]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/cpu.c
Revert "printk: extend console_lock for per-console locking"
[people/ms/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47 * struct cpuhp_cpu_state - Per cpu hotplug state storage
48 * @state: The current cpu state
49 * @target: The target state
50 * @fail: Current CPU hotplug callback state
51 * @thread: Pointer to the hotplug thread
52 * @should_run: Thread should execute
53 * @rollback: Perform a rollback
54 * @single: Single callback invocation
55 * @bringup: Single callback bringup or teardown selector
56 * @cpu: CPU number
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
110 static inline void cpuhp_lock_acquire(bool bringup) { }
111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * struct cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 * @multi_instance: State has multiple instances which get added afterwards
122 */
123 struct cpuhp_step {
124 const char *name;
125 union {
126 int (*single)(unsigned int cpu);
127 int (*multi)(unsigned int cpu,
128 struct hlist_node *node);
129 } startup;
130 union {
131 int (*single)(unsigned int cpu);
132 int (*multi)(unsigned int cpu,
133 struct hlist_node *node);
134 } teardown;
135 /* private: */
136 struct hlist_head list;
137 /* public: */
138 bool cant_stop;
139 bool multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 return cpuhp_hp_states + state;
148 }
149
150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156 * cpuhp_invoke_callback - Invoke the callbacks for a given state
157 * @cpu: The cpu for which the callback should be invoked
158 * @state: The state to do callbacks for
159 * @bringup: True if the bringup callback should be invoked
160 * @node: For multi-instance, do a single entry callback for install/remove
161 * @lastp: For multi-instance rollback, remember how far we got
162 *
163 * Called from cpu hotplug and from the state register machinery.
164 *
165 * Return: %0 on success or a negative errno code
166 */
167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 bool bringup, struct hlist_node *node,
169 struct hlist_node **lastp)
170 {
171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 struct cpuhp_step *step = cpuhp_get_step(state);
173 int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 int (*cb)(unsigned int cpu);
175 int ret, cnt;
176
177 if (st->fail == state) {
178 st->fail = CPUHP_INVALID;
179 return -EAGAIN;
180 }
181
182 if (cpuhp_step_empty(bringup, step)) {
183 WARN_ON_ONCE(1);
184 return 0;
185 }
186
187 if (!step->multi_instance) {
188 WARN_ON_ONCE(lastp && *lastp);
189 cb = bringup ? step->startup.single : step->teardown.single;
190
191 trace_cpuhp_enter(cpu, st->target, state, cb);
192 ret = cb(cpu);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 return ret;
195 }
196 cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198 /* Single invocation for instance add/remove */
199 if (node) {
200 WARN_ON_ONCE(lastp && *lastp);
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
204 return ret;
205 }
206
207 /* State transition. Invoke on all instances */
208 cnt = 0;
209 hlist_for_each(node, &step->list) {
210 if (lastp && node == *lastp)
211 break;
212
213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 ret = cbm(cpu, node);
215 trace_cpuhp_exit(cpu, st->state, state, ret);
216 if (ret) {
217 if (!lastp)
218 goto err;
219
220 *lastp = node;
221 return ret;
222 }
223 cnt++;
224 }
225 if (lastp)
226 *lastp = NULL;
227 return 0;
228 err:
229 /* Rollback the instances if one failed */
230 cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 if (!cbm)
232 return ret;
233
234 hlist_for_each(node, &step->list) {
235 if (!cnt--)
236 break;
237
238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 ret = cbm(cpu, node);
240 trace_cpuhp_exit(cpu, st->state, state, ret);
241 /*
242 * Rollback must not fail,
243 */
244 WARN_ON_ONCE(ret);
245 }
246 return ret;
247 }
248
249 #ifdef CONFIG_SMP
250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 /*
253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 * purposes as that state is handled explicitly in cpu_down.
255 */
256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 struct completion *done = bringup ? &st->done_up : &st->done_down;
262 wait_for_completion(done);
263 }
264
265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 struct completion *done = bringup ? &st->done_up : &st->done_down;
268 complete(done);
269 }
270
271 /*
272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273 */
274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285 * The following two APIs (cpu_maps_update_begin/done) must be used when
286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287 */
288 void cpu_maps_update_begin(void)
289 {
290 mutex_lock(&cpu_add_remove_lock);
291 }
292
293 void cpu_maps_update_done(void)
294 {
295 mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300 * Should always be manipulated under cpu_add_remove_lock
301 */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
308 void cpus_read_lock(void)
309 {
310 percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
314 int cpus_read_trylock(void)
315 {
316 return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
320 void cpus_read_unlock(void)
321 {
322 percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
326 void cpus_write_lock(void)
327 {
328 percpu_down_write(&cpu_hotplug_lock);
329 }
330
331 void cpus_write_unlock(void)
332 {
333 percpu_up_write(&cpu_hotplug_lock);
334 }
335
336 void lockdep_assert_cpus_held(void)
337 {
338 /*
339 * We can't have hotplug operations before userspace starts running,
340 * and some init codepaths will knowingly not take the hotplug lock.
341 * This is all valid, so mute lockdep until it makes sense to report
342 * unheld locks.
343 */
344 if (system_state < SYSTEM_RUNNING)
345 return;
346
347 percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
351 int lockdep_is_cpus_held(void)
352 {
353 return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
357 static void lockdep_acquire_cpus_lock(void)
358 {
359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
362 static void lockdep_release_cpus_lock(void)
363 {
364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368 * Wait for currently running CPU hotplug operations to complete (if any) and
369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371 * hotplug path before performing hotplug operations. So acquiring that lock
372 * guarantees mutual exclusion from any currently running hotplug operations.
373 */
374 void cpu_hotplug_disable(void)
375 {
376 cpu_maps_update_begin();
377 cpu_hotplug_disabled++;
378 cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
382 static void __cpu_hotplug_enable(void)
383 {
384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 return;
386 cpu_hotplug_disabled--;
387 }
388
389 void cpu_hotplug_enable(void)
390 {
391 cpu_maps_update_begin();
392 __cpu_hotplug_enable();
393 cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif /* CONFIG_HOTPLUG_CPU */
408
409 /*
410 * Architectures that need SMT-specific errata handling during SMT hotplug
411 * should override this.
412 */
413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
418 void __init cpu_smt_disable(bool force)
419 {
420 if (!cpu_smt_possible())
421 return;
422
423 if (force) {
424 pr_info("SMT: Force disabled\n");
425 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 } else {
427 pr_info("SMT: disabled\n");
428 cpu_smt_control = CPU_SMT_DISABLED;
429 }
430 }
431
432 /*
433 * The decision whether SMT is supported can only be done after the full
434 * CPU identification. Called from architecture code.
435 */
436 void __init cpu_smt_check_topology(void)
437 {
438 if (!topology_smt_supported())
439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
442 static int __init smt_cmdline_disable(char *str)
443 {
444 cpu_smt_disable(str && !strcmp(str, "force"));
445 return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 if (cpu_smt_control == CPU_SMT_ENABLED)
452 return true;
453
454 if (topology_is_primary_thread(cpu))
455 return true;
456
457 /*
458 * On x86 it's required to boot all logical CPUs at least once so
459 * that the init code can get a chance to set CR4.MCE on each
460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 * core will shutdown the machine.
462 */
463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
467 bool cpu_smt_possible(void)
468 {
469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 enum cpuhp_state prev_state = st->state;
481 bool bringup = st->state < target;
482
483 st->rollback = false;
484 st->last = NULL;
485
486 st->target = target;
487 st->single = false;
488 st->bringup = bringup;
489 if (cpu_dying(cpu) != !bringup)
490 set_cpu_dying(cpu, !bringup);
491
492 return prev_state;
493 }
494
495 static inline void
496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 enum cpuhp_state prev_state)
498 {
499 bool bringup = !st->bringup;
500
501 st->target = prev_state;
502
503 /*
504 * Already rolling back. No need invert the bringup value or to change
505 * the current state.
506 */
507 if (st->rollback)
508 return;
509
510 st->rollback = true;
511
512 /*
513 * If we have st->last we need to undo partial multi_instance of this
514 * state first. Otherwise start undo at the previous state.
515 */
516 if (!st->last) {
517 if (st->bringup)
518 st->state--;
519 else
520 st->state++;
521 }
522
523 st->bringup = bringup;
524 if (cpu_dying(cpu) != !bringup)
525 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 if (!st->single && st->state == st->target)
532 return;
533
534 st->result = 0;
535 /*
536 * Make sure the above stores are visible before should_run becomes
537 * true. Paired with the mb() above in cpuhp_thread_fun()
538 */
539 smp_mb();
540 st->should_run = true;
541 wake_up_process(st->thread);
542 wait_for_ap_thread(st, st->bringup);
543 }
544
545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 enum cpuhp_state target)
547 {
548 enum cpuhp_state prev_state;
549 int ret;
550
551 prev_state = cpuhp_set_state(cpu, st, target);
552 __cpuhp_kick_ap(st);
553 if ((ret = st->result)) {
554 cpuhp_reset_state(cpu, st, prev_state);
555 __cpuhp_kick_ap(st);
556 }
557
558 return ret;
559 }
560
561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 wait_for_ap_thread(st, true);
567 if (WARN_ON_ONCE((!cpu_online(cpu))))
568 return -ECANCELED;
569
570 /* Unpark the hotplug thread of the target cpu */
571 kthread_unpark(st->thread);
572
573 /*
574 * SMT soft disabling on X86 requires to bring the CPU out of the
575 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
576 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 * cpu_smt_allowed() check will now return false if this is not the
578 * primary sibling.
579 */
580 if (!cpu_smt_allowed(cpu))
581 return -ECANCELED;
582
583 if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 return 0;
585
586 return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
589 static int bringup_cpu(unsigned int cpu)
590 {
591 struct task_struct *idle = idle_thread_get(cpu);
592 int ret;
593
594 /*
595 * Reset stale stack state from the last time this CPU was online.
596 */
597 scs_task_reset(idle);
598 kasan_unpoison_task_stack(idle);
599
600 /*
601 * Some architectures have to walk the irq descriptors to
602 * setup the vector space for the cpu which comes online.
603 * Prevent irq alloc/free across the bringup.
604 */
605 irq_lock_sparse();
606
607 /* Arch-specific enabling code. */
608 ret = __cpu_up(cpu, idle);
609 irq_unlock_sparse();
610 if (ret)
611 return ret;
612 return bringup_wait_for_ap(cpu);
613 }
614
615 static int finish_cpu(unsigned int cpu)
616 {
617 struct task_struct *idle = idle_thread_get(cpu);
618 struct mm_struct *mm = idle->active_mm;
619
620 /*
621 * idle_task_exit() will have switched to &init_mm, now
622 * clean up any remaining active_mm state.
623 */
624 if (mm != &init_mm)
625 idle->active_mm = &init_mm;
626 mmdrop(mm);
627 return 0;
628 }
629
630 /*
631 * Hotplug state machine related functions
632 */
633
634 /*
635 * Get the next state to run. Empty ones will be skipped. Returns true if a
636 * state must be run.
637 *
638 * st->state will be modified ahead of time, to match state_to_run, as if it
639 * has already ran.
640 */
641 static bool cpuhp_next_state(bool bringup,
642 enum cpuhp_state *state_to_run,
643 struct cpuhp_cpu_state *st,
644 enum cpuhp_state target)
645 {
646 do {
647 if (bringup) {
648 if (st->state >= target)
649 return false;
650
651 *state_to_run = ++st->state;
652 } else {
653 if (st->state <= target)
654 return false;
655
656 *state_to_run = st->state--;
657 }
658
659 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 break;
661 } while (true);
662
663 return true;
664 }
665
666 static int cpuhp_invoke_callback_range(bool bringup,
667 unsigned int cpu,
668 struct cpuhp_cpu_state *st,
669 enum cpuhp_state target)
670 {
671 enum cpuhp_state state;
672 int err = 0;
673
674 while (cpuhp_next_state(bringup, &state, st, target)) {
675 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
676 if (err)
677 break;
678 }
679
680 return err;
681 }
682
683 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
684 {
685 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
686 return true;
687 /*
688 * When CPU hotplug is disabled, then taking the CPU down is not
689 * possible because takedown_cpu() and the architecture and
690 * subsystem specific mechanisms are not available. So the CPU
691 * which would be completely unplugged again needs to stay around
692 * in the current state.
693 */
694 return st->state <= CPUHP_BRINGUP_CPU;
695 }
696
697 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
698 enum cpuhp_state target)
699 {
700 enum cpuhp_state prev_state = st->state;
701 int ret = 0;
702
703 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
704 if (ret) {
705 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
706 ret, cpu, cpuhp_get_step(st->state)->name,
707 st->state);
708
709 cpuhp_reset_state(cpu, st, prev_state);
710 if (can_rollback_cpu(st))
711 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
712 prev_state));
713 }
714 return ret;
715 }
716
717 /*
718 * The cpu hotplug threads manage the bringup and teardown of the cpus
719 */
720 static int cpuhp_should_run(unsigned int cpu)
721 {
722 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723
724 return st->should_run;
725 }
726
727 /*
728 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
729 * callbacks when a state gets [un]installed at runtime.
730 *
731 * Each invocation of this function by the smpboot thread does a single AP
732 * state callback.
733 *
734 * It has 3 modes of operation:
735 * - single: runs st->cb_state
736 * - up: runs ++st->state, while st->state < st->target
737 * - down: runs st->state--, while st->state > st->target
738 *
739 * When complete or on error, should_run is cleared and the completion is fired.
740 */
741 static void cpuhp_thread_fun(unsigned int cpu)
742 {
743 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
744 bool bringup = st->bringup;
745 enum cpuhp_state state;
746
747 if (WARN_ON_ONCE(!st->should_run))
748 return;
749
750 /*
751 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
752 * that if we see ->should_run we also see the rest of the state.
753 */
754 smp_mb();
755
756 /*
757 * The BP holds the hotplug lock, but we're now running on the AP,
758 * ensure that anybody asserting the lock is held, will actually find
759 * it so.
760 */
761 lockdep_acquire_cpus_lock();
762 cpuhp_lock_acquire(bringup);
763
764 if (st->single) {
765 state = st->cb_state;
766 st->should_run = false;
767 } else {
768 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
769 if (!st->should_run)
770 goto end;
771 }
772
773 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
774
775 if (cpuhp_is_atomic_state(state)) {
776 local_irq_disable();
777 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
778 local_irq_enable();
779
780 /*
781 * STARTING/DYING must not fail!
782 */
783 WARN_ON_ONCE(st->result);
784 } else {
785 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
786 }
787
788 if (st->result) {
789 /*
790 * If we fail on a rollback, we're up a creek without no
791 * paddle, no way forward, no way back. We loose, thanks for
792 * playing.
793 */
794 WARN_ON_ONCE(st->rollback);
795 st->should_run = false;
796 }
797
798 end:
799 cpuhp_lock_release(bringup);
800 lockdep_release_cpus_lock();
801
802 if (!st->should_run)
803 complete_ap_thread(st, bringup);
804 }
805
806 /* Invoke a single callback on a remote cpu */
807 static int
808 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
809 struct hlist_node *node)
810 {
811 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
812 int ret;
813
814 if (!cpu_online(cpu))
815 return 0;
816
817 cpuhp_lock_acquire(false);
818 cpuhp_lock_release(false);
819
820 cpuhp_lock_acquire(true);
821 cpuhp_lock_release(true);
822
823 /*
824 * If we are up and running, use the hotplug thread. For early calls
825 * we invoke the thread function directly.
826 */
827 if (!st->thread)
828 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
829
830 st->rollback = false;
831 st->last = NULL;
832
833 st->node = node;
834 st->bringup = bringup;
835 st->cb_state = state;
836 st->single = true;
837
838 __cpuhp_kick_ap(st);
839
840 /*
841 * If we failed and did a partial, do a rollback.
842 */
843 if ((ret = st->result) && st->last) {
844 st->rollback = true;
845 st->bringup = !bringup;
846
847 __cpuhp_kick_ap(st);
848 }
849
850 /*
851 * Clean up the leftovers so the next hotplug operation wont use stale
852 * data.
853 */
854 st->node = st->last = NULL;
855 return ret;
856 }
857
858 static int cpuhp_kick_ap_work(unsigned int cpu)
859 {
860 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
861 enum cpuhp_state prev_state = st->state;
862 int ret;
863
864 cpuhp_lock_acquire(false);
865 cpuhp_lock_release(false);
866
867 cpuhp_lock_acquire(true);
868 cpuhp_lock_release(true);
869
870 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
871 ret = cpuhp_kick_ap(cpu, st, st->target);
872 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
873
874 return ret;
875 }
876
877 static struct smp_hotplug_thread cpuhp_threads = {
878 .store = &cpuhp_state.thread,
879 .thread_should_run = cpuhp_should_run,
880 .thread_fn = cpuhp_thread_fun,
881 .thread_comm = "cpuhp/%u",
882 .selfparking = true,
883 };
884
885 static __init void cpuhp_init_state(void)
886 {
887 struct cpuhp_cpu_state *st;
888 int cpu;
889
890 for_each_possible_cpu(cpu) {
891 st = per_cpu_ptr(&cpuhp_state, cpu);
892 init_completion(&st->done_up);
893 init_completion(&st->done_down);
894 }
895 }
896
897 void __init cpuhp_threads_init(void)
898 {
899 cpuhp_init_state();
900 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
901 kthread_unpark(this_cpu_read(cpuhp_state.thread));
902 }
903
904 /*
905 *
906 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
907 * protected region.
908 *
909 * The operation is still serialized against concurrent CPU hotplug via
910 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
911 * serialized against other hotplug related activity like adding or
912 * removing of state callbacks and state instances, which invoke either the
913 * startup or the teardown callback of the affected state.
914 *
915 * This is required for subsystems which are unfixable vs. CPU hotplug and
916 * evade lock inversion problems by scheduling work which has to be
917 * completed _before_ cpu_up()/_cpu_down() returns.
918 *
919 * Don't even think about adding anything to this for any new code or even
920 * drivers. It's only purpose is to keep existing lock order trainwrecks
921 * working.
922 *
923 * For cpu_down() there might be valid reasons to finish cleanups which are
924 * not required to be done under cpu_hotplug_lock, but that's a different
925 * story and would be not invoked via this.
926 */
927 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
928 {
929 /*
930 * cpusets delegate hotplug operations to a worker to "solve" the
931 * lock order problems. Wait for the worker, but only if tasks are
932 * _not_ frozen (suspend, hibernate) as that would wait forever.
933 *
934 * The wait is required because otherwise the hotplug operation
935 * returns with inconsistent state, which could even be observed in
936 * user space when a new CPU is brought up. The CPU plug uevent
937 * would be delivered and user space reacting on it would fail to
938 * move tasks to the newly plugged CPU up to the point where the
939 * work has finished because up to that point the newly plugged CPU
940 * is not assignable in cpusets/cgroups. On unplug that's not
941 * necessarily a visible issue, but it is still inconsistent state,
942 * which is the real problem which needs to be "fixed". This can't
943 * prevent the transient state between scheduling the work and
944 * returning from waiting for it.
945 */
946 if (!tasks_frozen)
947 cpuset_wait_for_hotplug();
948 }
949
950 #ifdef CONFIG_HOTPLUG_CPU
951 #ifndef arch_clear_mm_cpumask_cpu
952 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
953 #endif
954
955 /**
956 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
957 * @cpu: a CPU id
958 *
959 * This function walks all processes, finds a valid mm struct for each one and
960 * then clears a corresponding bit in mm's cpumask. While this all sounds
961 * trivial, there are various non-obvious corner cases, which this function
962 * tries to solve in a safe manner.
963 *
964 * Also note that the function uses a somewhat relaxed locking scheme, so it may
965 * be called only for an already offlined CPU.
966 */
967 void clear_tasks_mm_cpumask(int cpu)
968 {
969 struct task_struct *p;
970
971 /*
972 * This function is called after the cpu is taken down and marked
973 * offline, so its not like new tasks will ever get this cpu set in
974 * their mm mask. -- Peter Zijlstra
975 * Thus, we may use rcu_read_lock() here, instead of grabbing
976 * full-fledged tasklist_lock.
977 */
978 WARN_ON(cpu_online(cpu));
979 rcu_read_lock();
980 for_each_process(p) {
981 struct task_struct *t;
982
983 /*
984 * Main thread might exit, but other threads may still have
985 * a valid mm. Find one.
986 */
987 t = find_lock_task_mm(p);
988 if (!t)
989 continue;
990 arch_clear_mm_cpumask_cpu(cpu, t->mm);
991 task_unlock(t);
992 }
993 rcu_read_unlock();
994 }
995
996 /* Take this CPU down. */
997 static int take_cpu_down(void *_param)
998 {
999 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1000 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1001 int err, cpu = smp_processor_id();
1002 int ret;
1003
1004 /* Ensure this CPU doesn't handle any more interrupts. */
1005 err = __cpu_disable();
1006 if (err < 0)
1007 return err;
1008
1009 /*
1010 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1011 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1012 */
1013 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1014
1015 /* Invoke the former CPU_DYING callbacks */
1016 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1017
1018 /*
1019 * DYING must not fail!
1020 */
1021 WARN_ON_ONCE(ret);
1022
1023 /* Give up timekeeping duties */
1024 tick_handover_do_timer();
1025 /* Remove CPU from timer broadcasting */
1026 tick_offline_cpu(cpu);
1027 /* Park the stopper thread */
1028 stop_machine_park(cpu);
1029 return 0;
1030 }
1031
1032 static int takedown_cpu(unsigned int cpu)
1033 {
1034 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1035 int err;
1036
1037 /* Park the smpboot threads */
1038 kthread_park(st->thread);
1039
1040 /*
1041 * Prevent irq alloc/free while the dying cpu reorganizes the
1042 * interrupt affinities.
1043 */
1044 irq_lock_sparse();
1045
1046 /*
1047 * So now all preempt/rcu users must observe !cpu_active().
1048 */
1049 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1050 if (err) {
1051 /* CPU refused to die */
1052 irq_unlock_sparse();
1053 /* Unpark the hotplug thread so we can rollback there */
1054 kthread_unpark(st->thread);
1055 return err;
1056 }
1057 BUG_ON(cpu_online(cpu));
1058
1059 /*
1060 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1061 * all runnable tasks from the CPU, there's only the idle task left now
1062 * that the migration thread is done doing the stop_machine thing.
1063 *
1064 * Wait for the stop thread to go away.
1065 */
1066 wait_for_ap_thread(st, false);
1067 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1068
1069 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1070 irq_unlock_sparse();
1071
1072 hotplug_cpu__broadcast_tick_pull(cpu);
1073 /* This actually kills the CPU. */
1074 __cpu_die(cpu);
1075
1076 tick_cleanup_dead_cpu(cpu);
1077 rcutree_migrate_callbacks(cpu);
1078 return 0;
1079 }
1080
1081 static void cpuhp_complete_idle_dead(void *arg)
1082 {
1083 struct cpuhp_cpu_state *st = arg;
1084
1085 complete_ap_thread(st, false);
1086 }
1087
1088 void cpuhp_report_idle_dead(void)
1089 {
1090 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1091
1092 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1093 rcu_report_dead(smp_processor_id());
1094 st->state = CPUHP_AP_IDLE_DEAD;
1095 /*
1096 * We cannot call complete after rcu_report_dead() so we delegate it
1097 * to an online cpu.
1098 */
1099 smp_call_function_single(cpumask_first(cpu_online_mask),
1100 cpuhp_complete_idle_dead, st, 0);
1101 }
1102
1103 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1104 enum cpuhp_state target)
1105 {
1106 enum cpuhp_state prev_state = st->state;
1107 int ret = 0;
1108
1109 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1110 if (ret) {
1111 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1112 ret, cpu, cpuhp_get_step(st->state)->name,
1113 st->state);
1114
1115 cpuhp_reset_state(cpu, st, prev_state);
1116
1117 if (st->state < prev_state)
1118 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1119 prev_state));
1120 }
1121
1122 return ret;
1123 }
1124
1125 /* Requires cpu_add_remove_lock to be held */
1126 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1127 enum cpuhp_state target)
1128 {
1129 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1130 int prev_state, ret = 0;
1131
1132 if (num_online_cpus() == 1)
1133 return -EBUSY;
1134
1135 if (!cpu_present(cpu))
1136 return -EINVAL;
1137
1138 cpus_write_lock();
1139
1140 cpuhp_tasks_frozen = tasks_frozen;
1141
1142 prev_state = cpuhp_set_state(cpu, st, target);
1143 /*
1144 * If the current CPU state is in the range of the AP hotplug thread,
1145 * then we need to kick the thread.
1146 */
1147 if (st->state > CPUHP_TEARDOWN_CPU) {
1148 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1149 ret = cpuhp_kick_ap_work(cpu);
1150 /*
1151 * The AP side has done the error rollback already. Just
1152 * return the error code..
1153 */
1154 if (ret)
1155 goto out;
1156
1157 /*
1158 * We might have stopped still in the range of the AP hotplug
1159 * thread. Nothing to do anymore.
1160 */
1161 if (st->state > CPUHP_TEARDOWN_CPU)
1162 goto out;
1163
1164 st->target = target;
1165 }
1166 /*
1167 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1168 * to do the further cleanups.
1169 */
1170 ret = cpuhp_down_callbacks(cpu, st, target);
1171 if (ret && st->state < prev_state) {
1172 if (st->state == CPUHP_TEARDOWN_CPU) {
1173 cpuhp_reset_state(cpu, st, prev_state);
1174 __cpuhp_kick_ap(st);
1175 } else {
1176 WARN(1, "DEAD callback error for CPU%d", cpu);
1177 }
1178 }
1179
1180 out:
1181 cpus_write_unlock();
1182 /*
1183 * Do post unplug cleanup. This is still protected against
1184 * concurrent CPU hotplug via cpu_add_remove_lock.
1185 */
1186 lockup_detector_cleanup();
1187 arch_smt_update();
1188 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1189 return ret;
1190 }
1191
1192 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1193 {
1194 /*
1195 * If the platform does not support hotplug, report it explicitly to
1196 * differentiate it from a transient offlining failure.
1197 */
1198 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1199 return -EOPNOTSUPP;
1200 if (cpu_hotplug_disabled)
1201 return -EBUSY;
1202 return _cpu_down(cpu, 0, target);
1203 }
1204
1205 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1206 {
1207 int err;
1208
1209 cpu_maps_update_begin();
1210 err = cpu_down_maps_locked(cpu, target);
1211 cpu_maps_update_done();
1212 return err;
1213 }
1214
1215 /**
1216 * cpu_device_down - Bring down a cpu device
1217 * @dev: Pointer to the cpu device to offline
1218 *
1219 * This function is meant to be used by device core cpu subsystem only.
1220 *
1221 * Other subsystems should use remove_cpu() instead.
1222 *
1223 * Return: %0 on success or a negative errno code
1224 */
1225 int cpu_device_down(struct device *dev)
1226 {
1227 return cpu_down(dev->id, CPUHP_OFFLINE);
1228 }
1229
1230 int remove_cpu(unsigned int cpu)
1231 {
1232 int ret;
1233
1234 lock_device_hotplug();
1235 ret = device_offline(get_cpu_device(cpu));
1236 unlock_device_hotplug();
1237
1238 return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(remove_cpu);
1241
1242 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1243 {
1244 unsigned int cpu;
1245 int error;
1246
1247 cpu_maps_update_begin();
1248
1249 /*
1250 * Make certain the cpu I'm about to reboot on is online.
1251 *
1252 * This is inline to what migrate_to_reboot_cpu() already do.
1253 */
1254 if (!cpu_online(primary_cpu))
1255 primary_cpu = cpumask_first(cpu_online_mask);
1256
1257 for_each_online_cpu(cpu) {
1258 if (cpu == primary_cpu)
1259 continue;
1260
1261 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1262 if (error) {
1263 pr_err("Failed to offline CPU%d - error=%d",
1264 cpu, error);
1265 break;
1266 }
1267 }
1268
1269 /*
1270 * Ensure all but the reboot CPU are offline.
1271 */
1272 BUG_ON(num_online_cpus() > 1);
1273
1274 /*
1275 * Make sure the CPUs won't be enabled by someone else after this
1276 * point. Kexec will reboot to a new kernel shortly resetting
1277 * everything along the way.
1278 */
1279 cpu_hotplug_disabled++;
1280
1281 cpu_maps_update_done();
1282 }
1283
1284 #else
1285 #define takedown_cpu NULL
1286 #endif /*CONFIG_HOTPLUG_CPU*/
1287
1288 /**
1289 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1290 * @cpu: cpu that just started
1291 *
1292 * It must be called by the arch code on the new cpu, before the new cpu
1293 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1294 */
1295 void notify_cpu_starting(unsigned int cpu)
1296 {
1297 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1299 int ret;
1300
1301 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1302 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1303 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1304
1305 /*
1306 * STARTING must not fail!
1307 */
1308 WARN_ON_ONCE(ret);
1309 }
1310
1311 /*
1312 * Called from the idle task. Wake up the controlling task which brings the
1313 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1314 * online bringup to the hotplug thread.
1315 */
1316 void cpuhp_online_idle(enum cpuhp_state state)
1317 {
1318 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1319
1320 /* Happens for the boot cpu */
1321 if (state != CPUHP_AP_ONLINE_IDLE)
1322 return;
1323
1324 /*
1325 * Unpart the stopper thread before we start the idle loop (and start
1326 * scheduling); this ensures the stopper task is always available.
1327 */
1328 stop_machine_unpark(smp_processor_id());
1329
1330 st->state = CPUHP_AP_ONLINE_IDLE;
1331 complete_ap_thread(st, true);
1332 }
1333
1334 /* Requires cpu_add_remove_lock to be held */
1335 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1336 {
1337 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1338 struct task_struct *idle;
1339 int ret = 0;
1340
1341 cpus_write_lock();
1342
1343 if (!cpu_present(cpu)) {
1344 ret = -EINVAL;
1345 goto out;
1346 }
1347
1348 /*
1349 * The caller of cpu_up() might have raced with another
1350 * caller. Nothing to do.
1351 */
1352 if (st->state >= target)
1353 goto out;
1354
1355 if (st->state == CPUHP_OFFLINE) {
1356 /* Let it fail before we try to bring the cpu up */
1357 idle = idle_thread_get(cpu);
1358 if (IS_ERR(idle)) {
1359 ret = PTR_ERR(idle);
1360 goto out;
1361 }
1362 }
1363
1364 cpuhp_tasks_frozen = tasks_frozen;
1365
1366 cpuhp_set_state(cpu, st, target);
1367 /*
1368 * If the current CPU state is in the range of the AP hotplug thread,
1369 * then we need to kick the thread once more.
1370 */
1371 if (st->state > CPUHP_BRINGUP_CPU) {
1372 ret = cpuhp_kick_ap_work(cpu);
1373 /*
1374 * The AP side has done the error rollback already. Just
1375 * return the error code..
1376 */
1377 if (ret)
1378 goto out;
1379 }
1380
1381 /*
1382 * Try to reach the target state. We max out on the BP at
1383 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1384 * responsible for bringing it up to the target state.
1385 */
1386 target = min((int)target, CPUHP_BRINGUP_CPU);
1387 ret = cpuhp_up_callbacks(cpu, st, target);
1388 out:
1389 cpus_write_unlock();
1390 arch_smt_update();
1391 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1392 return ret;
1393 }
1394
1395 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1396 {
1397 int err = 0;
1398
1399 if (!cpu_possible(cpu)) {
1400 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1401 cpu);
1402 #if defined(CONFIG_IA64)
1403 pr_err("please check additional_cpus= boot parameter\n");
1404 #endif
1405 return -EINVAL;
1406 }
1407
1408 err = try_online_node(cpu_to_node(cpu));
1409 if (err)
1410 return err;
1411
1412 cpu_maps_update_begin();
1413
1414 if (cpu_hotplug_disabled) {
1415 err = -EBUSY;
1416 goto out;
1417 }
1418 if (!cpu_smt_allowed(cpu)) {
1419 err = -EPERM;
1420 goto out;
1421 }
1422
1423 err = _cpu_up(cpu, 0, target);
1424 out:
1425 cpu_maps_update_done();
1426 return err;
1427 }
1428
1429 /**
1430 * cpu_device_up - Bring up a cpu device
1431 * @dev: Pointer to the cpu device to online
1432 *
1433 * This function is meant to be used by device core cpu subsystem only.
1434 *
1435 * Other subsystems should use add_cpu() instead.
1436 *
1437 * Return: %0 on success or a negative errno code
1438 */
1439 int cpu_device_up(struct device *dev)
1440 {
1441 return cpu_up(dev->id, CPUHP_ONLINE);
1442 }
1443
1444 int add_cpu(unsigned int cpu)
1445 {
1446 int ret;
1447
1448 lock_device_hotplug();
1449 ret = device_online(get_cpu_device(cpu));
1450 unlock_device_hotplug();
1451
1452 return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(add_cpu);
1455
1456 /**
1457 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1458 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1459 *
1460 * On some architectures like arm64, we can hibernate on any CPU, but on
1461 * wake up the CPU we hibernated on might be offline as a side effect of
1462 * using maxcpus= for example.
1463 *
1464 * Return: %0 on success or a negative errno code
1465 */
1466 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1467 {
1468 int ret;
1469
1470 if (!cpu_online(sleep_cpu)) {
1471 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1472 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1473 if (ret) {
1474 pr_err("Failed to bring hibernate-CPU up!\n");
1475 return ret;
1476 }
1477 }
1478 return 0;
1479 }
1480
1481 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1482 {
1483 unsigned int cpu;
1484
1485 for_each_present_cpu(cpu) {
1486 if (num_online_cpus() >= setup_max_cpus)
1487 break;
1488 if (!cpu_online(cpu))
1489 cpu_up(cpu, CPUHP_ONLINE);
1490 }
1491 }
1492
1493 #ifdef CONFIG_PM_SLEEP_SMP
1494 static cpumask_var_t frozen_cpus;
1495
1496 int freeze_secondary_cpus(int primary)
1497 {
1498 int cpu, error = 0;
1499
1500 cpu_maps_update_begin();
1501 if (primary == -1) {
1502 primary = cpumask_first(cpu_online_mask);
1503 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1504 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1505 } else {
1506 if (!cpu_online(primary))
1507 primary = cpumask_first(cpu_online_mask);
1508 }
1509
1510 /*
1511 * We take down all of the non-boot CPUs in one shot to avoid races
1512 * with the userspace trying to use the CPU hotplug at the same time
1513 */
1514 cpumask_clear(frozen_cpus);
1515
1516 pr_info("Disabling non-boot CPUs ...\n");
1517 for_each_online_cpu(cpu) {
1518 if (cpu == primary)
1519 continue;
1520
1521 if (pm_wakeup_pending()) {
1522 pr_info("Wakeup pending. Abort CPU freeze\n");
1523 error = -EBUSY;
1524 break;
1525 }
1526
1527 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1528 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1529 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1530 if (!error)
1531 cpumask_set_cpu(cpu, frozen_cpus);
1532 else {
1533 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1534 break;
1535 }
1536 }
1537
1538 if (!error)
1539 BUG_ON(num_online_cpus() > 1);
1540 else
1541 pr_err("Non-boot CPUs are not disabled\n");
1542
1543 /*
1544 * Make sure the CPUs won't be enabled by someone else. We need to do
1545 * this even in case of failure as all freeze_secondary_cpus() users are
1546 * supposed to do thaw_secondary_cpus() on the failure path.
1547 */
1548 cpu_hotplug_disabled++;
1549
1550 cpu_maps_update_done();
1551 return error;
1552 }
1553
1554 void __weak arch_thaw_secondary_cpus_begin(void)
1555 {
1556 }
1557
1558 void __weak arch_thaw_secondary_cpus_end(void)
1559 {
1560 }
1561
1562 void thaw_secondary_cpus(void)
1563 {
1564 int cpu, error;
1565
1566 /* Allow everyone to use the CPU hotplug again */
1567 cpu_maps_update_begin();
1568 __cpu_hotplug_enable();
1569 if (cpumask_empty(frozen_cpus))
1570 goto out;
1571
1572 pr_info("Enabling non-boot CPUs ...\n");
1573
1574 arch_thaw_secondary_cpus_begin();
1575
1576 for_each_cpu(cpu, frozen_cpus) {
1577 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1578 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1579 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1580 if (!error) {
1581 pr_info("CPU%d is up\n", cpu);
1582 continue;
1583 }
1584 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1585 }
1586
1587 arch_thaw_secondary_cpus_end();
1588
1589 cpumask_clear(frozen_cpus);
1590 out:
1591 cpu_maps_update_done();
1592 }
1593
1594 static int __init alloc_frozen_cpus(void)
1595 {
1596 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1597 return -ENOMEM;
1598 return 0;
1599 }
1600 core_initcall(alloc_frozen_cpus);
1601
1602 /*
1603 * When callbacks for CPU hotplug notifications are being executed, we must
1604 * ensure that the state of the system with respect to the tasks being frozen
1605 * or not, as reported by the notification, remains unchanged *throughout the
1606 * duration* of the execution of the callbacks.
1607 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1608 *
1609 * This synchronization is implemented by mutually excluding regular CPU
1610 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1611 * Hibernate notifications.
1612 */
1613 static int
1614 cpu_hotplug_pm_callback(struct notifier_block *nb,
1615 unsigned long action, void *ptr)
1616 {
1617 switch (action) {
1618
1619 case PM_SUSPEND_PREPARE:
1620 case PM_HIBERNATION_PREPARE:
1621 cpu_hotplug_disable();
1622 break;
1623
1624 case PM_POST_SUSPEND:
1625 case PM_POST_HIBERNATION:
1626 cpu_hotplug_enable();
1627 break;
1628
1629 default:
1630 return NOTIFY_DONE;
1631 }
1632
1633 return NOTIFY_OK;
1634 }
1635
1636
1637 static int __init cpu_hotplug_pm_sync_init(void)
1638 {
1639 /*
1640 * cpu_hotplug_pm_callback has higher priority than x86
1641 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1642 * to disable cpu hotplug to avoid cpu hotplug race.
1643 */
1644 pm_notifier(cpu_hotplug_pm_callback, 0);
1645 return 0;
1646 }
1647 core_initcall(cpu_hotplug_pm_sync_init);
1648
1649 #endif /* CONFIG_PM_SLEEP_SMP */
1650
1651 int __boot_cpu_id;
1652
1653 #endif /* CONFIG_SMP */
1654
1655 /* Boot processor state steps */
1656 static struct cpuhp_step cpuhp_hp_states[] = {
1657 [CPUHP_OFFLINE] = {
1658 .name = "offline",
1659 .startup.single = NULL,
1660 .teardown.single = NULL,
1661 },
1662 #ifdef CONFIG_SMP
1663 [CPUHP_CREATE_THREADS]= {
1664 .name = "threads:prepare",
1665 .startup.single = smpboot_create_threads,
1666 .teardown.single = NULL,
1667 .cant_stop = true,
1668 },
1669 [CPUHP_PERF_PREPARE] = {
1670 .name = "perf:prepare",
1671 .startup.single = perf_event_init_cpu,
1672 .teardown.single = perf_event_exit_cpu,
1673 },
1674 [CPUHP_RANDOM_PREPARE] = {
1675 .name = "random:prepare",
1676 .startup.single = random_prepare_cpu,
1677 .teardown.single = NULL,
1678 },
1679 [CPUHP_WORKQUEUE_PREP] = {
1680 .name = "workqueue:prepare",
1681 .startup.single = workqueue_prepare_cpu,
1682 .teardown.single = NULL,
1683 },
1684 [CPUHP_HRTIMERS_PREPARE] = {
1685 .name = "hrtimers:prepare",
1686 .startup.single = hrtimers_prepare_cpu,
1687 .teardown.single = hrtimers_dead_cpu,
1688 },
1689 [CPUHP_SMPCFD_PREPARE] = {
1690 .name = "smpcfd:prepare",
1691 .startup.single = smpcfd_prepare_cpu,
1692 .teardown.single = smpcfd_dead_cpu,
1693 },
1694 [CPUHP_RELAY_PREPARE] = {
1695 .name = "relay:prepare",
1696 .startup.single = relay_prepare_cpu,
1697 .teardown.single = NULL,
1698 },
1699 [CPUHP_SLAB_PREPARE] = {
1700 .name = "slab:prepare",
1701 .startup.single = slab_prepare_cpu,
1702 .teardown.single = slab_dead_cpu,
1703 },
1704 [CPUHP_RCUTREE_PREP] = {
1705 .name = "RCU/tree:prepare",
1706 .startup.single = rcutree_prepare_cpu,
1707 .teardown.single = rcutree_dead_cpu,
1708 },
1709 /*
1710 * On the tear-down path, timers_dead_cpu() must be invoked
1711 * before blk_mq_queue_reinit_notify() from notify_dead(),
1712 * otherwise a RCU stall occurs.
1713 */
1714 [CPUHP_TIMERS_PREPARE] = {
1715 .name = "timers:prepare",
1716 .startup.single = timers_prepare_cpu,
1717 .teardown.single = timers_dead_cpu,
1718 },
1719 /* Kicks the plugged cpu into life */
1720 [CPUHP_BRINGUP_CPU] = {
1721 .name = "cpu:bringup",
1722 .startup.single = bringup_cpu,
1723 .teardown.single = finish_cpu,
1724 .cant_stop = true,
1725 },
1726 /* Final state before CPU kills itself */
1727 [CPUHP_AP_IDLE_DEAD] = {
1728 .name = "idle:dead",
1729 },
1730 /*
1731 * Last state before CPU enters the idle loop to die. Transient state
1732 * for synchronization.
1733 */
1734 [CPUHP_AP_OFFLINE] = {
1735 .name = "ap:offline",
1736 .cant_stop = true,
1737 },
1738 /* First state is scheduler control. Interrupts are disabled */
1739 [CPUHP_AP_SCHED_STARTING] = {
1740 .name = "sched:starting",
1741 .startup.single = sched_cpu_starting,
1742 .teardown.single = sched_cpu_dying,
1743 },
1744 [CPUHP_AP_RCUTREE_DYING] = {
1745 .name = "RCU/tree:dying",
1746 .startup.single = NULL,
1747 .teardown.single = rcutree_dying_cpu,
1748 },
1749 [CPUHP_AP_SMPCFD_DYING] = {
1750 .name = "smpcfd:dying",
1751 .startup.single = NULL,
1752 .teardown.single = smpcfd_dying_cpu,
1753 },
1754 /* Entry state on starting. Interrupts enabled from here on. Transient
1755 * state for synchronsization */
1756 [CPUHP_AP_ONLINE] = {
1757 .name = "ap:online",
1758 },
1759 /*
1760 * Handled on control processor until the plugged processor manages
1761 * this itself.
1762 */
1763 [CPUHP_TEARDOWN_CPU] = {
1764 .name = "cpu:teardown",
1765 .startup.single = NULL,
1766 .teardown.single = takedown_cpu,
1767 .cant_stop = true,
1768 },
1769
1770 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1771 .name = "sched:waitempty",
1772 .startup.single = NULL,
1773 .teardown.single = sched_cpu_wait_empty,
1774 },
1775
1776 /* Handle smpboot threads park/unpark */
1777 [CPUHP_AP_SMPBOOT_THREADS] = {
1778 .name = "smpboot/threads:online",
1779 .startup.single = smpboot_unpark_threads,
1780 .teardown.single = smpboot_park_threads,
1781 },
1782 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1783 .name = "irq/affinity:online",
1784 .startup.single = irq_affinity_online_cpu,
1785 .teardown.single = NULL,
1786 },
1787 [CPUHP_AP_PERF_ONLINE] = {
1788 .name = "perf:online",
1789 .startup.single = perf_event_init_cpu,
1790 .teardown.single = perf_event_exit_cpu,
1791 },
1792 [CPUHP_AP_WATCHDOG_ONLINE] = {
1793 .name = "lockup_detector:online",
1794 .startup.single = lockup_detector_online_cpu,
1795 .teardown.single = lockup_detector_offline_cpu,
1796 },
1797 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1798 .name = "workqueue:online",
1799 .startup.single = workqueue_online_cpu,
1800 .teardown.single = workqueue_offline_cpu,
1801 },
1802 [CPUHP_AP_RANDOM_ONLINE] = {
1803 .name = "random:online",
1804 .startup.single = random_online_cpu,
1805 .teardown.single = NULL,
1806 },
1807 [CPUHP_AP_RCUTREE_ONLINE] = {
1808 .name = "RCU/tree:online",
1809 .startup.single = rcutree_online_cpu,
1810 .teardown.single = rcutree_offline_cpu,
1811 },
1812 #endif
1813 /*
1814 * The dynamically registered state space is here
1815 */
1816
1817 #ifdef CONFIG_SMP
1818 /* Last state is scheduler control setting the cpu active */
1819 [CPUHP_AP_ACTIVE] = {
1820 .name = "sched:active",
1821 .startup.single = sched_cpu_activate,
1822 .teardown.single = sched_cpu_deactivate,
1823 },
1824 #endif
1825
1826 /* CPU is fully up and running. */
1827 [CPUHP_ONLINE] = {
1828 .name = "online",
1829 .startup.single = NULL,
1830 .teardown.single = NULL,
1831 },
1832 };
1833
1834 /* Sanity check for callbacks */
1835 static int cpuhp_cb_check(enum cpuhp_state state)
1836 {
1837 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1838 return -EINVAL;
1839 return 0;
1840 }
1841
1842 /*
1843 * Returns a free for dynamic slot assignment of the Online state. The states
1844 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1845 * by having no name assigned.
1846 */
1847 static int cpuhp_reserve_state(enum cpuhp_state state)
1848 {
1849 enum cpuhp_state i, end;
1850 struct cpuhp_step *step;
1851
1852 switch (state) {
1853 case CPUHP_AP_ONLINE_DYN:
1854 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1855 end = CPUHP_AP_ONLINE_DYN_END;
1856 break;
1857 case CPUHP_BP_PREPARE_DYN:
1858 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1859 end = CPUHP_BP_PREPARE_DYN_END;
1860 break;
1861 default:
1862 return -EINVAL;
1863 }
1864
1865 for (i = state; i <= end; i++, step++) {
1866 if (!step->name)
1867 return i;
1868 }
1869 WARN(1, "No more dynamic states available for CPU hotplug\n");
1870 return -ENOSPC;
1871 }
1872
1873 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1874 int (*startup)(unsigned int cpu),
1875 int (*teardown)(unsigned int cpu),
1876 bool multi_instance)
1877 {
1878 /* (Un)Install the callbacks for further cpu hotplug operations */
1879 struct cpuhp_step *sp;
1880 int ret = 0;
1881
1882 /*
1883 * If name is NULL, then the state gets removed.
1884 *
1885 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1886 * the first allocation from these dynamic ranges, so the removal
1887 * would trigger a new allocation and clear the wrong (already
1888 * empty) state, leaving the callbacks of the to be cleared state
1889 * dangling, which causes wreckage on the next hotplug operation.
1890 */
1891 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1892 state == CPUHP_BP_PREPARE_DYN)) {
1893 ret = cpuhp_reserve_state(state);
1894 if (ret < 0)
1895 return ret;
1896 state = ret;
1897 }
1898 sp = cpuhp_get_step(state);
1899 if (name && sp->name)
1900 return -EBUSY;
1901
1902 sp->startup.single = startup;
1903 sp->teardown.single = teardown;
1904 sp->name = name;
1905 sp->multi_instance = multi_instance;
1906 INIT_HLIST_HEAD(&sp->list);
1907 return ret;
1908 }
1909
1910 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1911 {
1912 return cpuhp_get_step(state)->teardown.single;
1913 }
1914
1915 /*
1916 * Call the startup/teardown function for a step either on the AP or
1917 * on the current CPU.
1918 */
1919 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1920 struct hlist_node *node)
1921 {
1922 struct cpuhp_step *sp = cpuhp_get_step(state);
1923 int ret;
1924
1925 /*
1926 * If there's nothing to do, we done.
1927 * Relies on the union for multi_instance.
1928 */
1929 if (cpuhp_step_empty(bringup, sp))
1930 return 0;
1931 /*
1932 * The non AP bound callbacks can fail on bringup. On teardown
1933 * e.g. module removal we crash for now.
1934 */
1935 #ifdef CONFIG_SMP
1936 if (cpuhp_is_ap_state(state))
1937 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1938 else
1939 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1940 #else
1941 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1942 #endif
1943 BUG_ON(ret && !bringup);
1944 return ret;
1945 }
1946
1947 /*
1948 * Called from __cpuhp_setup_state on a recoverable failure.
1949 *
1950 * Note: The teardown callbacks for rollback are not allowed to fail!
1951 */
1952 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1953 struct hlist_node *node)
1954 {
1955 int cpu;
1956
1957 /* Roll back the already executed steps on the other cpus */
1958 for_each_present_cpu(cpu) {
1959 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1960 int cpustate = st->state;
1961
1962 if (cpu >= failedcpu)
1963 break;
1964
1965 /* Did we invoke the startup call on that cpu ? */
1966 if (cpustate >= state)
1967 cpuhp_issue_call(cpu, state, false, node);
1968 }
1969 }
1970
1971 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1972 struct hlist_node *node,
1973 bool invoke)
1974 {
1975 struct cpuhp_step *sp;
1976 int cpu;
1977 int ret;
1978
1979 lockdep_assert_cpus_held();
1980
1981 sp = cpuhp_get_step(state);
1982 if (sp->multi_instance == false)
1983 return -EINVAL;
1984
1985 mutex_lock(&cpuhp_state_mutex);
1986
1987 if (!invoke || !sp->startup.multi)
1988 goto add_node;
1989
1990 /*
1991 * Try to call the startup callback for each present cpu
1992 * depending on the hotplug state of the cpu.
1993 */
1994 for_each_present_cpu(cpu) {
1995 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1996 int cpustate = st->state;
1997
1998 if (cpustate < state)
1999 continue;
2000
2001 ret = cpuhp_issue_call(cpu, state, true, node);
2002 if (ret) {
2003 if (sp->teardown.multi)
2004 cpuhp_rollback_install(cpu, state, node);
2005 goto unlock;
2006 }
2007 }
2008 add_node:
2009 ret = 0;
2010 hlist_add_head(node, &sp->list);
2011 unlock:
2012 mutex_unlock(&cpuhp_state_mutex);
2013 return ret;
2014 }
2015
2016 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2017 bool invoke)
2018 {
2019 int ret;
2020
2021 cpus_read_lock();
2022 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2023 cpus_read_unlock();
2024 return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2027
2028 /**
2029 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2030 * @state: The state to setup
2031 * @name: Name of the step
2032 * @invoke: If true, the startup function is invoked for cpus where
2033 * cpu state >= @state
2034 * @startup: startup callback function
2035 * @teardown: teardown callback function
2036 * @multi_instance: State is set up for multiple instances which get
2037 * added afterwards.
2038 *
2039 * The caller needs to hold cpus read locked while calling this function.
2040 * Return:
2041 * On success:
2042 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2043 * 0 for all other states
2044 * On failure: proper (negative) error code
2045 */
2046 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2047 const char *name, bool invoke,
2048 int (*startup)(unsigned int cpu),
2049 int (*teardown)(unsigned int cpu),
2050 bool multi_instance)
2051 {
2052 int cpu, ret = 0;
2053 bool dynstate;
2054
2055 lockdep_assert_cpus_held();
2056
2057 if (cpuhp_cb_check(state) || !name)
2058 return -EINVAL;
2059
2060 mutex_lock(&cpuhp_state_mutex);
2061
2062 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2063 multi_instance);
2064
2065 dynstate = state == CPUHP_AP_ONLINE_DYN;
2066 if (ret > 0 && dynstate) {
2067 state = ret;
2068 ret = 0;
2069 }
2070
2071 if (ret || !invoke || !startup)
2072 goto out;
2073
2074 /*
2075 * Try to call the startup callback for each present cpu
2076 * depending on the hotplug state of the cpu.
2077 */
2078 for_each_present_cpu(cpu) {
2079 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2080 int cpustate = st->state;
2081
2082 if (cpustate < state)
2083 continue;
2084
2085 ret = cpuhp_issue_call(cpu, state, true, NULL);
2086 if (ret) {
2087 if (teardown)
2088 cpuhp_rollback_install(cpu, state, NULL);
2089 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2090 goto out;
2091 }
2092 }
2093 out:
2094 mutex_unlock(&cpuhp_state_mutex);
2095 /*
2096 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2097 * dynamically allocated state in case of success.
2098 */
2099 if (!ret && dynstate)
2100 return state;
2101 return ret;
2102 }
2103 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2104
2105 int __cpuhp_setup_state(enum cpuhp_state state,
2106 const char *name, bool invoke,
2107 int (*startup)(unsigned int cpu),
2108 int (*teardown)(unsigned int cpu),
2109 bool multi_instance)
2110 {
2111 int ret;
2112
2113 cpus_read_lock();
2114 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2115 teardown, multi_instance);
2116 cpus_read_unlock();
2117 return ret;
2118 }
2119 EXPORT_SYMBOL(__cpuhp_setup_state);
2120
2121 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2122 struct hlist_node *node, bool invoke)
2123 {
2124 struct cpuhp_step *sp = cpuhp_get_step(state);
2125 int cpu;
2126
2127 BUG_ON(cpuhp_cb_check(state));
2128
2129 if (!sp->multi_instance)
2130 return -EINVAL;
2131
2132 cpus_read_lock();
2133 mutex_lock(&cpuhp_state_mutex);
2134
2135 if (!invoke || !cpuhp_get_teardown_cb(state))
2136 goto remove;
2137 /*
2138 * Call the teardown callback for each present cpu depending
2139 * on the hotplug state of the cpu. This function is not
2140 * allowed to fail currently!
2141 */
2142 for_each_present_cpu(cpu) {
2143 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2144 int cpustate = st->state;
2145
2146 if (cpustate >= state)
2147 cpuhp_issue_call(cpu, state, false, node);
2148 }
2149
2150 remove:
2151 hlist_del(node);
2152 mutex_unlock(&cpuhp_state_mutex);
2153 cpus_read_unlock();
2154
2155 return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2158
2159 /**
2160 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2161 * @state: The state to remove
2162 * @invoke: If true, the teardown function is invoked for cpus where
2163 * cpu state >= @state
2164 *
2165 * The caller needs to hold cpus read locked while calling this function.
2166 * The teardown callback is currently not allowed to fail. Think
2167 * about module removal!
2168 */
2169 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2170 {
2171 struct cpuhp_step *sp = cpuhp_get_step(state);
2172 int cpu;
2173
2174 BUG_ON(cpuhp_cb_check(state));
2175
2176 lockdep_assert_cpus_held();
2177
2178 mutex_lock(&cpuhp_state_mutex);
2179 if (sp->multi_instance) {
2180 WARN(!hlist_empty(&sp->list),
2181 "Error: Removing state %d which has instances left.\n",
2182 state);
2183 goto remove;
2184 }
2185
2186 if (!invoke || !cpuhp_get_teardown_cb(state))
2187 goto remove;
2188
2189 /*
2190 * Call the teardown callback for each present cpu depending
2191 * on the hotplug state of the cpu. This function is not
2192 * allowed to fail currently!
2193 */
2194 for_each_present_cpu(cpu) {
2195 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2196 int cpustate = st->state;
2197
2198 if (cpustate >= state)
2199 cpuhp_issue_call(cpu, state, false, NULL);
2200 }
2201 remove:
2202 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2203 mutex_unlock(&cpuhp_state_mutex);
2204 }
2205 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2206
2207 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2208 {
2209 cpus_read_lock();
2210 __cpuhp_remove_state_cpuslocked(state, invoke);
2211 cpus_read_unlock();
2212 }
2213 EXPORT_SYMBOL(__cpuhp_remove_state);
2214
2215 #ifdef CONFIG_HOTPLUG_SMT
2216 static void cpuhp_offline_cpu_device(unsigned int cpu)
2217 {
2218 struct device *dev = get_cpu_device(cpu);
2219
2220 dev->offline = true;
2221 /* Tell user space about the state change */
2222 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2223 }
2224
2225 static void cpuhp_online_cpu_device(unsigned int cpu)
2226 {
2227 struct device *dev = get_cpu_device(cpu);
2228
2229 dev->offline = false;
2230 /* Tell user space about the state change */
2231 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2232 }
2233
2234 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2235 {
2236 int cpu, ret = 0;
2237
2238 cpu_maps_update_begin();
2239 for_each_online_cpu(cpu) {
2240 if (topology_is_primary_thread(cpu))
2241 continue;
2242 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2243 if (ret)
2244 break;
2245 /*
2246 * As this needs to hold the cpu maps lock it's impossible
2247 * to call device_offline() because that ends up calling
2248 * cpu_down() which takes cpu maps lock. cpu maps lock
2249 * needs to be held as this might race against in kernel
2250 * abusers of the hotplug machinery (thermal management).
2251 *
2252 * So nothing would update device:offline state. That would
2253 * leave the sysfs entry stale and prevent onlining after
2254 * smt control has been changed to 'off' again. This is
2255 * called under the sysfs hotplug lock, so it is properly
2256 * serialized against the regular offline usage.
2257 */
2258 cpuhp_offline_cpu_device(cpu);
2259 }
2260 if (!ret)
2261 cpu_smt_control = ctrlval;
2262 cpu_maps_update_done();
2263 return ret;
2264 }
2265
2266 int cpuhp_smt_enable(void)
2267 {
2268 int cpu, ret = 0;
2269
2270 cpu_maps_update_begin();
2271 cpu_smt_control = CPU_SMT_ENABLED;
2272 for_each_present_cpu(cpu) {
2273 /* Skip online CPUs and CPUs on offline nodes */
2274 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2275 continue;
2276 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2277 if (ret)
2278 break;
2279 /* See comment in cpuhp_smt_disable() */
2280 cpuhp_online_cpu_device(cpu);
2281 }
2282 cpu_maps_update_done();
2283 return ret;
2284 }
2285 #endif
2286
2287 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2288 static ssize_t state_show(struct device *dev,
2289 struct device_attribute *attr, char *buf)
2290 {
2291 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2292
2293 return sprintf(buf, "%d\n", st->state);
2294 }
2295 static DEVICE_ATTR_RO(state);
2296
2297 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2298 const char *buf, size_t count)
2299 {
2300 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2301 struct cpuhp_step *sp;
2302 int target, ret;
2303
2304 ret = kstrtoint(buf, 10, &target);
2305 if (ret)
2306 return ret;
2307
2308 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2309 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2310 return -EINVAL;
2311 #else
2312 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2313 return -EINVAL;
2314 #endif
2315
2316 ret = lock_device_hotplug_sysfs();
2317 if (ret)
2318 return ret;
2319
2320 mutex_lock(&cpuhp_state_mutex);
2321 sp = cpuhp_get_step(target);
2322 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2323 mutex_unlock(&cpuhp_state_mutex);
2324 if (ret)
2325 goto out;
2326
2327 if (st->state < target)
2328 ret = cpu_up(dev->id, target);
2329 else
2330 ret = cpu_down(dev->id, target);
2331 out:
2332 unlock_device_hotplug();
2333 return ret ? ret : count;
2334 }
2335
2336 static ssize_t target_show(struct device *dev,
2337 struct device_attribute *attr, char *buf)
2338 {
2339 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2340
2341 return sprintf(buf, "%d\n", st->target);
2342 }
2343 static DEVICE_ATTR_RW(target);
2344
2345 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2346 const char *buf, size_t count)
2347 {
2348 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349 struct cpuhp_step *sp;
2350 int fail, ret;
2351
2352 ret = kstrtoint(buf, 10, &fail);
2353 if (ret)
2354 return ret;
2355
2356 if (fail == CPUHP_INVALID) {
2357 st->fail = fail;
2358 return count;
2359 }
2360
2361 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2362 return -EINVAL;
2363
2364 /*
2365 * Cannot fail STARTING/DYING callbacks.
2366 */
2367 if (cpuhp_is_atomic_state(fail))
2368 return -EINVAL;
2369
2370 /*
2371 * DEAD callbacks cannot fail...
2372 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2373 * triggering STARTING callbacks, a failure in this state would
2374 * hinder rollback.
2375 */
2376 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2377 return -EINVAL;
2378
2379 /*
2380 * Cannot fail anything that doesn't have callbacks.
2381 */
2382 mutex_lock(&cpuhp_state_mutex);
2383 sp = cpuhp_get_step(fail);
2384 if (!sp->startup.single && !sp->teardown.single)
2385 ret = -EINVAL;
2386 mutex_unlock(&cpuhp_state_mutex);
2387 if (ret)
2388 return ret;
2389
2390 st->fail = fail;
2391
2392 return count;
2393 }
2394
2395 static ssize_t fail_show(struct device *dev,
2396 struct device_attribute *attr, char *buf)
2397 {
2398 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2399
2400 return sprintf(buf, "%d\n", st->fail);
2401 }
2402
2403 static DEVICE_ATTR_RW(fail);
2404
2405 static struct attribute *cpuhp_cpu_attrs[] = {
2406 &dev_attr_state.attr,
2407 &dev_attr_target.attr,
2408 &dev_attr_fail.attr,
2409 NULL
2410 };
2411
2412 static const struct attribute_group cpuhp_cpu_attr_group = {
2413 .attrs = cpuhp_cpu_attrs,
2414 .name = "hotplug",
2415 NULL
2416 };
2417
2418 static ssize_t states_show(struct device *dev,
2419 struct device_attribute *attr, char *buf)
2420 {
2421 ssize_t cur, res = 0;
2422 int i;
2423
2424 mutex_lock(&cpuhp_state_mutex);
2425 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2426 struct cpuhp_step *sp = cpuhp_get_step(i);
2427
2428 if (sp->name) {
2429 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2430 buf += cur;
2431 res += cur;
2432 }
2433 }
2434 mutex_unlock(&cpuhp_state_mutex);
2435 return res;
2436 }
2437 static DEVICE_ATTR_RO(states);
2438
2439 static struct attribute *cpuhp_cpu_root_attrs[] = {
2440 &dev_attr_states.attr,
2441 NULL
2442 };
2443
2444 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2445 .attrs = cpuhp_cpu_root_attrs,
2446 .name = "hotplug",
2447 NULL
2448 };
2449
2450 #ifdef CONFIG_HOTPLUG_SMT
2451
2452 static ssize_t
2453 __store_smt_control(struct device *dev, struct device_attribute *attr,
2454 const char *buf, size_t count)
2455 {
2456 int ctrlval, ret;
2457
2458 if (sysfs_streq(buf, "on"))
2459 ctrlval = CPU_SMT_ENABLED;
2460 else if (sysfs_streq(buf, "off"))
2461 ctrlval = CPU_SMT_DISABLED;
2462 else if (sysfs_streq(buf, "forceoff"))
2463 ctrlval = CPU_SMT_FORCE_DISABLED;
2464 else
2465 return -EINVAL;
2466
2467 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2468 return -EPERM;
2469
2470 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2471 return -ENODEV;
2472
2473 ret = lock_device_hotplug_sysfs();
2474 if (ret)
2475 return ret;
2476
2477 if (ctrlval != cpu_smt_control) {
2478 switch (ctrlval) {
2479 case CPU_SMT_ENABLED:
2480 ret = cpuhp_smt_enable();
2481 break;
2482 case CPU_SMT_DISABLED:
2483 case CPU_SMT_FORCE_DISABLED:
2484 ret = cpuhp_smt_disable(ctrlval);
2485 break;
2486 }
2487 }
2488
2489 unlock_device_hotplug();
2490 return ret ? ret : count;
2491 }
2492
2493 #else /* !CONFIG_HOTPLUG_SMT */
2494 static ssize_t
2495 __store_smt_control(struct device *dev, struct device_attribute *attr,
2496 const char *buf, size_t count)
2497 {
2498 return -ENODEV;
2499 }
2500 #endif /* CONFIG_HOTPLUG_SMT */
2501
2502 static const char *smt_states[] = {
2503 [CPU_SMT_ENABLED] = "on",
2504 [CPU_SMT_DISABLED] = "off",
2505 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2506 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2507 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2508 };
2509
2510 static ssize_t control_show(struct device *dev,
2511 struct device_attribute *attr, char *buf)
2512 {
2513 const char *state = smt_states[cpu_smt_control];
2514
2515 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2516 }
2517
2518 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2519 const char *buf, size_t count)
2520 {
2521 return __store_smt_control(dev, attr, buf, count);
2522 }
2523 static DEVICE_ATTR_RW(control);
2524
2525 static ssize_t active_show(struct device *dev,
2526 struct device_attribute *attr, char *buf)
2527 {
2528 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2529 }
2530 static DEVICE_ATTR_RO(active);
2531
2532 static struct attribute *cpuhp_smt_attrs[] = {
2533 &dev_attr_control.attr,
2534 &dev_attr_active.attr,
2535 NULL
2536 };
2537
2538 static const struct attribute_group cpuhp_smt_attr_group = {
2539 .attrs = cpuhp_smt_attrs,
2540 .name = "smt",
2541 NULL
2542 };
2543
2544 static int __init cpu_smt_sysfs_init(void)
2545 {
2546 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2547 &cpuhp_smt_attr_group);
2548 }
2549
2550 static int __init cpuhp_sysfs_init(void)
2551 {
2552 int cpu, ret;
2553
2554 ret = cpu_smt_sysfs_init();
2555 if (ret)
2556 return ret;
2557
2558 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2559 &cpuhp_cpu_root_attr_group);
2560 if (ret)
2561 return ret;
2562
2563 for_each_possible_cpu(cpu) {
2564 struct device *dev = get_cpu_device(cpu);
2565
2566 if (!dev)
2567 continue;
2568 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2569 if (ret)
2570 return ret;
2571 }
2572 return 0;
2573 }
2574 device_initcall(cpuhp_sysfs_init);
2575 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2576
2577 /*
2578 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2579 * represents all NR_CPUS bits binary values of 1<<nr.
2580 *
2581 * It is used by cpumask_of() to get a constant address to a CPU
2582 * mask value that has a single bit set only.
2583 */
2584
2585 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2586 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2587 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2588 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2589 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2590
2591 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2592
2593 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2594 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2595 #if BITS_PER_LONG > 32
2596 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2597 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2598 #endif
2599 };
2600 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2601
2602 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2603 EXPORT_SYMBOL(cpu_all_bits);
2604
2605 #ifdef CONFIG_INIT_ALL_POSSIBLE
2606 struct cpumask __cpu_possible_mask __read_mostly
2607 = {CPU_BITS_ALL};
2608 #else
2609 struct cpumask __cpu_possible_mask __read_mostly;
2610 #endif
2611 EXPORT_SYMBOL(__cpu_possible_mask);
2612
2613 struct cpumask __cpu_online_mask __read_mostly;
2614 EXPORT_SYMBOL(__cpu_online_mask);
2615
2616 struct cpumask __cpu_present_mask __read_mostly;
2617 EXPORT_SYMBOL(__cpu_present_mask);
2618
2619 struct cpumask __cpu_active_mask __read_mostly;
2620 EXPORT_SYMBOL(__cpu_active_mask);
2621
2622 struct cpumask __cpu_dying_mask __read_mostly;
2623 EXPORT_SYMBOL(__cpu_dying_mask);
2624
2625 atomic_t __num_online_cpus __read_mostly;
2626 EXPORT_SYMBOL(__num_online_cpus);
2627
2628 void init_cpu_present(const struct cpumask *src)
2629 {
2630 cpumask_copy(&__cpu_present_mask, src);
2631 }
2632
2633 void init_cpu_possible(const struct cpumask *src)
2634 {
2635 cpumask_copy(&__cpu_possible_mask, src);
2636 }
2637
2638 void init_cpu_online(const struct cpumask *src)
2639 {
2640 cpumask_copy(&__cpu_online_mask, src);
2641 }
2642
2643 void set_cpu_online(unsigned int cpu, bool online)
2644 {
2645 /*
2646 * atomic_inc/dec() is required to handle the horrid abuse of this
2647 * function by the reboot and kexec code which invoke it from
2648 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2649 * regular CPU hotplug is properly serialized.
2650 *
2651 * Note, that the fact that __num_online_cpus is of type atomic_t
2652 * does not protect readers which are not serialized against
2653 * concurrent hotplug operations.
2654 */
2655 if (online) {
2656 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2657 atomic_inc(&__num_online_cpus);
2658 } else {
2659 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2660 atomic_dec(&__num_online_cpus);
2661 }
2662 }
2663
2664 /*
2665 * Activate the first processor.
2666 */
2667 void __init boot_cpu_init(void)
2668 {
2669 int cpu = smp_processor_id();
2670
2671 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2672 set_cpu_online(cpu, true);
2673 set_cpu_active(cpu, true);
2674 set_cpu_present(cpu, true);
2675 set_cpu_possible(cpu, true);
2676
2677 #ifdef CONFIG_SMP
2678 __boot_cpu_id = cpu;
2679 #endif
2680 }
2681
2682 /*
2683 * Must be called _AFTER_ setting up the per_cpu areas
2684 */
2685 void __init boot_cpu_hotplug_init(void)
2686 {
2687 #ifdef CONFIG_SMP
2688 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2689 #endif
2690 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2691 }
2692
2693 /*
2694 * These are used for a global "mitigations=" cmdline option for toggling
2695 * optional CPU mitigations.
2696 */
2697 enum cpu_mitigations {
2698 CPU_MITIGATIONS_OFF,
2699 CPU_MITIGATIONS_AUTO,
2700 CPU_MITIGATIONS_AUTO_NOSMT,
2701 };
2702
2703 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2704 CPU_MITIGATIONS_AUTO;
2705
2706 static int __init mitigations_parse_cmdline(char *arg)
2707 {
2708 if (!strcmp(arg, "off"))
2709 cpu_mitigations = CPU_MITIGATIONS_OFF;
2710 else if (!strcmp(arg, "auto"))
2711 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2712 else if (!strcmp(arg, "auto,nosmt"))
2713 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2714 else
2715 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2716 arg);
2717
2718 return 0;
2719 }
2720 early_param("mitigations", mitigations_parse_cmdline);
2721
2722 /* mitigations=off */
2723 bool cpu_mitigations_off(void)
2724 {
2725 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2726 }
2727 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2728
2729 /* mitigations=auto,nosmt */
2730 bool cpu_mitigations_auto_nosmt(void)
2731 {
2732 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2733 }
2734 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);