN(!hlist_empty(&sp->list),
2620 "Error: Removing state %d which has instances left.\n",
2621 state);
2622 goto remove;
2623 }
2624
2625 if (!invoke || !cpuhp_get_teardown_cb(state))
2626 goto remove;
2627
2628 /*
2629 * Call the teardown callback for each present cpu depending
2630 * on the hotplug state of the cpu. This function is not
2631 * allowed to fail currently!
2632 */
2633 for_each_present_cpu(cpu) {
2634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2635 int cpustate = st->state;
2636
2637 if (cpustate >= state)
2638 cpuhp_issue_call(cpu, state, false, NULL);
2639 }
2640 remove:
2641 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2642 mutex_unlock(&cpuhp_state_mutex);
2643 }
2644 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2645
2646 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2647 {
2648 cpus_read_lock();
2649 __cpuhp_remove_state_cpuslocked(state, invoke);
2650 cpus_read_unlock();
2651 }
2652 EXPORT_SYMBOL(__cpuhp_remove_state);
2653
2654 #ifdef CONFIG_HOTPLUG_SMT
2655 static void cpuhp_offline_cpu_device(unsigned int cpu)
2656 {
2657 struct device *dev = get_cpu_device(cpu);
2658
2659 dev->offline = true;
2660 /* Tell user space about the state change */
2661 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2662 }
2663
2664 static void cpuhp_online_cpu_device(unsigned int cpu)
2665 {
2666 struct device *dev = get_cpu_device(cpu);
2667
2668 dev->offline = false;
2669 /* Tell user space about the state change */
2670 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2671 }
2672
2673 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2674 {
2675 int cpu, ret = 0;
2676
2677 cpu_maps_update_begin();
2678 for_each_online_cpu(cpu) {
2679 if (topology_is_primary_thread(cpu))
2680 continue;
2681 /*
2682 * Disable can be called with CPU_SMT_ENABLED when changing
2683 * from a higher to lower number of SMT threads per core.
2684 */
2685 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2686 continue;
2687 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2688 if (ret)
2689 break;
2690 /*
2691 * As this needs to hold the cpu maps lock it's impossible
2692 * to call device_offline() because that ends up calling
2693 * cpu_down() which takes cpu maps lock. cpu maps lock
2694 * needs to be held as this might race against in kernel
2695 * abusers of the hotplug machinery (thermal management).
2696 *
2697 * So nothing would update device:offline state. That would
2698 * leave the sysfs entry stale and prevent onlining after
2699 * smt control has been changed to 'off' again. This is
2700 * called under the sysfs hotplug lock, so it is properly
2701 * serialized against the regular offline usage.
2702 */
2703 cpuhp_offline_cpu_device(cpu);
2704 }
2705 if (!ret)
2706 cpu_smt_control = ctrlval;
2707 cpu_maps_update_done();
2708 return ret;
2709 }
2710
2711 int cpuhp_smt_enable(void)
2712 {
2713 int cpu, ret = 0;
2714
2715 cpu_maps_update_begin();
2716 cpu_smt_control = CPU_SMT_ENABLED;
2717 for_each_present_cpu(cpu) {
2718 /* Skip online CPUs and CPUs on offline nodes */
2719 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2720 continue;
2721 if (!cpu_smt_thread_allowed(cpu))
2722 continue;
2723 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2724 if (ret)
2725 break;
2726 /* See comment in cpuhp_smt_disable() */
2727 cpuhp_online_cpu_device(cpu);
2728 }
2729 cpu_maps_update_done();
2730 return ret;
2731 }
2732 #endif
2733
2734 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2735 static ssize_t state_show(struct device *dev,
2736 struct device_attribute *attr, char *buf)
2737 {
2738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2739
2740 return sprintf(buf, "%d\n", st->state);
2741 }
2742 static DEVICE_ATTR_RO(state);
2743
2744 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2745 const char *buf, size_t count)
2746 {
2747 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2748 struct cpuhp_step *sp;
2749 int target, ret;
2750
2751 ret = kstrtoint(buf, 10, &target);
2752 if (ret)
2753 return ret;
2754
2755 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2756 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2757 return -EINVAL;
2758 #else
2759 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2760 return -EINVAL;
2761 #endif
2762
2763 ret = lock_device_hotplug_sysfs();
2764 if (ret)
2765 return ret;
2766
2767 mutex_lock(&cpuhp_state_mutex);
2768 sp = cpuhp_get_step(target);
2769 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2770 mutex_unlock(&cpuhp_state_mutex);
2771 if (ret)
2772 goto out;
2773
2774 if (st->state < target)
2775 ret = cpu_up(dev->id, target);
2776 else if (st->state > target)
2777 ret = cpu_down(dev->id, target);
2778 else if (WARN_ON(st->target != target))
2779 st->target = target;
2780 out:
2781 unlock_device_hotplug();
2782 return ret ? ret : count;
2783 }
2784
2785 static ssize_t target_show(struct device *dev,
2786 struct device_attribute *attr, char *buf)
2787 {
2788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789
2790 return sprintf(buf, "%d\n", st->target);
2791 }
2792 static DEVICE_ATTR_RW(target);
2793
2794 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2795 const char *buf, size_t count)
2796 {
2797 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2798 struct cpuhp_step *sp;
2799 int fail, ret;
2800
2801 ret = kstrtoint(buf, 10, &fail);
2802 if (ret)
2803 return ret;
2804
2805 if (fail == CPUHP_INVALID) {
2806 st->fail = fail;
2807 return count;
2808 }
2809
2810 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2811 return -EINVAL;
2812
2813 /*
2814 * Cannot fail STARTING/DYING callbacks.
2815 */
2816 if (cpuhp_is_atomic_state(fail))
2817 return -EINVAL;
2818
2819 /*
2820 * DEAD callbacks cannot fail...
2821 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2822 * triggering STARTING callbacks, a failure in this state would
2823 * hinder rollback.
2824 */
2825 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2826 return -EINVAL;
2827
2828 /*
2829 * Cannot fail anything that doesn't have callbacks.
2830 */
2831 mutex_lock(&cpuhp_state_mutex);
2832 sp = cpuhp_get_step(fail);
2833 if (!sp->startup.single && !sp->teardown.single)
2834 ret = -EINVAL;
2835 mutex_unlock(&cpuhp_state_mutex);
2836 if (ret)
2837 return ret;
2838
2839 st->fail = fail;
2840
2841 return count;
2842 }
2843
2844 static ssize_t fail_show(struct device *dev,
2845 struct device_attribute *attr, char *buf)
2846 {
2847 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2848
2849 return sprintf(buf, "%d\n", st->fail);
2850 }
2851
2852 static DEVICE_ATTR_RW(fail);
2853
2854 static struct attribute *cpuhp_cpu_attrs[] = {
2855 &dev_attr_state.attr,
2856 &dev_attr_target.attr,
2857 &dev_attr_fail.attr,
2858 NULL
2859 };
2860
2861 static const struct attribute_group cpuhp_cpu_attr_group = {
2862 .attrs = cpuhp_cpu_attrs,
2863 .name = "hotplug",
2864 NULL
2865 };
2866
2867 static ssize_t states_show(struct device *dev,
2868 struct device_attribute *attr, char *buf)
2869 {
2870 ssize_t cur, res = 0;
2871 int i;
2872
2873 mutex_lock(&cpuhp_state_mutex);
2874 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2875 struct cpuhp_step *sp = cpuhp_get_step(i);
2876
2877 if (sp->name) {
2878 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2879 buf += cur;
2880 res += cur;
2881 }
2882 }
2883 mutex_unlock(&cpuhp_state_mutex);
2884 return res;
2885 }
2886 static DEVICE_ATTR_RO(states);
2887
2888 static struct attribute *cpuhp_cpu_root_attrs[] = {
2889 &dev_attr_states.attr,
2890 NULL
2891 };
2892
2893 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2894 .attrs = cpuhp_cpu_root_attrs,
2895 .name = "hotplug",
2896 NULL
2897 };
2898
2899 #ifdef CONFIG_HOTPLUG_SMT
2900
2901 static bool cpu_smt_num_threads_valid(unsigned int threads)
2902 {
2903 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2904 return threads >= 1 && threads <= cpu_smt_max_threads;
2905 return threads == 1 || threads == cpu_smt_max_threads;
2906 }
2907
2908 static ssize_t
2909 __store_smt_control(struct device *dev, struct device_attribute *attr,
2910 const char *buf, size_t count)
2911 {
2912 int ctrlval, ret, num_threads, orig_threads;
2913 bool force_off;
2914
2915 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2916 return -EPERM;
2917
2918 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2919 return -ENODEV;
2920
2921 if (sysfs_streq(buf, "on")) {
2922 ctrlval = CPU_SMT_ENABLED;
2923 num_threads = cpu_smt_max_threads;
2924 } else if (sysfs_streq(buf, "off")) {
2925 ctrlval = CPU_SMT_DISABLED;
2926 num_threads = 1;
2927 } else if (sysfs_streq(buf, "forceoff")) {
2928 ctrlval = CPU_SMT_FORCE_DISABLED;
2929 num_threads = 1;
2930 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2931 if (num_threads == 1)
2932 ctrlval = CPU_SMT_DISABLED;
2933 else if (cpu_smt_num_threads_valid(num_threads))
2934 ctrlval = CPU_SMT_ENABLED;
2935 else
2936 return -EINVAL;
2937 } else {
2938 return -EINVAL;
2939 }
2940
2941 ret = lock_device_hotplug_sysfs();
2942 if (ret)
2943 return ret;
2944
2945 orig_threads = cpu_smt_num_threads;
2946 cpu_smt_num_threads = num_threads;
2947
2948 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2949
2950 if (num_threads > orig_threads)
2951 ret = cpuhp_smt_enable();
2952 else if (num_threads < orig_threads || force_off)
2953 ret = cpuhp_smt_disable(ctrlval);
2954
2955 unlock_device_hotplug();
2956 return ret ? ret : count;
2957 }
2958
2959 #else /* !CONFIG_HOTPLUG_SMT */
2960 static ssize_t
2961 __store_smt_control(struct device *dev, struct device_attribute *attr,
2962 const char *buf, size_t count)
2963 {
2964 return -ENODEV;
2965 }
2966 #endif /* CONFIG_HOTPLUG_SMT */
2967
2968 static const char *smt_states[] = {
2969 [CPU_SMT_ENABLED] = "on",
2970 [CPU_SMT_DISABLED] = "off",
2971 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2972 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2973 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2974 };
2975
2976 static ssize_t control_show(struct device *dev,
2977 struct device_attribute *attr, char *buf)
2978 {
2979 const char *state = smt_states[cpu_smt_control];
2980
2981 #ifdef CONFIG_HOTPLUG_SMT
2982 /*
2983 * If SMT is enabled but not all threads are enabled then show the
2984 * number of threads. If all threads are enabled show "on". Otherwise
2985 * show the state name.
2986 */
2987 if (cpu_smt_control == CPU_SMT_ENABLED &&
2988 cpu_smt_num_threads != cpu_smt_max_threads)
2989 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2990 #endif
2991
2992 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2993 }
2994
2995 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2996 const char *buf, size_t count)
2997 {
2998 return __store_smt_control(dev, attr, buf, count);
2999 }
3000 static DEVICE_ATTR_RW(control);
3001
3002 static ssize_t active_show(struct device *dev,
3003 struct device_attribute *attr, char *buf)
3004 {
3005 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3006 }
3007 static DEVICE_ATTR_RO(active);
3008
3009 static struct attribute *cpuhp_smt_attrs[] = {
3010 &dev_attr_control.attr,
3011 &dev_attr_active.attr,
3012 NULL
3013 };
3014
3015 static const struct attribute_group cpuhp_smt_attr_group = {
3016 .attrs = cpuhp_smt_attrs,
3017 .name = "smt",
3018 NULL
3019 };
3020
3021 static int __init cpu_smt_sysfs_init(void)
3022 {
3023 struct device *dev_root;
3024 int ret = -ENODEV;
3025
3026 dev_root = bus_get_dev_root(&cpu_subsys);
3027 if (dev_root) {
3028 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3029 put_device(dev_root);
3030 }
3031 return ret;
3032 }
3033
3034 static int __init cpuhp_sysfs_init(void)
3035 {
3036 struct device *dev_root;
3037 int cpu, ret;
3038
3039 ret = cpu_smt_sysfs_init();
3040 if (ret)
3041 return ret;
3042
3043 dev_root = bus_get_dev_root(&cpu_subsys);
3044 if (dev_root) {
3045 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3046 put_device(dev_root);
3047 if (ret)
3048 return ret;
3049 }
3050
3051 for_each_possible_cpu(cpu) {
3052 struct device *dev = get_cpu_device(cpu);
3053
3054 if (!dev)
3055 continue;
3056 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3057 if (ret)
3058 return ret;
3059 }
3060 return 0;
3061 }
3062 device_initcall(cpuhp_sysfs_init);
3063 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3064
3065 /*
3066 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3067 * represents all NR_CPUS bits binary values of 1<<nr.
3068 *
3069 * It is used by cpumask_of() to get a constant address to a CPU
3070 * mask value that has a single bit set only.
3071 */
3072
3073 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3074 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3075 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3076 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3077 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3078
3079 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3080
3081 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3082 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3083 #if BITS_PER_LONG > 32
3084 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3085 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3086 #endif
3087 };
3088 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3089
3090 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3091 EXPORT_SYMBOL(cpu_all_bits);
3092
3093 #ifdef CONFIG_INIT_ALL_POSSIBLE
3094 struct cpumask __cpu_possible_mask __read_mostly
3095 = {CPU_BITS_ALL};
3096 #else
3097 struct cpumask __cpu_possible_mask __read_mostly;
3098 #endif
3099 EXPORT_SYMBOL(__cpu_possible_mask);
3100
3101 struct cpumask __cpu_online_mask __read_mostly;
3102 EXPORT_SYMBOL(__cpu_online_mask);
3103
3104 struct cpumask __cpu_present_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_present_mask);
3106
3107 struct cpumask __cpu_active_mask __read_mostly;
3108 EXPORT_SYMBOL(__cpu_active_mask);
3109
3110 struct cpumask __cpu_dying_mask __read_mostly;
3111 EXPORT_SYMBOL(__cpu_dying_mask);
3112
3113 atomic_t __num_online_cpus __read_mostly;
3114 EXPORT_SYMBOL(__num_online_cpus);
3115
3116 void init_cpu_present(const struct cpumask *src)
3117 {
3118 cpumask_copy(&__cpu_present_mask, src);
3119 }
3120
3121 void init_cpu_possible(const struct cpumask *src)
3122 {
3123 cpumask_copy(&__cpu_possible_mask, src);
3124 }
3125
3126 void init_cpu_online(const struct cpumask *src)
3127 {
3128 cpumask_copy(&__cpu_online_mask, src);
3129 }
3130
3131 void set_cpu_online(unsigned int cpu, bool online)
3132 {
3133 /*
3134 * atomic_inc/dec() is required to handle the horrid abuse of this
3135 * function by the reboot and kexec code which invoke it from
3136 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3137 * regular CPU hotplug is properly serialized.
3138 *
3139 * Note, that the fact that __num_online_cpus is of type atomic_t
3140 * does not protect readers which are not serialized against
3141 * concurrent hotplug operations.
3142 */
3143 if (online) {
3144 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3145 atomic_inc(&__num_online_cpus);
3146 } else {
3147 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3148 atomic_dec(&__num_online_cpus);
3149 }
3150 }
3151
3152 /*
3153 * Activate the first processor.
3154 */
3155 void __init boot_cpu_init(void)
3156 {
3157 int cpu = smp_processor_id();
3158
3159 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3160 set_cpu_online(cpu, true);
3161 set_cpu_active(cpu, true);
3162 set_cpu_present(cpu, true);
3163 set_cpu_possible(cpu, true);
3164
3165 #ifdef CONFIG_SMP
3166 __boot_cpu_id = cpu;
3167 #endif
3168 }
3169
3170 /*
3171 * Must be called _AFTER_ setting up the per_cpu areas
3172 */
3173 void __init boot_cpu_hotplug_init(void)
3174 {
3175 #ifdef CONFIG_SMP
3176 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3177 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3178 #endif
3179 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3180 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3181 }
3182
3183 /*
3184 * These are used for a global "mitigations=" cmdline option for toggling
3185 * optional CPU mitigations.
3186 */
3187 enum cpu_mitigations {
3188 CPU_MITIGATIONS_OFF,
3189 CPU_MITIGATIONS_AUTO,
3190 CPU_MITIGATIONS_AUTO_NOSMT,
3191 };
3192
3193 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3194 CPU_MITIGATIONS_AUTO;
3195
3196 static int __init mitigations_parse_cmdline(char *arg)
3197 {
3198 if (!strcmp(arg, "off"))
3199 cpu_mitigations = CPU_MITIGATIONS_OFF;
3200 else if (!strcmp(arg, "auto"))
3201 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3202 else if (!strcmp(arg, "auto,nosmt"))
3203 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3204 else
3205 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3206 arg);
3207
3208 return 0;
3209 }
3210 early_param("mitigations", mitigations_parse_cmdline);
3211
3212 /* mitigations=off */
3213 bool cpu_mitigations_off(void)
3214 {
3215 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3216 }
3217 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3218
3219 /* mitigations=auto,nosmt */
3220 bool cpu_mitigations_auto_nosmt(void)
3221 {
3222 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3223 }
3224 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);